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Abstract

The theory of general state-space Markov chains can be strongly related to
the case of discrete state-space by use of the notion ofsmall setsand associated
minorization conditions. The general theory shows that small sets exist for all
Markov chains on state-spaces with countably generatedσ-algebras, though the
minorization provided by the theory concerns small sets of ordern and n-step
transition kernels for some unspecifiedn. Partly motivated by the growing impor-
tance of small sets for Markov chain Monte Carlo and Coupling from the Past, we
show that in general there need be no small sets of ordern = 1 even if the kernel
is assumed to have a density function (though of course one can taken = 1 if
the kernel density is continuous). Howevern = 2 will suffice for kernels with
densities (integral kernels), and in fact small sets of order2 aboundin the tech-
nical sense that the2-step kernel density can be expressed as a countable sum of
nonnegative separable summands based on small sets. This can be exploited to
produce a representation using a latent discrete Markov chain; indeed one might
say, inside every Markov chain with measurable transition density there is a dis-
crete state-space Markov chain struggling to escape. We conclude by discussing
complements to these results, including their relevance to Harris-recurrent Markov
chains and we relate the counterexample to Turán problems for bipartite graphs.
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1 Introduction

The notion of a small set was introduced to Markov chain theory by various writers (see
for example [18]) and has been exploited to produce a reduction to the discrete case
of Markov chain theory for general state-spaces (see Nummelin [17] and Meyn and
Tweedie [14] for treatments in book form). The basic idea is to elicit aminorization
conditionfor a given Markov chain:
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Definition 1.1 The transition probability kernelK(x, ·) satisfies aminorization con-
dition (of ordern) if for some non-vanishing non-negative functiong and some proba-
bility measureµ we have

K(n)(x,A) ≥ g(x)µ(A)

for all x, all measurableA. In particular a setC is a small set (of ordern) if its
indicator function can occur together with a constantρ ∈ (0, 1) asg(x) = ρI[C] in a
minorization condition of ordern.

The minorization can be used to produce thesplit-chain constructionof Nummelin
[16] – see also Athreya and Ney [1] where small sets are used for regeneration argu-
ments – and hence to control convergence to equilibrium: as Nummelin wrote, “the
‘elementary’ techniques and constructions based on the notion of regeneration, and
common in the study of discrete chains, can now be applied in the general case” [17,
pageix]. More recently small sets have been used by Rosenthal [23] to establish rates
of convergence for Markov chain Monte Carlo (see also the extended notion ofpseudo-
small setsdescribed by Roberts and Rosenthal [20, 21]) and also (under the rubric of
gamma-coupling) to produce effective Coupling from the Past (CFTP) constructions in
the work of Murdoch and Green [11, 15] (see also some exciting new work oncatalytic
perfect simulationby Breyer and Roberts [5, 4]).

Closely related to the ideas presented here is the discretization proposed by Robert
[19], originally devised for the purposes of Markov chain Monte Carlo convergence
assessment. This discretization is based on sub-sampling of a discrete sequence derived
from a continuous state-space Markov chain{Xn;n ≥ 0} depending on a sequence
of renewals times, in the following way. Suppose thatXn possesses several disjoint
small setsCi, with i = 1, . . . , I for which the minorization condition of Definition1.1
holds with constantsρi and measuresµi. TheCi need not necessarily form a partition
of the whole state-space. Suppose the above splitting construction is applied whenever
X visits one of theCi. Define the renewal timesτ0 = 1 andτn, with n ≥ 1 by:

τn = inf
{
t > τn−1 : Xt−1 ∈ Ci for somei ∈ {1, ..., I}

and regeneration occurs at timet
}

Robert shows that the finite valued sub-sequenceηn obtained fromXt by:

ηn = i if Xτn−1 ∈ Ci

is a homogeneous Markov chain defined on the finite state-space{1, . . . , I}.
The theory of general Markov chains assures us of the existence of small sets, but

gives no guarantees concerning the order. For the purposes of establishing convergence
results this is of no great importance; however order1 is required for current CFTP ap-
plications. This raises the question, for what sort of Markov chains can one guarantee
existence of small sets of order1? As a straightforward exercise in mathematical analy-
sis at an advanced undergraduate level, one can show existence for state-space a smooth
manifold when the kernel has a continuous densityp(x, y), and indeed then one can
show small sets of order1 abound, in the sense that they can be used to produce a
representation:

p(x, y) =
∞∑

i=1

fi(x)gi(y) (1)
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where thefi(x) are non-negative continuous functions supported on small sets, and the
gi(y) are probability density functions. From this representation one can further deduce
the existence of alatent discrete Markov chain: since

∫
p(x, y) dy = 1 it follows that∑

i fi(x) = 1 for all x, and sofi(x) may be viewed as a transition probability density
describing transitions from the state-space to a latent countable state-space{1, 2, . . .};
and the entire stochastic dynamics of the original chain can be viewed as derived from
a discrete state-space chain with transition probability matrix of entries

pij =
∫
gi(y)fj(y) dy . (2)

(Finite versions of such constructions,finite-rank Markov chains, are used to derive
limit theorems in [25, 13]; see also [22].) We continue this line of enquiry in more
detail in section§5.

However this particular representation fails hopelessly as soon as we move to the
slightly more general category of Markov chains with measurable transition probability
densities! Even the obvious step of allowing thefi andgi to be measurable is of no
avail. For, as we show in the next section, there exist transition probability densities for
which there areno non-trivial small sets of order1. The construction is based on the
construction of a Borel subset of the unit square with no non-null subsets of measurable
rectangle form, and is related to a variant of the Turán problem from extremal graph
theory.

However, and somewhat to our initial surprise, the cause of measurable transition
densities is not entirely lost. As we show in section§3, so long as we move to order
2 wecanconstruct non-trivial small sets (following known techniques for establishing
the existence of small sets), and in fact theyaboundin the sense that one can build
representations of the2-step transition probability densityp(2)(x, y) generalizing that
of Eq. (1), and hence derive an interlacing latent discretization with transition matrix
generalizing Eq. (2). Moreover this discretization uses only the measurable structure
of the underlying space, rather than its topology: one need only suppose the state-
spaceσ-algebra to be countably generated. In Section§4 we use the method of§3 to
show that the weaker notion ofpseudo-small sets[20, 21] results in the presence of
many pseudo-small sets even at order1; however this weaker notion is too weak to
allow us to construct latent discretizations. In the concluding section§5 we discuss
the latent discretization, and various complements including the extent to which the
discretization can be generalized yet again, if one wishes to consider Markov chains
whose kernels do not possess transition densities.
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2 Measurable transition densities may have no
non-null small sets of order1

This section relies on a simple combinatorial calculation, known to graph theorists in
a considerably refined form (see for example [9, 10]). We present a self-contained
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exposition, yielding as a first step a probabilistic construction of a measurable subset
of [0, 1]2 which is “rectangle-free”, which is to say, contains no non-null measurable
rectangles. It should be clear to anyone who has studied measure theory that such sets
must exist: however we have not been able to find a construction in the literature.

The combinatorial aspect concernsarrays of cells, n× n square lattices, the nodes
of which are viewed as square cells of sidelength1

n , either filled or not, and arranged
to pack the unit square. Unions of filled cells formpixellated subsetsof [0, 1]2. We
will be interested in whether we can find non-negligiblefilled measurable rectangles:
pixellated subsets corresponding to unions of cells of the form

{ cell (xi, yj) : i = 1, . . . , r, j = 1, . . . , s}

defined by subsequencesx1, . . . , xr andy1, . . . , ys wherer ands amount to substantial
fractions ofn. The basic combinatorial argument constructs random subsets of arrays
of cells which have low probability of containing measurable rectangles which are
not very small. A Borel-Cantelli argument can then be applied to intersections of the
corresponding pixellated subsets, so as to derive the following result.

Theorem 2.1 There exist Borel measurable subsetsE ⊂ [0, 1]2 of positive area which
are rectangle-free, so that ifA×B ⊆ E thenarea(A×B) = 0.

Proof:
Recall Stirling’s asymptotic approximation:

n! ∼ exp
(
n (log n− 1) +

1
2

log(2πn)
)

asn→∞ . (3)

For fixed rationalα ∈ (0, 1) we apply Stirling’s approximation to the formula for
the mean number ofbαnc × bαnc filled measurable rectangles to be found in an
n × n array of cells of side-length1n , such that cells are filled independently with fill
probabilityp. (Herebxc is the greatest integer smaller thanx.) We obtain

mean number of such measurable rectangles=
(

n

bαnc

)2

pbαnc2 ∼

exp
(
n2

(
α2 log p

)
− 2n (α logα+ (1− α) log(1− α)) + log (2πnα(1− α))

)
(at least forn running through the subsequence for whichαn is an integer!).

We apply Markov’s inequality to deduce that for fixedε > 0 andp ∈ (0, 1)

P [ at least onebαnc × bαnc filled measurable rectangle] ≤

(1 + ε)× exp
[
n2

(
α2 log p

)
− 2n (α logα+ (1− α) log(1− α))

+ log (2πnα(1− α))
]

(4)

for all n ≥ N = N(ε, α, p) such thatαn is an integer. Clearly the upper bound tends
to zero asn → ∞ through the relevant subsequence. Moreover the mean area of the
corresponding pixellated random set is given byn2p/n2 = p.

We now construct a random subsetΞ of the unit square[0, 1]2 as the intersection

Ξ = Hk0 ∩Hk0+1 ∩ . . .
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of a sequenceHk0 ,Hk0+1, . . . of such pixellated random sets. The setHk is constructed
as the union of filled cells in annk×nk array of cells of side-length1nk

, such that cells
are filled independently with fill probabilitypk. We fix ε > 0 and select

α = αk =
1
k

p = pk = 1− 2−k

n = nk = inf
{
r > 2k ∨N(ε, αk, pk) : αr is an integer

}
. (5)

The mean area ofΞ is bounded below by

E [ area(Ξ) ] ≥ 1−
∞∑

k=k0

(1− E [ area(Hk) ]) = 1− 21−k0 ,

and thereforeΞ has a positive chance of having positive area (at least ifk0 > 1).
On the other hand we may apply the first Borel-Cantelli lemma to show that all but

finitely many of the events

Rk =
{
Hk contains no measurable rectangles of sidelength1

k or greater
}

must occur. For geometrical arguments show that the failure ofRk forces the corre-
sponding cell array to contain at least onebαnc × bαnc filled measurable rectangle,
and by the bound Eq. (4) the failure-probability of this event is therefore bounded above
by

constant×
(
1− 2−k

) 1
2 n2

k/k2

≤ constant× e−2−k−1n2
k/k2

≤ constant× e−2k−1/k2
.

This is summable, and so the first Borel-Cantelli lemma applies.
It follows that almost surelyΞ is rectangle-free, in the sense that ifA andB are

measurable subsets of[0, 1] withA×B ⊆ Ξ then area(A×B) = 0. Figure1 illustrates
(an approximation of) this random construction. 2

Remark 2.2The above randomization argument can be replaced, at the price of more
complexity, by a counting argument, demonstrating the existence of a counterexample
E ⊂ [0, 1]2 of area prescribed to lie in the range(0, 1).

The indicator function for the random setΞ nearly provides a Markov transition
density under normalization, except that this normalization will fail when a slice along
a fixedx has zero length. However this is easily fixed in any one of several ways,
yielding the following corollary.

Corollary 2.3 There exist measurable Markov transition densities for which there are
no non-null small sets of order1.

Proof:
SupposeΞ1, Ξ2, . . . are independent copies ofΞ as constructed in Theorem2.1, but
affinely transformed to fit into the rectangles

[0, 1]× [1/2, 1), [0, 1]× [1/4, 1/2), . . . .

Consider the union
Ξ∗ = Ξ1 ∪ Ξ2 ∪ . . . ,
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Figure 1: Example of rectangle-free random setΞ.

Figure 2: Example of rectangle-free random setΞ∗ with x-slices almost all of positive
length.

6



as illustrated in Figure2.
A slice ofΞ∗ along fixedx (anx-slice) can have zero length only if its component

x-slices along each of theΞi have zero length. The componentx-slices are indepen-
dent and (saving only an exceptional null-set ofx values corresponding to vertical cell
boundaries) the chance of a componentx-slice having non-zero length is positive and
is the same for each component (by construction of theΞi). Therefore independence
shows that for non-exceptionalx thex-slice ofΞ∗ is almost surely of positive length.

Thus the following defines a Markov transition density for which there are no non-
null small sets of order1:

p(x, y) =
I[Ξ∗](x, y)∫ 1

0
I[Ξ∗](x, z) dz

(6)

where the ratio is taken to equal1 for thosex for which the denominator vanishes (only
a null-set and therefore negligible). Existence of a non-null small set of order1 would
entail a lower bound

p(x, y) ≥ ρI[B](y)

for all x ∈ A, for some positiveρ and non-null Borel setsA,B ⊂ [0, 1]. Hence (possi-
bly reducingA somewhat) we would obtain a non-null measurable rectangle subset of
Ξ, in contradiction to the assertion of Theorem2.1. 2

An alternative method of proof uses monotonic transformation of thex-axis to
remove all but a null-set of coordinates at whichx-slices have length-zero intersection
with Ξ.
Remark 2.4A refinement of this approach produces a rectangle-free symmetric subset
Ξ ⊂ [0, 1]2, symmetric in the sense that(x, y) ∈ Ξ if and only if (y, x) ∈ Ξ. Simply
modify the filling procedure of Theorem2.1 so that cell(x, y) is filled if and only if
cell (y, x) is filled, but otherwise cells are filled independently. The resulting random
set Ξ is symmetric. SupposeA × B ⊆ Ξ. Choose median valuess, t such that
length(A ∩ [0, s]) = 1

2 length(A), length(B ∩ [0, t]) = 1
2 length(B). If s < t then

(A ∩ [0, s]) × (B ∩ [t, 1]) lies in the upper triangleΞ ∩ {(x, y) : x < y}; otherwise
(A∩ [s, 1])× (B∩ [0, t]) lies in the lower triangle. Either way we exhibit a measurable
rectangle subset ofΞ of measure1

4 area(A × B) lying in a region which could have
been produced by the original construction of Theorem2.1 and therefore must have
zero area. It follows thatΞ is not only symmetric but also rectangle-free.

Remark 2.5Yet a further refinement can be used to produce areversibleMarkov chain
with no order-1 small sets, thus answering a question raised by Gareth Roberts. We
sketch the construction of a transition densityp(x, y) on the unit square which is sym-
metric (hence doubly stochastic) and which takes only the values0, 1, and2.

We start withp0(x, y) ≡ 1, and use the notation of Theorem2.1, but increase thenk

if necessary so as to ensure they are all even. In order to maintain the doubly stochastic
property we use moves developed for Markov chain Monte Carlo on contingency table
configurations: at levelk, independently with probability1− pk = 2−k for each of the
n2

k/4 cells of dimensionn−1
k × n−1

k in the upper-left quadrant, ifpk−1 is non-zero in
that cell we reduce its value there to0, add the removed mass uniformly over the cell
which is its mirror image inx = 1/2, and alterpk−1 in the other two quadrants so as
also to maintain mirror symmetry in they = 1/2 axis. If on the other handpk−1 is
zero in the chosen cell then we perform the reverse move. We setpk to be the result of
these operations.
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The support ofpk is similar to the setΞk, except that, when proceeding fromΞk to
Ξk+1, as far as the first quadrant is concerned, we add a union withΞc

k \Hk+1 as well
as taking the intersectionΞk ∩Hk+1. The counting arguments are easily modified to
take account of this, thus showing that the limiting support set is rectangle-free.

Finally we need to show thatpk(x, y) converges to a limiting probability density.
For any given point(x, y) the probability ofpk+1(x, y) 6= pk(x, y) is 1−pk = 2−k. So
by the first Borel-Cantelli lemma the sequence{pk(x, y) : k = 1, 2, . . .} converges for
almost all(x, y). Sincepk is bounded between0 and2, the limiting probability density
p∞(x, y) exists as a consequence of the Lebesgue dominated convergence theorem,
and has the doubly stochastic property. By construction of the support set, it can have
no non-trivial small sets of order1.

3 Small sets of order2 abound for measurable
transition densities

A careful reading of the methods employed in the proof of the existence of small sets
(see,eg, [17, §2.3], [14, §5.2] and also [18]) reveals that if a Markov chain with count-
ably generated state-spaceσ-algebra has a measurable transition density then it pos-
sesses a small set of order2. Here we give a variation on this proof which additionally
shows that such small setsabound, in the sense that the2-step transition density can be
represented as a sum of non-negative separable terms involving small-set decomposi-
tions.

First note that the question posed (to show such Markov chains have small sets of
order2) is strictly measure-theoretic. Indeed we can suppose the reference probability
measure to be atom-free (for otherwise we can immediately exhibit small sets based
on the atoms). Furthermore we may identify states which are not separated by theσ-
algebra. Any countable sequence of sets generating the state-space algebra can be used
to map the state-space into the unit interval[0, 1] in a standard way, expanding eachx ∈
[0, 1] in a dyadic expansion and mapping each states to a dyadic expansion determined
by which members of the countable generating sequence contains. This map fails to
be 1 : 1 only at a countable number ofx ∈ [0, 1] where it will be2 : 1: we may
delete the corresponding null-set from the state-space. We have thus reduced the state-
space to the unit interval[0, 1] furnished with a reference probability measure which is
atom-free. Deleting a countable number of further null-sets, we may transform[0, 1]
using the distribution function for the reference probability measure so as to produce a
state-space which is[0, 1] furnished with Lebesgue measure.

In the remainder of this section we can therefore, without any loss of generality,
confine our attention to the case of the unit interval furnished with Lebesgue measure
as reference measure.

We begin with a general lemma, which uses Egoroff’s theorem and the Lebesgue
density theorem to establish near-L1-continuity for functionals derived fromL1 func-
tions on the unit square. Introduce the notation

px(·) = p(x, ·)

and notice that by Fubini’s theorempx may be viewed as a mapping from almost all
x ∈ [0, 1] intoL1([0, 1]).
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Lemma 3.1 Letp(x, y) be an integrable function on[0, 1]2. Then we can find subsets
Aε ⊂ [0, 1], increasing asε decreases, such that

(a) for any fixedAε the “L1-valued function”px is uniformly continuous onAε: for
anyη > 0 we can findδ > 0 such that|x− x′| < δ andx, x′ ∈ Aε implies∫ 1

0

|px(z)− px′(z)| dz < η ;

(b) every pointx in Aε is of full relative density: asu, v → 0 so

length([x− u, x+ v] ∩Aε)
u+ v

→ 1 .

Remark 3.2 In some sense this result must have been immediately accessible to early
workers in the field: it bears a family resemblance to techniques used by Doob in [7,
pages 199-202] for which Doob himself credits the essential idea to Doeblin [6]. How-
ever we have not been able to find in the literature anything resembling the application,
Corollary3.7.

Proof:
We use a modification of the celebrated consequence of Egoroff’s theorem [12, §21,
Theorem A], that every measurable function is “nearly” uniformly continuous, in the
sense of being uniformly continuous off sets of arbitrarily small measure. This is usu-
ally stated for real-valued functions, but applies to such functions aspx so long as
we useL1-continuity. For consider: we canL1-approximate the underlying function
p(x, y) by a continuous functionf1(x, y)∫ 1

0

∫ 1

0

|p(x, y)− f1(x, y)| dxdy < α .

for any fixedα ∈ (0, 1). Adding further continuous functionsf2(x, y), . . . , fn(x, y),
. . . we can require the approximation to improve geometrically:∫ 1

0

∫ 1

0

|p(x, y)− (f1(x, y) + . . . fn(x, y))| dxdy < αn .

By Markov’s inequality, if

Dn = {x :
∫ 1

0

|p(x, y)− (f1(x, y) + . . . fn(x, y))| dy > αn/2}

then
length(Dn) ≤ αn/2 .

Thus off the unionDk∪Dk+1∪. . .we can approximatep(x, y) uniformly by uniformly
continuous functions. The total area of the union is at mostαk/(1− α), hence can be
made arbitrarily small by increasingk.

Consequently for everyε ∈ (0, 1) we can find a subsetAε ⊆ [0, 1] of measure at
least1−ε and such thatx 7→ px is uniformlyL1-continuous onAε. Moreover we may
arrange forAε ⊆ Aε′ wheneverε > ε′.

Now invoke the Lebesgue density theorem [24, Theorem 8.8]: the subset of points
failing to have full relative density in a measurable subset is always of measure zero.
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Since the above construction ofAε actually only uses a countable number of set com-
plements(Dk ∪Dk+1 ∪ . . .)c, we can simply remove all such points for each of the
countably many complements. The lemma follows. 2

We now state and prove the central result of this section, establishing abundance of
small sets in a rather specific fashion. We recall the discussion at the start of this sec-
tion, demonstrating that this result will actually apply for any state-space with count-
ably generatedσ-algebra and atom-free reference probability measure: for the sake
of simplicity we state it for the case of state-space[0, 1] with Lebesgue measure as
reference measure.

In the following we continue with the notation of Lemma3.1, and note thatqy(·) =
p(·, y) possesses a similar property: let{Bε : ε ∈ (0, 1)} denote a corresponding
monotone family of sets for which uniform continuity ofqy and full relative density
hold.

Theorem 3.3 Letp(x, y), x, y ∈ [0, 1], be a measurable probability transition density
(so

∫ 1

0
p(x, y) dy = 1 for all x) and letη ∈ (0, 1). For almost allx, y ∈ [0, 1] the

two-step transition density

p(2)(x, y) =
∫ 1

0

p(x, z)p(z, y) dz =
∫ 1

0

px(z)qy(z) dz

is subject to lower bounds of the form

p(2)(x′, y′) ≥ (1− η)p(2)(x, y)

for all x′ ∈ [x− u, x+ u] save for a set of measureδu, all y′ ∈ [y− u, y+ u] save for
a set of measureδu, for all sufficiently small positiveu (depending onη, δ in the range
(0, 1)).

Remark 3.4This result differs from the classic small-set existence result (eg[17, Thm.
2.1], [14, Thm. 5.2.1]) in showing that small-set minorization conditions for the2-step
transition density

p(2)(x′, y′) ≥ (1− η)p(2)(x, y)

can be established to hold for almost allx, y, over a suitable measurable rectangle near
to (x, y) and forη arbitrarily close to0. It is for this reason that we require Lemma3.1
rather than the more direct methods of the classic result. We need the stronger result in
order to obtain the “abundance” Corollary3.7.

Remark 3.5The result can be viewed as a Markov chain generalization ofSteinhaus’
theorem[2, Theorem 1.1.1], that{x− y : x, y ∈ E} contains an open interval contain-
ing 0 if E ⊂ R is of positive Lebesgue measure.

Remark 3.6In fact the proof remains valid ifp(2)(x, y) is actually obtained as the con-
volution of two different probability transition densitiesp(x, y) andq(x, y). Moreover
we use the normalization property

∫ 1

0
p(x, y) dy = 1 simply to ensure non-triviality of

p. Of course non-negativity is essential if the notion of small set is to make sense as
stated in Definition1.1.

Proof:
Considerx ∈ Aε, y ∈ Bε, setρ(2) = p(2)(x, y), and fixη ∈ (0, 1). The result is
immediate forρ(2) = 0. So supposeρ(2) > 0.
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Neitherpx nor qy need be bounded: however we can apply the monotone conver-
gence theorem to deduce the existence ofK such that

ρ(2) ≥
∫ 1

0

(px(z) ∧K) (qy(z) ∧K) dz > ρ(2)(1− η/2) .

Now selectu such that

(a) length([x−u, x+u]∩Aε) > (1− δ)u, length([y−u, y+u]∩Bε) > (1− δ))u,

(b) for x′ ∈ [x− u, x+ u] ∩Aε, y′ ∈ [y − u, y + u] ∩Bε we have∫ 1

0

|px(z)− px′(z)| dz <
ηρ(2)

4K
,

∫ 1

0

|qy(z)− qy′(z)| dz <
ηρ(2)

4K
.

Hence forx′ ∈ [x− u, x+ u] ∩Aε, y′ ∈ [y − u, y + u] ∩Bε we can deduce

ρ(2)(1− η/2) <

∫ 1

0

(px(z) ∧K) (qy(z) ∧K) dz

≤ ηρ(2)

2
+

∫ 1

0

px′(z)qy′(z) dz =
ηρ(2)

2
+ p(2)(x′, y′) .

Thus
p(2)(x′, y′) > (1− η)ρ(2) (7)

for all x′ ∈ [x − u, x+ u] ∩ Aε, y′ ∈ [y − u, y + u] ∩ Bε. This establishes the result
for x ∈ Aε, y ∈ Bε. But

area(Aε ×Bε) ≥ (1− ε)2

so the result holds for almost allx, y by lettingε→ 0.
Note that an order2 small-set minorization follows wheneverρ(2) > 0 (this must

hold for more than a null-set ofy for eachx if the2-step transition density is to integrate
to 1): if x ∈ Aε, y ∈ Bε then for all sufficiently smallu we have

p(2)(x′, y′) > positive constant

for all (x′, y′) ∈ [x− u, x+ u] ∩Aε × [y − u, y + u] ∩Bε. Note that, say,

length([x− u, x+ u] ∩Aε), length([y − u, y + u] ∩Bε) > u/2 > 0

for small enoughu (apply the Lebesgue density condition(b) of Lemma3.1), so the
minorization is non-trivial! 2

The construction has been designed to furnish a rich supply of small sets, and we
can use this to obtain a representation ofp(2)(x, y) as a sum of non-negative separable
terms involving small-set decompositions. In the informal terminology of Section1,
small sets of order2 abound.

Corollary 3.7 If p(x, y) is a measurable transition probability density then we can
represent the2-step transition probability density as follows:

p(2)(x, y) =
∞∑

i=0

βiI[Ci](x)I[Di](y) (8)

for positiveβi and subsetsCi,Di ⊆ [0, 1], holding for almost allx, y ∈ [0, 1].
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Remark 3.8 It is of course not possible in general to arrange for theCi × Di to be
disjoint, for this would forcep(2)(x, y) to have an essentially countable range.

Remark 3.9 As hinted in the introduction, the impact of a representation such as the
above is clearer if we write it in the equivalent form

p(2)(x, y) =
∞∑

i=0

β(x, i)ri(y) (9)

whereβ(x, i) is a transition probability density from[0, 1] to the set of positive integers
{1, 2, . . .} (so

∑
i β(x, i) = 1 for all x ∈ [0, 1]) and theri(y) are probability densities

on [0, 1]. We pursue this further in the concluding section.

Proof:
Let S be a countable sequence of functions enumerating all functions of the form

s(x, y) = essinf
{
p(2)(u, v) : u ∈ C , v ∈ D

}
× I[C](x)I[D](y)

whereC andD are restricted to be of the form of intersections of dyadic rational
intervals withA1/h,B1/h:

C = [r2−k, (r + 1)2−k) ∩A1/h

D = [s2−k, (s+ 1)2−k) ∩B1/h ,

for non-negative integersr, s, and positive integersk, h. Observe that the function
fn(x, y) which is the pointwise maximum of the firstn of the functions in the sequence
S can be re-written in the form

fn(x, y) =
mn∑
i=0

βiI[Ci](x)I[Di](y) ,

for a fixedsequence of positive constantsβi and dyadic rational intervalsCi,Di. This
is because an addition of a further member ofS to the computation of the maximum
can be re-expressed as an addition of the excess in the form of a number of terms of
the formβiI[Ci]I[Di].

Lettingn→∞ we obtain

f∞(x, y) = sup
n
fn(x, y) =

∞∑
i=0

βiI[Ci](x)I[Di](y) .

By construction and using Theorem3.3 we can deduce thatfn(x, y) increases mono-
tonically and converges top(2)(x, y) wheneverx ∈

⋃
ε Cε and y ∈

⋃
εDε. Thus

the corollary follows by the Monotone Convergence Theorem. For by Theorem3.3 it
follows, for each fixedη ∈ (0, 1), for eachε > 0, that

p(2)(u, v) ≥ (1− η)p(2)(x, y) for all u ∈ C , v ∈ D

wheneverC,D are intersections withAε,Bε of dyadic rational intervals of sufficiently
small size such that(x, y) ∈ C ×D. Hence we can find

s = essinf
{
p(2)(u, v) : u ∈ C , v ∈ D

}
× I[C]I[D] ∈ S

12



such thats(x, y) ≥ (1 − η)p(2)(x, y), and sofn(x, y) ↑ p(2)(x, y) for almost allx,
y ∈ [0, 1]. 2

Remark 3.10If the reference measure has atoms then these may immediately be con-
verted into small sets and removed from the step-2 kernel, after which the methods
of Corollary 3.7 can be applied to the residual. It follows that the2-step transition
probability density representation Eq. (9) applies whenever the chain has a measurable
transition density and the state-space has countably generatedσ-algebra, regardless of
whether the reference measure has atoms or not.

4 Pseudo-small sets

Roberts and Rosenthal [20, 21] introduced the idea of apseudo-small set; Definition
1.1of a small set is weakened to allow the common component of theK(x, ·) to depend
on pairs of statesx, x′ being considered.

Definition 4.1 A subsetC of state-space ispseudo-smallof ordern if there isα > 0
such that for each pairx, y ∈ C we may find a probability measureνx,y with

K(n)(x, ·),K(n)(y, ·) ≥ ανx,y(·) .

ForC to be a small set we would requireνx,y not to depend onx, y.
Pseudo-smallness is well-suited to questions involving coupling, but not for coales-

cence (as would arise in Coupling from The Past algorithms such as in [11, 15]), and
not for representations as described in Corollary3.7above.

Nevertheless we place on record here that any Markov chain with measurable tran-
sition densityp(x, y) on a state-space with countably generatingσ-algebra must have
an abundant supply of pseudo-small sets of order1.

Just as in§3 we may reduce to the case of state-space[0, 1] with Lebesgue measure
as reference measure. Now Lemma3.1 shows that for any givenε > 0 we may find
a subsetAε ⊆ [0, 1] such that the “L1-valued function”px(·) = p(x, ·) is uniformly
continuous onAε. This means that for anyδ we can divideAε into a finite collection
of subsetsC (by taking intersections with intervals) such that ifx, y ∈ C then∫ 1

0

|px(z)− py(z)|dz ≤ δ .

A direct computation then shows that∫ 1

0

min{px(z), py(z)}dz ≥ 1− δ/2 .

ConsequentlyC may be taken to be pseudo-small of order1, with α = 1 − δ/2 and
with νx,y of density

1
α

min{px(z), py(z)} .

By using a countable sequence ofAε, we may cover almost all the state-space with
pseudo-small sets of order1 with α fixed as close to1 as desired.
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5 Conclusion and complements

Properly considered, neither the counterexample given in Theorem2.1 nor the abun-
dance of order2 small sets of Theorem3.3should come as a surprise. Were no coun-
terexample to exist, the theory of Lebesgue-measurable subsets of[0, 1]2 would take
on an appalling simplicity, since every such set would be expressible as the union of
a null-set and a countable family of measurable rectangles. On the other hand, convo-
lution of densities tends to force positivity: were we to convolve with itself a kernel
densityp(x, y) which was just a constant times the indicator of a Borel subset of[0, 1]2

then the result would have a zero at(x, y) only if p(x, z)p(z, y) vanished for almost all
z ∈ [0, 1], which would clearly be hard to arrange for a substantial portion of the range
of possible(x, y) ∈ [0, 1]2. This intuition lies at the heart of all existence proofs for
small sets.

We have mentioned in Section§2 that the counterexample is related to issues in
graph theory. The relevant theory is that of the Zarankiewicz problem [3], a Tuŕan
problem for bipartite graphs. Given a bipartite graphG on r ands vertices, how large
dos, r have to be beforeG can be guaranteed to contain a specified complete bipartite
graph as subgraph? In our language, a bipartite graphG onm andn vertices corre-
sponds to a filled subset of anm × n array of cells (cell(i, j) being filled if vertex
i in the first vertex collection is connected to cellj in the second); subgraphs which
are complete bipartite correspond to filled measurable rectangles. Detailed estimates,
running well beyond our simple requirements, are to be found in [9, 10].

A major motivation for this work is the usefulness of order1 small sets in CFTP
constructions. Of course in specific CFTP problems one constructs such small sets
directly, often aided by continuity of the transition density. However it seems worth
knowing that for rather general Markov chains one can always construct order2 small
sets (thus just one step away from the realm of practical application).Finding such
small sets is another matter entirely, since their definition involves exactly the kind of
integration which Markov chain Monte Carlo (MCMC), and CFTP in particular, has
been invented to avoid! It would be most interesting if one could devise situations in
which the existence of order2 small sets could be exploited in CFTP without requir-
ing such explicit integrations. (Notice however that our theorem guarantees that small
sets of order1 abound for Markov chains arising as discrete-time samples ofcontin-
uous timeMarkov processes with measurable transition densities on state-spaces with
countably generatedσ-algebras!)

There are other contexts in which the results of this paper may be of interest. For
example in data-mining, methods ofautomatic binningattempt to determine whether
a parameter-space regionR of interest can be expressed asR =

⋃K
k=1 Ck, where

eachCk is a product set [8, § 5]. Thus in the two-dimensional context one would be
interested in searching for subsetsA × B of R. Our example is of course absurdly
pathological for this application, but hints at possible difficulties such a search might
face. It also indicates a useful direction for further research: it would be interesting to
relate theoretical work on automatic binning to the question of finding efficient repre-
sentations of the form Eq. (3.7).

In the area of statistics known as Graphical Models one views a collection of ran-
dom variables{Yi : i ∈ G} as indexed by verticesi of a graphG satisfying the
following property: two subcollections{Yi : i ∈ A}, {Yi : i ∈ B} are conditionally
independent given a third subcollection{Yi : i ∈ C} if the vertex setC separatesA
from B in the graphG. One can code{Yi : i ∈ A}, {Yi : i ∈ B}, {Yi : i ∈ C} as
random variablesX1, X2, X3. SupposeX1, X2, X3 possess a joint density; the pre-
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diction ofX3 givenX1 withoutknowledge of the interveningX2 is given by a kernel
to which the results of Theorem3.3(and hence the latent discrete structure of Eq. (9))
apply.

It may be worth being more explicit about the latent discretization represented by
Eq. (9). What this says is that we may view any Markov chainX = {X0, X1, . . .}
with measurable transition densityp(2)(x, y) on [0, 1] (or of course a state-space with
countable generatedσ-algebra) as being generated by a latent discrete Markov chain
Y = {Y1, Y3, . . .} running in “odd time”. If

p(2)(x, y) =
∞∑

i=0

β(x, i)ri(y) (10)

as in Eq. (9), thenY is governed by the transition probability matrix

pij =
∫ 1

0

ri(z)β(z, j) dz .

Furthermore, givenY2n+1 = i2n+1 andY2n+3 = i2n+3, the conditional density of
X2n+2 is proportional as a function ofz to

ri2n+1(z)β(z, i2n+3) ,

and does not further depend on other values ofY . If in addition we are givenX2n =
x2n andX2n+2 = x2n+2 then we may ask for the conditional density ofX2n+1. In fact
there is some arbitrary aspect to this, depending on how we choose to couple the latent
Y2n+1 = i2n+1 to X2n+1; however it can be chosen not to depend on anything but
X2n = x2n, Y2n+1 = i2n+1, andX2n+1 = x2n+1. GivenX2n = x,X2n+1 = x′, one
must choose a partition of the interval[0, 1] into subsetsE1(x, x′), E2(x, x′), . . . such
that ∫

Ei(x,x′)

p(x,w)p(w, x′) dw = β(x, i)ri(x′) .

That this is achievable follows because∫ 1

0

p(x,w)p(w, x′) dw = p(2)(x, x′) =
∑

i

β(x, i)ri(x′) .

We may use this choice to define the conditional density ofX2n+1 in a compatible way,
as being proportional as a function ofw to

p(x2n, w)p(w, x2n+2)× I[Ei2n+1 (x2n,x2n+2)](w) .

Finally, many Markov chains in practice do not have transition densities, such as for
example those which arise in Metropolis-Hastings MCMC. In the Metropolis-Hastings
case the failure to have a transition density is rather a trivial matter, assuming that one
is working with densities for proposal and acceptance kernels; and if one samples the
chain whenever a proposal is accepted then the resulting sub-sampled chain does have
a transition density, and Theorem3.3 applies. It is pleasant to report that the same
fix works in essentially every case where one might expect small sets to abound: one
simply sub-samples at instances of stopping times such that the resulting chain has a
transition density; we sketch the argument here.
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Recall, as described for example in [17], that the Hopf decomposition theorem al-
lows us to divide the study of irreducible Markov chains intodissipativecases (essen-
tially transient) andconservativecases (essentially unions of recurrent classes). The
dissipative case is hopeless: for example one can construct skew product Markov
chains onR2 \ {(0, 0)} whose radial part is the exponential of a Gaussian random
walk which drifts off to infinity, and whose angular parts jump so as to be replaced
by uniformly random angles but at a rate depending on the radius and decreasing fast
enough that there is a positive chance that such a jump may never happen. The chain is
irreducible, and yet no matter what stopping timeT may be chosen the distribution of
XT places a positive amount of probability on the ray running from(0, 0) throughX0.

Suppose on the other hand we consider a conservative chain. General theory (in
fact using the existence of general small sets!) tells us we can find a maximal irre-
ducibility measureψ such that the chain isHarris-recurrentoff a setN of ψ-measure
zero: if X0 = x 6∈ N andA is a subset of state-space of positiveψ-measure then
P [X hitsA|X0 = x ] = 1. We supposeψ to be diffuse and deleteN from the state-
space. SetSx to be the countable union ofψ-null sets supporting theψ-singular parts
of the distributions ofX1,X2, . . . conditional onX0 = x, and defineTx to be the stop-
ping time at whichX first leavesSx. Sinceψ(Sx) = 0, Harris-recurrence shows that
Tx must be finite. A calculation shows that the distribution ofXTx

has zeroψ-singular
part, so aψ-density exists forXTx

. We can even show thatTx is essentially minimal for
this property! By this means we construct a sub-sampled chain which has measurable
ψ-density, for which the results of Theorem3.3apply.
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