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Abstract

Perfect simulation refers to the art of converting suitable Markov Chain
Monte Carlo algorithms into algorithms which return exact draws from the
target distribution, instead of long-time approximations. The theoretical
concepts underlying perfect simulation have a long history, but they were
first drawn together to form a practical simulation technique in the ground-
breaking paper of Propp and Wilsord], which showed (for example) how
to obtain exact draws from (for example) the critical Ising model. These lec-
ture notes are organized around four main themes of perfect simulation: the
original or classic Coupling From The Past algorith@F{TP); variations
which exploit regeneration ideas such as small-set or split-chain construc-
tions from Markov chain theory (small-s€FTP); generalizations o€FTP
which deal with non-monotonic and non-uniformly ergodic examples (dom-
inatedCFTP); and finally some theoretical complements.
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Introduction

Perfect simulation refers to the art of converting suitable Markov Chain Monte Carlo
(MCMC) algorithms into algorithms which return exact draws from the target distribu-
tion, instead of long-time approximations. The theoretical concepts underlying perfect
simulation have a long history, but they were first drawn together to form a practical sim-
ulation technigue in the ground-breaking paper of Propp and Wilg8nwhich showed

how (for example) to obtain exact draws from the critical Ising model on a finite lattice.
These notes derive from a series of four tutorial lectures given at the Institute for Mathe-
matical Sciences, National University of Singapore, in March 2004, to an audience of PhD
students and recent post-docs. The aim of the lectures was to introduce the collection of
ideas which have developed around perfect simulation, since some of the audience might
well have occasion to use the technigue, and since in any case exposure to these ideas
promotes useful lateral thinking abddCMC. | have tried to be rigorous, in the sense of
avoiding mis-statements, but have not attempted to give a complete account. Some proofs
and techniques are merely sketched, while some are omitted. In the actual lectures it was
possible to illustrate many of the ideas using computer animations; this is not an option
for printed notes, but in partial recompense | have included illustrations where possible. |
have aimed the exposition at the level of a mathematically-trained graduate student; so ex-
amples are chosen to be illustrative rather than representatiggodssible to us€FTP

for other than toy problems, but such examples would require detailed descriptions which
would obscure intuition.

The lectures and these notes have alike been organized around four main themes of per-
fect simulation: the original or classic Coupling From The Past algorit@Rilre) in §1;
variations which exploit regeneration ideas such as small-set or split-chain constructions
from Markov chain theory (small-s&FTP) in §2; generalizations oc€CFTP which deal

with non-monotonic and non-uniformly ergodic examples (domin&EdP) in §3; and

finally in §4 some striking results relatingFTPto an apparently different algorithm due
originally to Fill, as well as other theoretical complements.

The topic of perfect simulation is made up of a variety of interacting ideas rather than a
single grand theory: more of an orchestra of complementary techniques than a virtuoso
prima donnaof a Big Theory. | hope that these notes will help to convey this variety, and

to help others to engage with, be stimulated by, and contribute to the topic.

Useful reading

Here is a sample of useful resources concerning perfect simulation (particQRErly)
and the underlying coupling ideas:

e Lindvall's introduction to coupling§2] (now available asg3]) should be required



reading for all applied probabilists, and lays invaluable foundations for an appreci-
ation of coupling theory;

Thorisson’s monograp®p] gives a masterly exposition of the mathematical theory
of coupling as well as a treatment 6F TP itself; Haggstbm’s short undergradu-

ate text B9] provides a most accessible introduction at the level of discrete Markov
chains; finally, the monograpf7]] of Mgller and Waagepetersen provides signif-
icant material from the perspective of stochastic geometry (a major consumer of
CFTP).

Itis not possible in the short space afforded by these notes to be complete in assign-
ing bibliographic credit, nor to give adequate coverage to the various applications
of CFTP. The online bibliography developed by David Wilson should be the first
port of call when seeking references@&TP.

http://research.microsoft.com/ ~dbwilson/exact/

Finally, note that Wilson’s online bibliography links to various useful tutorial es-
says; in particular we mention Casetia al.[18], Dimakos P6] and Ttbnnes 90.


http://research.microsoft.com/~dbwilson/exact/

1 CFTP: the classic case

We begin this section with a brief indication of h@¥TPfits in to the theory oMCMC.

We then discuss one of the simplest possible examples of couplirt, (before describ-

ing classicCFTP as applied to the doubly-reflecting random wdk.Q). This serves as
introduction to the fundamental theorem@FTP (§1.3), which is further illustrated by

two simple applications: to the dead leaves mod&l4) and to the Ising modek(.5).

The section is completed by a rather less trivial application to point procegsésgnd

a discussion o€FTPin space and times(.7), and finally a brief note on some historical
and other complementary aspect<GHTP (§1.8).

MCMC arises in a number of different areas of mathematical science, with different em-
phases. (This makes interaction interesting and fruitful!) Here are some examples, several
of which are discussed at length in other chapters in this volume:

e Statistical mechanics.Are there phase transition phenomena in specific infinite-
dimensional systems? How do they behave?

e Computer science. Approximate counting problems can be solved in terms of
algorithms which deliver approximately uniform random samples, which in turn
can be solved usinyICMC. In this area the key question is, how does the algo-
rithm behave as the scale of the problem increases? Does the run-time increase
exponentially, or polynomially?

¢ Image analysis.Given a noisy picture with some kind of geometric content: can
we clean it up using modelling by spatial random fields? Can we identify signifi-
cant features?

e Statistics.

— Bayesian. Can we draw accurately (argplickly if possible!) from the pos-
terior distribution on a space which may be low-dimensional but not at all
symmetric?

— Frequentist. What does the likelihood surface look like?

The paradigm for Markov chain Monte CarlMCMC) runs as follows. We want to
understand the properties of a particular probability measure, which may be linked to
a complicated state space, or may be specified in an indirect manner, or may in some
other way be hard to deal with by explicit calculation. So we design a suitable Markov
chain whose long-run equilibrium distribution is this probability measure. Sometimes this
chain will arise naturally from the application context (if for example we are interested
in the statistical equilibrium of a financial time series); sometimes it is suggested by the
specification (if for example the probability measure is specified up to a normalization



factor as for the Ising model, so that we can use ideas of detailed balance and reversibility
to design appropriate Markov chains). However the chain arises, we require that the target
probability measure is the long-run equilibrium measure. We can then draw samples
whose distribution is at least approximately the target probability measure, by running the
chain for a time which is long enough for statistical equilibrium to be established at least
approximately.

Thus the paradigm runs as follows:

o specify the target distribution indirectly;
e realize it as the equilibrium of a Markov chain;

e sampleapproximatelyfrom the target distribution by running the Markov chain for
a long time (till it is near equilibrium).

A major question is, what is the length of the “burn-in” period, the period till the chain is
near equilibrium? Options for answering this question are:

Guess it or diagnose it from simulation outpis]22];
Or estimate it, analyticallyZ5, 80, 83, 84], or empirically 47].

The question is, whether it is ever possible to do better than the above?

In a landmark paper, Propp and Wilsof8] showed how in in principle one can modify
MCMC algorithms so that they delivexxactdraws from the chain equilibrium distribu-

tion, at a price of random run-time length: the techniquexactor perfect simulation
Moreover they showed how such modifications can be constructed to provide exact draws
in feasible computation time for interesting and non-trivial examples. Since then there
has been a flood of work on the Propp-Wilson ide&otipling from the PaiCFTP). In

this lecture we will introduc&CFTP by describing simple cases, which we will develop
into examples of interest particularly in Bayesian statistics and stochastic geometry (the
study of random patterns).

Before beginning this task, we should note there is another important issue to consider
when undertakindCMC: the best chains not only have short or at least manageable
burn-in periods, but alsmix rapidly (time series of [functions of] observations exhibit
rapidly decaying correlation). Perfect simulation does not address this issue directly —
though the challenge of devising modifications to ensure perfect simulatgsuggest

ways of improving the mixing rate.



1.1 Coupling and convergence: the binary switch

1.1 Coupling and convergence: the binary switch

We commence by introducing the fundamental ideaafpling' (see B3, 92] for more

on this large subject).

Consider the simplest possible case: a continuous-time Markov chain with just two states,
which makes transitions from one state to the other at constantl fatethe binary
switch. With care, we can simulate simultaneously from different starting points in such a
manner that the two simulatioesuple(start to take the same values) from some random
coupling timeT" onwards.

Algorithm 1.1 Supply
(a) a Poisson process (rate/«) of 0 — 1 transitions,
(b) independently a Poisson process (rajey) of 1 — 0 transitions.

Use the transitions to build coupled process€sY begun at0, 1 (say). Do this as
follows: each time @ — 1 transition appears, seX to 1. Each time al — 0 transition
appears, seX to 0. Do the same fol". Clearly X, Y are (coupled) copies of the binary
switch, coupling at the timé& of the first Poisson incident, after which they evolve in
lock-step.

Figure 1: Coupled binary switches andY” (lower two rows), driven by the same
sequences df — 1 and1 — 0 transitions (upper two rows)

aCoupling, stochastic flows, also the notion of stochastic recursive sequences, arise in different
parts of probability and stochastic analysis, but all express the same idea: one can realize the
Markov chain of interest by a specific construction which allows one to compare different copies of
the Markov chain begun at different starting points; the construction is not completely determined
by the Markov chain but can be varied so long as single trajectories have the right distribution.



1.2 Random walk CFTP

Then the classicoupling inequalityargument shows

distry(Xi,m) = sup(P[Xi € 4]~ w(4)} = 3 3P =i
= sup{E[I[X, € 4]~ T[X} € AJ}} < sup(E[I X, € AbutX; £ X}
= E[[X;#X)] = P[T>1 (1)
(with T [A] representing the indicator random variable for the evBntwhere
(1) = is the equilibrium distribution, se(0) = 7(1) = 1/2;

(2) X* is a (coupled) copy of the Markov chaiXi started off in equilibrium (hence
lying betweenX andY, and continuing to do so if driven by the construction
above);

(3) and disty is the total variation distance. (Note, this is a rather strong measure
of distance from equilibrium; two real-valued random variables can almost surely
have values very close together, and yet have maximum distance in total variation
if one takes only rational values and the other takes only irrational values! Other
kinds of coupling relate to more metric notions of distance.)

The coupling argument generalizes to arbitrary Markov chains:

(a) if we can couple a general Markov chaihto a versiorl” in statistical equilibrium,
then such a coupling bounds the approach to equilibrium thr&agiation (1)

(b) if we allow non-adaptedouplings then the bound is shag6] 39;

(c) however, non-adapted couplings can be very difficult to constr@utadapted
couplings are typically easier to construct, and can supply usable bounds but in
many cases these will not be sharp. (This point arises ag§ih4r

Can we use such a coupling dwaw from equilibrium? The binary switch example is
deceptive: X (7T') is in equilibrium in the case of the binary switch, but not in general —

a defect which becomes apparent even in one of the simplest imaginable generalizations,
which we will now discuss.

1.2 Random walkCFTP

Consider the natural generalization of the above coupling, but applied (in discrete rather
than continuous time) to the random watkon {1,2,..., N} which is reflectedat the
boundary pointd, V. Reflection here is implemented as follows: if the random walk

10



1.2 Random walk CFTP

tries to move outside of the randé, 2,..., N} then the relevant transition is simply
disallowed (this is directly analogous to the way in which the binary switch behaves). We
then obtainsynchronousoupling (synchronously coupled random walks move up and
down in parallel, except where prevented by barriers from moving in synchronization):
the coupled random walks can only meet together at the barrier levais Thus X (7')
cannot be a draw from equilibrium i¥ > 2.

The Propp-Wilson idea circumvents this problem by drawing on a well-established theme
from ergodic theory: realize a Markov chain as a stochastic flow and evolve it not into the
future butfrom the padtIf we do this then we need to consider coupled realizations of the
Markov chain started at all possible starting points. However if monotonicity is present
then we need only focus on maximal and minimal processes, as for the binary switch in
Section 1.1

X'ower—n hegun atl at time—n,
XUPPEL— hegun atNV at time—n;

since the synchronous coupling arranges for thesardwichall other realizations begun
at time —n. We can therefore carry out an algorithm which is summarized informally
below, and which is illustrated iRigure 2

Algorithm 1.2 e Run upper and lower processes from time.
o |f the processes are coupled by tieeturn the common value.

e Otherwise, repeat but start at time2n (say), re-using randomness whenever pos-
sible.

It is informative to consider a crude implementatiorGH TP for this simple case, for ex-
ample using the freely available statistical packBg@geehttp://cran.r-project.

org/ ). First define a listnnov of innovations determining the evolution from time
to timeO.

innov <- 2 =*rbinom(2,1,1/2)-1

Now construct a functionycle which simulates maximaufper ) and minimal (ower )
reflecting random walks on the state spate2, 3,4, 5,6,7,8,9,10} usinginnov . This
function returns the common value if maximal and minimal processes coalesce; otherwise
it returnsNA

cycle <- function (innov) {
upper <- 10
lower <- 1

11


http://cran.r-project.org/
http://cran.r-project.org/

1.2 Random walk CFTP

for (i in 1l:length(innov)) {

upper <- min(max(upper+innovfi],1),10)
lower <- min(max(lower+innov(i],1),10)
}

if (upper!=lower) return(NA)

upper

}

If cycle(innov) returnsNA (and clearly in this example it has to do so at least until
the innovation length is sufficient to permit one of the maximal and minimal processes
to cross from one end of the state space to the other) then further innovations must be
inserted at the beginning of tienov vector, anctycle(innov) invoked again. This

is conveniently packaged invehile loop.

while(is.na(cycle(innov)))
innov <- ¢(2 *rbinom(length(innov),1,1/2)-1, innov)
cycle(innov)

Of courseR is not well-suited to this kind of algorithm, other than for purely illustra-

tive purposes: much better results can be obtained using modern scripting languages
such a®ython (http://www.python.org/ ), particularly withnumarray extensions
(http://www.stsci.edu/resources/software _hardware/numarray ).

Figure 2shows the effect of four cycles, resulting in a common value at fime the

third cycle.

Figure 2: Classi€FTPfor a reflecting random walk. Coalescence occurs at time
-16 for this realization.

Various issues are illustrated in this figure:

12
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1.3 The CFTPtheorem

e The algorithm extends the common path backwards into the past, not forwards into
the future;

e One must use common randomness (in coupling random walks togetherg-and
useit (when coming from the past into a time interval within which random walks
have already been simulated);

e One samples at tim& not at the coupling time;

e There is a simpleationalefor doubling the start-time-n — —2n: this essentially
represents a binary search for the coalescence time.

It is informative to consider what goes wrong if one deviates from this algorithm:

e suppose one runs the simulation into the future, not from the past, stopping (say)
at a specified time after coupling has first occurred. Since coupling occurs only
at the boundaries, it can be shown in this case that the approximation to the equi-
librium distribution is no better than if one had omitted the initial coupling phase
completely!

e suppose one fails to re-use randomness. We expect this to bias towards cases in
which coalescence occurs earlier in algorithmic time (since failure to re-use ran-
domness would improve the chances of fast coalescence, essentially by permitting
repeated attempts to coalesce over time interva®$n, 0]), and this is indeed the
case;

e Sampling at coupling time instead of tindds obviously a bad idea; sampling an
independentandom walk at this time will still give a biased result.

1.3 TheCFTP theorem

Morally the proof of classi€€FTPis just3 lines long. We express the coupling f&rin
terms of randoninput-output maps’_,, ,; : X — X, SOF_,, 41(x0) is X; begun at time
—n with the valueX_,, = .

Theorem 1.3 [78] If coalescence almost sure irAlgorithm 1.2(all inputs x result in
the same single outpuf,_,, (o) for large enoughm) thenCFTPsamples from equilib-
rium.

Proof: For each time-range-n, oo) use theF_,, , to define

Xt_n = F(,n’t] (O) for —n <t.

13



1.4 The talling leaves of Fontainebleau

Finite coalescence time-T' is assumed.So

X;" = X;'  whenever—n < -T;
LG = L(xD).

If X converges to an equilibrium in total variation disy then
diStTv([, <X0_T> ,7‘(') = lim diStTv(,C (Xo_n) 77'1') = lim diStTv(E (Xg) ,71') =0
hence the result. O

There is a crucial step in the classic proof of uniqgueness and existence of long-run equilib-
rium for finite Markov chains which actually amounts to the assertion that coalescence is
almost sure even for thirdependentoupling (chains evolve independently till they meet,
then stick together). This is the step which argues that under aperiodicity and irreducibil-
ity there is ann such that all the:-step transition probabilitiepg?) are simultaneously
positive.

Remark 1.4 We are free to chooseny“backwards random time™7" so long as we can
guarantee coalescence bf_r . The binary search approach cindom walkCFTPis
deservedly popular, but there are alternatives: for example the “block-by-block” strategy
of read-onceCFTP(52.6).

Remark 1.5 Monotonicity of the target processasnvenientor CFTP, but notessential
Propp and Wilson T8, §3.2] use lattice theory to formalize the use of monotonicity. In
§3.6 below we describe therossover trick 51] for use in anti-monotonic situations.

1.4 The falling leaves of Fontainebleau

A very visual and geometric application GFTPin mathematical geologypp] was well-

known to workers in the field well before the introduction@FTPitself: it concerns the
“dead-leaves” model, inspired by the falling leaves of Fontainebleau. The dead-leaves
model describes a random mosaic as the limiting distribution of the random pattern ob-
tained by allowing patterned tiles (“leaves”) to fall at random on a wind®&igure 3
shows the pattern beginning to build up. We can think of the “dead-leaves” process as a
Markov chain with states which are elements of some “pattern space”.

David Wilson has introduced the terminologgclusionCFTP for this kind ofCFTP:

the algorithm builds up the result piece-by-piece with no back-tracking, and the even-
tual perfect image is built up progressively, with each new portion “occluding” further
developments in the corresponding region.

14



1.4 The talling leaves of Fontainebleau

Figure 3: The falling leaves of Fontainebleau.

It is rather straightforward to make exact computations for the rate at which this chain
attains equilibrium. However one can do better, very easily, by considering the pattern as
it is built up, but from the perspective of looking up from underneath, rather than from on
top looking down! Elementary probability arguments show, at any given time the pattern
distribution is the same from either perspective. On the other hand the pattern viewed
from below will stop changing as soon as complete coverage is attained; and it is then a
simple matter to conclude that at that time (the time of complete occlusion) one obtains
a draw from the required equilibrium distribution (this argument is actually close to that
of the proof of Theorem 1.3 F_,, ; now represents the superposition of random leaves
falling over the period—n, t]). Hence

Corollary 1.6 OcclusionCFTP as described above delivers a sample from the dead
leaves distribution.

Example 1.7 Consider the process of simulatifigrwardsin time till the image is com-
pletely covered. This will result in bids.

Remark 1.8 Web animations of perfect simulation for the dead leaves model can be
found athttp://www.warwick.ac.uk/go/wsk/abstracts/dead/

Remark 1.9 Other examples of occlusi@FTPinclude the Aldous-Broder algorithm for
generating random spanning treeks L4, 94, 97].

bHint: consider a field of view small enough for it to be covered completely by a single leaf:
argue by comparison that the forwards simulation is relatively more likely to result in a pattern
made up of just one large leaf!

15
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1.5 Ising CFTP

1.5 IsingCFTP

Propp and Wilsonq8] showed how to make exact draws from the critical Ising model on

a finite lattice, using Sweeny’'8§] single-bond heat-bath (Hubet§] has shown how to
make this work for the full Swendsen-Wang algorithm). A simpler application uses the
single-site heat-bath sampler to get exact draws from the sub-critical Ising model. Recall
that the Ising model has probability mass function proportional to

exXp %ZZUI‘UJ' s

i~vg

with spinso; = +£1, and indiceg, j running through the nodes of a square lattice. Here

J is the inverse temperature of the system, while ;j denotes that sitesand j are
neighbours. The heat bath algorithm updates nedessystematic or in random order)
according to the conditional distribution ef given the remainder of the configuration.

We can couple evolutions of the heat-bath algorithm in a way which is similar to our
coupling of evolutions of theinary switchor therandom walk calculate the conditional
probabilityp thato; = —1, and determine the update by drawing a Unif@bm ) random
variableU, settingo; = +1if U > p.

The resulting coupling is monotonic, and so we can derive cla3BitP for the Ising

model, by comparing maximal and minimal processes run from the past (the broad de-
tails of implementation are the same as for the case of the randonGkaIRillustrated

in R code above). The heat-bath algorithm works well in the sub-critical case: however
as parameters approach criticality so it takes progressively longer for coalescence to be
attained. Figure 4shows snapshots taken from the approach to coalescence for a sys-
tematic scan Gibbs sampler: snapshots of the upper process run along the top, the lower
along the bottom, and the difference is indicated in the middle. Coalescence is nearly
achieved in this run: according to tl&FTP algorithm one must then re-wind back to

an earlier start-time and re-run the coupled simulations, taking care to re-use randomness
when available.

This CFTP algorithm adapts well to changes in the underlying graph structure, so long
as the model remains ferromagnetic and phase transition phenomena are avbated.
example consider theonditionedising model! as used in image analysis applications.

In Figure 5we show the results when the Ising model is conditioned by a particular noisy
image: the conditioning can be balanced off against strong interactions between sites, as
could be predicted (of course) from theoretical considerati6ff [In this case coales-
cence is achieved already in the first run, though of course this is not guaranteed!

¢Coding techniques will deal with the anti-ferromagnetic case for bi-partite graphs: as noted
above inRemark 1.5ve can use therossover tricko deal with other cases.
dNote: the statistician’s conditioning the physicist's external magnetic field!

16



1.5 Ising CFTP

Figure 4. ClassicCFTP for a sub-critical Ising model. Maximal and minimal
processes occupy the upper and lower strips: the middle strip marks the sites at
which maximal and minimal processes disagree. As agreement is not total at the
end of the simulation (at time), it will be necessary to restart at an earlier time,
re-using randomness when available.

Figure 5: ClassicCFTP for a conditioned Ising model. Maximal and minimal
processes occupy the upper and lower strips: the middle strip marks the sites at
which maximal and minimal processes disagree. Agreement is complete at the
end of the simulation (at tim@), so theCFTP algorithm is then complete.

17



1.6 Point process CFTP

Remark 1.10 Web animations of perfect simulations of conditioned Ising models can be
found at

http://www.warwick.ac.uk/go/wsk/ising-animations/

1.6 Point procesCFTP

ClassicCFTPis not limited to discrete models, as we have already seen in the case of the
falling leaves model. We describe one further example: a perfect simulation procedure
for attractive area-interaction point processes duedgdstomet al. [42).

The area-interaction point proc€ssas proposed by Baddeley and Van Lieshdijtds

a model for random point patterns which can exhibit both clustering and repulsion. A
succinct definition runs as follows: weight a Poisson process realization according to the
area of the region of locations lying closer thato some point of the pattern:

pattern density x ,y—area of region within distaneeof pattern‘ (2)

Remark 1.11 If v > 1 then the weighting favours patterns which group points close
together (so as to reduce the area of the region)y ik 1 then patterns are favoured
which spread points away from each other.

If v > 1 (attractive case only!), then the above density is proportional to the probability
that an independent Poisson process of suitable intensity places no points within distance
r of the pattern.

Hence the area-interaction point process may be represented as the random pattern of red
points generated by a point process of red and blue points, where red and blue points
are distributed as Poisson patterns conditioned to be at least distdrama blue and

red points respectively. This can be implemented as a (typically impracticable) rejection
sampler: a more practical option is to use a Gibbs sampler, which is monotonic and so
lends itself toCFTP.

Here is an illustrated step-by-step account of the Gibbs sampler.

+  Construct a Poisson point process (centres of
S #°1% Ccrosses).

€Known previously to physicists as the Widom-Rowlinson mo@&].[
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1.6 Point process CFTP

Construct a new Poisson process (centres of
discs), but censor all points of the new process
such that a disc centred on the point overlaps
centres of crosses.

Discard the old points formed from centres of

crosses, construct a new Poisson process (cen-
,“' 4. @ tres of new crosses), but censor all points of the
53‘ .3 new process which would fall on a disc.

The Gibbs sampler cycles repeatedly through these last two steps, and the evolving
pattern of cross centres converges in distribution to an attractive area-interaction
point process; this is a consequence of the fact notétemark 1.11 Notice the
duality between cross centres and centres of disks!

The CFTPconstruction is based on the observations

e there is a partial order for state pairs
(point pattern from cross centrgmint pattern from disk centrgs

based on the order relationshif, 71) < (£2,72) if & C & andny D n9;

¢ “highest” and “lowest” states under this ordering & 0) and (0, X) whereX’ is
the full ground space: Note that these are “pseudo-states”, and are never achieved
by the target pattern itself!

The fact that there are highest and lowest pseudo-states is the key to the rather rapid rate
of convergence exhibited by this algorithm (at least in parameter regions where there is
no phase-transition effect): the underlying Markov chaioriformly ergodicin a sense

which we will make precise latebefinition 3.8, but which can be summarized by noting

that convergence to equilibrium will always be at least as fast as convergence to equilib-
rium from one of the two extreme pseudo-states.

Issues of re-use of randomness can be dealt with by recording the entire new Poisson
point pattern of disk centres or crosses introduced at each stage, and re-using this when
appropriate.

Neither the Gibbs sampler nor tl&TP construction work for the non-attractive case.
However we will see later§B.4) how this may be overcome using a generalization of
classicCFTP.
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1.7 CFTP in space and time

1.7 CFTP in space and time

When interactions are sufficiently weak (certainly weak enough that phase transitions
cannot occur!) then thEFTPidea can be applied in space as well as time. In effect, one
aims to capture a fragment of a virtual simulation in perfect equilibrium, for which the
fragment is spatially limited as well as temporally limited. One does this by extending the
simulation not only backwards in time, but also outwards in sp&6g [n this case the
binary searchationalemust be modified according to the computational cost of extending
the CFTP algorithm inboth spaceand time. Interesting related theory is to be found in
[41].

It is clear that phase transition phenomena will cause problems when we attempt to con-
ductCFTPin space as well as time; there will be a positive chance that the upper and the
lower processes for the critical or supercritical Ising model simply do not coalesce at all
if the spatial grid is being enlarged as well as extending the heat bath back in time. (Here
of course is where several of the other chapters of this monograph start their story!) The
BFA algorithm, described i§4.6, investigates further the relationship between this issue
and percolation phenomena.

1.8 Some Complements

“The conceptual ingredients &fFTP were in the air” [9] for a long time beforeCFTP
was formulated explicitly. For example consider:

e very early work by Kolmogorovg9|f discusses chains begun in the indefinite past;
¢ the use of coupling between Markov chains by Doelig];|

e application of coupling from the past to study queueing and storage systems (to
establish very general equilibrium theorems)48,[64];

e use of evolution of stochastic flows into the past not the futurémgl];

¢ the notion of stochastically recursive sequences (SRS) appearing in stochastic sys-
tems theory 34, 9, 10];

e the use of occlusion-type constructions to deliver samples from equilibriudg in [
14];

e and genuine coupling from the past constructions used for theoretical ertdg.in [

fThanks to Thorissordp] for this reference ...
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1.8 Some Complements

However, it was not until Propp and Wilsong] that everything was put together to show
the then startling fact, that these ideas could produce exact draws from equilibrium for
non-trivial Markov chains.

As §1.7 indicates,CFTP ideas can be applied in space not only in time. For another
example, in 13] it is shown how to make perfect draws (without edge effects) from clus-
tered random patterns with long-range interactions. Mgller and Rasmw&Sjespply
these ideas (together with notionsdadmCFTR- see§3.4 below) to self-exciting point
processes.

Coupling and simulation are theoretical and implementational counterparts, with consid-
erable twinning between techniques on the two ar€&3.P brings the two areas together

in a very practical way. Other practical links are mentioned belo§2ifi.
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2 CFTP and regeneration

An early misconception abo@FTP was that it could be applied only to monotonic
Markov chains. We have already seen a mild counterexample: monotonicity is not par-
ticularly evident in the'dead leaves” modefthough it can be forced into a monotonic
framework using the notion of “region of occlusion”). More general treatments use ideas
of regeneration, which we now introduce.

We begin by summarizing the theory of Markov chain small sgslj, a theoretical dis-
cretization method which allows us to perform smallGET Pfor Markov chains on con-
tinuous state spacéd.2). We then survey variations on this theme: slice sampk2d3,

the multi-shift samplers2.4), catalyticCFTP (§2.5), read-onceCFTP (§2.6). These vari-
ations are all part of the tool-set for successful applicatioBETPin practice. We con-
clude with a brief discussions of some more technical complements to smaF3é&t

(82.7).

2.1 Small sets

Suppose we desire to construct a coupling between two random varibksyielding

a maximal positive chance df = Y and otherwise not subject to any constraint. (This
is related to the notion afonvergence stationnairer “parking convergence”, from sto-
chastic process theory.) Clearly this coupling is relevanCEd P, where we aspire to
coalescence!

Given two overlapping probability densitigsandg, we can implement such a coupling
(X,Y) as follows:

e Computea = [(f A g)(z)duz.
e With probability « return a draw ofX = Y from the density(f A g)/«.

e Otherwise drawX from (f — f Ag)/(1 — «)andY from (g — f A g)/(1 — ).

This is closely related to the methodrefection samplingn stochastic simulation.
From Doeblin’s time onwards, probabilists have applied this to study Markov chain tran-
sition probability kernels:

Definition 2.1 Small set condition:Let X be a Markov chain on a state spadg tran-
sition kernelp(z,dy). The selC C X is asmall set of ordér k if for some probability
measurer and someyx > 0

PP (z,dy) > 1[C](z) x av(dy). (3)

Herel [C] (z) is the indicator function for the sét.

9The notion of theorder of a small set is understated in most textbook treatments, but is
important for the purposes GFTP.
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2.1 Small sets

It is helpful to contemplate the simple example of a Markov chain on the unit interval
whose transition density(x, y) is triangular with peak at (Figure §. Here the small

set is the whole state spadé = |0, 1], of orderk = 1, « = 1/2, and with probability
measure’ given by the isoceles triangle density oy@r1].

Figure 6: The triangular kernel for a Markov chain on the unit interval. The dark
isoceles triangle corresponds to an unnormalized version of the densitgrahe
small set property arising from application@gfinition 2.1to the entire interval.

Small sets are of major importance in the developme@mFP, so we spend a little time
discussing their theory.

It is a central result that (non-trivial) small sets (possibly of arbitrarily high order) exist
for any modestly regular Markov chaifi§, 77]. Here “non-trivial” means, has a positive
chance of being hit by the Markov chain started from a generic point. (We would need
the language ob-irreducibility to make this precise, which would take us too far afield.
See either of the two references cited.)

The trouble with general Markov chains is that the chain may have zero probability of
returning toany fixed starting point. However if there is a small set of ordlehen we

may re-model the chain to fix this.

Theorem 2.2 Let X be a Markov chain on a (non-discrete) state spacetransition
kernelp(x,dy), with small setC' of order1. ThenX can be represented using a new
Markov chain ont’ U {c}, for c a regenerative pseudo-state.

For details seeH, 76]. Higher-order small sets can be used if we are prepared to sub-
sample the chain . ...

Small sets (perhaps of higher order) can be used systematically to attack general state
space theory using discrete state space mett&is |

hRoberts and RosenthaZ] also introduce “pseudo-small sets”, which relate to coupling as
small sets relate tGFTP.
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2.1 Small sets

A natural question is to ask whether we can go further, and use small sets to re-model the
chain as an entirely discrete affair. The answer is almost affirmative!

Remark 2.3 Non-trivial small sets of ordet need not exist: however they do exist if (a)
the kernelp(z, dy) has a measurable densiyd(b) chain is sub-sampled aventimes.
(Both are needed: see the example5d][)

Figure 7: (a) A subset of the square which is free from non-null measurable rec-
tangles; (b) A kernel which is free of small sets of order

Figure 7shows (a) a randomized construction of a measurable sithséf0, 1]2, such
thatif A x B C F then LelfA x B) = 0; (b) the support of a measurable function based
on transformed replications of this subset which provides a transition density@rain

to [0, 1], such that the density admits no (non-trivial) small sets.

Theorem 2.4 [54] If the Markov chain has a measurable transition dengity, y) then
the two-step density'?) (z,) can be expressed (non-uniquely) as a non-negative count-

able sum
PP (z,y) = Z fi(@)gi(y) .

Proof (Sketch):

The key part of this proof is a mild variation on Egoroff’'s Theorem:

Let p(z,y) be an integrable function oj, 1]2. Then we can find subsets. C [0, 1],
increasing as decreases, such that

(a) for any fixed A, the “L'-valued function”p,, is uniformly continuous om.: for
anyn > 0 we can findy > 0 such that

1
| o) = peteldz <
for | — 2| < § andz, 2’ € A..
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2.2 Small-set CFTP

(b) every pointz in A, is of full relative density: as, v — 0 S0

Leb([z —u,z +v]NA)/(u+v) — 1.

We can use this result to show that) (z, y) has just enough near-continuity to supply a
rich variety of small sets of ordex. d

This result can be used to construct a latent discrete Markov dhaineven time which
captures the time-dependence; the original cil&ican be re-constructed using functions
Xon = WYy, Yot1,n), Where thes,, are independent and identically distributed.

2.2 Murdoch-Green small-setCFTP

Green and Murdoct8[7] showed how to use small sets to carry @QRTPwhen the state
space is continuous with no helpful ordering.

Example 2.5 Itis helpful to consider small-s&FTPin nearly the simplest possible case:
recall the Markov chain triangular kernel g, 1] illustrated above.

At any time-step there is regeneration probabilif of drawing from the isoceles kernel
v(dy); and we can couple all possible draws together so that if one uses the isoceles kernel
then so do they all. Now small-s€fFTPis easy to implement: start at timen, at each

step consider whether or not one has drawn from the isoceles kernel. There is no need
to keep record of any draws until the first coupled draw from the isoceles kernel: from
then on one can evolve the chain using the full kernel until fim# perchance one has
failed to make a draw from the isoceles kernel, then one repeats the procedure from time
—2n; however one must then take care to ensure that for steps from-timenwards

one re-uses the common randomness, by drawing frometfidual kernelobtained by
renormalizingp(z,dy) — (1/2)v(dy).

In more usual cases the regeneration probability will be drastically smalleritfian
Green and Murdoch describe a “partitioned multi-gamma sampler”, which carries out
a more efficient small-s€€FTP using a partition of the state space by small sets.

Example 2.6 The result ofsmall-setCFTP can be re-expressed as the composition of
Geometrically many kernels (conditioned to avoid the small-set effect), with starting point
randomized by small-set distributien

‘Murdoch and Green use the term “multi-gamma sampler” instead of “smalCE&F’.
This arises from Lindvall's§2] nomenclature for the kind of coupling describedsihl Why
“gamma’? When asked, Lindvall explains this is because he had already used alpha and beta in
his exposition . ...
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2.3 Slice sampler CFTP

We use the notation ddefinition 2.1, so that the small set which is the whole state space
has associated regeneration probabitityand regeneration distributiom(dy). Then
small-setCFTP gives the representation

ndn) = da(-ay [vdyp o),
r=1

wherep(™ (y,dz) is then-step kernel corresponding to the kerpéy, dz) conditioned
on no regeneration:

ply,dz) = p(y7dx1)_—§w(dx).

(See B, 11, 43].)

2.3 Slice sampleiCFTP

Consider the simple task of drawing from a one-dimensional derf$ity. (Note, this
method is only interesting because it can be made to work in many dimensions ...) Sup-
pose f is unimodal. We can defing0(y), gi(y) implicitly by: the requirement that
[g0(y), gl(y)] is the super-level s€tr : f(x) > y}. The slice sampler alternates between
drawingy uniformly from [0, f(x)] and drawingz uniformly from [g0(y), g1(y)] (see
Figure §.

0.4 0.4
0.2 0.2
\
0.z 0.z \
0.1 0.1
! o B a ' o 2 4

Figure 8: Slice sampler constructions.

There is rapid convergence (order 50 iterations!) under a specific variation of log-
concavity B1, Theorem 12].

Example 2.7 Ideas of regeneration can be used to desigpeafectslice sampler for
the case of a unimodal densiff(z) with bounded support. (The “bounded support”
condition can be lifted: see[7].)

It is necessary to figure out how to make uniform choices for two versions of the process
simultaneously, so as to preserve the partial ordering

(z,y) = () if flx) < fly), 4)
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2.4 Multi-shift sampler

but also so as to have positive chances of coalescifgure 9sketches out how to do
this, exploiting the properties of the uniform distribution. The example is completed by
determining how to extend the simulation backwards in time if coalescence has failed for
the current cycle.

A

Figure 9: Perfect slice sampling: (a) first choose height for low point, next choose
height for top point, making the two heights identical if top point height falls in
possible range for low point height; then (b) first choose horizontal location for
top point, next choose horizontal location for low point, making the two locations
identical if low point location falls in possible range for top point location.

The technical issues in the above can all be resolved using the following idea:

(@) GivenU a Uniform(0, 1]) random variable, anf < 6 < 1, we can draw/ a
Uniform([0, #]) random variable as follows: 7 < # then setV’ = U otherwise
drawV from the Uniform(0, #]) distribution. So we have arranged a coupling with
V<UandP[U =V]=6.

(b) Now suppose we are givén < U as above, and wish to draw a Uniform(0, v/])
random variable, witl < ¢ < 1, such that < W < U. If U < ¢ then set
U = W, otherwise selW’ = V' with probability§/+, otherwise drawl” from the
Uniform((6, ]) distribution. So we have arranged a coupling with< W < U
andP[U = W] =9y, P[W =V]=60/v.

2.4 Multi-shift sampler

The following question is a simple version of one which often arises in implementation
of CFTP.

Question 2.8 How can one drawX, simultaneously from Uniforfm, = + 1) for all = €
R, and couple the draws to coalesce to a countable number of different outcof@s? [
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2.5 Catalytic CFTP

The answer is to use a randamit span integer latticel/ +Z whereU is Uniform([0, 1)).

Then setX, to be the unique point in the intersectipnz + 1) N (U + Z).

Wilson [96] also considers more general distributions! For example, we can express a
unimodal distribution as a mixture of uniform distributions, in a manner reminiscent of
slice sampler ideasn several ways, as illustrated Figure 10 Once we have expressed

the target distribution as a mixture of uniforms, say

L(X) = L (Uniform(—L,+R)))

for randomL and R, then we can draw simultaneously from the location family of distri-
butionsL (X + z) by first drawingL, R, then constructing the random lattit€ + Z) x
(L+ R), then finally settingX, to be the unique point in the intersectipn— L, z + R) N
((U+Z) x (L+ R)). The method also deals with multivariate and even multi-modal
cases.

Figure 10: Two different ways of expressing a normal density as a mixture of
uniform densities.

Corcoran and Schneide2(] carry this even further, showing how to couple draws from
Uniform distributions with different ranges.

2.5 CatalyticCFTP

Breyer and RobertslP] have devised an “automatic” variation on small-6iTP. cat-
alytic CFTP. The underlying idea is to perform simultaneous Metropolis-Hastings updates
for all possible states, using a common Unifgdni] random variablé/ to determine re-
jection or acceptance. For suitable proposal random fieldét may be possible to iden-

tify when the input-output map|_, o coalesces into a finite range; moreover the choice
of construction ford,, can be varied from time point to time point. Simulations can be
viewed at

http://lwww.lbreyer.com/fcoupler.html
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2.6 Read-once CFTP

2.6 Read-onceCFTP

Wilson [95] noted the following: one can build the input-output mdps,, o of Theorem
1.3fromi.i.d. blocks

Fontog = Floo - o Fom-1t(-n-2) ° Flont,—(n—1)q -

Let the blocking lengtht be chosen so that there is a positive chance of the B]&Dp
F(_4,0 being coalescent. By a simple computation, the resu@RgP procedure is iden-
tical to the followingforwardsprocedure:

¢ Repeatedly draw independent realizations3dill a coalescent block is obtained,;
note coalesced outpuit

e Repeatedly draw independent realizationsBf while these arenot coalescent
compute the update «— B(x).

e When a coalescent realization Bfis obtained, returnx withoutupdating!

There are strong resonances wsthall-setCFTP (the possibility of coalescer® corre-
sponds to the whole state space being a small set of grdespecially the representation
discussed icxample 2.6and with thedead leave€FTPexamplgone can view Wilson’s
argument as involving a re-ordering in time).

Example 2.9 The validity of read-onc€FTPfollows by establishing that the above for-
wards procedure produces a sequence3oimaps which have the same distribution as
would be produced by carrying out clas€i¢TP, but checking for coalescence block-by-
block.

The choice of the blocking lengthis of course crucial! Wilsong5] explains how this

can be done, in such a way as to be competitive with ordiG&VP.

A feature of major importance of this method is that storage requirements are minimized:
one needs only (a) to flag whether a block is coalescent, (b) to compute the output of a
coalescent block, and (c) to track the current state of the chain as the blocks are produced.

2.7 Some Complements

We remark briefly on precursors to this idea. We have already noted the seminal nature
of the split-chain constructiorb] 76]. Regeneration ideas are not new to simulation, and
have been used specifically in simulation for some time: see for example Asnatsgen

[4] and Myklandet al. [75].

The simple and direct construction §2.2 is rather strongly limited by the need to find

a regenerative probability measurdor the whole state space (or a finite covering of the
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2.7 Some Complements

state space by small sets, in the case of the partitioned vetsidoyvever it is a po-
tentially important tool, whether in its original form or in the variants described above,
when combined with other ideas such as the generalizati@Fa®P which we will de-

scribe in the next section: small-set coalescence can be an important component of other
CFTPalgorithms, especially when seeking to couple a pair of monotonic processes which
otherwise will draw closer at only an exponential rate!

Murdoch and Rosenthal 8] use regenerative ideas to develop a useful perspective on
how one might efficiently obtain repeat€&FTP samples. Craiu and Men@3] show

how to achieve efficiency gains by making multi@&TPruns using antithetic sampling.

Meng [65] also suggests use of multistage sampling ideas to impE&ViEP efficiency.

iBut Hobert and Rober#f] use the idea to investigate convergenceNi@MC.
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3 DominatedCFTP

Up to this point all ourCFTP methods and applications have applied only to Markov
chains which are in some sense “bounded” (strictly speakingormly ergodicin the
sense of Definition 3.8). We now discuss how to lift this restriction.

We begin by considering some precursor notions from queueing thgdsy,(and then
define the important theoretical notions of uniform and geometric ergodi3tg)(and
discuss their relationship with clas€i¢-TP (§3.3). This leads straight to the ideaddm-
inatedCFTP @domCFTHh, introduced ing3.4, which can apply to geometrically ergodic
(and hence “unbounded”) Markov chains. We describe this idea carefully in the sim-
ple but prototypical context of birth-death processgss) and present an application to
point processes8.6). We conclude by describing a general theorem on the validity of
domCFTP(§3.7).

3.1 Queues

Consider &71/G/1 queue (intervals between customer arrivals are independent and iden-
tically distributed, as are the service times required by customers — though of course ser-
vice time and inter-arrival time have different distributions). Lindley noticed a beautiful
representation for waiting timié’,, of customem in terms of services,, and inter-arrivals

X,, based on the observation thtgf — X, (if positive) is the extra amount of time for
which customer + 1 must wait as compared to customer

Theorem 3.1 Lindley’s equation: Consider the waiting time identity for th@/G/1
queue.

Wyps1 = max{0,W,, + S, — Xy 41} = max{0, W,, + n,}
= maX{Oanmnn+77n—1a---777n+77n—1 ++771}

D
= max{0,m1,m +n2,...,m +n2+ ...+ 0}
and thus we obtain the steady-state expression
D
We = max{(), m,n +n2,.. } .

Itis an exercise in classical probability theory (SLLN / CLT / random walks) to show that
Woo will be finite if and only if E [;] < 0 orn; = 0.

Remark 3.2 Coupling andCFTPideas enter intd heorem 3. &t the crucial time-reversal
step:

max{0, Nn, M + M-ty -y + M1+ ...+ M} =
D
= max{0,n1,m +n2,...,m+n2+ ...+ .}
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3.2 Ergodicity

CompareSection 1.4 on falling leaves. .

Remark 3.3 The problem about applying tHeFTP Theorem 3.1n this context is that
we don't knowwhichn; + ny + ... + 7, attains the supremumax{0, 71,71 + 72, ...}.

The point of this remark is, we could use the above to make a draw from the equilibrium
distribution W, if only we could tell at whichn the maximum is attained! Failing that,
Theorem 3.1suggests a simulation algorithm which approximdtég from below by

W,, for largen — the issue of choice of corresponds to the burn-in decision dCMC..
Notice that here we have a target distribution which is specified implicitly, as with the
dead leaves examplether than explicitly up to a normalizing constant.

Supposing we lose independence? Loyr®4 fiscovered a coupling application to
gueues with (for example) generdépendenstationary inputs and associated service
times, pre-figuringCFTP.

Theorem 3.4 Suppose queue arrivals followtame-stationary point procesaarked by
service times, stretching back to timex. Denote the arrivals and associated service
times in(s, t] by N, ;. The impact of stationarity is that the distribution of the process
{Ns s4u : u > 0} does not depend on the start-time LetQ~T denote the behaviour
of the queue observed from tiieonwards if begun witl) customers at time-7". The
gueue converges to statistical equilibrium if and only if

lim Q7 exists almost surely.

T—o00

Remark 3.5 Stoyan B7] develops this kind of idea. See also an application to storage
problems in 4§].

Example 3.6 It is informative to use simplR statistical package scripts and elementary
calculations to investigation Lindley’s equation and thaynes coupling

3.2 Uniform and Geometric Ergodicity

There is a theoretical issue which forms a road block to the usmdfey’s representation
in CFTP. Recall the notions afiniform ergodicityandgeometric ergodicity

Definition 3.7 A Markov chain with transition kernel(z, -) possessegeometric ergod-
icity if there are constant8 < p < 1, R(z) > 0 with

I —p™ (2, ) |lrv < R(z)p"

for all n, for all starting pointsz.
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3.3 Classic CFTPand Uniform Ergodicity

So a chain exhibits geometric ergodicity if equilibrium is approached at a geometric rate.
Note that the geometric bound is moderated by a multiplicative factor depending on the
chain’s starting point. However ...

Definition 3.8 A Markov chain with transition kernel(x, -) possessesniform ergodic-
ity if there are constantg € (0,1), R > 0 not depending on the starting pointsuch
that

I = p™ (x, )|lrv < Rp"

for all n, and uniformly in all starting points.

So a chain exhibits uniform ergodicity if the geometric rate is not affected by the chain’s
starting point.

3.3 ClassicCFTP and Uniform Ergodicity

Uniform ergodicity corresponds loosely to “virtually finite state space”. However chains
may still be uniformly ergodic even if the state space is far from finite: thgdstbm et

al. [42] chain inSection 1.6s a good example of this.

On the other hand Lindley’s theorem presents a class of examples which in general will
not be uniformly ergodic. Think for example of the case of Unif@ir| inter-arrival
times, and service times deterministic and equadl:ta queue of length will then take

at leastn units of time to disperse completely, and this can be used as the basis of an
argument to show failure of uniform ergodicity.

Foss and Tweedigp] show that the (theoretical) possibility of clas§SIETPis equivalent

to uniform ergodicity For classidCFTP needsvertical coalescencesvery possible start
from time —T leads to the same result at tirigand this implies a uniformly geometric

rate of convergence to equilibriurigure 113.

i
=

Figure 11: Vertical coalescence (starred) for a finite-state-space Markov chain,
starting from a fixed initial time.
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3.4 Dominated CFTP

The converse, that uniform ergodicity implies the possibititprinciple of classicCFTP,
follows from small set theory.

Theorem 3.9 (After Foss and Tweedie8f]) Suppose a Markov chaiX on a general
state spacet has positive probability of hitting a specifisthall setC' of order k&, where
the probability may depend on the starting position but is always poéitiidnen X
is uniformly ergodic if and only if classi€FTP is possiblein principle (disregarding
computational and implementation issues!).

Proof (Outline):

It is clear from theCFTP construction that classicFTPforces uniform ergodicity.

On the other hand, uniform ergodicity means we can chacaech thap™ (z, -) is close
to equilibrium in total variation, uniformly ir:. It follows thatin principle we can design
a split chainwhich has positive chance of applying regeneration ewe#yk time steps,
and this permits construction efmall-setCFTP. For suppos€’ is the small set of order
k as given inDefinition 2.1 with 7(C) > 0. Then fore — 0 asn — oo uniformly in z,

(@, C) = (1-e)m(0),
p () = (1= e)an(O)().

So we can applgmall-setCFTP to the sub-sampled Markov chaky, , x, Xo(;,44)s - - - -
O

Foss and Tweedigp)] also derive comparisons between moments of coalescent times and
forward coupling times.

The practical obstacle here is that we will have to gain knowledgé'ofz, -) to build

the split chain. But in general we may expeft)(z, ) to be less accessible than the
equilibrium distribution itself!

3.4 DominatedCFTP

It follows from the very existence d@FTP constructions that all the chains discussed so
far have been uniformly ergodic. Can we lift this uniform ergodicity requirem&mPP
almost works withhorizontal coalescencas exhibited in théindley representatioand
illustrated inFigure 12 all sufficiently early starts from a specific location lead to the
same result at tim@. But, as highlighted by the Lindley representation, the question is
howone can identify when this has happened.

KThis small-set condition is essentially a consequencg-iofeducibility [77], which itself is
implied by the much stronger condition of uniform ergodicity.
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3.4 Dominated CFTP

T A S e

Figure 12: Horizontal coalescence starting from a fixed location: this will have
occurred if all earlier starts from this location will also coalesce by time

The idea of dominate@FTP (domCFTR is as follows: generate target chains coupled to
adominating procesfor which equilibrium is known. Domination allows us to identify
horizontal coalescence by checking starts from maxima given by the dominating process.
We set this out in a formal definition. For the sake of clarity we consider a rather simple
case, that of a discrete-time monotonic chain definefpso). (A much more general
formulation, allowing for general state space and non-monotonicity, is given below in
Theorem 3.19

Definition 3.10 (domCFTR ConsiderX, an ergodic Markov chain of0), o0). Suppose
it can be coupled as follows: for each> 0, —t < 0 we can construck *:—%) to be X
begun atr at time—t, such that ifs > —¢, s > —u, then

X@0 < x@=w implies  xT0 < xW
Suppose further we can build dominating proces§” on [0, c0), which is stationary,
defined for all time, and coupled to tHe(*—) by

X0 <y, implies Xs(ﬁ’ft) < Yo

whenever > —t. Then the following algorithm delivers a perfect sample from the equi-
librium distribution of X, so long as it terminates almost surely:

(1) Draw Yj from its equilibrium distribution;
(2) SimulateY backwards in timéo time—T;

(3) Sety = Y_r, and simulate thepper-procesX ~7*¥ and thelower-processy -0
forwards in time to timé (note:these must be coupled to each othe’tcand at
later stages of the algorithm they must be coupled to other simulatioFsatfthe
same process time);
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3.4 Dominated CFTP

@) If X, = x; 70 then return their common value as a perfect draw from the
equilibrium distribution ofX . Otherwise extend the previous simulatiorYolback
to time—2T', update—T to —27', and repeat from step (3).

If we can make this work theBFTP can be applied to Markov chains which are merely
geometrically ergodil7, 51, 53, 55] or worse (geometric ergodicitg domCFTP). The
issues are:

(a) can one draw from the equilibrium &f?
(b) can one simulat®” backwards in time?

(c) can one simulate the upper- and lower-processes coupled both to other simulations
of X and toY as required in the definition?

(d) and, of course, will coalescence (which is to say, termination of the algorithm)
occur almost surely, and will it occur with reasonable speed?

There is considerable freedom allowed in the choicE pgfo requirements (a), (b) are not
hard to meet. The implementation of requirement (c) typically needs care; on the other
hand (d) is typically half obvious (whether coalescence is almost sure) and half empirical
(one investigates the speed by trying it out in practice!).

Theorem 3.11 [51, 53] If coalescence is almost sure thdomCFTPsamples from equi-
librium.

Proof: For simplicity we continue to suppose the target procéss monotonic, and that
it and the dominating proceds are non-negative.

Let xuppet—n  xlower—n — x—n ha yersions of the target chain started at time at
Y (—n), 0 respectively. Let-T be the latest time such thatPPei—T(0) = xlower—T () —
X~T(0) (so—T is thecoalescence timeNow argue as iTheorem 1.3or classicCFTP:

If X converges to an equilibrium in total variation disty then

distry (£ (XO_T> ,m) = limdistry (£ (XO_”) , ) = limdistry (£ (Xg) ,m) =0
hence the result. O

Thus we can use realizations of the target process started from the dominating process to
identify horizontal coalescence
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3.5 Birth-death processes
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Figure 13: Dominate@€FTP. Coalescence is assured at the starred time, since all
previous starts below the dominating process are compelled to coalesce Iy time

3.5 Non-linear birth-death processes

To illustratedomCFTPRin detail, we describe a simple example taken frad$].[ Consider
a continuous-time non-linear birth-death proc&sswith transition rates

X—->X+1 atrate) x
X—-X-1 atrateX p,

for positive\ x, ;.. We suppose the birth raey is bounded abovéoy \.

Of course it is possible to compute the equilibrium distribution using detailed balance.
However here the object of the exercise is to constrdatraCFTPmethod to draw exactly
from the target distribution.

Note first that the non-linear birth-death procéS€an be bounded above, dominated

by, the linear birth-death proce¥swith transition rates

X —-X+1 at rate)
X—-X-1 atrateX u .

Heredominationmeans, ifd < X (0) < Y(0) then we can construct coupled copiesof
andY such that the relationshi < Y is maintained for all time.

Indeed we can go further: given the procésshen foranyz, 0 < z < Y(0), we can
construct a copy ;. of X begun atr such that < X, < X, <Y for all time whenever
a<b<Y(0).

We do this as follows.

We constructX from Y by supposing,X can have a birth only i has a birth, and
similarly for deaths.

Suppose to each birth incident and each death incideYittbere is attached an indepen-
dent Uniform0, 1] randommarkU. So the construction oX is specified by determining
for eachY incident whether or not this corresponds toJarincident.

'Monotonicity is required fo x in [49], which is unnecessarily restrictive!

37



3.6 Point processes

e A birth incidentY — Y + 1 at timet with mark U is allowed to generate aif
birth incident exactly when

U < N (5)

e A death incident” — Y — 1 at timet with mark U is allowed to generate ali
death incident exactly when
pX(t—) X(t-)

(s N e ©

Itis apparent fromX (¢—) < Y (¢—) and the increasing nature % < X that thel/-based
criteria above use probabilitiesy,_)/A < 1and X (t—)/Y (t—) < 1 respectively. This
permits an inductive argument, iterating through the birth and death incideYitsadiich
showsX < Y for all time, and which indeed also demonstrates X, < X, < Y if
0 < X,(0) < X3(0) <Y(0).

Now carry out theCFTP construction, but making starts at times, —2n, ...using a
stationary realization of the dominating process, a®diinition 3.1Q rather than the
top-most state. To do this it is necessary to be able to

(1) draw from the equilibrium of the dominating process (easy here: detailed balance
identifies the equilibrium distribution as Geometric);

(2) simulate the reversed process in equilibrium (easy here: by detailed balance the
process is reversible).

The remaining requirements @efinition 3.10are assured by the construction given
above. An illustration of the result is given figure 14

This example is rather trivial (in this case equilibrium is best simulated using a formula for
the equilibrium distribution derived from considerations of detailed balance!). However
similar examples can deal with cases where no formula for equilibrium is known (for
example, perpetuities); moreover it is straightforward to introduce a spatial component to
the birth-death process, which we discuss next.

3.6 Point processes

DominatedCFTPactually works on non-monotonic processes as well. For example, it can
be applied to both attractive and repulsive area-interaction point procegséd,[53):

using as target chain spatial birth-and-death process, which give birth to points at a
rate determined by the local interaction with pre-existent points, and which Kills points at
unit rate per point. This allows the use@dmCFTPin a manner very similar to that of

38



3.7 A general theorem for domCFTP
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Figure 14: A birth-death example ddbmCFTP Top curve is dominating process.
Successive pairs of upper and lower processes generate shaded regions which
sandwich earlier realizations: the earliest pair in the diagram produces coales-
cence.

Section 3.5but with Uniform[0, 1] marks replaced bgeometrianarks which are Poisson
clusters, as described id49] and exploitingExercise 1.1%s well as an analogue for the
case of repulsiofi. SeeFigure 15for an illustration.

It is of interest in stochastic geometry that this expresses such point processes as explicit
but highlydependent thinningsf Poisson point processes.

How exactly is the method alomCFTP(or indeedCFTP in general) adapted to non-
monotonic cases? We can use tihessover tric51], which we explain in the context of
repulsivearea interactiory < 1. Create two chains to bound the target ch&iabove (by
Xuprey and below (byX'°¥e"). Cross over the rules for birth: a proposed point is born in

X upperif it would pass the test foX'°%¢", andvice versa Then automatically

Xlower C X C X upper

SoCFTPcan be applied. A general formulation for point processes is givesidn [

See also Huber'sdp] use of “swap moves” in the context of bounding chains, which he
uses to estimate a rapid-mixing regime. If the birth proposal is blocked by just one point,
then replace the blocking point by the new proposalswap with swap probabilityswap

which we are free to choose; and adjust the bounding chains accordingly; this results in a
provable speed-up of tHeFTP algorithm.

3.7 A general theorem fordomCFTP

Moving from CFTP to domCFTPsuggests still further abstraction. This is helpful, for
example, when considerinQFTP for conditionedpoint processes as idT]: it can be

MSandeep Shah was the first to implement this, in his 2004 Warwick PhD thesis.
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3.7 A general theorem for domCFTP
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Figure 15: DominatedCFTP for attractive area-interaction point process with
geometric marking using Poisson processes in disks. Dark disks are in both the
lower process and the upper process; lighter disks are in the upper process (there
are also some pale and ghostly disks corresponding to points which did not even
get into the upper process!). Interaction is expressed by marking each disk with a
Poisson cluster: on birth the cluster in a new disk must be covered by the current
union of disks.
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3.8 Some Complements

convenient to allow the upper- and lower-processes to move out of the conditioned state
space.

Let X be a Markov chain ol which is ergodic and in statistical equilibrium.

Embed the state spaéeéin a partially ordered spad@’, <) so thatt’ is at thebottomof

Y, in the sense that foranye ),z € X,

y=x implies y==x.

We may then use the methodsTdieorem 1.3CFTP) andTheorem 3.11domCFTB to
show:

Theorem 3.12 Define a Markov chairy” on) such thatY” evolves asX after it hits X’;
let Y (—u,t) be the value at of a version oft” begun at time-u,

(a) of fixed initial distribution:
LY (-T,-T))=L(Y(0,0)), and

(b) obeyingfunnelling
if —v < —u <tthenY(—v,t) X Y(—u,t).

Suppose coalescence occulsfY (—7,0) € X] — 1 asT — oo. ThenlimY (-T',0)
can be used for £FTPdraw from the equilibrium o .

3.8 Some Complements

Murdoch [74] points out aMCMC algorithm can bdorcedto becomeuniformly ergodic

by altering the move to allow a small chance ofiadependence samplenove. This
procedure forces the whole state-space to become small, and will be effective for suit-
able low-dimensional examples: however it is not clear how to implement it for point
processes, for instance.

The crossover trick is generalized 53, to cover cases where monotonicity is absent
(see also Huberpp] on bounding chains); Bggstbm and Nelander0] apply the trick

to lattice systems.

Ambler and Silvermand, 3] describe a practical method for implementishgmCFTPfor
certain systems for which interaction is neither monotonic nor anti-monotonic, and apply
this to generalized area-interaction point processes and thence to wavelet models with
dependent coefficients. See also Holmes and Mallek, [who applyclassic CFTPto

the case of models with independent coefficients.
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4 Theory and connections

CFTPis not the only method of perfect simulation. Here we describe a different method,
due to Fill. We begin by discussing a historical predecessor, Siegmund dg4lity, (ve

use this to explain Fill's metho&4.2). We then describe a striking relationship recently
introduced between Fill's method al@FTP (§4.3), which shows the first is actually a
conditioned version of the second.

We then turn to questions of efficiency — whetR#TP can always be competitive with an
idealizedVICMCimplementation which somehow just knows how long the burn-in period
should be §4.4). Finally we consider the link betweelomCFTPand geometric ergod-
icity (84.5), and briefly present yet another variant 6RTP, the Backwards-Forwards
Algorithm (§4.6), which has strong links tdomCFTP

4.1 Siegmund duality

An important alternative t&€FTP makes fuller use of the notion tifne reversalas in the
dead-leaves examplandSection 3.1 on queuegVe begin with a beautiful duality.

Theorem 4.1 (Siegmund duality) Supposé is a process or0, oo). When is there an-
other procesg” satisfying the following?

PX; >yl Xo=2] = P[Y;<a|Yy=y] (7)

Answer B6]: exactly whenX is (suitably regular andstochastically monotoner < 2
implies

PX; >y/Xo=2] < P[X;>y[Xo=2].
Proof (Outline):

UseEquation (7)to check monotonicity, and Fubini’s Theorem to derive the Chapman-
Kolmogorov equations. O

Remark 4.2 If X is not stochastically monotone thé&mguation (7)will yield negative
transition probabilities fory'!

Remark 4.3 Itis a consequence @&quation (7)thatY is absorbed a6, and X at cc.

Remark 4.4 Intuition: think of the Siegmund dual this way. For fix€drepresent the

X (@) pegun at different: in a coupling as a monotonic stochastic flow (use stochastic
monotonicity!) over the time intervéd, 7], and considefY” in terms of a kind of time-
reversed dual flowZ coupled toX, using for exampléit(f()) = inf{u : Xt(“) > y} (see
[19).
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4.2 Fill’s method

4.2 Fill's method

This beautiful idea grew into a method of simulation, and then a method of perfect simu-
lation, Fill's method[31], which is an alternative t€FTP. It is based on the notion of a
strong uniform tim&" [24] and associated notions sét-valued dualsFill's method con-
sidered on its own is harder to explain th@RTP. we describe it in the simplest context

of monotonicity, with state space the unit inter{@|1].

As described irRemark 4.4 we can view Siegmund duality in terms of a monotonic

stochastic flow fonXt(‘”), and a time-reversed dual flag.
Run X from the minimal stat® at time0, forwards to timer.

Now run the coupled Siegmund dudlfrom the maximal staté at timeT back-
wards in timeandcoupled to the previously realized pathXf backwards to time
0.

If ZC(FI% = 0 (the minimal state) then returki (T").
Otherwise repeat the algorithm.

Infact Z is really a set-valued procesgﬁfpy()) represents the set of all initial valugsvhich
are mapped by the flod to within the interval[0, y] at timeT. (This is the key to
removing the monotonicity restriction.)

Despite its complexity, Fill's method has advantages too:

e it can provideuser-interruptibility, subject to suitable implementation (perfect draws
are not biased by censoring draws which take longer than a specified threshold);

o as we will see, it can be viewed as a conditional versio@eTP, and the condi-
tioning can be used to speed up the algorithm.

4.3 FMMR and CFTP

Fill's method is at first sight quite different fro@FTP. However Fillet al. [33] establish

a profound and informative link wit&FTP- for which reason it is now conventional to
refer to Fill's method as theMMR method We explain this method using “blocks” as
input-output maps for a chain, as in our descriptiofRefid-onc€€FTPin §2.6.

First recall thalCFTP can be viewed in a curiously redundant fashion as follows:

Draw from equilibrium X (—7") and run forwards;
continue to increasé until X (0) is coalesced,

return X (0); note that by constructioff and X (0) are independent oX (—T).
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4.3 FMMR

Figure 16illustrates this construction, in which we perversely draw from the equilibrium
(the very thing we are trying to achieve by this method), only to discard the draw in the
course of the algorithm!

T || = (i —=

Figure 16: A representation of clas€i¢-TP using a sequence of blocks.

Key observation: By construction,X (0) and7" are independent ok (—1"), so we can
condition on their values!

Condition on a convenient (0);

Run X backwards to a fixed time T’

Draw blocks conditioned on th¥ transitions;
If coalescencthen return X (—T') else repeat

The construction is illustrated iRigure 17 Viewing this as a conditional form of the
perverse representation©FTPabove, it follows that the returned value is a perfect draw
from the desired equilibrium. Note that in this formulation there is no need to assume
the target proces¥ is at all monotonic. The set-valued dual fldis produced by the
input-output maps. Note that the flow of time is reversed with respect to the description
of Fill's method in Section 4.2

T —

e it TT—— dw‘""-d--

T (==t (=t [ [t

Figure 17: lllustrating-MMR using blocks. The top row represents the operation

of running X backwards in time from a fixed starting point. The second row
represents the procedure of extending this reversed path to a sequence of input-
output blocks, for which one must then test coalescence.

This makes it apparent that there are gains to be obtainedd#vEP by careful selection
of the convenien (0). These gains can be dramatic! (See for exampre)
It is natural to ask whethdfMMR anddomCFTPcan somehow be combined.

Question 4.5 Is there an effectivdominatedversion of Fill's method?
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4.4  Efficiency

It is possible to devise such a combination in a rather straightforward manner, but imple-
mentation appears to lead to substantial theoretical difficulties in all but the most trivial of
examples.

4.4 Efficiency and the price of perfection

How efficientmight CFTP be? When there is strong enough monotonicity then useful
bounds have been derived — even as early as the Propp-Wilson @&belr the case
of monotonicCFTP on a finite partially ordered space, Propp and Wilso8] present a
strong bound. Lef be the longesthainin the space; |eT™* be the coalescence time, let

d(k) = %X{P;M—py(k)}.

Then
P[T* > k]

14
soCFTPis within a factor of being as good as possible.
In generalCFTP hasto involve coupling, usually co-adapt€dOne expects co-adapted
coupling to happen at some exponential rate, and convergence to equilifimiuatal
variation norm disty!) likewise. From theCoupling Inequality (1jve know that coupling
cannot happen faster than convergence to equilibrium. But can it happen at a strictly
slower rate? and for relatively simple Markov chains? Coupling can be used to find out
about this coupling problenif]! Here is a sketch of the argument.
Suppose we have the following asymptotics for a continuous-time Markov chain, holding
larget:

< dk) < P[T*>k], (8)

pe(z1,y) — (2, 9)| =~ coexp(—pat)
while
Plr > t|X(0) = (z1,22)] =~ cexp(—put).

(Such exponential rates are typical for many Markov chains.) The standard coupling
argument then leads to

’pt(xlvy) _pt(x%y)‘ =
= [P[X1(t) = y[X1(0) = 1] = P[Xa(t) = y|X2(0) = z2]| =
P[X1(t) = ylm > £, X1(0) = 1] = P[Xa(t) = y|T > 1, X5(0) = 2]

x P[r > t|X(0) = (x1,x2)]

"But Huber has an example which uses non-co-adapted coupling!

45



4.4  Efficiency

Now we proceed to a coupling of couplings! LEt be a independently coupled copy of
X but transposed so as to beginas, z;):

|P[X1(t) =y|lT > t,X1(0) = 1] — P[Xa(t) = y|T > t, X2(0) = z2] |
= |P[Xi(t) =y|r > t, X(0) = (x1,22)] —

PIXI(t) = ylr* > £, X7(0) = (w2, 21)]
<Plo>tr>t,7 >t X(0) = (z1,22)] (= exp(—p't))

for o the time whenX, X* couple.
Thusps > 1/ + p, with po > pif X, X* couple at exponential raj€.

Remark 4.6 So co-adapted coupling is strictly slower than convergence to equilibrium
when a pair of co-adapted coupled chains can transpose before coupling (the opposite of
monotonicity!).

See [L6] for more on this Figure 18presents a continuous-time Markov chain for which it

may be shown that there ame co-adapted couplings which occur as fast as the approach
to equilibrium: Cranston and Mountfor@?] describes a still simpler example!

4
Figure 18: A Markov chain for which there is no efficient co-adapted coupling.

Remark 4.7 [60] gives a computer-science type example involving graph-matchings:
coupling becomemuchslower than convergence to equilibrium as problem-size increases.

Of course, this barrier may be overcome by using non-co-adapted couplings: it is an
interesting question as to how far it is practical to do this in general.
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4.5 Foster-Lyapunov conditions

4.5 DominatedCFTP and Foster-Lyapunov conditions

An application which mixeglomCFTPand small-seCFTP is described in1]. The

upper envelope process must be formulated carefully: when the dominating process visits
a small set, then one can attempt small-set coupling; however one must take care to ensure
that the dominating process remains dominating when small-set coupling is attempted and
fails!

There are similarities to Foster-Lyapunov conditions for asseggometric ergodicity

etcfor Markov chains. Such conditions use a Lyapunov functido deliver a controlled
supermartingale off a small set.

We begin by discussing a Foster-Lyapunov condition for positive-recurrence.

Theorem 4.8 [66] Positive-recurrence on a sét' holds if C' is asmall setand one can
find a constan{3 > 0, and a non-negative functioh bounded onC' such that for all
n>0

EA(Xn+1)|Xn] < AX,) —-1481[X,€(C]. 9)

Proof: Let N be the random time at whicl first (re-)visitsC. It suffice§ to show
E[N|Xo] < A(Xp) + constant< oo (then use small-set regeneration together with the
upper bound on the subsequent valué X ) provided bylnequality (9).

By iteration of @), we may deduc& [A(X,,)| X] < oo for all n.

If Xo & Cthen @) tellsusn — A(X,An)+nAN defines a nonnegative supermartingale
(I [X(many € C] =0if n < N) . Consequently

E[N‘Xo] < E[A(XN) —I-N‘X()] < A(Xp).

If Xo € C then the above can be used to show

E[N|Xo] = E[1 xI[X; € C]|Xo] +E[E[N|X1]I[X; ¢ C]|Xo]
< P[X; € C|Xo]+E[1+ A(X1)|X0]
< P[Xl S C|X0] -I-A(Xo) + 06
where the last step uségequality (9)applied wherl [X,,_; € C] = 1. O

Now we consider a strengthened Foster-Lyapunov conditiogdometric ergodicity

Theorem 4.9 [66] Geometric ergodicity holds if one can findsmall setC, positive
constants\ < 1, 3, and a functiomA > 1 bounded orC such that

EAXns)lXa] € AM(Xo) +B1[Xq €0 (10)

%This martingale approach can be reformulated as an application of Dynkin’s formula.
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4.5 Foster-Lyapunov conditions

Proof: Define N as inTheorem 4.8
Iterating (LO), we may deduc& [A(X,,)|Xo] < oo and more specifically we may infer
that

no = AXpan) /A

is a nonnegative supermartingale. Consequently
E[AXN)/AV|Xo] < A(Xo).

Using the facts that > 1, A € (0, 1) and Markov’s inequality we deduce
P [N > 7”L|X0] < )\nA(Xo) s

which delivers the required geometric ergodicity. d

It is tempting to try to define a dominating process uskgespecially if one notes the
work of Rosenthal§5] on quantitative convergence rates. The expectation inequality of
supermartingale-type,

E [A(Xn-i-l)‘Xn] < /\A(Xn) + 01 [Xn € C] >

is enough to control the rate at whighvisits C, but fordomCFTPbased on the ordering
implied by A we require well-behavedistributionalbounds on the families of distribu-
tions

D, = {LAXn1|Xn): Xn =u,Au) < Az)},
and it is easy to construct badly behaved examples.

Example 4.10 There is a Markov chain oft, co) which satisfies the conditions dhe-

orem 4.9 usingA(z) = x andC = {0}, but such thatny A-dominating process for
X (a processU for whichA(Uy41) > A(X,+1) wheneverA(U,,) > A(X,,)) must be
transient! (see%$2, §3].)

However this issue can be circumvented using sub-sampling.

Theorem 4.11 [52] If a Markov chain X is geometrically ergodic then it is possible to
construct a dominating process based oRoster-Lyapunov criterion (10and hence to
build a particular kind ofdomCFTPalgorithm, for some sub-sampled versi&n, Xo,

Of course, just as for theoss-Tweedie Theorem 3 ®is algorithm will not be practical!
However it is of interest that the constructed dominating process is in some sense “univer-
sal”: it can be chosen to be the work-load process far/d//1 queue with parameters
depending only on tha in the relevanfoster-Lyapunov condition (10)

Pltis natural to ask whether this result can be extended, by analogy wiEosseTweedie The-
orem 3.9to show equivalence between suitatdenCFTPalgorithms and some kind of ergodicity
criterion: this is now being pursued at Warwick.
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4.6 BFA algorithm

4.6 Backward-forward algorithm

A careful look atdomCFTPfor the area-interaction process, generalizations to other
point processes as described %3]} shows that the construction is as follows:

e build a space-time Poisson processreé points

e convert free points into initial points for time-like line segments, hence constructing
a space-time birth and death process;

e mark the free points independently;
e apply a causal thinning procedure in time order;

o domCFTPsucceeds if the time-zero result (the set of points retained under thinning
at time zero) of this thinning procedure stabilizes when thinning begins far enough
back in time; apply a binary search procedure to capture a time early enough to
ensure stabilization at time zero.

Ferrandezet al. [30] describe a variant of perfect simulatioBackwards-Forwards Algo-
rithm, or BFA) which avoids the need to use binary search to iterate back through succes-
sive starts-7", —27', —4T, ....

e Conduct a recursiveackwards sweepdentifying all the free pointsancestory
which by thinning might conceivably influence subsequent points already identified
as potentially influencing points in the region of interest;

e Work forwards through time in forwards sweef thinning out ancestors to obtain
the required perfect sample at time zero (assuming the previous backwards sweep
has generated only finitely many ancestors).

Instead of coalescence, we now require sub-criticality obtiented percolationmplicit

in the backwards sweep; computable conditions arise from standard branching process
comparisons, and these conditions will generally apply under sufficiently weak interac-
tions.

TheBFAgeneralizes easily to deal with space windows of infinite volume processes (com-
pare the “space-tim€FTP’ mentioned inSection 1.J.

An enlightening theoretical example arises if one reformulates the Ising model using
Peierlscontours(lines separatingt1l values). As is well known, these form a “non-
interacting hard-core gas”, interacting by perimeter exclusion, to which the Backwards-
Forwards Algorithm may in principle be applied: s@8]|

9The forwards sweep is deterministic given the free points and marks.
"Ferrandezet. al. point out B0], especially for infinite volume processes there is a “user-
impatience” bias for which they estimate the effects.
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4.7 Some Complements

Example 4.12 BFA can be used to implement a perfect simulation of the Peierls contour
model for low temperature Ising models.

4.7 Some Complements

Thonnes 89] shows how to apply Fill's method to thdaggstdm et al. method £1.6)

for perfect simulation of the area-interaction point process. Mgller and Schld@ditz [
demonstrate its application to random fields, including anti-monotonic cases.

CFTP can also be used as a supplement to more empikicaC. We have already
mentioned the use of small SEETP by Hobert and Rober#é] (52.7). Berthelsen and
Mgller [8] usedomCFTPas a component in a more conventioMCMC approach to
analysis of interacting point processest|[apply the idea of checking for coupling from
maximal and minimal states so as to assure oneself that equilibrium has been achieved.
CFTP, domCFTR BFA, andFMMR should not be supposed to exhaust the possibilities
of perfect simulation! Recently Fill and Huber have introducedrémelomness recycler
[32], which allows a more systematic scan of the stochastic system to be simulated.
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Also see the following related preprints

317: E. Thonnes: Perfect Simulation of some point processes for the impatient user.

334: M.N.M. van Lieshout and E. Tdnnes: A Comparative Study on the Power of van Lieshout and Baddeley’s
J-function.

359: E. Thonnes: A Primer on Perfect Simulation.

366: J. Lund and E. Tnnes: Perfect Simulation for point processes given noisy observations.

If you want copies of any of these reports then please email your requests to the secretarystaistcs@
warwick.ac.uk > (mail address: the Department of Statistics, University of Warwick, Coventry CV4 7AL, UK).
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