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Abstract

A stochastic dynamical context is developed for Bookstein’s shape theory. It is
shown how Bookstein’s shape space for planar triangles arises naturally when the
landmarks are moved around by a special Brownian motion on the general linear
group of invertible(2× 2) real matrices. Asymptotics for the Brownian transition
density are used to suggest an exponential family of distributions which is anal-
ogous to the von Mises-Fisher spherical distribution and which has already been
studied in [23]. The computer algebra implementationItovsn3 [34] of stochas-
tic calculus is used to perform the calculations (some of which actually date back
to work by Dyson on eigenvalues of random matrices and by Dynkin on Brown-
ian motion on ellipsoids). An interesting feature of these calculations is that they
include the first application (to the author’s knowledge) of the Gröbner basis algo-
rithm in a stochastic calculus context.

KEYWORDS: Bookstein shape, Brownian motion, computer algebra, D.G. Kendall
shape, von Mises-Fisher distribution, Gröbner basis algorithm, holomorphic correspon-
dence, hyperbolic plane, mean shape, Minakshisundaram-Pleijel recursion formulae,
statistical shape, symbolic Itô calculus.

1 Two different shapes for planar triangles

David Kendall [25, 26, 27, 28, 29] has shown that the shape of a triangle of three
landmark points in the plane is naturally parametrized by a (D.G. Kendall shape-) point
on a sphereΣ3

2 of radius1/2.
Justifications for this include the following:

(i) An analysis of a procrustean metric for shapes, which delivers exactly this metric
structure. See [26];

(ii) A symmetry argument about the result of “mixing” the three planar landmark
points of the triangle using SO(6) acting onR(3×2)) (this is the appropriate sym-
metry if the points are random, independent, identically distributed with circu-
larly symmetric Gaussian distribution), involving reference to the famousHopf
fibrationof complex projective spaces:CP 2 → CP 1 = S2( radius1/2) [7, page
235];

(iii) If the three landmark points move independently on the underlying Euclidean
plane, either by Brownian motion or by Ornstein-Uhlenbeck process, then the
shape moves according to a two-dimensional random process. If the size is mea-
sured by the sum of squares of sides then a random time-changeτ based only
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on size (itself given by an autonomous squared Bessel process, if the underly-
ing process is the Ornstein-Uhlenbeck process) turns the shape process into a
diffusion; consideration of its intrinsic geometry shows that thisshape diffusion
is naturally regarded as a Brownian motion on the sphere of radius1/2. See
the work of David Kendall [25] and also generalizations to higher dimensions
covered by myself [31, 32, 34], Le [41], and Carne [9].

Of course these three justifications for the spherical geometry ofΣ3
2 are closely re-

lated. They identify a shape geometry which is appropriate when (in some sense) the
landmark points of the configuration have only a weak interdependence, as might be
relevant when considering shapes formed by a point process (see for example the orig-
inal application to archaeology in [8, 30]: see also [13]).

Notice also the following: while in most applied contexts one does not suppose the
points move in time, nevertheless the time-change variableτ in the transition kernel
for shape diffusion in(iii) can be viewed as a dispersion parameter, and the Markov
property then converts into a convolution relationship between distributions given by
the transition kernel. It is also possible to use the original time parametert (scaled
by the size of the initial triangle) as dispersion parameter, and one then obtains the
delightfully simpleMardia-Drydenfamily of distributions [45], though the convolution
property is then lost.

Independently Bookstein has developed a notion of shape based mainly on biolog-
ical applications (see [4, 6] for reviews and [5] for more recent work), in cases where it
is notappropriate to assume the inter-point dependence is only weak. In fact Bookstein
derivestwo notions of shape. One is based on an idea of ratios of strain, is principally
to do with triangles, and is what we shall discuss here. The other, which we do not
discuss, is relevant for configurations of more than three points and is based on the
theory of elasticity of thin plates.

Bookstein’s idea is to consider the strains inherent in distorting an initial configu-
ration of three points into a new configuration. The resulting parametrization delivers
a (Bookstein shape-) point in the half-plane and the implicit geometry is nowhyper-
bolic (constant negative curvature). Distortion of a non-collinear configuration into
a collinear configuration is an extreme case, and corresponds to moving the corre-
sponding shape point out to the boundary: indeed to be absolutely precise one should
represent Bookstein shape space bytwo hyperbolic planes (the shape represented by
points on the one half-plane corresponding to mirror images of shapes represented by
points on the other), and regard shapes which are mutual reflections as infinitely distant
from each other. We shall confine our attention to just one half-plane, corresponding
to shapes which can be obtained by continuously distorting a reference shape without
passing through collinearity. This is a natural restriction in the biological context!

(An alternative, though less exact, point of view regards Bookstein shape asreflec-
tion shape: invariant under translation, rotation, scaling, and reflection.)

In the discussion of [4], D.G. Kendall indicates a connection between Bookstein
shape space and a tangent plane to D.G. Kendall shape space. Small [55] compares
Bookstein shape with D.G. Kendall shape and suggests that it would be desirable fur-
ther to delineate the statistical assumptions underlying Bookstein shape for triangles.
This paper responds to Small’s suggestion by showing how to relate Bookstein triangle
shape to a suitable random dynamics for three points on the plane. It thus provides a
justification for the underlying hyperbolic geometry in a manner similar to that of(iii)
above in the case of D.G. Kendall shape.

The paper is divided into 6 sections: after this introductory section, Section 2 de-
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scribes how the symbolic Itô calculus ofItovsn3can be used to derive Bookstein’s
shape space geometry from a global stochastic dynamical model. Section 3 continues
this theme by usingItovsn3to obtain a holomorphic mapping from Bookstein’s shape
space to D.G. Kendall’s shape space. The geometrical setting of Bookstein’s shape
space is then used in Section 4 to develop asymptotic approximations for the (Brown-
ian) shape-density, resulting in an analogue of the von Mises-Fisher distribution on the
sphere. Section 5 sketches an application to estimation of mean shape which demon-
strates the amenability of the resulting shape distribution. Section 6 presents a final
discussion and indicates possible avenues of future research.

I gladly acknowledge helpful discussions with Fran Burstall, Jens Ledet Jensen,
Elton Hsu, and the constructive suggestions of an anonymous referee.

2 A stochastic calculus model for Bookstein’s shape

The main purpose of this paper is to set down the fact that Bookstein’s shape space (to-
gether with a metric of constant negative curvature) arises naturally from a simple and
natural random dynamics induced by a randomly evolving global transformation, and
then to indicate how this may be exploited in shape analysis. The underlying strategy
is the same as was used to study diffusion of D.G. Kendall shape [31, 32, 34]: compute
the characteristics of the shape diffusion in a computationally convenient set of coor-
dinates and then identify the underlying Riemannian metric structure which turns the
diffusion into a Riemannian Brownian motion (intuitively speaking, an infinitesimal
unbiased random walk with step-size dependent on direction and location) modified by
a drift (for an exposition of this see for example [22, §V.4] or [54, §V.34.93]). As in
the treatment of D.G. Kendall shape diffusion [31, 32, 34], it is helpful to use computer
algebra forboththese steps: better still a computer algebra implementation of stochas-
tic calculus such as my ownItovsn3(at the time of writing implementations ofItovsn3
are available in the computer algebra packagesREDUCE[34] and Mathematica[35],
and others are being developed forMAPLEand the innovative new computer algebra
systemAXIOM).

The random global transformation which we will study is the simplest non-trivial
random transformation which might be useful for studies in shape theory: the special
“Brownian motion on the general linear group GL+(2,R)” defined in Definition2.2
below.

First we recall some notation from matrix group theory.

Definition 2.1 (a) GL(2,R) denotes the group of invertible real(2× 2) matrices;

(b) GL+(2,R) denotes the subgroup ofGL(2,R) formed by(2× 2) matrices having
positive determinant;

(c) (2,R) denotes the subgroup ofGL+(2,R) formed by(2× 2) matrices having
unit determinant;

(d) SO(2) denotes the subgroup of(2,R) formed by special orthogonal(2× 2) ma-
trices.

Now we use Stratonovich differential calculus formalism to define the required
Brownian motion.
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Definition 2.2 A general (right-invariant-) Brownian motion onGL+(2,R) is aGL+(2,R)-
valued diffusionG = {G(t) : t ≥ 0} which satisfies the following Stratonovich
stochastic differential equation:

dS G = (dS B)G
G(0) = g0 (1)

where the initial stateg0 belongs toGL+(2,R) (a consequence of this is thatG stays in
theGL+(2,R) component for ever) andB is a linear transformation of standard four-
dimensional Brownian motion BM(R4), with coordinates rearranged to form a(2× 2)
matrix. Suppose that the statistics of the vectorized version of the processB are those
of BM(R4) itself. Then we say thatG is a special Brownian motion onGL+(2,R).

This is a natural candidate for a diffusion to underly the theory of Bookstein’s trian-
gle shapes. The configuration of three points determined by the matrixg is continually
being altered by infinitesimal perturbations acting as linear transformations on the am-
bient plane.

Note that Equation (1) is right-invariant under the action of GL(2,R); thus ifG
is a (perhaps special) Brownian motion on GL+(2,R) then so isGĜ for any fixed
Ĝ ∈ GL(2,R).

There is an entirely similar definition of Brownian motions and special Brownian
motions on(2,R), except that the(2× 2) matrix processB is replaced by the traceless
processB − 1/2 trace(B)I2, for I2 the(2× 2) identity matrix. In fact ifG is a special
Brownian motion on GL(2,R) thenG/

√
det(G) is a special Brownian motion on

(2,R). Special Brownian motions on the semi-simple Lie group(2,R) can be related
to its Killing form, and are calledcanonical Brownian motionsby J.C. Taylor [58].

The following fact is immediate from basic considerations of stochastic calculus:
if G is a special Brownian motion on GL+(2,R) then so isRG, for any fixed rotation
R ∈ SO(2). (However this doesnot characterize special Brownian motions amongst
Brownian motions on GL+(2,R).)

Given that we are interested in shape, hence in rotational invariants of configura-
tions (x1, x2, x3), it is therefore reasonable to consider the random process of shapes
induced by(Gx1, Gx2, Gx3) for G a special Brownian motion on GL+(2,R). For,
by the above fact, the law of the shape of(Gx1, Gx2, Gx3) then depends only on the
shape of(x1, x2, x3). We now identify the distribution of this shape process.

Theorem 1 Consider three landmarksX1, X2, X3 in the Euclidean planeR2. Sup-
pose that they move in the following manner:

Xi(t) = G(t)xi (2)

for a fixed reference configuration(x1, x2, x3), where{G(t) : t ≥ 0} is a special
Brownian motion on the general linear groupGL+(2,R). To avoid degeneracy, sup-
pose that the reference configuration(x1, x2, x3) is affinely independent. Consider the
shapeσ(t) of the triad{X1(t), X2(t),X3(t)}, which is to say itsequivalence classun-
der the equivalence relation determined by ignoring location, scale and rotation. Then
σ is a diffusion (no time-change necessary!) whose state-space has intrinsic geometry
makingσ into Brownian motion on the2-dimensional hyperbolic planeH(−2), with
constant curvature−2. Furthermore, geodesic polar coordinates(r, θ) of the hyper-
bolic plane, centred on the shape of{x1, x2, x3}, can be related to the shapeσ via the
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transformationG as follows:

det(G)−1GTG =
[
ξ ζ
ζ η

]
,

√
2r = 1/2arccosh

(
1/2(ξ + η)2 − 1

)
= 1/2 arccosh

(
1/2(det(G)−1 traceGTG)2 − 1

)
= log(λ1/λ2) , (3)

1/2 sin θ =
ζ√

(ξ + η)2 − 4
=

ζ√
(det(G)−1 traceGTG)2 − 4

=
ζ

(λ1/λ2 − λ2/λ1)
. (4)

Hereλ1 ≥ λ2 are the non-negative square roots of the eigenvalues ofGTG. We use
the non-negative branch ofarccosh.

Analysis shows thatr vanishes exactly when traceGTG = 2 det(G), which occurs
exactly when the two eigenvalues ofGTG coincide. Using the singular-value decom-
position, we see that this happens if and only ifG is a multiple of a rotation matrix. So
the above geodesic polar coordinates are indeed centred on the shape{x1, x2, x3}.

Note that the shapeσ is coordinatized bydet(G)−1GTG and hence by(r, θ). The
angleθ is not continuously defined atθ = ±π/2; however this can be dealt with by
rotating the reference shape{x1, x2, x3} (corresponding to rotating the coordinate sys-
tem at twice the speed) and using the overlap of the two charts.

Proof: The main concepts in this proof date back to pioneering work by Dyson
[15] on eigenvalues of random matrices and by Dynkin [14] and Orihara [48] on Brow-
nian motion on ellipsoids. This corresponds to the case of special Brownian motion on
GL(n,R). Norris, Rogers and Williams [46] describe a stochastic calculus approach
to then-dimensional situation, and Rogers and Williams [54] give a description spe-
cialized to ourn = 2 case and sketch a relationship to the hyperbolic plane. In the
following we indicate the steps of a proof usingItovsn3 to carry out the stochastic
calculus calculations in theREDUCEcomputer algebra package. Detailed scripts and
related software are available on request from the author.

The first step is to check that ifG is special Brownian motion on GL(2,R) thenG̃ =
G/
√

det(G) is special Brownian motion on(2,R). This rather easy exercise is done
using Itovsn3procedures to introduce the various components of the(2× 2) matrix
G, REDUCEmatrix manipulation to compute the determinant, thenItovsn3procedures
again to compute the semimartingale characteristics of the entries forming the matrix
G/
√

det(G).
The second step again usesItovsn3and the matrix algebra capabilities ofRE-

DUCEto build G̃ = G/
√

det(G) ∈ (2,R) as a matrix of semimartingales. We then
computeξ andζ, where as above(ξ, ζ) is the top row of the product̃GT G̃ (by the
det(G̃) = 1 condition these two quantities parametrize the shape random process) and
use the Gr̈obner basis algorithms ofREDUCEto find convenient re-expressions of their
semimartingale characteristics. In passing, to my current knowledge this is the first
application of Gr̈obner basis algorithms in the context of computer algebra in stochas-
tic calculus, though [49] describes their application in parts of applied statistics. For
example they allow one to reduce a given polynomial expression using nonlinear poly-
nomial side relations such as the requirementdet(G̃) = 1. As a simple example, the
REDUCEcommand
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dt*GREDUCE(<<(d xx)*(d yy)>>/dt, {DET(G)=1,x=xx,y=yy}),

when applied to expressionsxx , yy representingξ, η (andG representing the corre-
sponding matrixG), yields

2*dt*zˆ2 - 2*dt.

Incidentally it is necessary here to divide bydt before applyingGREDUCEto the differ-
ential(d xx)*(d yy) sinceGREDUCEassumes its first argument has the algebraic
properties of a polynomial and therefore will fail if applied to a stochastic differential.
(This is because the ring of stochastic differentials has “zero-divisors” arising from the
“It ô multiplication rules”dt2 = 0, dt dB = 0, etc.)

Briefly, the Gr̈obner basis algorithm shows how to reduce a given multivariate
polynomial into the most “elegant” equivalent form, where the equivalence is de-
fined by listing a collection of polynomials which vanish identically (for example
DET(G)− 1 = ξη− ζ2− 1 in the above). Here there is no natural notion of “elegance”
(except in the univariate case, where one could use the degree of the polynomial) and
instead one must choose arbitrarily, using for example an ordering of monomials based
on lexicographic ordering within degree. However given this choice the algorithm is
well-specified, has been implemented in a wide variety of computer algebra packages,
and allows one automatically to reduce a multivariate polynomial in the presence of
side-relations. (For further details of the use of Gröbner basis algorithms in computer
algebra, see [20, 12, 43].)

As a result we find thatξ andζ satisfy the stochastic differential equations

(d ξ)2 = 2ξ2 dt ,

(d ζ)2 = 2(ζ2 + 1) dt ,
(d ξ)× (d ζ) = 2ξζ dt ,

Drift d ξ = 2ξ dt ,
Drift d ζ = 2ζ dt . (5)

Thus the shape process(ξ, ζ) is a diffusion – no time-change is required! It is helpful
for later purposes to add in the lower-right entryη of G̃TG: we have

(d η)2 = 2η2 dt ,

(d ξ)× (d η) = 2(ζ2 − 1) dt = 2(ηξ − 2) dt ,
(d η)× (d ζ) = 2ηζ dt ,

Drift d η = 2η dt . (6)

(It turns out to be better still to use the second of the equivalent forms for(d ξ)×(d η).)
The third step formulatesη, ξ, ζ directly as basic semimartingales and computes

the intrinsic geometry of the shape diffusion(ξ, ζ). Computing such invariants of Rie-
mannian geometry is involved but routine, and is a facility ofItovsn3which can be
invoked with a single command:

Compute!_Geometry("Bookstein triangle shape",{x,z}).

6



The automatic computation shows that the state-space has intrinsic geometry of con-
stant negative curvature−2. With respect to this geometry the shape diffusion(ξ, ζ) is
a Riemannian Brownian motion with no intrinsic drift.

The final step computes geodesic polar coordinates for(ξ, ζ) under this metric,
again usingItovsn3. The procedure is first to find a homogeneous quadraticw in ξ and
ζ such that(dw)2 andDrift dw can be expressed in terms ofw alone. Again the
Gröbner basis package is of use here as it allows one to identify cleanly the terms which
must vanish for the above to be true. One then computes a nonlinear transformation
r = f(w) such that(d r)2 = dt (a simple matter of integration) and checks that
Drift d r satisfies the equation required of the radial part of Brownian motion in a
space of constant negative curvature−2:

Drift d r = 1/2
(√

2 coth(
√

2r)
)
dt . (7)

Having found that, one searches for an expressionα in ξ andζ such that(dα)(dw) =
0. A suitable expression isζ/

√
(ξ + η)2 − 4 as given in equation (4): however it was

less straightforward to find this as (at least at first glance) it involves ratios of polyno-
mials for which the Gr̈obner basis algorithm is less accessible.

Finally one finds a nonlinear transformationθ = a(α) such thatDrift d θ = 0,
and checks that(d θ)2 depends onr in the way required of the angular part of Brownian
motion in a space of constant negative curvature−2:

(d θ)2 =
2dt

(sinh(
√

2r))2
. (8)

The Gr̈obner basis algorithm has no direct application here, because we have to search
for a ratio of polynomials. Consequently the desired expression was found in a more
ad hocway, by analyzing the spectral decomposition ofGTG.

These calculations lead to the equations (3,4) for (r, θ).
These four computer algebra steps constitute the bulk of the proof of the Theorem.

It remains only to observe thatξ and ζ can vary so as to cover the whole plane of
negative curvature (this follows by checking that all values of(r, θ) can be obtained,
subject to the above remarks concerning choice of charts andθ = ±π/2). 2

The behaviour of Brownian motion on the hyperbolic plane has been thoroughly
studied: in [40, 50] it is established that such Brownian motions (to be precise, Brown-
ian motions on simply-connected manifolds of pinched negative curvature) drift off to
infinity at linear rate (so do not reach infinity in finite time!) and settle into (random)
limiting directions. Correspondingly the Bookstein shape diffusion discussed above
will tend towards a specific collinear shape, but will not reach it in finite time.

3 Relating Bookstein shape to D.G. Kendall shape

We now need to relate the two notions of shape in a way that takes account of the
relevant diffusions and their geometry.

First consider the way in which the definitions of D.G. Kendall shape, as given in
[26], are expressed in the notation established above. The D.G. Kendall shape for the
triad{x1, x2, x3} is obtained in terms of

u =
x2 − x1√

2
, v =

2x3 − x2 − x1√
6

(9)
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(see [26, equation (1)]) as follows. Arrange the two vectorsu, v in a(2× 2) partitioned
matrix as

w̃ = [u|v] (10)

and normalize to obtain thepre-shape

w =
w̃√

tracew̃T w̃
. (11)

The D.G. Kendall shape is the equivalence class ofw under left-multiplication by
SO(2), and can be parametrized bywTw and (the sign of)det(w).

The (procrustean) distanceρ between shapes represented by pre-shapesw andw0

is given by ([26, equation (23)])

ρ(w,w0) = arccos
(

trace
√
ww0

Tw0wT − 2αs
)

(12)

wheres is the smallest eigenvalue of
√
ww0

Tw0wT andα = 1 if det(ww0
T ) is

negative, otherwiseα = 0. It is an easy exercise to show thatρ(w,w0) depends only
on the shapes represented byw, w0.

Let U(t), V (t), W̃ (t) = [U(t)|V (t)], W (t) = W̃ (t)/
√

trace(W̃ (t)
T
W̃ (t)) be

the corresponding quantities for the triad{X1(t), X2(t),X3(t)} evolving as in equa-
tion (2) above, soXi(t) = G(t)xi for G a special Brownian motion on GL+(2,R).
We can then compare normal polar coordinate systems for the two kinds of shapes:
D.G. Kendall shape,(ρ(W (t), w0), φ) and Bookstein shape with the normal polar co-
ordinates(r, θ) obtained in equations (3,4) in the previous section.

Remarkably, there turns out to be a holomorphic (that is to say, complex-analytic)
correspondence between the two shape structures. To understand this, which is the
content of our next theorem, note that the hyperbolic planeH(−2) can be viewed as
a unit disc{z ∈ C : |z| < 1} in the complex plane (this is thePoincaŕe model)
using the map which sends(s, θ) ∈ {z ∈ C : |z| < 1} to (log( 1+s

1−s )/
√

2, θ) ∈
H(−2) (polar coordinates in both cases). This produces a conformal change of metric
(from ds2 + s2dθ2 to dr2 + 1/2 sinh(

√
2r)2dθ2) and thus (a) maps complex Brownian

motion to a time-changed Brownian motion onH(−2), and (b) furnishesH(−2) with
a complex structure.

Similarly the sphereS2 can be given a complex structure by mapping it onto the
extended complex plane using projection from the north pole onto a plane tangent to
the south pole. This also converts Brownian motion onS2 into a time-changed complex
Brownian motion.

Thus it makes sense to ask whether the canonical mapping between the two shape
spaces is holomorphic (complex-analytic).

Theorem 2 Suppose thatW (t) is the pre-shape corresponding to the triad{X1(t), X2(t),X3(t)}
as described above. Let(ρ(W (t), w), φ(W (t))) be normal polar coordinates for D.G. Kendall
shape, centred at an equilateral triangle pre-shapew with positivedet(w). Sup-
pose further that(r(W (t)), θ(W (t))) is normal polar coordinates for Bookstein shape
as given in the previous section in equation (3,4), based on an equilateral triangle
{x1, x2, x3}. The two systems of coordinates are connected by the equations

φ = θ + constant,

sin(2ρ) = tanh(
√

2r) . (13)
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Moreover this correspondence gives a holomorphic diffeomorphism between Book-
stein’s hyperbolic shape space and the upper hemisphere of D.G. Kendall’s shape
spaceΣ3

2: the Bookstein shape diffusion is carried by this diffeomorphism into the
D.G. Kendall shape diffusion (described in(iii) in Section 1) subject to a random
time-change given by

dτ̃ =
dt

2 cosh(
√

2r)2
. (14)

Proof: We deal first with the anglesθ andφ. If G(t) is the general linear transfor-
mation sending{x1, x2, x3} into {X1(t), X2(t), X3(t)} then linearity shows that

W̃ (t) = [U(t)|V (t)] = G(t)[u|v] = G(t)w̃ .

Consequently the pre-shapeW (t) is given by

W (t) =
G(t)w̃√

trace(G(t)w̃)TG(t)w̃
=

G(t)√
traceG(t)TG(t)

(15)

where we have used the fact thatw̃ is proportional to a rotation matrix, so thatwwT is
a multiple of the identity matrix.

Since in addition we knowG(t) ∈ GL+(2,R) it therefore follows thatdet(W (t))
is always positive. Consequently the D.G. Kendall shape is parametrized by the expres-
sionG(t)TG(t)/traceG(t)TG(t). Now the conjugation action of SO(2) isometries on
this matrix is exactly the same as in the Bookstein parametrizationG(t)TG(t)/det(G(t)).
It follows by symmetry arguments that angular coordinatesφ, θ differ only by a con-
stant.

We have seen in equation (3) that the radial distancer is related to the eigenvalues
λ2

1 ≥ λ2
2 of G(t)TG(t) by

√
2r = 1/2 arccosh(

(λ1/λ2 + λ2/λ1)2

2
− 1)

= log(λ1/λ2) . (16)

On the other hand the radial distanceρ is related to the eigenvaluesλ2
1 ≥ λ2

2 of
G(t)TG(t) by

cos ρ(W (t), w) = trace
√
W (t)wTwW (t)T

=
λ1 + λ2√

2
√
λ2

1 + λ2
2

=
λ1/λ2 + 1√

2
√

(λ1/λ2)2 + 1
(17)

where the first step follows from equation (12) because the relevant determinant is posi-
tive for all timet, and the second because the equilateral shapew is I2/

√
2. Elementary

trigonometry now shows that

sin(2ρ) =
(λ1/λ2)2 − 1
(λ1/λ2)2 + 1

. (18)
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It follows directly from equations (16), (18) thatsin(2ρ) = tanh(
√

2r) as required.
Finally we have to check that the correspondence is holomorphic, and we have to

compute the time-change involved. AgainItovsn3is useful here. To prove the cor-
respondence to be holomorphic, it suffices to consider the complex semimartingale
obtained by mapping the Bookstein shape diffusion to the sphere and then to the com-
plex plane by projection from the north pole to a plane tangent to the south pole. This
semimartingale is given by

Z = 1/2 exp(iθ) coth(r/
√

2) . (19)

Both Drift dZ andDrift d(Z2) vanish, soZ is a conformal martingale (see [52]).
This means the corresponding map from Bookstein hyperbolic shape space to the com-
plex plane is either holomorphic or anti-holomorphic. A check of the orientation shows
it is holomorphic. Since the projection from the sphere to the plane is a holomorphic
diffeomorphism (except for the singular point at the north pole) we see that the cor-
respondence between Bookstein and D.G. Kendall shape spaces is holomorphic, as
required.

Finally, Lévy’s celebrated theorem tells us that holomorphic images of complex
Brownian motion are time-changed complex Brownian motions. (This is usually stated
for the complex plane, see [52], but applies equally to two-dimensional hyperbolic
planes.) It remains only to compute the time-change, which can be done inItovsn3by
the formula

dτ̃ = (dρ)2/dt (20)

and gives the required result.2

As far as I know the above is the first example of the use of computer algebra
to performcomplexsymbolic It̂o calculus. Interest also attaches to the way in which
stochastic calculus is used as a computational tool to find out about the map from
Bookstein to D.G. Kendall shape space.

Note that a calculation (which is rather laborious even when making careful use
of Itovsn3) shows that the above result does not hold at the level of pre-shapes. That
is to say, the Bookstein pre-shape diffusionW (t) is not a random time-change of the
D.G. Kendall pre-shape diffusion (which is Brownian motion on the unit3-sphere).
This can be seen by computing the characteristics of the semimartingaleS which is the
distance ofW (t) from a specified point: we find

Drift S

(dS)2
6= cot(S) ;

wereS to be a time-change of3-sphere Brownian motion then we would have equality.

4 Asymptotic approximations for the shape-density

It is natural to ask whether there is a useful analogue of the Mardia-Dryden distribution
[45], which is a closed-form expression for the density of theD.G. Kendall shape
formed by the independent Brownian points (started at different locations) after a fixed
time t. In our context this resolves to the query, whether there is a useful form for
the Brownian probability transition kernel (equivalently, the heat density kernel) on the
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hyperbolic plane. Unfortunately there is no expression in terms of familiar functions:
explicit expressions typically involve at least an integral which cannot be evaluated in
closed form, such as

pt(x, y) =
e−t/4

(2πt)3/2

∫ ∞
dist(x,y)

ψ exp(−ψ2/(2t))√
cosh(

√
2ψ)− cosh(

√
2 dist(x, y))

dψ

(this is the case of curvature−2: it can be obtained using a rescaling argument from
for example [19, 57] for the case of curvature−1, or [11, page 246] for the heat kernel
form). Frustratingly, thereis a closed form for the transition kernel for hyperbolic space
of dimension3 (and all odd dimensions), but this is of no use to us here.

However for the purposes of statistical shape theory it is sufficient to find an amenable
asymptotic form for the low-dispersion case, and thisis available. A start is made by
considering the Minakshisundaram-Pleijel recursion formulae for a series solution to
the heat kernel for a general Riemannian manifold (see for example [11, page 148]).
We illustrate the computational power of theItovsn3machinery by indicating how these
recursion formulae may be computed usingItovsn3.

DefineR the radial part of Brownian motion on the hyperbolic plane of curvature
−2. This is determined by the requirements

(dR)2 = dt ,

Drift dR = 1/2
√

2 coth(
√

2R) dt (21)

(compare the discussion around Equation (7)). If pt(r) = pt(x, y) is the Brownian
transition kernel between two pointsx andy with r = dist(x, y), then a backwards dif-
ferential equation argument shows thatpT−t(Rt) is a martingale. The idea is to search
for an expression ofpt(r) as a small-time perturbation of the Euclidean Brownian tran-
sition kernel:

pt(r) =
1

2πt
exp

(
−r

2

2t

)
×
∑
j

tjuj(r) (22)

for appropriate functionsuj . Following the thought that the drift of an approximation
to pT−t(Rt) should be small for smallT − t, we require that

Drift

 1
2π(T − t)

exp
(
− R2

t

2(T − t)

)
×

N∑
j=0

(T − t)juj(Rt)


=

1
2πt

exp
(
− R2

t

2(T − t)

)
(T − t)N ×

(
Drift uN (Rt)

)
(23)

together with the initial conditionu0(0) = 1.
These equations resolve into a recursive sequence ofordinary differential equa-

tions for theuj (since the second-order derivatives ofuN cancel), which can then be
solved using integrating factors. Using anItovsn3script to implement the above, and to
solve the resulting differential equations, in the case of the hyperbolic plane the initial
approximation turns out to be

p
(0)
t (r) =

1
2πt

exp
(
−r

2

2t

)
u0(r) =

1
2πt

√ √
2r

sinh(
√

2r)
exp

(
−r

2

2t

)
(24)
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(higher-order expressions are much less tidy!).
This is of course a well-known computation: see for example the reference in [19,

page 59] where the above (for the case of curvature−1) is presented as the asymptotic
formula for the transition kernel whenr is held fixed andt → 0: and this is the low-
dispersion asymptotics which we require.

Of course this asymptotic form is still not very convenient, since it produces a
family of probability densities{

p
(0)
t (dist(x, y)) : y a point in the hyperbolic plane

}
(25)

which is not an exponential family. We can improve matters a little by considering the
simplification which occurs ift → 0 while dist(x, y)2/t = r2/t is bounded, which
yields the well-known transition kernel asymptotics for Brownian motion on a two-
dimensional manifold:

pt(x, y) ∼ 1
2πt

exp
(
−dist(x, y)2

2t

)
. (26)

However a more amenable approximation for this regime arises if we note that

dist(x, y)2/(2t) ∼ (cosh(
√

2 dist(x, y))− 1)/(2t) , (27)

since we obtain

pt(x, y) ∼ qt(x, y) =
1

2πt
exp

(
−cosh(

√
2 dist(x, y))− 1

2t

)
. (28)

In polar coordinates the area element for the hyperbolic plane of curvature−2 is

sinh(
√

2r)√
2

dr dθ .

Since qt(·, y) integrates to unit total mass against this area element it is an exact
probability density (contrast the asymptotic form forpt(x, y) given by (26), which
doesnot integrate to unity against the hyperbolic area element). In the next sec-
tion we explain why this is a more amenable approximation, and why in particular
{qt(x, y) : y a point in the hyperbolic plane} is an exponential family.

5 Application to the statistics of shape

To clarify applications to the statistics of shape, we need a special representation of hy-
perbolic space known as thehyperboloid model, or theBeltrami model. The following
summary is derived from the description in [18, Ch. V Section 1.1], though the ideas
are common currency in textbooks on geometry (see for example [51, Part III]). The
initial discussion is carried through for the case of generaln, as nothing is to be gained
from specializing to the hyperbolic plane.

The hyperboloid model forn-dimensional hyperbolic space is based on the locus
H in R⊕ Rn of Q(x, x) = 1, whereQ(x, y) is the indefinite inner product

Q(x, y) = x0y0 − 〈x+, y+〉 (29)
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andx = (x0, x+), y = (y0, y+) are decompositions conforming to the splittingR ⊕
R
n. The geometrical structure ofH is largely determined by the specification that its

symmetry group be the groupG of all invertible(n+ 1)× (n+ 1) matrices preserving
the inner productQ. Clearly rotations of theRn coordinate belong toG: so do matrices
such as  cosh(u), sinh(u)

sinh(u), cosh(u) 0

0, I


(whereI is the(n− 1)× (n− 1) identity matrix).

It is an exercise to show that ifQ(x, x) = Q(y, y) = 1, so bothx andy lie in H,
then

cosh(
√

2ρ(x, y)) = x0y0 − 〈x+, y+〉 (30)

defines a metricρ(x, y) onH which isG-invariant. We insert the
√

2 because compu-
tation then shows that this metric turnsH into the hyperbolic space of curvature−2.
This is most easily seen by considering polar coordinates: in dimensionn = 2 the key
calculation is

x = (cosh(
√

2r), sinh(
√

2r), 0) ,

y = (cosh(
√

2r), cos(θ) sinh(
√

2r), sin(θ) sinh(
√

2r)) . (31)

For smallθ the distanceρ betweenx andy is given by

cosh(
√

2ρ) = cosh2(
√

2r)− cos(θ) sinh2(
√

2r)

and this delivers an induced Riemannian metric

dρ2 = dr2 +
sinh2(

√
2r)

2
dθ2 . (32)

Integration recovers the original metric, which is thus identified as the Riemannian
metric as required. Alternatively one can apply the hyperbolic cosine formula [51, Part
III].

The family of densities identified in the previous section can now be written in the
hyperboloid representation as

qt(x, y) =
1

2πt
exp

(
−x0y0 − x1y1 − x2y2 − 1

2t

)
(33)

so clearly is an exponential family of densities in the hyperbolic plane. (Notice that
Equation (31) for the coordinates ofy, together withr andθ as determined by Equation
(3,4) in Theorem1, allow us to pass between the hyperboloid model and the matrix
model for Bookstein shape space.) IfX(1), . . . , X(k) are independently distributed
as qt(·, y) for some fixedt andy then a set of sufficient statistics fory is given by∑
iX

(i)
0 ,
∑
iX

(i)
1 ,
∑
iX

(i)
2 =

∑
i

√
(1− (X(i)

1 )2 + (X(i)
2 )2).

Indeed it is now clear thatqt(·, y) is the hyperbolic analogue of the von Mises-
Fisher density on the sphere, which is used in directional statistics ([44, page 232]:
see also [53]) and in statistical shape theory as a convenient proxy for a Brownian or
Brownian-derived transition density [45]. The statistical properties of this hyperbolic
von Mises-Fisher distribution have been studied in detail in [23]: here we summarize
some basic aspects.
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The densitiesqt(·, y) provide particularly amenable likelihoods. Suppose for exam-
ple we observek shapesX(1), . . . ,X(k), drawn independently from the shape density
qt(·, y), for unknown “mean shape”y and unknown but shared dispersion parametert.
The maximum likelihood estimate fory is obtained by maximizing

L(y : X(1), . . . , X(k)) =
k∏
i=1

1
2πt

exp
(
−Q(X(i), y)− 1

2t

)
(34)

(where we viewX(i), y as points in the hyperboloid representation above) and this is
equivalent to minimizing

k∑
i=1

Q(X(i), y) . (35)

Exploiting the invariance under the groupG, we may rotate the configurationX(1),
. . . , X(k) by aG-matrixM so that the Euclidean mean of the configuration is located
on thex0-axis, that is to say

∑k
i=1X

(i)
+ = 0. But the linearity ofQ(·, y) then implies

that the above quantity (35) is given by

k∑
i=1

Q(X(i), y) =
k∑
i=1

(
X

(i)
0 y0 − X

(i)
+ y+

)
=

(
k∑
i=1

X
(i)
0

)
y0

and is therefore minimized (uniquely) aty = (1, 0, 0)T . Hence the maximum like-
lihood estimate fory is given byM−1(1, 0, 0)T , whereM is the symmetry above.
Thus maximum likelihood estimates can be calculated exactly: in fact the maximum-
likelihood estimator estimate fory = (y0, y1, y2) is simply that normalization of the
sample mean of theX-vectors which lies on the hyperboloid:

ŷ =

(∑
iX

(i)
0 ,
∑
iX

(i)
1 ,
∑
iX

(i)
2

)
√

(
∑
iX

(i)
0 )2 − (

∑
iX

(i)
1 )2 − (

∑
iX

(i)
2 )2

. (36)

Note that the term inside the square root is positive (unless theX-vectors all agree,
when it is zero; but then inference ony is unnecessary!) because of convexity of the
hyperboloid.

We should however note the less desirable feature, that the approximation ofpt(x, y)
by qt(x, y) leads to greater sensitivity to outliers (sincer2 in the exponential is replaced
by cosh(

√
2r)). If this is felt undesirable then̂y can be used as an initial value for an it-

erative algorithm using a likelihood based on the first-order Minakshisundaram-Pleijel
approximation (24). For this we also need an initial estimate fort (since we can no
longer estimatey andt separately): simple algebra shows the estimate oft based on
the exponential family (33) is given by

t̂ = 1/2

1− 1
k

√
(
∑
i

X
(i)
0 )2 − (

∑
i

X
(i)
1 )2 − (

∑
i

X
(i)
2 )2

 (37)

and this could serve as an initial estimate for iterative work. However for many pur-
poses it may be preferable to work directly with the statistical model (33), because of
its greater simplicity.
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The exponential family approach is closely related to the treatment of mean values
for D.G. Kendall shape spaces in [42]: the above procedure actually finds the unique
minimizery of

1/2

∫
cosh(

√
2 dist(x, y))µ(dx) (38)

for µ a measure placing mass1/k on each ofx(1), . . . , x(k). The corresponding
problem for D.G. Kendall shape spaceΣ3

2 seeks to minimize

1/2

∫
cos(2 dist(x, y))µ(dx) (39)

and has a similar closed-form solution (but note that (a) the solution is no longer
unique, though forΣ3

2 it is easy to show that there is just one minimizing solution
for µ not concentrated on an equator [33, §9] (and the case ofΣm2 is described in
[38, 37]), and (b) the work of [42] deals with general shape spaces of several points in
many dimensions, which is beyond the current scope of our approach). Indeed from
the approximation (26) it is clear that for small dispersiont the minimizers (38), (39)
are similar, which of course we would expect on geometric grounds (see also comment
2 of [37, §10.2.7]). Arguments from hyperbolic geometry make it clear that, for figures
with a tendency towards collinearity, the Bookstein-space estimator based on (38) will
be more “equilateral” than the D.G. Kendall-estimator based on (39): it would be most
interesting to see how this works out for real data.

The general idea of finding Riemannian centres of mass goes back to Cartan [10]
and Fŕechet [17]; a detailed geometrical study is to be found in [24], while other ap-
plications to statistics, probability and stochastic analysis can be found for example in
[16, 59, 32, 36, 47].

6 Conclusions

Theorem1 mirrors the connection of D.G. Kendall shape to Euclidean Brownian mo-
tion, both in its statement and also in the proof by computer algebra. Various questions
and observations present themselves, to suggest future directions for research.

• There is a similarity between this derivation of hyperbolic geometry for Book-
stein shape space and justification(ii) for the geometry of D.G. Kendall shape
space. In fact the stochastic calculus aspects of the above argument can be
peeled away, so that for example Theorem2 can be viewed as a special case
of the holomorphic realization (well-known to differential geometers) of a non-
compact Hermitian symmetric space as an open subset of its compact dual. See
[21, chapter 8]. (I am grateful to Fran Burstall for pointing me to this reference!)

• It is noteworthy that it is unnecessary to time-change out the effect of size. Be-
cause we work in GL(2,R) and(2,R) it is to be expected that any time-change
would be based on area rather than sum-of-squared-sides: however the need for
a time-change is eliminated by the multiplicative nature of the noise term in the
basic stochastic differential system (1). Of course there is a time-change re-
quired when moving from Bookstein hyperbolic shape space to D.G. Kendall
shape space, but this is not based on size.
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• Theorem2 shows that there is another dynamical context for Bookstein shape. It
can arise when the three points are moving independently by identical Brownian
motions or by identical Ornstein-Uhlenbeck processes, but are subject to a time-
change based on intrinsic shearing derived from equation (14). The resulting
shape process can be turned into the Bookstein shape diffusion by a size-based
time-change. However this construction is far less natural than the one described
in Section 2. Moreover calculations concerning pre-shapes, reported at the end
of Section 3, show that the underlying time-change does not relate the two con-
structions at the pre-shape level.

• For applications the significant question is, whether it is possible to generalize
this to (for example) the case ofk > 3 points on the plane? Clearly there is no
simple generalization, both because the GL(2,R)-action would then degenerate
and because Bookstein’s treatment of shape differentiates between the linear part
(essentially as described above) and the non-linear part, which is dealt with us-
ing thin-plate spline theory. It is possible a clue may be found in recent work
by Kent and Mardia [39], and this will be followed up, as will an alternative
approach described by Small and Lewis [57], where again one has to differen-
tiate between two different kinds of shape-change (deviation from conformality
and nonhomogeneous scaling). A good prospect for progress is to replace the
global random transformation by a randomly evolving diffeomorphism. Fortu-
nately there is already a strong theoretical framework for such entities: see for
example Baxendale’s work [2, 3].

• It is also natural to ask what the above approach offers for the case of shapes of
landmarks in higher dimensional space, particularly3-space. Small has studied
the geometry of the natural generalization of Bookstein’s shape to the case of
m+ 1 points inm-space [56, §3.6]; unfortunately this geometry is less pleasant
if m > 2 and in particular does not have constant curvature (work of HuiLing
Le noted in [56, §3.8]). In principle the computer algebra and stochastic calculus
approach described above will extend, and this will be followed up in future
work; however it is clear the answer will not be so simple.

• In conclusion, some particular questions are raised by the part played by com-
puter algebra in the above investigation. As with the earliest application [31] of
computer algebra in this field, the computations are straightforward enough that
they can be undertaken by hand without much difficulty (except for rather excru-
ciating calculations to check that there is not a time-change relating Bookstein
and D.G. Kendall pre-shape diffusions). However the general features (particu-
larly the application of Gr̈obner bases) can be expected to carry through to much
more demanding problems. This has certainly happened with the earliest appli-
cation, the techniques of which recently led to a success in the theory of coupling
of random processes [1] which would definitely not have been susceptible to ef-
forts without the help of computer algebra. The intervention of the Gröbner basis
algorithm raises the intriguing challenge of systematizing its application in this
sort of problem in stochastic calculus.

It has already been noted that a novel part of this work is the use ofItovsn3to deal
with complex-valued semimartingales, in particular to establish the holomorphic
nature of the correspondence between the two shape spaces. The symbolic Itô
calculus environment makes this calculation delightfully easy!
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The above work has also turned up a requirement to be able to specify matrix-
or vector-valued semimartingale diffusions withinItovsn3simply by declaring
their defining system of stochastic differential equations. A facility to do this
already exists for scalar semimartingale diffusions: the appropriate extension
will be provided in the plannedAXIOMimplementation, as the innovative object-
oriented and category-theoretic features ofAXIOM are ideally suited for such
requirements.

This work was supported by EU HCM contract ERB-CHRX-CT94-0449 and EP-
SRC grant GR/71677. A preliminary abstract of this paper appeared inAdv. Appl. Prob.
28, 334-335 (1996).
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