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Abstract

We develop systematically a new unifying approach to the analysis of
linear stochastic, quantum stochastic and even deterministic equations in
Banach spaces. Solutions to a wide class of these equations (in particu-
lar those decribing the processes of continuous quantum measurements)
are proved to coincide with the interaction representations of the solu-
tions to certain Dirac type equations with boundary conditions in pseudo
Fock spaces. The latter are presented as the semi-classical limit of an ap-
propriately dressed unitary evolutions corresponding to a boundary-value
problem for rather general Schrödinger equations with bounded below
Hamiltonians.
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1 Introduction

Stochastic evolution models in a Hilbert space have recently found interesting
applications in quantum measurement theory, see e.g. the reviews in [4], [8].
Here we are going to show that the solutions to a wide class of stochastic and
quantum stochastic equations describing these models can be obtained from a
positive (relativistic or non-relativistic) Hamiltonian with singular interaction
as a strong limit of the input flow of quantum particles with asymptotically
infinite momentum but a constant velosity. Thus the problem of stochastic
approximation is reduced to a sort of quasiclassical asymptotics of a quantum
mechanical boundary value problem in extra dimension.

There exists a broad literature on the stochastic limit in quantum physics in
which quantum stochastics is derived from a nonsingular interaction following
the approach suggested in [1] (see also [18] and the monograph [2], and references
therein). Here we follow a different approach recently outlined in [10], [11]:
instead of rescaling the interaction potentials we treat the singular interaction
δ-potentials rigorously as the boundary conditions, and obtain the stochastic
limit as an ultra-relativistic limit of a Schrödinger boundary value problem in a
Hilbert space of infinite number of particles.

We start with a short Section 2 fixing some general notations that are used
throughout the paper. In Section 3, we discuss a toy model with ”unphysical”
Hamiltonian ε(p) = −p. The toy model is discussed from other point of view in
[15], [16], where it was shown that the toy Hamiltonian model in Fock space with
a discontinuity condition is equivalent to the Hudson-Parthasararthy quantum
stochastic evolution models [20] in the case of commuting operator-valued coef-
ficients or in the case of one dimensional noise (for multidimensional extension
in this direction see [19]). Our approach is different and is based on the obser-
vation that working in multiple pseudo Fock spaces allows for a representation
of stochastic and quantum stochastic evolutions that preserves the number of
particles (though changes their colour), and consequently reduces a study of
general quantum stochastic flows to the study of Poisson driven evolutions in
coloured simplices. Moreover, unlike [15] and [10] we systematycally consider the
evolutions in general Banach spaces (and, in particular, non-unitary boundary
conditions), which are important for applications to general stochatic equations,
in particular those decribing the models of continuous quantum measurements.
At the end of Section 3, we discuss ”more physical” representation for the toy
model which enjoy the symmetry with respect to the inverse of time combined
with compex conjugation. In this representation, the toy model is described
by a two-dimensional Dirac equation with additional (internal) degrees of free-
dom. In Sections 4, on a simple example of a single-kick stochastic evolution in
a Banach space, we show the basic idea on the connection of boundary value
problems with stochastic evolutions.

In Section 5, we show how the solutions to a class of linear stochastic (non-
unitary) differential equations driven by a compound Poisson process can be ob-
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tained as the interaction picture representation for the boundary- value problem
for toy Hamiltonians. This class of equations includes the Belavkin quantum fil-
tering equations describing the aposterior dynamics of a quantum system under
continuous non-demolition measurement of counting type [7]. For completeness,
we give in Appendix a short deduction of these equations from the von Neumann
model of instanteneous measurements. Since the stochastic equations driven by
a Wiener process can be obtained as the limits of linear equations driven by
compound Poisson process (in Appendix, we show how it is done concretely
for the case of quantum filtering equations), the results of Section 5 allows the
representation of the solutions to linear diffusion equations in Banach spaces to
be represented as the limits of certain (deterministic) boundary value problems.

The main results of the paper are obtained in Sections 6 and 7. In Section
6 we are going to deal with diffusion equations (and more general continuous
noises) directly, without a limiting procedure. To this end, we develop a theory
of boundary value problems for shifts in ”coloured simplices”, which describe
the restrictions of the shifts in multiple and/or pseudo Fock spaces to the finite
dimensional invariant spaces, which correspond, in a physical language, to the
states with a fixed number of particles. The boundary value problem for these
shifts is shown to be equivalent to the linear stochastic evolution in multiple
and/or pseudo Fock spaces driven by Poisson processes. Equivalently, it can be
presented as the evolution described by certain (secondly quantised) operators
in multiple Fock spaces. Due to the theory developed in [12], [13], these results
lead to the representation of the solutions to general stochastic and quantum
stochastic evolutions in terms of boundary value problems. This is explained at
the end of Section 6.

In Section 7 we show how the toy model Hamiltonians and the corresponding
boundary value problems can be obtained by a sort of semiclassical limit h → 0
(which is however quite different from the usual semiclassical limit for stochastic
equations [24], [31], and which generalises the ultra-relativistic limit of [10]) from
rather general Schrödinger problems with a bounded below Hamiltonian.

2 Main notations

(i) General notations. For a function φ on R we shall denote by φ(z−) (respec-
tively φ(z+)) the left (respectively the right) limit of φ(t) as t → z (when it
exists, of course). As usual, δ(t) = δ0(t) denotes the standard Dirac δ-function,
and δz(t) = δ(t− z).

For a subset M ⊂ Rn we shall denote by χM (z) the indicator function of M
that equals 1 or 0 respectively when z ∈ M or z ∈ Rn \M .

For a (usually complex) Banach space B with the norm ‖ ‖B and for M ⊂ Rn,
we denote by L(B) the space of bounded operators in B. If p ≥ 1, we denote
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by Lp
B(M) the Banach space of B-valued functions ψ: M → B with the norm

‖ψ‖ =
(∫

M

‖ψ(z)‖p
B dz

)1/p

.

If B is a Hilbert space H, then L2
H(M) is clearly a Hilbert space as well, which

can be identified with the Hilbert tensor product H ⊗ L2(M).
We shall also consider the local Lp spaces, namely the locally convex topo-

logical spaces Lp,loc
B (M) of measurable functions ψ : M 7→ B (more precisely,

equivalence classes of such functions) defined by the countable set of norms

‖ψ‖N =

(∫

M∩{z:|z|≤N}
‖ψ(z)‖p

B dz

)1/p

,

with N being an arbitrary positive integer.
The notation Lp

B (respectively Lp,loc
B ) is reserved for the space Lp

B(R) (re-
spectively Lp,loc

B (R)).
We shall denote by CB(M) (resp. Ccomp

B (M)) the space of bounded contin-
uous functions M 7→ B (respectively with a compact support) equipped with
the usual sup-norm

‖ψ‖ = sup
z
‖ψ(z)‖B . (1)

We shall usually denote by the same letter, A say, a function z 7→ A(z) on
M ⊂ Rn with values in (perhaps unbounded) linear operators in B and the
corresponding multiplication operator ϕ 7→ Aϕ in Lp

B(M) defined as (Aϕ)(z) =
A(z)ϕ(z) for ϕ ∈ Lp

B(M). The domain of such an operator consists of those ϕ
for which ϕ(z) belongs to the domain of A(z) for almost all z and the integral∫

M
‖A(z)ϕ(z)‖p dz is finite.
(ii) Shifts and reflection on the line. We shall denote by R the reflection

operator in L2
B given by the formula

Rϕ(z) = ϕ(−z). (2)

Next, it is well known that absolutely continuous functions ϕ(z) on the line are
almost everywhere differentiable with locally integrable derivatives. We shall
denote by D1 = D1(p,B) the dense subspace of Lp

B consisting of absolutely
continuous functions whose derivatives belong to Lp

B . The operator ∂ = ∂z

defined on the domain D1(p,B) generates the shift T (t) in Lp
B , which is a

continuous group of norm preserving transformations:

(T (t)ϕ)(z) = (exp{t∂z}ϕ)(z) = ϕ(z + t).

In particular, in the most important case of the Hilbert space L2
H , the operator

i∂ is clearly self-adjoint and the shift T (t) is a unitary group.
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(iii) Dressing. Let −iE be a (closed and densely defined) generator of a
continuous group exp{−itE} in B, and let A be an operator in Lp

B(M). For a
real-valued continuous function f(z) on M we can define an operator in Lp

B(M)
by the formula

AEf(z)ϕ(z) = eiEf(z)Ae−iEf(z)ϕ(z). (3)

Clearly, if E is a self-adjoint operator in a Hilbert space H, and if A is self-
adjoint in L2

H(M), then AEf(z) is also self-adjoint in L2
H(M).

(iv) Operators describing jumps.
For a function A: M 7→ L(B) and a Borel subset s ⊂ M we define a bounded

operator As in Lp
B(M) by the formula

(Asϕ)(z) = χs(z)A(z)ϕ(z) + (1− χs(z))ϕ(z) (4)

(more correct, but more heavy notation for As would be of course Aχs). Clearly,
the operator As remains the same if s is changed on a set of Lebesgue measure
zero. If A(z) is a unitary operator in a Hilbert space H for all z, then clearly
As is unitary in L2

H(M).
The following two simple formulas are often used in what follows:

T (t)As = As−tT (t)

and
(As)Ef(z) = (AEf(z))s.

In particular, the last formula implies that the notation As
Ef(z) is not ambiguous.

3 Boundary-value problems for shifts on the line
and δ-potentials

Here we are going to discuss the properties and various representations of the so-
lutions to the Cauchy problem of the following differential equation with bound-
ary conditions

i∂tϕ = (i∂z + E)ϕ, ϕ(0−) = σϕ(0+), ϕ ∈ Lp
B , (5)

where σ ∈ L(B) and −iE is a generator of a continuous group exp{−itE} in a
Banach space B.

The main example is, of course, when B is a Hilbert space H, E is a self-
adjoint operator in H and p = 2. It turns out however that even for the
analysis of the diffusion type stochastic equations in Hilbert spaces one needs
the boundary value problem in Banach spaces Lp with p 6= 2.

We start with the simplest case E = 0. Let Dσ = Dσ(p,B) denote the dense
subspace of Lp

B consisting of the functions ϕ:R→ B such that the restrictions
ϕ|(−∞,0] and ϕ|[0,∞) can be chosen to be absolutely continuous, the restrictions
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of the derivatives ϕ′|(−∞,0] and ϕ′|[0,∞) (which exist almost everywhere for any
absolutely continuous function) belong to Lp

B(R−) and Lp
B(R+) respectively,

and ϕ(0−) = σϕ(0+). Notice that the value ϕ(0) itself is irrelevant, since we
are working in Lp

B . Let us denote by ∂σ = ∂σ
z the operator of differentiation

restricted to Dσ. This notation is clearly consistent with our previous notation
D1 for the domain of the standard differentiation operator ∂z = ∂1

z .

Proposition 1 For any p ≥ 1, the operator ∂σ in Lp
B is the generator of the

continuous semigroup Tσ(t) = exp{t∂σ)}, t ≥ 0, in Lp
B, which acts by the

formula

(Tσ(t)ϕ)(z) = (T (t)σ[0,t]ϕ)(z) =
{

ϕ(z + t), z 6∈ [−t, 0)
σϕ(z + t), z ∈ [−t, 0) . (6)

Proof. Clearly the operators (6) define a continuous semigroup, and the domain
Dσ is invariant under its action. To prove the statement, we need to show that
for ϕ ∈ Dσ ∫ ∞

−∞
‖1

t
((Tσ(t)− 1)ϕ)(z)− ∂σ

z ϕ(z)‖p dt → 0

as t → 0. We decompose this integral into the sum of three integrals over the
domains (−∞,−t), [−t, 0], and (0,∞) respectively. Due to the properties of the
”free” (i.e. without boundary conditions) operator ∂z, the first and the third
integrals tend to zero as t → 0, because the functions under these integrals do
not cross the boundary at the origin. For z ∈ [−t, 0] the lower line in (6) is
applicable. Hence, it remains to prove that

∫ 0

−t

‖1
t
(σϕ(z + t)− ϕ(z))− ϕ′(z)‖p dt → 0 (7)

as t → 0. To this end let us define a new function ϕ̃(z) that equals σϕ(z)
(respectively ϕ(z)) for z > 0 (respectively z < 0). The integral in (7) equals

∫ 0

−t

‖1
t
(ϕ̃(z + t)− ϕ̃(z))− ϕ̃′(z)‖p dt,

which tends to zero as t → 0, because ϕ̃ is absolutely continuous (due to the
definition of Dσ), and therefore one can again apply the corresponding well
known property of the ”free” operator ∂z.

As usually one says that the semigroup T σ(t) solves the Cauchy problem for
equation (5) with E = 0 in the sense that if ϕ ∈ Dσ then Tσ(t)ϕ ∈ Dσ for all
t ≥ 0 and the function (Tσ(t)ϕ)(z) satisfies (5) (with E = 0) and has the initial
condition ϕ at t = 0.

Remark. One can not directly extend Propostion 1 to the case of the Ba-
nach space L∞B of bounded functions R 7→ B with the norm (1) (or to the
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corresponding space of equivalence classes up to Lebesgue measure zero), be-
cause the standard shift T (t) is not continuous in this spaces. On the other
hand, though this shift is continuous in (the completion of) Ccomp

B (M), the
jumps can not be described in this space. In order to overcome this obstacle,
we can define a new space depending explicitly on σ, namely, the Banach space
Ccomp

B,σ (M), which differs from Ccomp
B (M) by the property that the functions

ϕ ∈ Ccomp
B,σ (M) are not continuous anymore at the origin, but instead they have

there right and left limits such that ϕ(0−) = σϕ(0+). One easily sees that the
results of Proposition 1 are valid in the completion of the space Ccomp

B,σ (M).
Since formally

e±iEz(i∂z)e∓iEz = i∂z ± E,

one can consider the dressed operator

(i∂σ
z )Ez = e±iEz(i∂σ

z )e∓iEz

defined on the domain D±E
σ = e±iEzDσ(p,B), as a rigorous version (or exten-

sion) of the operator i∂σ
z ± E. From this observation one easily obtains the

following properties of the operator i∂σ
z + E.

Proposition 2 (i) For an arbitrary p ≥ 1, the operator ∂σ
z − iE generates the

continuous semigroup

Tσ
Ez(t) = eiEzT σ(t)e−iEz = TEz(t)(σEz)[0,t] (8)

in Lp
B, which solves the Cauchy problem for equation (5). Moreover,

(T (t)−1Tσ
Ez(t) = e−iEtσ

[0,t]
Ez . (9)

(ii) The operator ∂σ
z − iE generates a semigroup of invertible operators if

and only if σ has an inverse σ−1 ∈ L(H). In the latter case, σ
(−∞,0]
Ez DE

1 = DE
σ

and
T σ

Ez(t) = σ
(−∞,0]
Ez TEz(t)(σ

(−∞,0]
Ez )−1. (10)

In particular, all ∂σ with invertible σ are similar.
(iii) If B is a Hilbert space H and E is a self-adjoint operator in H, then

i∂σ
z + E is a self-adjoint operator in L2

H .
(iv) The operators (8) form a continuous semigroup also in the locally convex

spaces Lp,loc
B , where both formulas (9), (10) remain valid.

Proof. Formula (8) follows directly from Proposition 1. Equation (9) follows
from (8) and a simple observation that T (t)−1TEz(t) = e−iEt. Formula (9)
implies the continuity of all operators Tσ

Ez(t). Other statements are straightfor-
ward for E = 0 and for general case are obtained by dressing.

Remark. Using the physical language, one can say that formula (9) gives the
solutions of equation (5) in the interaction representation with respect to the
”free” shift T (t).

7



We conclude that imposing boundary conditions to the dressed shift semi-
group TEz(t) is equivalent to its dressing by means of the operators σ

(−∞,0]
Ez .

This is a specific feature of the first order operator ∂z, which does not hold for
other differential operators. Hence, if one wants to present the evolution Tσ

Ez(t)
as a limit of the evolutions defined by other (more physical) pseudo-differential
generators, one needs first to approximate i∂z itself and then to dress the cor-
responding evolution. This will be done in Section 7.

Remark. Let us discuss shortly the connection with the theory of singu-
lar interactions. Suppose one wants to give a rigorous meaning to the formal
(singular) symmetric operator

i∂z + Lδ(z), (11)

where L is a self-adjoint operator in H. There are several ways to tackle this
problem (see e.g. the books [AGHK], [Kosh] for a general theory in case H = C).
One of them is based on the observation that the operator (11) must coincide
with i∂ on the domain D̃ = {ϕ ∈ D1 : ϕ(0) = 0}. Therefore, in order to
define the operators of form (11) one must look for the possible extensions of
the symmetric operator i∂ defined on D̃. It is not difficult to prove that all self-
adjoint extentions of this operator are given by the operators ∂σ

z defined above
with all possible unitary operators σ in H. One can show [10] that the ”right”
extension corresponding to the formal expression (11) is given by σ = e−iL.

Let us describe another representation for the evolution T (t)σ, which is more
physical in the sense that it is symmetric with respect to the inverse of time
combined with complex conjugation. To this end, let us note that an element
ϕ ∈ Lp

B can be uniquely described by a pair of functions (ϕ−, ϕ+) (input and
output) on the half-line R+, defined for z > 0 by the formulas ϕ±(z) = ϕ(∓z).
Clearly the problem (5) is equivalent to the problem given by the system

{
i∂tϕ

− = (E + i∂z)ϕ−

i∂tϕ
+ = (E − i∂z)ϕ+ (12)

combined with the boundary condition ϕ+(0) = σϕ−(0). This representation
already enjoys the required symmetry, namely, if E is real (here we suppose
that B itself is given as a certain Banach space of complex functions over a
measurable space), then inverting the time t → −t and taking complex con-
jugation will transform the first equation of (12) into the second one and vice
versa. However, we like to have a representation which allows the input and
output wave functions to propogate freely in both directons of R through the
origin z = 0.

For this discussion, let us restrict ourselves to the most important example
of B being a Hilbert space H and σ being a unitary operator. Let

Hσ = {(ψ−, ψ+) ∈ L2
H ⊕ L2

H : ψ+(−z) = (σEz)ψ−(z)}
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where notation (2) was used. The map Uσ: L2
H 7→ Hσ which takes ϕ ∈ L2

H to
the pair (ψ−, ψ+) given by

{
ψ−(z) = (σ−1

Ez)(−∞,0]ϕ(z)
ψ+(−z) = (σEz)[0,∞)ϕ(z)

. (13)

is an isometric isomorphism. The following statement can be checked directly.

Proposition 3 The isometric operator Uσ takes the evolution Tσ
Ez(t) into the

free evolution

(ψ−, ψ+)(z) 7→ (TEz(t)ψ−(z), T−Ez(−t)ψ+(z)) (14)

(which gives the solution to the Cauchy problem for system (12) without bound-
ary conditions), restricted to Hσ. The restrictions of ψ∓ on the positive half-line
coincide with the evolution given by (12) on the pair (ϕ−, ϕ+).

4 Single-kick equation

For a given z > 0, let us consider the single kick equation

dη + iEη dt = (σ − 1)η dχ(z,∞)(t), η ∈ B, t ≥ 0, (15)

where η0 = η|t=0 is a given vector from the Banach space B and the opera-
tor −iE, as usual, is a generator of a continuous group of linear operators in
B. As in the case of stochastic equations, this equation should be understood
rigorously as the corresponding integral equation, where for any function f(t)
having everywhere right and left limits the integral with respect to dχ(z,∞)(t)
is defined by the formula

∫ t

0

f(τ) dχ(z,∞)(τ) =
{

0, t ≤ z,
f(z−), t > z

(16)

Here we have chosen to consider the left contionuous version of the solution.
We note however that since we are interested in the solutions in Lp-sense, the
difference between the left and right continuous versions is not essential for
our purposes. For continuous f(t) the integral (16) is just a standard Stieltjez
integral.

One can consider equation (15) as a rigorous version of the evolutionary
equation with singular in time non-homogeneous potential

∂η

∂t
= −iEη + δz(t)(σ − 1)η.

This form of equation (15) can also be made rigorous by using the left and right
δ-functions as discussed in [18].
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If z is a (positive) random variable z = z(ω) on a certain probability space
Ω, equation (15) can be written in the form of a simplest Ito’s type stochastic
equation. Namely, the formula 1t = 1t(z) = χ(z,∞)(t) defines a stochastic
process on Ω (which describes a jump at a random time z and which is clearly
a left continuous process with trajectories of a finite variation), and equation
(15) can be written in the form

dη + iEη dt = (σ − 1)η d1t, η ∈ B, t ≥ 0. (17)

For t 6= z, the evolution (15) coincides with the evolution given by the
deterministic equation

∂η

∂t
= −iEη, (18)

and at the time t = z the wave function jumps η 7→ η+(σ−1)η = ση. Therefore,
for η0 ∈ B, the solution V (t, z)η0 of equation (15) is given by the formula

V (t, z)η0 =
{

exp{−iEt}η0, t ≤ z
exp{−iE(t− z)}σ exp{−iEz}η0, t > z.

(19)

Comparing this formula with (9) gives the following result.

Theorem 1 Solution (19) to the Cauchy problem of equation (15) or (17) can
be written in the form

V (t, z)η0 = ((T (t)−1Tσ
Ez(t)ϕ)(z), (20)

where ϕ(z) = η0 for all z > 0 (the values of ϕ for negative z are easily seen to
be irrelevant, one can put ϕ(z) = 0 for z ≤ 0, say).

Thus the solutions to the simplest stochastic equation (15) are given as the inter-
action representation for the solutions of the simplest boundary value problem
(5).

Remark. The function ϕ(z) which equals to a constant vector η0 for all
positive z does not belong to Lp

B , but only to Lp,loc
B , which was the main reason

for introducing these spaces. However, if one wants to work in genuine Lp-
spaces, one can consider the evolution V (t, z) only till a certain (arbitrary large)
time t0. Then one can take ϕ(z) such that it equals η0 for z ∈ [0, t0] and vanishes
otherwise. More generally, one can take the initial function ϕ to be η0ρ(z) for
a certain cut-off function ρ on the line and then make a corresponding simple
change in (20), as it was done in [11].

5 Stochastic equations driven by a Poisson noise
as the interaction representations for bound-
ary value problems

Here we shall generalise the results of the previous section to more general
equations containing an arbitrary number of kicks. We shall denote by Σn the
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infinite simplex:

Σn = {z = (z1, ..., zn) ∈ Rn : z1 < z2 < ... < zn},

equipped with Lebesgue measure. Clearly this simplex can be decomposed into
the union of n + 1 cells Σk

n:

Σ0
n = {z ∈ Σn : z1 ≥ 0},

Σk
n = {z ∈ Σn : zk ≤ 0 ≤ zk+1}, k = 1, ..., n− 1,

Σn
n = {z ∈ Σn : zn ≤ 0}.

(21)

Vectors z ∈ Σn are usually identified with the subsets ζ = ζ(z) = {z1, ..., zn} ⊂
R of the real line of cardinality |ζ| = n. The representation of the points of Σn

by the subsets of R (respectively by n-dimensional vectors with ordered coordi-
nates) is more natural for defining stochastic processes (respectively, boundary
value problems) we are dealing with.

let σ = {σ1, ..., σn} be an arbitrary (ordered) family of operators from L(B).
For a given z ∈ Σ0

n, let us consider the following multiple kick generalisation of
equation (15)

dη + iEη dt =
n∑

j=1

(σj − 1)η dχ(zj ,∞), η ∈ B. (22)

If z ∈ Σ0
n is a random variable on a probability space Ω, one can (as in the

case of a single kick equation (15)) to rewrite equation (22) as the stochastic
equation

dη + iEη dt = (σnt − 1)η dnt, η ∈ B, t ≥ 0, (23)

driven by the counting process nt(ζ) = nt(ζ(z)) = |ζ ∩ [0, t)|.
As in the case of a single kick, it follows that η(t) satisfying (22) evolves

according to the free equation (18) between the jump-times zk, and at the times
t = zk the wave function experiences the jump η 7→ σ(zk)η. This proves the
following statement.

Proposition 4 For any z ∈ Σ0
n, the operator V (t, z), which gives the solution

V (t, z)η0 to the Cauchy problem for equation (22) with the initial function η0,
belongs to L(B) and has the following explicit form: for zk ≤ t < zk+1

V (t, z) = exp{−iE(t−zk)}σk exp{−iE(zk−zk−1)}σk−1...σ1 exp{−iEz1}. (24)

If B is a Hilbert space H and if all σj are unitary, then V (t, z) is also a unitary
operator.

In order to give a representation for this operator similar to that given to
equation (15) we need to generalise slightly the results of Section 3. Let us write
shortly Lp

B(n) for the Banach space Lp
B(Σn)) of B-valued functions on Σn. By
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Tn(t) = Tn,p,B(t) we shall denote the shift in Lp
B(n) which is generated by the

operator ∂z1 + ... + ∂zn = ∂z and which takes a function ϕ ∈ Lp
B(n) to the

function (Tn(t)ϕ)(z1, ..., zn) = ϕ(z1 + t, ..., zn + t).
To find explicitly the domain of the generator of the shift Tn(t), let us

introduce the new coordinates x = (x1, ..., xn) in Σn by the formula x1 =
z1 + ... + zn, x2 = z2 − z1, ... xn = zn − zn−1. Then

Σn = {x : xj > 0, j = 2, ..., n} = R× (R+)n−1.

Hence Lp(Σn) = Lp(R) ⊗ Lp(Rn−1
+ ) and Lp

B(n) = Lp

B̃
with B̃ = Lp

B(Rn−1
+ ). In

this representation the operator ∂z = ∂z1 + ... + ∂zn
takes the form n∂x1 in Lp

B̃
.

Consequently, the domain of this operator is given by absolutely continuous
functions ϕ:R 7→ B̃ from Lp

B(n) such that ∂x1ϕ ∈ Lp
B(n).

The multi-dimensional analogue of the problem (5) is the equation

i∂tϕ = (i∂z + E)ϕ = (i(∂z1 + ∂z2 + ... + ∂zn) + E)ϕ, ϕ ∈ Lp
B(n), (25)

combined with the boundary conditions

ϕ(z1, ..., zk−1, 0−, zk+1, ..., zn) = σkϕ(z1, ..., zk−1, 0+, zk+1, ..., zn), k = 1, ..., n.
(26)

Let Dσ = Dσ1,...,σn(p,B) denote the dense subspace of functions ϕ ∈ Lp
B(n)

with the properties:
(i) for each k = 0, ..., n the restriction ϕ|Σk

n
has a continuous version such that

on all lines parallel to the vector (1, ..., 1) this restiction is absolutely continuous
and

n∂x1ϕ|Σk
n

= (∂z1 + ... + ∂zn)ϕ|Σk
n
∈ Lp

B(n).

(ii) the boundary conditions (26) are satisfied.
Let us define the operator

∂σ
z = ∂σ1

z1
+ ... + ∂σn

zn
= n∂σ1,...σn

x1

as the closure of the differentiation operator n∂x1 defined on the domain Dσ.
The following result is a direct generalisation of Proposition 1.

Proposition 5 For an arbitrary p ≥ 1, the operators Tσ(t) defined by the for-
mulas

Tσ(t) = σ{zn∈[−t,0]}
n ...σ

{z1∈[−t,0]}
1 Tn(t) = Tn(t)σ{zn∈[0,t]}

n ...σ
{z1∈[0,t]}
1 (27)

form a continuous semigroup of operators in Lp
B(n) with the generator ∂σ1

z1
+

... + ∂σn
zn

. The subspace Dσ is invariant under the action of the semigroup.

However, unlike the one-dimensional case, we can not define (apart from the
trivial case of commuting E and σ) the operator i∂σ

z + E by dressing the ”free”

12



operator i∂σ
z , because such a dresing would inevitably destroy our boundary

conditions (26). Instead, we shall define this operator directly as follows. Clearly
the domain

DE
σ = Dσ ∩ {ϕ : Eϕ ∈ Lp

B(n)}
is a dense subspace in Lp

B(n) for any p, and the operator

i∂σ
z + E = i(∂σ1

z1
+ ... + ∂σn

zn
) + E (28)

is defined on DE
σ in the obvious way. By usual abuse of notations, we shall denote

by the same symbol i∂σ
z + E the closure of this operator (defined originally on

DE
σ ).

Proposition 6 (i) The operator (28) generates a continuous semigroup

Uσ
E(t) = (σ{zn∈[−t,0]}

n )Ezn
...(σ{z1∈[−t,0]}

1 )Ez1 exp{−iEt}Tn(t), (29)

(where we used notations introduced in (3)) which solves the Cauchy problem
for equations (25), (26). Moreover,

(Tn(t))−1Uσ
E(t) = e−iEt(σ{zn∈[0,t]}

n )Ezn ...(σ{z1∈[0,t]}
1 )Ez1 . (30)

(ii) The operators (29) are invertible for all t ≥ 0 if and only if all σk,
k = 1, ..., n, are invertible. Operators (28) with invertible σk are similar. More
precisely, if σk has a continuous inverse σ−1

k , k = 1, ..., n, then

Uσ
E(t) = (σ{zn<0}

n )Ezn ...(σ{z1<0}
1 )Ez1

× exp{−iEt}Tn(t)
(
(σ{z1<0}

1 )Ez1

)−1

...
(
(σ{zn<0}

n )Ezn

)−1

. (31)

(iii) If B is a Hilbert space H and all σk are unitary, the operator (28) is
self-adjoint in L2

H(n).
(iv) All statements of the Proposition remain valid in the spaces Lp,loc

B (n).

Proof. Follows by a straightforward verification.
Let us stress again that in the case n = 1 the evolution Uσ

E coincides with
the evolution Tσ

Ez obtained from T σ by dressing. But this is not the case in
general.

Comparing formulas (24) and (30) yields the following multiple-kick version
of Theorem 1.

Theorem 2 Solution (24) to the Cauchy problem of equation (22) can be writ-
ten in the form

V (t, z)η0 = ((Tn(t)−1Uσ
E(t)ϕ)(z), (32)

where ϕ(z) = η0 for z ∈ Σ0
n and vanishes otherwise. The Remark given after

Theorem 1 applies here as well.

13



Notice that stochastic linear equations driven by a compound Poisson noise,
in particular, equations of type (81) (see Appendix A) describing the aposterior
dynamics of quantum states under continuous observations, can be reduced to
equation of type (22) or (23) pathwise, because a Poisson process has almost
surely a finite number of jumps on each bounded time interval. Therefore, the
solutions to these stochastic equations can thus be obtained as the interaction
representation of the solutions of problem (25), (26) with respect to the ”free”
shift Tn. In Section 7 it is shown that the model (25), (26) in its turn can be
obtained as a semiclassical limit of Schrödinger evolutions with a bounded below
Hamiltonian. Moreover, as linear stochastic equations driven by Wiener process
can be obtained as a limit of equations driven by Poisson process (see Appendix
A for a concrete case of quantum filtering equation), the solutions to these
equations can be obtained as a limit of the solutions of the boundary value
problems considered above. In the same way one can consider the equations
driven by more general Lévy noises, as indicated in the Remark below.

In order to obtain the solution of stochastic equations driven by Wiener pro-
cess (or more general stochastic or quantum stochastic noise) directly in terms
of an appropriate boundary value problem (without any limiting procedure), we
shall generalise, in the next Section, the theory developed so far for Σn to the
case of ”coloured” simplices.

Remark. Let us sketch here a generalisation of representations (24), (32) for
equation of type (81), if the underlying noise is a more general pure jump Lévy
process with possibly infinite number of jumps. Namely, let X(t) be a pure
jump Lévy process constructed from the Lévy measure ν on Rn such that

∫

Rn\{0}
min(1, |x|)ν(dx) < ∞.

From this condition it follows that

X(t) =
∑

0<z≤t

(∆Xz)

where the summation is carried out over all moment of jumps z ≤ t, yz =
∆Xz are the sizes of these jumps, and the sum is (almost surely) absolutely
convergent. Let a process Pλ have form (80) with G(y) = 1 + O(y2). Then the
analogue of formula (24) with infinite number of jumps holds, because the sum∑ |yz|2 is known to be convergent almost surely for any Lévy process (actually
for any semimartingale).

14



6 General stochastic evolutions and boundary
value problems for shifts in coloured simplices
and multiple Fock spaces

The aim of this section is two-folds. First, we shall generalise the results of the
previous one to the case of evolutions in coloured simplices. Roughly speaking,
the difference with the situation considered above will consists in the assumption
that the points of a simplex have an additional label (a colour), and that the
jumps may not only change the value of a function in a point, but also a colour
of this point. Secondly, we shall describe the combinatorics of multiple Fock
spaces, which allows one to conclude that the interaction representation for the
evolutions given by the boundary value problem for shifts in coloured simplices
(considered at the beginning) is given by the secondly quantised operators in
multiple Fock spaces, which in their turn, present the solutions to the pure jump
stochastic equations (driven by a compound Poisson process).

By a coloured simplex of n particle having m colours we understand the set

CSn,m = ∪n1+...+nm=nΣn1 × ...× Σnm , (33)

where the (disjoint) union is taken over all partitions of the integer number n
in the sum of m non-negative numbers (the order is relevant), and where it is
assumed that the product is over all non-vanishing nj . The points of CSn,m

can be parametrised either by ordered chains of labeled variables

z = {zα} = {zα(1)
1 < ... < zα(n)

n }, (34)

with α being functions α: {1, ..., n} 7→ {1, ...,m} (that label the variables in a
standard simplex Σn), or by the families of m vector variables

ζ = {ζ1 = (z1
1 , ..., z1

n1
), ..., ζm = (zm

1 , ..., zm
nm

)}, (35)

where the entries of each ζj are ordered: zj
1 < ... < zj

nj
, each ζj can be thus

considered either as a vector in Σnj or as a subset of R of cardinality |ζj | = nj ,
and where the subsets ζj are disjoint. We shall use both representations (35)
and (34) for the variables parametrising CSn,m.

There is a natural projection from CSn,m to the standard (uncoloured) sim-
plex Σn, which simply ”forgets” the colour. We shall denote by pr(z) (or pr(ζ))
the image of the point (34) (or (35)) under this projection. In particular, pr(ζ)
is just a subset of R of the cardinality n.

Instead of just a Banach space valued functions (as in the previous sections)
we shall now consider the functions on CSn,m with values in a certain complex
Banach algebra A with the unit 1, which, in applications we have in mind, will
be the Banach algebra of continuous linear operators in a Banach space B. The
topology we shall introduce on these functions looks a bit ugly, but we need,
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for applications to stochastic calculus, to have different Lp norms for different
colours. Let p = {p1 ≤ ... ≤ pm} be a non-decreasing set of positive numbers,
where p1 ≥ 1 and pm is allowed to be +∞. Let us define a norm on the space

Ccom
A (Σn1 × ...× Σnm

) (36)

by the formula

‖ϕ‖p =




∫

Σn1


...

(∫

Σnm

|ϕ(ζ1, ..., ζm)|pm dζm

)pm−1/pm

...




p1/p2

dζ1




1/p1

,

(37)
if pm is finite, and by the formula

‖ϕ‖p =

(∫

Σn1

(
...

(
max
Σnm

|ϕ(ζ1, ..., ζm)|
)pm−1

...

)p1/p2

dζ1

)1/p1

, (38)

if pm = +∞.
The most important case for application is when m ≥ 3, and p1 = 1, p2 =

p3 = ... = pm−1 = 2, pm = ∞. In this case, it is convenient to index the
variables ζ as ζ−, ζ0, ζ+ which are connected with the previous notations ζj by
the formulas: ζ− = ζ1, ζ0 = (ζ0,1, ..., ζ0,m−1) with ζ0,j = ζj+1, and ζ+ = ζm.
In this case,

‖ϕ‖p = ‖ϕ‖{1,2,...,2,∞} =
∫

Σn−




∫

×m−1
j=1 Σ

n
j
0

max
Σn+

|ϕ(ζ−, ζ0, ζ+)|2 dζ0




1/2

dζ−.

(39)
We shall denote by Lp

A(Σn1 × ... × Σnm) the completion of the space (36)
with respect to the norm (37) or (38) and by Lp

A(CSn,m) the direct sum of
these spaces over all partition n = n1 + ...+nm of n. By Lp,loc

A (CSn,m) we shall
denote the corresponding locally convex space defined by the countable set of
norms parametrised by the positive integers N and defined by (37) or (38) with
all integrations performed not over the whole infinite simplices but over their
intersections with the balls of radius N .

We shall use the same notation Tn(t) = Tn,p,A(t) as before for the shift
in Lp

A(CSn,m) or Lp,loc
A (CSn,m) that shifts all variables independently of their

colours. Clearly, as in the case of the standard simplex (without colours) these
operators form a continuous group, whose generator we shall again denote by
∂ = ∂z = ∂z1 + ... + ∂zn . Thus

(Tn(t)ϕ)({zα(1)
1 < ... < zα(n)

n })

= (exp{t∂z}ϕ)({zα(1)
1 < ... < zα(n)

n }) = ϕ({(z1 + t)α(1) < ... < (zn + t)α(n)}).
(40)
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Let
S = {S(k)} = {(Sµ,ν)(k), k = 1, ..., n}, (41)

where µ, ν = 1, ...,m, be a family of n block upper triangular m ×m-matrices
(i.e. Sµ,ν is allowed not to vanish only if either (i) µ ≤ ν or (ii) µ > ν but
pµ = pν) with entries from A, which define the family σ of linear operators σk

in the space (36) by the formula

(σkϕ)(zα(1)
1 , ..., zα(n)

n )

=
m∑

ν=α(k)

Sα(k),ν(k)ϕ(zα(1)
1 , ..., z

α(k−1)
k−1 , zν

k , z
α(k+1)
k+1 , ..., zα(n)

n ). (42)

These operators may not be continuous in the spaces Lp
A(CSn,m). However,

since the matrices S(k) are triangular and since for any p1 ≤ p2, the standard
Lp1 norm of any function on a compact set can be estimated by its Lp2 norm,
the following statement holds.

Proposition 7 The operators σk are continuous in Lp,loc
A (CSn,m) for all p.

Generalising the boundary value problem (25), (26), we are going to consider
the equation (25) in Lp

A(CSn,m) combined with the boundary conditions

ϕ(zα(1)
1 , ..., z

α(k−1)
k−1 , 0α(k)

− , z
α(k+1)
k+1 , ..., zα(n)

n )

= (σkϕ)(zα(1)
1 , ..., z

α(k−1)
k−1 , 0α(k)

+ , z
α(k+1)
k+1 , ..., zα(n)

n ), k = 1, ..., n. (43)

To deal with this problem in the same way as with the problem (25), (26),
let us decompose the coloured simplex CSn,m into the union of n+1 cells CSk

n,m

using the decomposition (21) of the underlying uncoloured simplex Σn:

CSk
n,m = {z ∈ CSn,m : pr(z) ∈ Σk

n}, k = 0, ..., n, (44)

and then define the subspaces DS = DS(p,A) (respectively Dloc
S ) of functions

ϕ(z) from Lp
A(CSn,m) (respectively from Lp,loc

A (CSn,m)) with the properties:
(i) for each k = 0, ..., n and each particion n = n1 + ... + nm the restriction

of ϕ on
CSk

n,m ∩ Σn1 × ...× Σnm

has a continuous version,
(ii) for any k = 0, ..., n and z of form (34), the restriction of the function

(40) on the cell CSk
n,m is absolutely continuous as a function of t and such that

(∂zϕ)(z) = ((∂z1 + ... + ∂zn)ϕ)(z) = n∂t(Tn(t)ϕ)(z)

belongs to Lp
A(CSn,m) (respectively Lp,loc

A (CSn,m)),
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(iii) the boundary conditions (44) are satisfied.
Let us use the same notation ∂S

z for the closures of the operator ∂z defined
on the domains DS or Dloc

S . We introduced the notations for coloured simplices
in such a way that the main formulas of the previous section still make sense
in this new framework. It remains only to assume that the use of the operator-
valued functions of the variables z without a colour means that the colour is
preserved. For example, the action of the operator exp{−iEzj}, say, is given
by the formula

(exp{−iEzj}ϕ)({zα(1)
1 < ... < zα(n)

n }) = exp{−iEz
α(j)
j }ϕ({zα(1)

1 < ... < zα(n)
n }).

At last, we can now define the operator i∂S
z + E quite similarly to the case

without colours. Moreover, due to Proposition 7, we get the following

Proposition 8 Propositions 5 and 6 remain valid for spaces Lp,loc
A (CSn,m) for

all p with finite pm. If pm = ∞, the same holds under an additional assumption
that all elements Smm(j) are units of the algebra A for all j.

Remark. The last assumption was necessary, because as we noted earlier the
shift is not continuous in the space L∞(R). The asumption Smm(j) = 1 ensures
that there will be no discontinuity in the variables ζm. Using the Remark after
Proposition 1, one can weaken this assumption, but we take it in its simplest
form, which turns out to be natural in applications to stochastic analysis.

At the end of this section, we shall write down the corresponding stochastic
equation driven by a Poisson noise which generalises equation (22) and which
gives the interaction representation for the shifts in coloured simplices consid-
ered above. However, before this, we shall descibe the combinatorics of Fock
spaces which allows one to represent our shifts as secondly quantised operators
in multiple and/or pseudo Fock spaces. Since these secondly quantised opera-
tors solve rather general stochastic (and even quantum stochastic) differential
equations (as was discovered in [12], [13], see short comments in the Appendix
B), this leads to the representation of general stochastic evolutions in terms of
the solutions to the boundary value problems.

We start with the algebraic aspects of the theory. To this end let us choose
a certain space lm of functions from R to Cm. As the main example of the
space lm, one can have in mind the space Ccomp

Cm (R) of continuous functions
with compact support. Choosing a basis {ej}, j = 1, ...,m, in Cm gives the
standard isomorphism (algebraic) of lm and the sum l1 ⊕ ... ⊕ l1 of m copies
of l1 by presentating any function f ∈ lm as the sum f =

∑
fjej with all

fj ∈ l1. As usual, the tensor product (Cm)⊗n is defined as a mn-dimensional
vector space with the basis eα(1) ⊗ ... ⊗ eα(n), parametrised by arbitrary func-
tions α: {1, ..., n} 7→ {1, ...,m}. The (algebraic) symmetric tensor product lmn =
(lm)⊗n

sym can be defined as the space of functions Σn 7→ (Cm)⊗n generated by
the monomials

f1(z1)...fn(zn)eα(1) ⊗ ...⊗ eα(n), fj ∈ l1. (45)
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It is convenient to get rid of tensors by transfering the index from the basis to the
variables and to encode the element (45) by the function f1(z

α(1)
1 )...fn(zα(n)

n ) of
n ordered labeled variables. Thus the symmetric tensor product lmn = (lm)⊗n

sym

is represented as a space of functions of the variables (34), or, in other words,
as a space of functions on the coloured simplex CSn,m. We shall call this
representation the functional representation for the tensor product lmn .

By definition, the infinite (algebraic) direct sum ⊕∞n=0l
m
n is the (algebraic)

symmetric Fock space over lm, and the space lmn is called the n-particle subspace
in this context.

If lm = L2
Cm , then taking the Hilbert direct sum (instead of the algebraic) one

obtains the standard symmetric Fock space over lm. If lm = Ccomp
Cm (R), then

the completion of lmn with respect to the norm (37) or (38) clearly coincides
with the space Lp

C(CSn,m) considered above. Thus the spaces Lp
A(CSn,m) can

be considered as n-particle subspaces in the (multiple) Fock space

Fp1,...,pm = C⊕ Lp
A(CS1,m)⊕ Lp

A(CS2,m)⊕ ..., (46)

which is a Banach version of the Fock space over the Banach space Lp1
A (R)⊕ ...⊕

Lpm

A (R) (where the last term in this sum must be replaced by the completion
(with respect to the sup-norm) of the space Ccomp(R) whenever pm = +∞). In
particular, the shifts T σ1,...,σn(t) can be considered as the restrictions (to the
n-particle subspaces) of the corresponding shifts in the Fock space F .

Clearly, each matrix S(k) from a family of the type (41) defines an operator
S(k): lm 7→ A ⊗ lm which takes the function f(z) =

∑
fj(z)ej to the function

(S(k)f)(z) =
∑
µ,ν

Sµ,ν(k)fν(z)eµ.

We are interested in the tensor product S(n) ⊗ ... ⊗ S(1), which is defined as
the operator in lmn that takes the element (45) to the element

∑
µ1,...,µn

Sµn,α(n)(n)...Sµ1,α(1)(1)f1(z1)...fn(zn)eµ1 ⊗ ...⊗ eµn . (47)

In particular, if S(j) = S does not depend on j, then S⊗n is the restriction
on the n-particle subspace of the second quantization of the operator S.

Clearly, each monomial in the sum (47) has the form

Sµn,α(n)(n)...Sµ1,α(1)(1)f1(z
µ1
1 )...fn(zµn

n ), (48)

in the functional representation. Since the monomials (45) form the basis for
the space lmn , we obtain the following functional representation for the operator
S(n)⊗ ...⊗ S(1):
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Proposition 9

(S(n)⊗...⊗S(1)f)(zα(1)
1 , ..., zα(n)

n ) =
∑

β

∏

k

Sα(k)β(k)(k)f(zβ(1)
1 , ..., zβ(n)

n ), (49)

where the sum is taken over all functions β: {1, ..., n} 7→ {1, ..., m} (since S is
supposed to be upper triangular, only those β must be taken into consideration
for which β(k) ≥ α(k) for all k), and the

∏
means the ordered product, where

the index k decreases from the left to the right.

Let us write down this formula more explicitly in the two particular cases
which are important for applications to stochastic analysis (see Appendix B).

(i) Let m = 2 and S has the form S =
(

1 s
0 1

)
with a certain s ∈ A. Using

the representation (35), where the two group of variables are denoted by ζ− and
ζ+, we deduce from (49) that

(S⊗nf)(ζ−, ζ+) =
∑

ζ⊂ζ−

∏

z∈ζ

s(z)f(ζ, ζ+ ∪ (ζ− \ ζ)), (50)

where the sum is taken over all subsets ζ of ζ−.
(ii) If m = 3, it is convenient to denote the three groups of variables in the

representation (35) by ζ−, ζ0, ζ+. Let S has the form

S(k) =




1 S−0 S−+
0 S0

0 S0
+

0 0 1


 (k). (51)

In this case, formula (49) can be written in the form

(S⊗nf)(ζ−, ζ0, ζ+)

=
∑∏

S−0 (k0)S−+ (k+)S0
0(j0)S0

+(j+)f(ζ−− , ζ−0 ∪ ζ0
0 , ζ−+ ∪ ζ0

+ ∪ ζ+), (52)

where the sum is taken over all partitions ζ− = ζ−− ∪ ζ−0 ∪ ζ−+ (here ζ−− stands
for the part of ζ− which preserves the colour under the change α(k) 7→ β(k),
ζ−0 stands for the part of ζ− which is transformed to ζ0, and ζ−+ stands for the
part of ζ− which is transformed to ζ+) and ζ0 = ζ0

0 ∪ ζ0
+ (here ζ0

0 stands for the
part of ζ0 which preserves the colour and ζ0

+ stands for the part of ζ0 which is
transformed to ζ+) and the ordered product is taken over all k0 ∈ ζ−0 , k+ ∈ ζ−+ ,
j0 ∈ ζ0

0 , j+ ∈ ζ0
+.

(iii) in case m ≥ 3, p = 1, 2, ..., 2,∞, the formula for S⊗n is similar to (52)
but a bit more lengthy.

Comparing formula (49) with the formula for the boundary value problem for
shifts described in Proposition 8 (see, in particular, (27) with σk defined in (42))
and by straightforward generalisation of Proposition 4 one obtains the following
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result, which connects shifts in coloured simplices with pure jump stochastic
equations and with secondly quantised operators in multiple (Banach) Fock
spaces.

Theorem 3 Let us introduce a time dependent version of the operator (49)
which acts only ”till the time t”, i.e. the operator

(S⊗t ϕ)(zα(1)
1 , ..., zα(n)

n ) = (S(k(t))⊗ ...⊗ S(1)ϕ)(zα(1)
1 , ..., zα(n)

n ), (53)

where k(t) is the largest k such that pr(z)k ≤ t. Then

((Tn(t))−1Tσ1,...,σn(t)ϕ)(zα(1)
1 , ..., zα(n)

n ) = (S⊗t ϕ)(zα(1)
1 , ..., zα(n)

n ). (54)

Moreover, if A = L(B), the r.h.s. of (54) gives the solution to the Cauchy
problem for a ”coloured” version of the multiple-kick equation (22) with E = 0,
i.e. to the equation

dϕ =
n∑

j=1

(σj − 1)ϕ dχ(pr(z)j ,∞), ϕ ∈ Lp,loc
B (CSn,m). (55)

A more general case with a non-vanishing E, i.e. the equation

dϕ + iEϕ dt =
n∑

j=1

(σj − 1)ϕdχ(pr(z)j ,∞), ϕ ∈ Lp,loc
B (CSn,m). (56)

can be considered similarly. As in the previous section, equation (56) can be
written as a stochastic equation driven by Poisson noise, if the times pr(ζ) of
jumps are random variables. In fact, introducing, as in the previous section,
the counting process nt = |pr(ζ) ∩ [0, t)| one can rewrite equation (56) in the
stochastic form

dϕ + iEϕdt = (σnt − 1)ϕdnt, ϕ ∈ Lp,loc
B (CSn,m). (57)

In particular, since the number of jumps of a Poisson process is almost surely
finite on each finite interval of time, one can consider the process nt in (57) to
be a standard Poisson process.

Theorem 3 expresses the solutions to pure jump stochastic equations in
multiple Fock spaces in terms of the boundary value problems for shifts. As
was proven in [12], [13], the general stochastic and even quantum stochastic
linear equations can be obtained as the epimorphic projection of such pure
jump stochastic equations. Let us recall now how this projection is constructed.
First, we discuss the simlest example particular case, which allows one (as can
be checked straightforwardly) to repersent a non-stochastic (say, Schrödinger
type) evolution by means of a pure jump equation in pseudo Fock space, and
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secondly, we shall write down the general reduction formula refering to [12] for
proofs and details.

In our simplest example, we need the Fock space F1,∞ defined by (46) with
m = 2 and p = 1,∞. We shall use the notations for the variables in this
Fock space which were already exploited in formula (50). The main role in the
reduction is played by the operators J :H 7→ H ⊗F1,∞ and J?:H ⊗F1,∞ 7→ H
defined by the formulas

(J(η))(ζ−, ζ+) = ηδ∅(ζ−)1(ζ+),

J?ϕ =
∫

ϕ(ζ−, ∅) dζ−,

where δ∅(ζ−) is the indicator function of the vacuum (i.e. it equals one if ζ− is
empty and vanishes otherwise), and 1(ζ+) is the constant function which equals
one for all ζ+. The integral over ζ− means (as is usually assumed in calculations
with Fock spaces) the sum of the integrals over all finite dimensional simplices
Σn.

From formula (50) it follows by simple manipulations that for an arbitrary
self-adjoint operator E in a Hilbert space H and a vector η ∈ H (η can be
arbitrary, if E is bounded and η must be an analytic vector for E in general
situation) one has

J?S⊗t Jη = e−iEtη, (58)

where S⊗t is defined by (53) and (50) with s = −iE.
The justification of the notations J , J? is based on the following observation.

If one introduces in the space L1
H ⊕ Ccomp

H a pseudo scalar product

((f−, f+)|(g−, g+)) =
∫

((f−, g+)H(z) + (f+, g−)H(z)) dz,

and then lifts this product to the corresponding multiple Fock space F1,∞

(equipping it with the structure of a pseudo Fock space), the operators J and
J? become adjoint with respect to this product.

The procedure which allows the same reduction for general stochastic equa-
tions is similar but a bit more involved. First of all, the general reduction uses
the Fock space H⊗Fp, where p = (p1, ..., pm) with p1 = 1, p2 = ... = pm−1 = 2,
pm = ∞, constructed over the Banach space

H ⊗ L1,2,...,2,∞ = H ⊗ (L1 ⊕ L2 ⊕ ...⊕ L2 ⊕ C(R))

The pseudo-scalar product in this space is defined by the formula

((f−, f0, f+)|(g−, g0, g+)) =
∫

((f−, g+)H(z)+
m−1∑

j=1

(f0
j , g0

j )H(z)+(f+, g−)H(z)) dz,

which is then naturally lifted to the Fock space H ⊗Fp.
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The linear (pseudo) isometry operator J : H ⊗ F2 7→ H ⊗ F1,2,∞ and its
(psedo) adjoint are defined now by the formula

(J(ψ))(ζ−, ζ0, ζ+) = δ∅(ζ−)ψ(ζ0)1(ζ+), J?ψ(ζ) =
∫

ψ(ζ−, ζ, ∅) dζ−. (59)

It turns out (see [12]) that with these J , J? the l.h.s. of (58) solves the linear
quantum stochastic equation (see [20])

dη + S−+η dt = S−0 η dA+(t) + S0
+η dA− + S0

0η dΛ, (60)

where A± = Apm
j with j = 1, ..., m−1 are the creation and annigilation quantum

martingales respectively and Λ is the gauge process.
Therefore, the following result holds.

Theorem 4 The solution operator for equation (60) is given by the formula
J?S⊗t J with J , J? defined in (59) and St defined by (52), (53),(54).

Thus the solution to a general quantum stochastic equation is expressed in terms
of the boundary value problem in a coloured (pseudo) Fock space. Moreover,
as was proved in [5],[30] (see also [27]), any Lévy process can be represented in
a Fock space and thus any stochastic equation driven by such a process can be
written in the form of a quantum stochastic equation given above.

7 The stochastic dynamics as a semi-classical
limit

The aim of this section is to show that the evolutions defined by the boundary
value problems for shifts can be obtained as a sort of semiclassical limit of the
evolutions defined by a boundary value problem for rather general Schrödinger
equations. This completes the description of stochastic evolutions as certain
limits of boundary value problems for the standard (deterministic) quantum
mechanical equations with physical (real and bounded below) Hamiltonians.

We begin with the notations describing the vector-valued Hardy classes and
the pseudo-differential operators (ΨDO) with operator-valued symbols.

By H+
H (respectively H−H) we denote the H-valued Hardy spaces defined as

the spaces of the Fourier transforms of functions from L2
H(R+) (respectively

L2
H(R−). In other words,

H∓H = {ϕ ∈ L2
H : ϕ(z) =

∫

R∓
eikzf(k) dk, f ∈ L2

H(R∓)}.

We shall need also the corresponding shifted Hardy classes. Namely, if E is a
selfadjoint operator in H, we define

H∓H(E) = {ϕ ∈ L2
H : ϕ(z) = eiEzψ(z), ψ ∈ H∓H}. (61)
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In particular, if ξ is a positive number (which can be considered as the op-
erator of multiplication by ξ in H), then clearly H+

H(ξ) (respectively H−H(ξ))
coincides with the subspace of functions from L2

H which are Fourier transforms
of functions with support in [−ξ,∞) (respectively (−∞, ξ]).

If γ is a measurable function on R with values in linear operators in H, we
shall denote by γ(−i∂z) the corresponding ΨDO in L2

H , which (by definition)
acts as

(γ(−i∂z)ϕ)(z) =
∫ ∞

−∞
eikzγ(k)f(k) dk (62)

on the functions ϕ given by their Fourier transforms as

ϕ(z) =
∫ ∞

−∞
eikzf(k) dk, f ∈ L2

H . (63)

The domain of the operator γ(−i∂) consists of the functions ϕ of form (63) such
that the corresponding f belongs to the domain of the operator of multiplication
by γ(k). The function γ = γ(p) is called the symbol of the ΨDO γ(−i∂z).
Choosing a positive parameter h, we shall denote by γ̂ = γ̂(h) the operator

γ̂ = γ̂(h) = h−1γ(−ih∂z). (64)

If the opreators γ(p) are selfadjoint for all p, then clearly γ̂ is a selfadjoint oper-
ator (on a properly defined domain), since it generates the (obviously unitary)
evolution given by the explicit formula

exp{−itγ̂}ϕ(z) =
∫

R
eikz exp{−itγ(hk)/h}f(k) dk (65)

on the functions ϕ of form (63). This unitary evolution defines the solution to
the Cauchy problem of the Schrödinger equation

ih∂tϕ = γ(−ih∂z)ϕ, ϕ ∈ L2
H . (66)

It is well known (and easy to see) that the dressing of a ΨDO is equivalent to
the shift in its symbol. More precisely, if the operators γ(k) form a commuting
family and if E is a selfadjoint operator in H commuting with all γ(k), then

(γ(−i∂z))Ez = eiEzγ(−i∂z)e−iEz = γ(−i∂z − E). (67)

From now on, let ε(p) be an even function on R with values in a set of
commuting non-negative selfadjoint operators in H defined on the same dense
domain D ⊂ H. Suppose also that the the function ε(p) has a Lipschitz-
continuous derivative outside the origin in the sense that ε′(p) exist as selfadjoint
operators on D for all p, and for an arbitary ξ > 0 and an arbitary v ∈ D

‖[ε(ξ + p)− ε(ξ)− pε′(ξ)]v‖ = O(|p|2) (68)
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uniformly for p from an arbitrary compact interval.
Next, let us fix a unitary operator σ in H. The operators ε̂ and σ describe

respectively the free continuous evolution and the jumps of a quantum system.
For an arbitrary selfadjoint operator E in H, which is defined on D and

commutes with all ε(p), and an arbitrary positive number ξ, we define the
operators ω∓E,ξ = ω∓E,ξ(h) in L2

H by the formula

ω∓E,ξ(h) = ε̂±(E+ξ/h)z(h)− ε(ξ)/h, (69)

where the notations (3) and (64) were used. Thus, equivalently

ω∓E,ξ(h) =
1
h

e±i(E+ξ/h)z(ε(−hi∂z)− ε(ξ))e∓i(E+ξ/h)z. (70)

Due to (67) it follows that ω∓E,ξ(h) are ΨDO with the symbol

1
h

(ε(h(p∓ E)∓ ξ)− ε(ξ)) . (71)

From (70) it follows that the operators ω∓E,ξ(h) are selfadjoint and generate the
unitary evolutions by the formula

(exp{−itω∓E,ξ(h)}ϕ)(z) = e±i(E+ξ/h)z

∫ ∞

−∞
eikz exp{−it(ε(hk)−ε(ξ))/h}f(k) dk

(72)
for ϕ given respectively as

ϕ(z) = e±i(E+ξ/h)z

∫ +∞

−∞
eikzf(k) dk, f ∈ L2

H . (73)

Equivalently, due to (71) one can write

(exp{−itω∓E,ξ(h)}ϕ)(z) =
∫ ∞

−∞
eikz exp{−it[ε(h(p∓ E)∓ ξ)− ε(ξ)]/h}f(k) dk

(74)
for ϕ given by (63).

The following statement collects the simplest properties of evolutions (72)
in the shifted Hardy classes.

Proposition 10 (i) The space H−H(E + ξ/h) (respectively H+
H(E + ξ/h) ) is

invariant under the evolution generated by ω−E,ξ(h) (respectively ω+
E,ξ(h)).

(ii) The operator Rσ(E+ξ/h)z defines the isometric isomorphism

Rσ(E+ξ/h)z:H−H(E + ξ/h) 7→ H+
H(E + ξ/h).

(iii) the operator Rσ(E+ξ/h)z conjugates the evolutions generated by ω±E,ξ(h),
namely

Rσ(E+ξ/h)z exp{−itω−E,ξ(h)} = exp{−itω+
E,ξ(h)}Rσ(E+ξ/h)z.
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(ih) if ϕ is given by

ϕ(z) = ei(E+ξ/h)z

∫ +∞

−∞
eikzf(k) dk, f ∈ L2

H , (75)

then
(exp{−itω+

E,ξ(h)}Rσ(E+ξ/h)zϕ)(z)

= e−i(E+ξ/h)zσ

∫ ∞

−∞
e−ikz exp{−it(ε(hk)− ε(ξ))/h}f(k) dk. (76)

Proof. (i) and (ii) follow from (72), (73) and definitions (2), (61). (iii) follows
from (iv). To prove (76) we note that for ϕ of form (75)

(Rσ(E+ξ/h)zϕ)(z) = e−i(E+ξ/h)zσ

∫ +∞

−∞
eikzf(−k) dk.

Hence, the l.h.s. of (76) equals

e−i(E+ξ/h)zσ

∫ +∞

−∞
eikz exp{−it(ε(hk)− ε(ξ))/h}f(−k) dk,

which coincides with the r.h.s. of (76) because the function ε(p) is even.
Now we are going to prove that the evolutions (72) converge strongly to the

unitary evolutions (14) giving the solutions to equations (12).

Theorem 5 (i) For any ξ > 0, and T > 0 the evolutions (72) converge strongly
to the evolutions exp{−itε′(ξ)(E ± i∂z)} as h → 0 uniformly for t ∈ [0, T ].

(ii) if ε is of linear growth, i.e. if ε′(p) = c + O(p−2) for p →∞ with some
constant operator c, then the convergence is uniform on any shifted Hardy class
H∓(E + p) for any fixed p. Moreover, one can put the operator c everywhere
instead of ε′(ξ).

Proof. We shall prove only (i). The case (ii) is obtained by similar manipula-
tions. Thus, we need to prove that for all ϕ ∈ L2

H

(
exp{−itω∓E,ξ(h)} − exp{−itε′(ξ)(E ± i∂z)}

)
ϕ

tends to zero as h → 0. Notice first that it is enough to prove the statement
for E = 0, because the process of dressing all operators in eiEz does not change
the required convergence. Thus, let E = 0. Next, due to (74) and the Parceval
identity the required convergence is equivalent to the statement that for any
f ∈ L2

H

(exp{−it[ε(hk ∓ ξ)− ε(ξ)]/h} − exp{±itkε′(ξ)) f(k)

tends to zero in L2
H as h → 0. This is the same as to prove that

(exp{−it[ε(hk ∓ ξ)− ε(ξ)]/h∓ itkε′(ξ)} − 1) f(k)
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tends to zero. Hence, we need to prove that

lim
h→0

∫ ∞

−∞
‖ (exp{−it[ε(hk ∓ ξ)− ε(ξ)± kε′(ξ)]/h} − 1) f(k)‖2 dk = 0 (77)

for all f ∈ L2
H .

Since any such f can be approximated in L2
H by a step function, it is sufficient

to prove (77) for f of the form

f(k) =
n∑

m=1

fmχMm
(k)

with some integer n, vectors fm ∈ H and bounded intervals Mm. Since D is
dense in H, and n is finite it is therefore enough to prove (77) only for f of the
form

f(k) = fχM (k), f ∈ D

with a bounded interval M . For such f(k) the statement (77) follows directly
from assumption (68).

Thus the Dirac type evolution (14) with the unbounded generator ∂z is
obtained as a limit as h → 0 of a rather general Schrödinger evolution with
bounded below Hamiltonians. We deduced this limit only for the case of a single-
kick equation. The generalisations to a multi-dimensional case are straightfor-
ward.

As an example of ε(p) satisfying conditions (ii) of the theorem, one can
take the standard relativistic Hamiltonian ε(p) = |p|, or more generally ε(p) =√

p2 + m2 (see [10] for a detailed discussion of this example and a proof of the
theorem 5 for it). In such cases, the limit h → 0 is equivalent to the limit ξ →∞,
i.e. it is the limit of asymptotically infinite momentum (ultra-relativistic limit).
As an example of ε(p) satisfying the assumptions (i), but not (ii), one can take
the symbol of the standard non-relativistic Schrödinger operator p2/2m. In this
case our limit h → 0 is equivalent to the limit ξ → ∞, m → ∞ with ξ/m
tending to a constant. This limit describes the infinitely heavy particles with a
constant speed.

8 Appendix: quantum filtering equations.

For completeness and convenient reference, we give here an essentially simplified
and modified version of the deduction [9] of a quantum filtering equation for
continuous quantum observations.

Suppose a quantum particle (or any other system) X is described by wave
functions ϕ(x) from L2(Rd), and a quantum meter (or pointer) is described by
wave functions f(y) from another copy of L2(Rd). Then the complex quantum
system particle + meter can be naturally described by functions of two variable

27



ψ(x, y) from L2(R2d). Suppose that at the moment of measurement the states
of the particle and the pointer are not coherent, i.e. the state of the complex
system has the form ψ(x, y) = ϕ(x)f(y), where usual normalisation of the wave
functions is assumed, i.e. |ϕ(x)|2 and |f(y)|2 are supposed to define probability
densities. Moreover, we suppose for simplicity that the state of the pointer f(y)
is an everywhere real positive function: f(y) > 0 for all y. The unsharp (and
non-direct) mesurements of the position of the particle are made by observing
the position y of the meter. The effect of such a measurement on the whole sys-
tem is usually describes by a unitary operator U in L2(R2d). We shall reduce the
discussion to the case of the von Neumann [26] model of unsharp measurement
with U being the shift in the varible y: U = exp{−ax∂y}, where a is a posi-
tive number (the coupling constant for the interaction of the particle and the
meter). This unitary operator corresponds formally to the singular interaction
Hamiltonian −iaxδ(t)∂y considered in [26], since formally

exp{−ax∂y} = exp{−i

∫ ∞

−∞
(−iaxδ(t)∂y) dt}.

Thus, if y was measured, the system is supposed to experience the unitary jump

U : ϕ(x)f(y) 7→ ϕ(x)f(y − ax).

and the distribution of x becomes to be given by the density

c(y)|ϕ(x)|2f2(y − ax), c(y) =
(∫

|ϕ(x)|2f2(y − ax) dx

)−1

.

Thus the (conditional) state of the particle itself must be
√

c(y)ϕ(x)f(y−ax) up
to a multiplier of the unit amplitude which we omit for simplicity (the inclusion
of a nontrivial multiplier would give a certain gauge transformation to the states
of the particle under consideration). Putting the wave function of a particle to
be

ϕy(x) = ϕ(x)f(y − ax)/f(y),

we normalise this wave function not pointwise (for each y), but on the initial
probability of the pointer:

∫

Rd

(∫

Rd

|ϕy(x)|2 dx

)
f2(y) dy = 1,

which is more natural for the probabilistic interpretation of the process of mea-
surement. With this normalisation, the transformation of the state of the par-
ticle by the measurement is described by the multiplication operator

G(y): ϕ(x) 7→ ϕ(x)f(y − ax)/f(y), (78)

depending on the measured value of y.
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Supposing that (i) between the measurements the evolution of a particle is
described by a Hamiltonian E, (ii) the measurement has been performed at times
z1 < ... < zn, (iii) after each measurement the pointer has been returned to the
same initial state f(y), we conclude that the evolution of the wave function of
the particle is described by formula (24) with σk = G(y(zk)). In other words,
this evolution satisfies the equation of form (22).

Under the assumptions that the times z1, ..., zn of measurements are ran-
domly distributed according to the standard Poisson process nt and that the
results of measurements are independent, the aposterior evolution of the state
ϕ (given by the totallity of all equations (22) with various values of n and the
measurement outcomes y(.)) can be described by the stochastic equation driven
by a Poisson noise

dϕ + iEϕdt = (G(y(nt))− 1)ϕdnt, (79)

with coefficients depending on random jumps y. Introducing the random point
measure

µ(dt dy) =
∑

s

δs,y(s)(t, y)

on R+ × Rd, where the sum is over all random jump times s and y(s) denotes
the size of the corresponding random jumps (distributed with the probability
density f2(y)), one can define an operator-valued compound Poisson process

P (t) =
∫

[0,t)×Rd

(G(y(s))− 1)µ(dt dy) =
∑
s<t

(G(y(s))− 1), (80)

Equation (79) can be then rewritten in the equivalent form

dϕ + iEϕ dt = dP (t)ϕ. (81)

Equations (79) (or (81)) are the quantum filtering equations describing the apos-
terior dynamics of the wave function of a quantum particle under a continuous
observation of counting type.

Now, we shall consider various limits of equation (81) as the intensity of
the underlying Poisson process nt tends to infinity. These limits were used in
[9] to deduce the quantum filtering equations on the aposterior quantum state
corresponding to the measurement of diffusion type. Here, unlike [9], we shall
not use the heavy machinery of quantum stochastic calculus, but rather the
standard probabilistic tools.

Let us recall (see e.g. [28]) that to an arbitrary finite Borel measure ν on
Rd \ {0} and an arbitrary smooth bounded mapping g from Rd to itself, there
corresponds a Rd-valued compound Poisson process Y = {Y (t)} (defined on a
appropriate probability space):

Y (t) = g(y(z1)) + ... + g(y(zn)), (82)
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where z1 < ... < zn ≤ t are the jump times before t of a Poisson process of the
intensity λν = ν(Rd \ {0}), and y(zj) are independent identically distrubuted
random variables with the probability law ν(dy)/λν . Without loss of generality,
one can consider g to be an identity (which is usually done in the text books), but
we included g, because it is present explicitly in the examples we are discussing.
The characteristic function of the r.v. Y (t) is given by the formula exp{tψ(p)},
where ψ(p) is called the characteristic exponent of the compound Poisson process
Y and has the form

ψ(p) =
∫

(eipy − 1)νg(dy) =
∫

(eipg(y) − 1)ν(dy),

where νg is the transformation of the measure ν under the mapping g. Let a
pair of positive numbers a and b is given. Let us define a compound Poisson
process Y a

b , which is obtained from Y by (i) multiplying all g(y(zj)) in (82) by
a and (ii) by changing the intensity of jumps zj from λν to b−1λν . Y a

b is again
a compound Poisson process with the characteristic exponent

ψa
b (p) = b−1

∫
(eiapy − 1)νg(dy) = b−1

∫
(eiapg(y) − 1)ν(dy).

Suppose now that the measure νg has at least three finite moments νj
g =∫ |y|jνg(dy), j = 1, 2, 3. Then clearly

lim
a→0

ψa
a(p) = i

(
p,

∫
yνg(dy)

)
= i

(
p,

∫
g(y)ν(dy)

)
, (83)

and, if the r.h.s. of (83) vanishes, then

lim
a→0

ψa
a2(p) = −1

2

∫
(p, y)2νg(dy) =

1
2
pjpk

∫
yjykνg(dy). (84)

Now the function on the r.h.s. of (83) (respectively (84)) is the characteristic
exponent of the deterministic process t

∫
xνg(dx) (respectively the Wiener pro-

cess with the correlation matrix {∫ yjykνg(dy)}). Therefore, the equations (83)
and (84) respectively mean that the process Y a

a tends to a deterministic process
and the process Y a

a2 tends to the Wiener process W with the correlation matrix
{∫ yjykνg(dy)}).

To apply these facts to equation (81), let us suppose that the function f(y)
is differentiable and write the Taylor expansion

G(y)− 1 = −a
(f ′(y), x)

f(y)
+

1
2
a2 (f ′′(y)x, x)

f(y)
+ O(a3)

for the integrand in (80). Using (83) and (84) with ν(dy) = f2(y)dy and assum-
ing that f is decreasing sufficiently fast at infinity (for example, one can take
the Gaussian function e−y2

) we come to the following conclusions [9], [10]:
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(i) if the intensity of the Poisson process in (79) is considered to be γ/a
with a certain constant γ, then, as a → 0, equation (79), (81) tends to the
deterministic equation

dϕ + iEϕ dt = −γ(x, p0)ϕdt, (85)

where p0 =
∫

f ′(y)f(y) dy is the mean momentum of the meter at the initial
state f ,

(ii) if the meter is centralised, in the sense that the mean momentum p0

vanishes, and if the intensity of the Poisson process in (79) is considered to be
γ/a2 with a certain constant γ, then, as a → 0, equation (79), (81) tends to the
stochastic equation of diffusion type

dϕ + iEϕdt +
1
2
γ2(Cx, x)ϕdt = γ(x, dW )ϕ, (86)

where W is the d-dimensional Wiener process with the correlation matrix C
with the entries

cjk =
∫

f ′j(y)f ′k(y) dy.

We did not prove here the convergence of the solutions of equation (79) to
the solutions of equations (85), (86). This is not difficult to do for bounded
operators E. In case of unbounded E, this question seems to be nontrivial and
is closely connected with the question of well-posedness of general equations
of type (86), which seemed to be considered till now only for some particular
examples, see e.g. [22] and references therein.

Alternative deductions of equation (86) can be found e.g. in [17], [4], [22] its
generalisations to the case of general classical noises are given in [6] and to the
case of general quantum noises in [12], for various mathematical properties of
this equation and its physical interpretations, the reader is referred to e.g. [14],
[23],[29] and references therein.

References

[1] L. Accardi, R. Alicki, A. Frigerio, and Y.G. Lu. An invitation to the weak
coupling and low density limits. Quantum Probability and Related Topics
VI (1991), 3-61.

[2] l. Accardi, Y.G. Lu and I. Volovich. Quantum Theory and its Stochastic
Limit. Springer-Verlag, Texts and Mopnographs in Physics, 2000.

[3] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden. Solvable
models in quantum mechanics. Springer 1988.

31



[4] S.Albeverio, V.N. Kolokoltsov, O.G. Smolyanov. Continuous Quantum
Measurement: Local and Global Approaches. Reviews in Math. Phys. 9:8
(1997), 907-920.

[5] H. Araki. Factorisable representations of current algebras. Proc. R.I.M.S.,
Kyoto 5 (1970/71), 361-422.

[6] A. Barchielli, A.S. Holevo. Constructing quantum measurement processes
via classical stochastic calculus. Stochastic Processes Appl. 58:2 (1995),
293-317.

[7] V.P. Belavkin. A continuous counting observation and posterior quantum
dynamics. J. Phys. A Math. Gen. 22 (1989), L1109-L1114.

[8] V.P. Belavkin. Nondemolition Principle of Quantum Measurement The-
ory. Found. of Physics 24:5 (1994), 685-714.

[9] V.P. Belavkin. A dynamical Theory of Quantum Measurement and Spon-
taneous Localization. Russian Journal of Mathematical Physics 3:1 (1995),
3-23.

[10] V.P. Belavkin. On Quantum Stochastics as a Dirac Boundary-value Prob-
lem and an Inductive Stochastic Limit. In: Evolution Equations and their
Applications, Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New
York 2000, 311-334.

[11] V.P. Belavkin. Quantum Stochastic Dirac Boundary Value Problem and
the Ultra Relativistic Limit. Rep. Math. Phys. 46:3 (2000), 359-386.

[12] V.P. Belavkin. Chaotic States and Stochastic Integration in Quantum
Systems. Russian Math. Surveys 47:1 (1992), 47-106.

[13] V.P. Belavkin. A Quantum Nonadapted Itô Formula and Stochastic Anal-
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