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Preface

The monograph is devoted mainly to the analytical study of
the differential, pseudo-differential and stochastic evolution equa-
tions describing the transition probabilities of various Markov ran-
dom processes. There include (i) diffusions (in particular, degener-
ate diffusions), (ii) more general jump-diffusions, especially stable
jump-diffusions driven by stable noise or stable Lévy processes,
which are becoming more and more popular in modelling various
phenomena in science, engineering and economics, (iii) complex
stochastic Schrödinger equations which correspond to models of
quantum open systems which have been extensively studied re-
cently. The main results of the book concern the existence, quali-
tative properties, two-sided estimates, path integral representation,
and small time and semiclassical asymptotics for the Green func-
tion (or fundamental solution) of these equations, which represent
the transition probability densities of the corresponding random
processes. Applications to the theory of large deviations and to
the sample path properties of random trajectories are presented.
The proofs of the main theorem require some auxiliary results from
other areas, which seem to be of independent interest. For exam-
ple, a special chapter is devoted to the study of the boundary value
problem for Hamiltonian systems which constitute the “classical
part” of the semiclassical approximation. Some relevant topics in
spectral asymptotics are also discussed. Most of the results of the
book are new.

The background necessary for reading the book has been re-
duced to a minimum and consists of an elementary knowledge of



vi

probability, complex and functional analysis, and calculus. The
parts dealing with stochastic equations can be omitted by those
not acquainted with stochastic analysis.

As a short guide to the content of the book let me indicate
that it can be conditionally divided into the following parts (which
are strongly related idealogically but are very weakly dependent
formally): (i) asymptotics for diffusion Sect. 1.1-1.3, 2.1-2.4, Ch.
3,4 (ii) asymptotics for stable jump-diffusions Sect. 2.1, 2.5, Ch.
5,6, Ap. B-F, (iii) asymptotics for complex stochastic Schrödinger
and diffusion equations Sect. 1.4,1.5,2.1, 2.6,2.7, Ch. 7, (iv) mis-
cellaneous topics including spectral asymptotics and path integral
representation for the Schrödinger and diffusion equation Ch. 8, 9,
Ap. G,H.

I am grateful to many people for fruitful discussions, espe-
cially to S. Albeverio, D.B. Applebaum, V.P. Belavkin, A.M. Cheb-
otarev, Z. Coelho, S. Dobrokhotov, K.D. Elworthy, V. Gavrilenko,
A. Hilbert, R.L. Hudson, N. Jacob, V.P. Maslov, R.L. Schilling,
O.G. Smolyanov, A. Truman and A. Tyukov. Let me mention
with special gratitude R.L. Hudson and R.L. Schilling for reading
the manuscript and making lots of useful comments. I am thankful
for support to all members of my big family.

V.N. Kolokoltsov, September 1999
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Introduction

We present first the context and motivation for the present
study, and then discuss in more detail the content of the book and
main results. Let us recall the main connections between the theory
of stochastic processes, evolutionary pseudo-differential equations
(ΨDE), and positivity preserving semigroups; for a fuller discus-
sion see Appendix C,D and the references given there, for instance,
[Ja]. By definition, a Feller semigroup is a strongly continuous
semigroup Tt, t ≥ 0, of linear contractions on the Banach space
C0(Rd) of continuous function on Rd vanishing at infinity such
that, for u ∈ C0(Rd), 0 ≤ u ≤ 1 implies 0 ≤ Ttu ≤ 1 for all
t. It follows that Tt can be extended by continuity and mono-
tonicity to all bounded continuous functions and this extension
does not increase constants. Conversely, one readily sees that if
a strongly continuous semigroup of linear operators on the space
of bounded continuous functions preserves positivity (i.e. u ≥ 0
implies Ttu ≥ 0), does not increase constants and takes C0(Rd)
to itself, then Tt is a Feller semigroup. An important result of
probability theory states that to each Feller semigroup there cor-
responds a Markov process X(t, x) (here t is the time and x is the
initial point), taking values in Rd and defined on some probability
space, such that (Ttu)(x) is the expectation of the random function
u(X(t, x)) at any time t. Processes corresponding in this way to
Feller semigroups are called Feller processes. It follows that if L is
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the generator of the semigroup Tt (i.e. L is a linear operator defined
on a dense subspace of C0(Rd) such that Lu = limt→0((Ttu−u)/t)
on this subspace), then the Green function, or, in an alternative
terminology, the fundamental solution, uG(t, x, x0), of the Cauchy
problem for the evolutionary equation

∂u

∂t
= Lu, t ≥ 0 (0.1)

(i.e. the solution to this equation with the Dirac initial data
u|t=0 = δ(x − x0)), which can in general be defined only in the
sense of distributions, gives the transition probability (from x to
x0 in time t) of the process X. Thus, if the Green function exists as
a continuous (or even only measurable) function, then it coincides
with the transition probability density of the corresponding pro-
cess, which implies in particular that the transition probabilities
of this process are absolutely continuous with respect to Lebesgue
measure.

A Feller process is called space-homogeneous if its transition
probabilities from x to x0 in any time t depend only on the differ-
ence x−x0. Such processes are also called processes with indepen-
dent identically distributed increments. Then the corresponding
semigroup has the property that all Tt commute with space transla-
tions, i.e. Ttθa = θaTt for all t and a, where θau(x) = u(x+a). The
famous Lévy-Khintchine theorem states that the generator of a gen-
eral space-homogeneous Feller semigroup is an integro-differential
operator of the form

(Lu)(x) =

(
A,

∂u

∂x

)

+
1

2
tr

(
G
∂2u

∂x2

)
+

∫
Rd\{0}

(
u(x+ ξ)− u(x)−

(∂u∂x , ξ)

1 + |ξ|2

)
ν(dξ),

(0.2)
where ν(dξ) is a Lévy measure on Rd \ {0}, i.e. a sigma-finite
Borel measure such that the integral

∫
min(1, |ξ|2) ν(dξ) is finite,

A = {Aj}dj=1 is a vector (called the drift) and G = {Gij} is a
non-negative (non-negative definite) matrix (called the matrix of
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diffusion coefficients). In less concise notations, we may write(
A,

∂u

∂x

)
= Aj

∂u

∂xj
, tr

(
G
∂2u

∂x2

)
= Gij

∂2u

∂xi∂xj

in (0.2) and in all formulas that follow. Here (and everywhere
in the book) the summation convention over repeated suffices is
in force. Moreover, the general form of the (pseudo-differential)
generators of positivity preserving space-homogeneous semigroups
is very similar, namely, they have the form L − a, where L is as
above and a is a non-negative constant. The most important classes
of space-homogeneous Feller process are Gaussian diffusions (when
ν = 0 in (0.2)), compound Poisson processes (when G = 0, A = 0,
and the measure ν is finite), and stable non-Gaussian Lévy motions
of index α ∈ (0, 2) (when G = 0 and ν(dξ) = |ξ|−(1+α)d|ξ|µ(ds)
where s = ξ/|ξ| and µ is an arbitrary finite measure on the sphere
Sd−1).

The fundamental theorem of Courrège states that under the
natural assumption that all infinitely differentiable functions with
compact support belong to the domain of L, and for any such
function f the function Lf is continuous, the generator L of a
general not necessarily space-homogeneous Feller semigroup has
form (0.2) but with variable coefficients, i.e.

(Lu)(x) =

(
A(x),

∂u

∂x

)

+
1

2
tr

(
G(x)

∂2u

∂x2

)
+

∫
Rd\{0}

(
u(x+ ξ)− u(x)−

(∂u∂x , ξ)

1 + |ξ|2

)
ν(x, dξ),

(0.3)
where A,G and ν depend measurably on x. However that this is
only a necessary condition, and the problem of when operators of
form (0.3) do in fact define a Feller semigroup is in general quite
non-trivial.

The connection with the theory of ΨDO comes from a simple
observation that operator (0.3) is a pseudo-differential operator
that can be written in the pseudo-differential form as follows:

(Lu)(x) = Ψ(x,−i∆)u, (0.3′)
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where

Ψ(x, p) = i(A(x), p)−1

2
(G(x)p, p)+

∫
Rd\{0}

(
ei(p,ξ) − 1− i(p, ξ)

1 + ξ2

)
ν(x, dξ).

We shall call processes (and the corresponding semigroups)
with generators of form (0.3) Feller-Courrège processes (resp. semi-
groups) or jump-diffusions, because the trajectories of such pro-
cesses need not be continuous, as in the case of a diffusion, but
generally have jumps. The theory of processes with generators
of form (0.3) is currently rapidly developing, and different authors
use different names for them. Sometimes, these processes are called
Feller processes with pseudo-differential generators, sometimes they
are called the Lévy-type processes, or diffusions with jumps, see e.g.
[Ja], [Ho], [Schi], [JS], [RY], and references therein. The generator
of the general positivity preserving semigroup has the form L−a(x)
with L of form (0.3) and a(x) a non-negative function of x.

As was noted above, the solution to the Cauchy problem for
equation (0.1), (0.3) with the initial function u(x) is given by the
formula E(u(X(t, x))), where E denotes the expectation with re-
spect to the measure of the corresponding Feller process X. The
solution to the Cauchy problem for the corresponding more general
positivity preserving equation

∂u

∂t
= (L− a(x))u, t ≥ 0, (0.4)

can be then expressed by the Feynmann-Kac formula

E

(
exp{−

∫ t

0

a(X(s, x)) ds}u(X(t, x))

)
(see Appendix G, where a more general complex version of this
formula is discussed). The exploitation of such probabilistic for-
mulae for the solution to the Cauchy problem of equation (0.1),
(0.3) constitute the probabilistic approach to the study of positiv-
ity preserving pseudo-differential equations. However, in this book
we shall study such equations analytically assuming some smooth-
ness assumptions on G,A, ν. We will mainly consider the following
classes of such equations:
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(i) diffusions (when ν = 0) including the case of degenerate
diffusions, (i.e. G is degenerate); (ii) stable jump-diffusions (i.e.
G = 0 and ν(x, dξ) = |ξ|−(1+α)d|ξ|µ(x, ds)) and their natural gen-
eralisations, stable-like diffusions that differ in that the index α is
not a constant but also depends on x, and (iii) the combinations
of these processes and their perturbations by compound Poisson
processes, especially the truncated (or localised) stable jump- diffu-
sions with the Lévy measure ν(dξ) = Θa(|ξ|)|ξ|−(1+α)d|ξ|µ(x, ds).
The behaviour of the latter processes is similar to stable jump-
diffusions locally, but differs essentially at large distances or times.

The study of stable processes and their generalisations is mo-
tivated by the ever-increasing use of these processes in modelling
many processes in engineering, natural sciences and economics (see
e.g [ST], [Zo], [KSZ]). In particular, they are widely used in plasma
physics and astronomy (see e.g. [Lis] or [Cha]).

The discussion above concerned the concept of pointwise pos-
itivity. In quantum physics and non-commutative analysis, a more
general notion of positivity is developed (see e.g. [ApB], [Da3],
[Li], [LP], [AH3], [AHO], [Be5] for the description and discussion of
quantum positivity preserving mappings). The simplest examples
of the corresponding equations give the second order partial differ-
ential equations with complex coefficients, which we shall call com-
plex diffusion equations or complex Schrödinger equations, because
they include standard diffusion and Schrödinger equations as par-
ticular cases and behave in many ways like these particular cases.
Generally, the corresponding positivity preserving semigroups can
be described by means of quantum stochastic equations. We shall
also study an important class of these more general models, which
we call complex stochastic diffusions. In physics, the corresponding
stochastic equations are often called stochastic Schrödinger equa-
tions (SSE) and appear now to be the central objects in the study
of quantum open systems (see e.g. [BHH], [QO], and Appendix A).
The simplest example of a SSE has the form

dψ = (
1

2
G∆ψ − V (x)ψ − 1

2
|c(x)|2ψ) dt+ c(x)ψ dB, (0.5)

where dB denotes the Ito differential of the Brownian motion B,
G is a non-degenerate complex matrix with non-negative real part,
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and c(x), V (x) are complex functions, the real part of V being non-
negative. This equation can be formally written in form (0.4), (0.3)
with ν = 0, A = 0, G complex, and a time dependent complex ran-
dom a(x) (which makes sense in terms of distributions). Even with-
out a stochastic term complex diffusions or complex Schrödinger
equations of type (0.5) (with complex G and/or V ) have many
applications, see e.g. [Berr] or [BD].

We shall be mainly concerned with the properties of the Green
functions (or transition probability densities) for the equations de-
scribed above, in particular with their small time asymptotics and
two-sided estimates. Our main purpose is to develop the method of
semiclassical approximation (WKB method) for these Green func-
tions. Semiclassical approximation, which in quantum mechanics
means asymptotics with respect to small Planck constant, in prob-
ability means the asymptotics with respect to small amplitude of
jumps, called also small diffusion asymptotics. Formally, it means
(see also Appendix D) that instead of equation (0.1), (0.3)-(0.3’)
one considers the equation

h
∂u

∂t
= Ψ(x,−ih∆)u,

or, in integrao-differential form,

∂u

∂t
=

(
A(x),

∂u

∂x

)

+
h

2
tr

(
G(x)

∂2u

∂x2

)
+

∫
Rd\{0}

(
u(x+ hξ)− u(x)

h
−

(∂u∂x , ξ)

1 + |ξ|2

)
ν(x, dξ),

(0.6)
and looks for the asymptotics of its solutions as h → 0. Since
the solutions of (0.6) can be expressed in terms of an infinite di-
mensional integral (by the Feynman-Kac formula), a search for the
small time or small h asymptotics for these solutions can be con-
sidered as the study of an infinite dimensional Laplace method,
in other words, as the study of the asymptotic expansions of cer-
tain infinite dimensional integrals (over a suitable path space) of
Laplace type.
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The construction and investigation of the Green functions (or
fundamental solutions) for equation (0.1) with a pseudo-differential
operator (ΨDO) L constitutes one of the central problem in the
theory of linear evolutionary differential or pseudo-differential equa-
tions (ΨDE). This is because, by linearity, the solution of the
Cauchy problem for equation (0.1) with arbitrary initial function
can be expressed by the convolution of this initial function with the
Green function. In particular, the Green function of the ΨDE (0.1)
defines completely the corresponding semigroup Tt = etL. More-
over, in the case of a positivity preserving semigroup, the Green
function defines the finite dimensional distributions for the corre-
sponding Markov process, which, by the celebrated Kolmogorov re-
construction theorem, define this Markov process uniquely up to a
natural equivalence. The study of the Green functions of evolution-
ary, and particularly parabolic, ΨDE utilises different techniques.
It has a long history and remains a field of intensive mathematical
investigations. Let us now review the principle relevant results on
the Green function for equations (0.5), (0.6) and its asymptotics.

The simplest, and the most studied equation of type (0.6) is
the second-order parabolic differential equation

∂u

∂t
=

1

2
htr

(
G(x)

∂2u

∂x2

)
+

(
A(x),

∂u

∂x

)
, (0.7)

called also the diffusion equation, or the heat conduction equa-
tion. In the latter terminology, its fundamental solution is often
referred to as to the heat kernel. Equation (0.7) is called uniformly
parabolic if

Λ−1|ξ|2 ≤ Gij(x)ξ
iξj ≤ Λ|ξ|2 ⇐⇒ Λ−1 ≤ G(x) ≤ Λ (0.8)

uniformly for all ξ and x. The existence of the Green function for
a uniformly parabolic equation (0.7) with bounded and uniformly
Hölder continuous coefficients G(x), A(x) is extensively presented
in the literature, see e.g., [IKO], [LSU]. This result is obtained by
the classical Lévy method, which reduces (using Duhamel’s prin-
ciple) the construction of the Green function to the solution of a
certain integral equation, which in turn can be solved by the regular
perturbation theory. This method also provides the estimate

0 ≤ uG(t, x, x0, h) ≤ Cu2(t, x, x0, h; a) (0.9)
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for the Green function in the domain {t ∈ (0, T ], x, x0 ∈ Rd} ,
where C and a are constants depending on T, d, h,Λ and the maxi-
mum of the amplitudes and Hölder constants of all coefficients, and
where

u2(t, x, x0, h; a) = (2πaht)−d/2 exp{−|x− x0|2

2aht
} (0.10)

is the solution of equation (0.7) with the matrix G = a1d constant
multiple of the identity, and with vanishing A (notice that the index
2 in our notation u2 stands for the second order). This result
implies, in particular, the well-posedness of the Cauchy problem
for the uniformly parabolic equation (0.7). For the equations of
divergence form

∂u

∂t
=

1

2
h
∂

∂xi

(
Gij(x)

∂u

∂xj

)
(0.11)

more powerful estimates were obtained by D. Aronson. Namely, it
was proved in [Aro1], [Aro2] that under condition (0.8),

C−1u2(t, x, x0, h; a1) ≤ uG(t, x, x0, h) ≤ Cu2(t, x, x0, h; a2) (0.12)

uniformly for all t > 0, x, x0 with C, a1, and a2 depending only
on d,Λ and h but not on the Hölder constants, and are valid for
all times. Various proofs of this result are available now, see e.g.
[PE],[Da1] or [NS] and references therein. The estimate (0.12) is
closely connected with (in a sense, it is equivalent to) the famous
Harnack inequality for the positive solutions of (0.11) obtained first
by Moser in [Mos1], [Mos2], and it generalises the previously ob-
tained Nash inequalities [Nas]. Estimates of the form (0.12) can
only partially be extended to general uniformly parabolic equa-
tions (0.7), namely under some additional assumptions on the co-
efficients, and only for finite times.

If the non-negative matrix G is degenerate at some (or all)
points, equations of the form (0.7) are called degenerate parabolic
equations. To analyse these equations, it is sometimes convenient
to rewrite them in a slightly different form. Recall that vector fields
in Rd are just first-order differential operators of the form f(x) ∂∂x
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with some function f . Clearly, for given G and A one can find
vector fields X0, X1, ...Xk with some k such that equation (0.7)
can be written in the form

∂u

∂t
= h · (X2

1 +X2
2 + ...+X2

k)u+X0u, (0.13)

which is called the Hörmander form (or sum of squares of vector
fields form) of a second-order parabolic equation. For example, one
can take k = d andXj = ajk(x)

∂
∂xk for j = 1, .., d, where the matrix

{aij} is the non-negative symmetric square root of the matrix G.
In this book, we shall not use this form of the degenerate equation
(0.7), but it is important to mention it, because of the large number
of investigations carried out for equation (0.13). The convenience
of this form for the use of probabilistic methods lies in the fact that
the evolution of the diffusion process defined by equation (0.13) can
be described directly by the stochastic differential equation

dx = X0(x) dt+
√
h

k∑
i=1

Xi(x) dSWi(t),

where dSWi denote the Stratonovich differential of the standard
Wiener process. To formulate the main results on the existence of
the Green function for degenerate equations (0.13), one needs some
notions from differential geometry. For a point x ∈ Rd, denote by
Tx the tangent space to Rd at the point x, and for any linear space
V of vector fields in Rd, denote by Vx the subspace of Tx consisting
of the evaluations at x of the vector fields in V . Clearly, if the condi-
tion of uniform parabolicity (0.8) is fulfilled, the vectors X1, ..., Xk

in the representation (0.13) of equation (0.7) generate a linear space
of maximal dimension d at each point. The simplest generalisation
of this condition is the following. Suppose that the vector fields
Xj , j = 0, ..., k, are infinitely smooth. Let LA(X1, ..., Xk) be the
Lie algebra of the vector fields generated by X1, ..., Xk. One says
that equation (0.13) satisfies the strong Hörmander condition, if at
each point x, the vector space LA(X1, ..., Xk)x has the maximal
dimension d. It was shown in [Hor] that if equation (0.13) satisfies
the strong Hörmander condition, then it has an infinitely smooth
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Green functions. This result was generalised in [IK], where a com-
plete description was given of infinitely smooth equations (0.13)
having smooth Green function. Let Id = Id(X0;X1, ..., Xk) be
the ideal in the Lie algebra LA(X0, ..., Xk) generated by the vector
fields X1, ..., Xk. It was proved in [IK] that if the space Idx has
maximal dimension d at any point x, then equation (0.13) has an
infinitely smooth Green function. The attempt to obtain a prob-
abilistic proof of Hörmander’s result gave rise to a new powerful
tool of probability theory: the Malliavin calculus [Mal] (for a full
exposition see [Bel] or [Nu]).

Notice that form (0.13) of equation (0.7) is invariant, and
therefore the results of [Hor] and [IK] can be formulated naturally
for heat conduction equations of form (0.13) on manifolds. For
a Riemannian manifold the most natural second-order operator is
the Laplace-Beltrami operator. One can show that for any strongly
parabolic equation (0.13) on a compact manifold M , there exists a
Riemannian metric on M such that the operator X2

1 + ... +X2
k is

the Laplace-Beltrami operator for the corresponding Riemannian
structure. It turns out (see e.g. [Bis], [SC]) that equations of form
(0.13) on a smooth manifold, which are not strongly parabolic, but
satisfy the strong Hörmander condition, similarly define a certain
generalisation of Riemannian geometry, which is called hypoellip-
tic geometry, with the corresponding distance on M being called
semi-Riemannian. Some estimates of Aronson type (0.12) for the
diffusions on manifolds satisfying the strong Hörmander condition
can be found in [JS1], [KS], [Le3], where powerful probabilistic
techniques are used.

Turning to the discussion of the existence of the Green func-
tion for more general ΨDE (0.6) we note that, although the well-
posedness of the Cauchy problem is now proved under rather gen-
eral assumptions (see e.g. [Ja],[Ho] and references therein), very
little is known concerning the existence and the properties of the
Green functions for these ΨDE. In [Koch], the existence of the
Green function (and an upper bound for it in terms of some ra-
tional expression) is obtained for ΨDE (0.1) with L being a finite
sum of ΨDO with homogeneous symbols of orders α1 > ... > αk,
α1 > 1, and with Hölder continuous coefficients. This includes, in
particular, the case of stable jump-diffusions with index of stabil-
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ity α > 1. In [Neg], [KN], the existence of a Green function was
obtained for the case of stable-like processes with varying index
stability and with infinitely smooth coefficients.

It is surely the case that to study the properties of Feller semi-
groups and the corresponding random processes, not only the exis-
tence of the Green function is important, but also the description of
its behaviour in the different domains of its arguments and param-
eters. That is why, in the mathematical literature, much attention
was given to the study of its asymptotics for large or small times
and distances, as well as its small diffusion (or small h) asymptotics.
From the point of view of the theory of stochastic processes, the
small time asymptotics of the Green functions are connected with
the local properties of the trajectories of the corresponding Markov
processes, and the large time asymptotics concern the ergodic prop-
erties of these processes. In this monograph, we give little atten-
tion (apart from Chapter 1, see discussion below) to the large time
asymptotics, and therefore we will not discuss this topic. Notice
only that the semiclassical approximation (i.e. h→ 0 asymptotics)
considered when t → ∞, or more precisely, rather non-trivial and
unusual asymptotics for t = h−κ, κ > 0, t → ∞, can be used (see
[DKM1], [DKM2] and Chapter 8) for the study of the semiclassical
approximations of stationary problems.

The study of small time and small h asymptotics of the Green
functions of parabolic equations began with the famous papers
[Var1], [Var2], [Var3]. In particular, it was proved in [Var2] that for
the Green function (or heat kernel) uG(t, x, x0, h) of a uniformly
parabolic equation (0.7), (0.8) with vanishing drift, i.e. of the equa-
tion

∂u

∂t
=

1

2
hGij(x)

∂2u

∂xi∂xj
(0.14)

one has

lim
t→0

[−t log uG(t, x, x0, h)] = d2(x, x0)/2h, (0.15)

where the function d(x, x0) is the distance in Rd corresponding to
the Riemannian structure given by the quadratic form (G(x))−1

ij dx
idxj

in Rd. This result is closely connected with a similar result from
[Var2] on the boundary value problem, which states that if D is a



xxi

region with the boundary ∂D, and if ϕ(x, λ) is the solution to the
stationary equation

1

2
Gij(x)

∂2ϕ

∂xi∂xj
= λϕ

in D with λ > 0 and the boundary condition ϕ = 1 on ∂D, then

lim
λ→∞

[
−(2λ)−1/2 log ϕ(x, λ)

]
= d(x, ∂D).

We shall not in this book exploit this connection of the asymp-
totics of the Cauchy problem with boundary-value problems (see
e.g. [DF1], [DF2] and references therein for some recent results in
this direction). As was noted in [Var3], it easily follows from (0.15)
that the Green function uG(t, x, x0) of uniformly parabolic equa-
tion (0.14) also satisfies the following ”large deviation principle”
(locally, i.e. for small t):

lim
h→0

[−h log uG(t, x, x0, h)] = d2(x, x0)/2t. (0.16)

A technique for proving formulas of type (0.15), (0.16) was also de-
veloped in [Bo], [FW]. One can find in these papers, and in [Var1]-
[Var3], some discussion on the significance of asymptotic formulas
(0.15), (0.16) for large deviations and other problems of probability
theory.

Formulas (0.15), (0.16) give only logarithmic asymptotics of
the Green function for small t and h (and only in the case of van-
ishing drift). Later the complete small time asymptotic expansions
for the heat kernel of general uniformly parabolic equations (0.7)
were intensively studied, especially locally, i.e. for small |x − x0|.
Different expositions can be found in many papers, see e.g. [Mol],
[Kana], [Az2], [Ue] (resp. [Ki], [MC1]) for small t (resp. small h
) asymptotics. The outcome of these investigations can be stated
as follows. For t ≤ t0 with some t0 > 0 and bounded positive h,
the Green function uG(t, x, x0, h) of equation (0.7), (0.8) (or even
the more general equation (0.22) below) whose coefficients together
with their derivatives are uniformly bounded (in fact, this condition
can be weakened) can be written in the form

(2πht)−d/2χ(|x−x0|)ϕ(t, x, x0, h) exp{−S(t, x, x0)/h}+O(exp{− Ω

th
}),

(0.17)
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where χ(v) is a smooth mollifier (or cut-off function), which equals
one for small v and vanishes outside a neighbourhood of the ori-
gin, the remainder O(exp{− Ω

th}) is a uniformly bounded function
decreasing exponentially in x when x → ∞. Here the phase S is
the solution to a certain problem in the calculus of variations, has
the form

S(t, x, x0) =
d2(x, x0)

2t
+O(|x− x0|) +O(t),

and satisfies a certain first order partial differential equation (Hamilton-
Jacobi equation). The amplitude ϕ has the form

ϕ(t, x, x0, h) = ϕ(t, x)(1 +O(th))

or more precisely

ϕ(t, x, x0, h) = ϕ(t, x)(1+
k∑
j=1

ϕj(t, x, x0)h
j+O(hk+1tk+1)), (0.18)

for any k ∈ N , with ϕ and all ϕj having regular asymptotic ex-
pansions (in positive integer powers of t) for small times t. In fact,
though all the ingredients of formula (0.17) are well known (see
previously cited papers and [M1]-[M3], [DKM1]) its full proof (in-
cluding the estimates for possibly focal large x) seems not to exist
in the literature and will be given in Chapter 3 of this book.

Notice that asymptotics of type (0.17), (0.18) are called mul-
tiplicative, because the remainder enters this formulas multiplica-
tively, unlike the case of the WKB asymptotics (see e.g. [MF1]) for
the Schrödinger equation

ih
∂ψ

∂t
= −h

2

2
∆ψ + V (x)ψ.

Namely, the WKB asymptotics (or semiclassical approximations)
of the solutions to this equation are usually written in the form

ψ(t, x) = ϕ(t, x) exp{iS(t, x)/h}+O(h)
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with real S, ϕ, i.e. they have the form of a rapidly oscillating
function with a remainder O(h) that enters this formula additively.
Moreover, the estimates for this remainder are given in terms of
its L2-norm, they are not pointwise estimates, as in the case of
asymptotics for parabolic equations discussed above.

As an important corollary of the small time asymptotics of
the Green functions of parabolic equations, one obtains the small
time asymptotic expansion of these Green functions on the diagonal
x = x0, which, for h = 1 say, has the form

uG(t, x, x, 1) = (2πt)−d/2(
k∑
j=0

ajt
j +O(tk+1)) (0.19)

for any k ∈ N . If one considers a diffusion equation on a com-
pact manifold one can integrate this expansion over x to obtain
the asymptotic expansion of the trace of the Green function. The
coefficients of this expansion have important geometrical interpre-
tations. These results can be partially generalised to parabolic
partial differential equations of higher order, in particular the ex-
pansion of the Green function on the diagonal x = x0 (see e.g.
[Gr]). The literature on the asymptotics of the trace of the Green
function is very extensive (see e.g. [AJPS] and its bibliography for
a discussion of the applications of these expansions in theoretical
physics). In Chapter 4, we shall consider the expansions of the
trace for the case of degenerate invariant diffusions on manifolds.

The asymptotic formula (0.15) was first generalised to the case
of degenerate diffusions of form (0.13) with the strong Hörmander
condition in [Le1], [Le2]. In that case d(x, x0) becomes the semi-
Riemannian distance, mentioned above, see [Bi]. These arguments
of papers [Le1], [Le2] are based on various probabilistic techniques
such as stochastic differential equations, Malliavin calculus, and
the theory of large deviations, for the latter in this context see e.g.
[Az1]. For different results on the full small time expansions of the
heat kernel of equation (0.13) with the strong Hörmander condition
we refer the reader to papers [BA1], [BA2], [BAG], [BAL], [Le4]
and to the references therein, see also [CMG] for the applications
of these results to the study of the fine properties of hypoelliptic
diffusions. In view of the large literature on the degenerate diffusion
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with the strong Hörmander condition, we shall not consider this
type of degeneracy in this book, but will confine our attention
to a different class of degenerate diffusion, which are, in a sense,
uniformly degenerate.

Notice that formula (0.16) for equation (0.14) follows from
(0.15) by means of a simple change of the time variable t. Moreover,
one can encode formulas (0.15), (0.16) in the one formula

lim
h→0,t→0

ht log uG(t, x, x0, h) = −d2(x, x0)/2. (0.20)

As follows from (0.17), similar result holds for general uniformly
parabolic equations (0.7). Moreover, for these equations, the full
asymptotic expansions in small h and small time coincide: expand-
ing ϕj from (0.18) as a power series in t one obtains small time
asymptotics, because the small in h remainder is also small in t.
It turns out that this property of semiclassical asymptotics of uni-
formly parabolic equations is shared by a large class of degenerate
diffusions which are considered in detail in this book. But this is
not the case for either general degenerate diffusion or for equation
(0.6) with non-vanishing Lévy measure ν. For these more general
equations, the small h and small time asymptotics are different,
which makes the study of the small h asymptotics essentially more
difficult, even locally.

One of the main goals of this book is to generalise small time
and small h asymptotics given in (0.17) for uniformly parabolic
diffusion equations to more general equations of form (0.6) or (0.5).

Problems of different kind arise when one looks for global semi-
classical approximations, i.e. for the asymptotics as h → 0 for all
(not necessarily small ) t and x, x0. In the case of Schrödinger equa-
tion, this globalisation of local semiclassical asymptotics was first
carried out rigorously by V.P. Maslov (see [M1], [M4]), by means
of his canonical operator method. To globalise the asymptotics of
diffusion equations, and more general equations of tunnel type (see
Chapter 6), Maslov proposed in [M2], [M3] a modification of his
canonical operator, namely the tunnel canonical operator. How-
ever, a complete rigorous justification of the global asymptotics
constructed by this method was carried out only in the particular
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case of the equation

h
∂u

∂t
=
h2

2
∆u− V (x)u, (0.21)

where ∆ is the standard Laplacian in Rd (see [DKM1], [DKM2],
[KM2]). In fact, the problem with this justification lies not in glob-
alisation, but in the justification of local (as discussed above) mul-
tiplicative small h asymptotics. Maslov’s procedure [M2] leads au-
tomatically (and rigorously) to global asymptotics of tunnel equa-
tions, whenever the local asymptotics are justified. In this book,
after obtaining rigorous local asymptotics of some classes of equa-
tions (0.6), we are going to develop a simplified version of Maslov’s
approach to obtain global semiclassical asymptotics by a simple
integral formula, thus avoiding a beautiful and rather general but
very sophisticated construction of the tunnel canonical operator;
the latter can be found in [M3] or [DKM1].

Let us now describe in more detail the contents of the book.

The preliminary Chapter 1 deals with Gaussian diffusions, i.e.
with equations of form (0.1), (0.2) with vanishing ν, and its gen-
eralisations of type (0.5). We start with a (slightly different) ex-
position of the results of [CME] classifying the small time asymp-
totics of the Green functions of the Gaussian diffusions in terms
of the matrix G. Then we present some results on the large time
behaviour of Gaussian processes, in particular, estimating the es-
cape rate of some classical Gaussian processes such as the inte-
gral of the Brownian motion or Ornstein-Uhlenbeck process, and
then developing scattering theory for small perturbations of these
processes on the classical (Newton systems driven by white noise)
and quantum (unitary stochastic Schrödinger equation) levels. In
section 1.4 we derive the exact Green function for equation (0.5)
with quadratic V (x) and c(x) = x, and then describe a remarkable
property of this equation, namely the effect of Gaussianisation and
localisation of its solutions, which has an important physical inter-
pretation: it describes the spontaneous collapse of the wave-state
of a quantum particle under continuous observation of its position
(called also the watch-dog effect). The Gaussian case allows a di-
rect and explicit description because the Green function in that



xxvi

case can be written explicitly. It can then be used to check the re-
sults of any asymptotic method developed to deal with the general
case.

Since the logarithmic asymptotics limh→0(h log uG) of the Green
function is expected to be expressed in terms of the solutions of of
a certain Hamilton-Jacobi equation, which in its turn is expressed
by means of the solutions to a boundary value problem of a corre-
sponding Hamiltonian system, we devote Chapter 2 to the study
of the boundary value problem (existence, uniqueness, and asymp-
totics of the solutions) for the relevant Hamiltonian systems. First,
for completeness, the connection between Hamiltonian formalism
and the calculus of variations is described in a compact and self-
contained form in the introductory Sect. 2.1, with emphasis on the
facts that are most relevant to asymptotic methods, and on the
approaches that can be used for the study of degenerate Hamilto-
nians and singular Lagrangians. Sections 2.2-2.4 are devoted to a
class of Hamiltonians depending quadratically on momenta, which
are called regular, and which include degenerate as well as non-
degenerate Hamiltonians. The main definition of general regular
Hamiltonians is given in Sect. 2.4 and in previous sections the most
important examples are investigated in detail. The classification of
regular degenerate Hamiltonians corresponds (in a sense, explained
in Chapter 3) to the classification of the small time asymptotics of
Gaussian diffusions, and is described using Young schemes well
known in the theory of representations, because they classify the
irreducible representations of the semi-simple Lie groups. Reg-
ular degenerate Hamiltonians appear naturally when considering
the problems of the minimisation of functionals with Lagrangians
depending on higher derivatives. Section 2.5 is devoted to more
general Hamiltonians having exponential growth in momenta and
relating to the equations of type (0.6) with non-vanishing ν. The
methods developed in this section can be applied also to some other
classes of Hamiltonians. In Sections 2.6, 2.7 the cases of stochas-
tic and complex Hamiltonians are studied, and the corresponding
problems of the complex and stochastic calculus of variations are
discussed. The results of this chapter give the main ingredient in
the construction of the asymptotic solutions of equation (0.5), (0.6)
developed further, they give “the classical part” of the semiclassi-
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cal approximation. However, this chapter is also of independent
interest and can be read independently of the rest of the book.

Chapter 3 is devoted to the construction of the small time
(t→ 0) and/or small diffusion (h→ 0) asymptotics of the solution
of a large class of second order parabolic equations

h
∂u

∂t
=

1

2
h2tr

(
G(x)

∂2u

∂x2

)
+ h

(
A(x),

∂u

∂x

)
− V (x), (0.22)

which we call regular and which include the cases of non-degenerate
and also some classes of degenerate matrices G(x). To describe this
class notice that equation (0.22) can be written in the “pseudo-
differential form” as

h
∂u

∂t
= H

(
x,−h ∂

∂x

)
u (0.23)

with the Hamiltonian function

H(x, p) =
1

2
(G(x)p, p)− (A(x), p)− V (x). (0.24)

The class of regular diffusions corresponds to Hamiltonians (0.24)
belonging to the class of regular Hamiltonians as defined in Sections
2.2-2.4. Therefore, these regular diffusions are also classified in
terms of the Young schemes. It turns out that this class of diffusions
is characterised by the property that the main term of the small
time asymptotics of their Green functions, i.e. of the solutions
of (0.23), (0.24) with initial data δ(x − x0), in a neighbourhood
of x0 is the same as this main term for their Gaussian diffusion
approximations

∂u

∂t
=

1

2
h tr

(
G(x0)

∂2u

∂x2

)
+

(
A(x0) +

∂A

∂x
(x0)(x− x0),

∂u

∂x

)
,

(0.25)
around x0. Equivalently, these diffusions are characterised by the
fact that the asymptotics of their Green functions for small t and/or
small h in a neighbourhood of x0 can be expressed in the form

C(h)(1 +O(h))ϕ(t, x) exp{− 1

h
S(t, x)}, (0.26)
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where C(h) is some normalising constant, and both the “ampli-
tude” ϕ and the phase S has the form of a regular (i.e. in series of
non-negative powers) asymptotic expansion in (t, x−x0), multiplied
by t−M with some positive M (different for ϕ and S). Small time
asymptotics for this class of diffusions are effectively constructed
in Sections 3.1-3.3, and the justifications are given in Section 3.4.
In Section 3.5, the global (i.e. for any finite t or x, including focal
points) small diffusion asymptotics (h → 0) are given for regular
diffusions, presenting in particular the solution of the large devi-
ation problem. In Section 3.6, the problem of constructing the
small diffusion asymptotics for more general, non-regular, diffu-
sions is discussed. For such diffusions, in the representation (0.26)
for its small time (and/or small diffusion) asymptotics, if it exists,
the amplitude and the phase have more complicated singularities
at (0, x0).

Chapter 4 is devoted to the invariant regular degenerate dif-
fusions on cotangent bundles associated with compact Riemannian
manifolds. These invariant diffusions turn out to be the curvilin-
ear analogues of the Ornstein-Uhlenbeck process, and in the sim-
plest case of the absence of “friction”, they can naturally be called
stochastic geodesic flows. In the latter case these processes are com-
pletely defined by the geometry, i.e. by the Riemannian structure.
One can generalise the expansion (0.19) of the Green function on
the diagonal to this case of degenerate diffusion. Integrating this
expansion yields (as in the well known case of non-degenerate in-
variant diffusions on manifolds) the asymptotic expansion of the
trace of the Green function for small times t with geometric invari-
ants as coefficients in this series.

Chapter 5 is devoted to the study of the Green function (tran-
sition probability density) for stable jump-diffusions, i.e. for the
Feller semigroups defined by equation (0.6) with G = 0 and the
Lévy measure ν of the form |ξ|−(1+α)d|ξ|µ(x, ds), s = ξ/|ξ|, and
also for some natural generalisations of these processes, for in-
stance, for the stable-like jump-diffusions and for the corresponding
truncated processes. Two-sided estimates and small time asymp-
totics are obtained for these Green functions generalising the well
known results for the case of standard non-degenerate diffusions.
Some preliminary work on the asymptotic properties of finite-dimensional
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stable laws is also carried out, and the application of the results ob-
tained to sample path properties (lim sup behaviour and the distri-
bution of the maximum) of the corresponding stochastic processes
are given. This chapter presents, on the one hand, the necessary
preliminary results for the asymptotic theory of the next chapter,
and on the other hand, presents an introduction to the analytical
study of stable jump-diffusions, which is of independent interest,
and which can be read essentially independently of other parts of
the book.

The technically most difficult result of the book is given in
Chapter 6, which is devoted to the generalisation of Varadhan’s
large deviation principle (0.16) to the case of localised stable jump-
diffusions, and to the corresponding more precise local and global
small h asymptotics for equations of type (0.6). The proof uses
various techniques from Chapters 2,3,5 and Appendices B-F, and
is based on the construction of a rather complicated uniform small
time and small h asymptotics of the Green function, which differ
from the form (0.26), and which is obtained by glueing together
(in a nontrivial way) the asymptotics of form (0.26) with the small
time asymptotics obtained in the previous chapter. The form of
this uniform asymptotics was actually proposed as early as in [M2]
for an even more general class of equations, called in [M1] tunnel
equations, but without rigorous proof.

Chapter 7 is devoted to the asymptotics of the Cauchy problem
for the equations of complex stochastic diffusion of type (0.5). A
specific feature of the semi-classical asymptotics for these equations
is the necessity to deal with complex and/or stochastic character-
istics, which complicates essentially both the formal construction
and the justification of these asymptotics. Together with the semi-
classical asymptotics constructed and justified in Sections 7.1, 7.2,
we obtain in Section 7.3 a complex analogue of the large deviation
principle and two-sided estimates for the Green function (or the
complex heat kernel) for these equations. In Section 7.4 we discuss
shortly another approach to the construction of the solutions of
these equations based on the theory of inifinite dimensional Fres-
nel integrals. It is well known that the semi-classical asymptotics
of the diffusion or Schrödinger equations can be recovered from the
path integral representation by means of (sometimes only heuris-
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tically defined) infinite dimensional stationary phase or Laplace
methods. In the case of the complex stochastic diffusion consid-
ered here, this procedure requires the use of the general infinite di-
mensional saddle-point method. It is worth noting that the results
on the semiclassical asymptotics of complex Schrödinger equation
obtained in Chapter 7, are used in Chapter 9 for the purpose of reg-
ularisation in the construction of the path integral for the standard
Schrödinger equation.

Some of the results of this chapter can be extended to more
general equations, which are intensively studied now in the quan-
tum theory of open systems and in non-commutative probability
(see [BK] for the first steps in this direction), namely to quantum
stochastic equations of the type

dψ +

(
i

h
H +K

)
ψ dt = (L−dA− + L+dA+ + LdN)ψ, (0.27)

where dA−, dA+, dN are quantum stochastic differentials (quan-
tum noise) acting in the appropriate Fock space (see e.g. [HP],
[ApB], [Be4], [Par]) and H,K,L−, L+, L are pseudo-differential op-
erators in L2(Rd).

This book is mainly devoted to the semi-classical theory of the
Green function (heat kernel) of second order parabolic equations
and more general pseudo-differential equations describing the evo-
lution of stochastic processes. Asymptotic spectral analysis of sec-
ond order differential operators, though being linked in many senses
with the theory of evolutionary equations, has its own methods and
problems. Many books are devoted to this subject (see e.g. [He],
[M5],[M9], [Rob], [SV]), and we shall not present here a systematic
study of this field. Instead, in Chapter 8, we shall introduce briefly
(referring to the original papers for the proofs and developments)
three topics in asymptotic spectral analysis closely connected with
probability and with the semi-classical methods developed for the
corresponding evolutionary equations. Namely, in section 1 we dis-
cuss the problem of the asymptotic calculations of the low lying
eigenvalues of the Schrödinger operator, describing some recently
obtained asymptotic formula for the splitting of low lying eigenval-
ues corresponding to symmetric potential wells and demonstrating
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how this formula works on a concrete physical example of the dis-
crete ϕ4-model on tori. In section 2, we present some results on the
low lying eigenvalues of a diffusion operator, giving in particular a
theorem on the probabilistic interpretation of these eigenvalues (in
terms of the life-times of the diffusions in fundamental domains).
Finally, in Section 3, we present a construction of the quasi-modes
of the diffusion operator around a closed stable trajectory of the
corresponding classical system.

In Chapter 9 we develop an approach to the rigorous construc-
tion of path integrals. This approach incorporates several known
approaches but is extended in a way to be applied to the heat,
Schrödinger and complex stochastic diffusion equations in a uni-
fied way covering a rather large class of potentials. Moreover, this
approach leads to the construction of a measure on the Cameron-
Martin space of curves with L2-integrable derivatives such that the
solutions to the Schrödinger or heat equations can be written as
the expectations of the exponentials of the classical actions on the
paths of a certain stochastic process. This measure has a natural
representation in Fock space, which gives rise to other stochastic
representations of the solutions to the Schrödinger equation, for
example, in terms of the Wiener or another general Lévy process.
The Fock representation also puts our path integral in the frame-
work of noncommutative stochastic calculus.

Appendices are devoted to various topics and results which
are used in the main text. Appendix A introduces the main equa-
tion of the theory of continuous quantum measurement (called the
stochastic Schrödinger equation, state diffusion model, or Belavkin
filtering equation), which is the main motivation for the study of
stochastic complex diffusions in Chapter 7. Appendix B is devoted
to the proof of asymptotic formulas for Laplace integrals with com-
plex phase, and to estimates for the remainder in these formulas
(the latter are usually neglected in expositions of Laplace asymp-
totic formulas, but are of vital importance for our purposes). Ap-
pendices C and D present (for completeness) essentially well-known
material on the characteristic functions of stable laws and the cor-
responding pseudo-differential operators, as well as some simple
estimates which follow (more or less) directly from the definitions,
and which are used in Chapter 6. In Appendix E, the global smooth
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equivalence of smooth convex functions with non-degenerate min-
ima is proved. This is a very natural result, which however the
author did not find in the literature. Appendix F presents in a
compact form the main results on the unimodality of finite dimen-
sional symmetric distributions, which are used in Chapter 5. In
Appendix G, a general scheme for the construction of the complex
measures on path space and for the representation of the solutions
of evolutionary equations in terms of the path integral is presented.
An application of this scheme leads, in particular, to an important
representation of the Schrödinger equation, with a potential which
is the Fourier transform of a finite Borel measure, in terms of the
expectation of a certain functional with respect to a compound
Poisson process. This representation is one of the main sources
for the theory developed in Chapter 9. In Appendix H we sketch
the main approaches to the definitions of path integral, where this
integral is defined as a certain generalised functional and not as a
genuine integral (in a sense of Riemann or Lebesgue) with respect
to a bona fide σ-additive measure. Some possible developments
of the results displayed in the book are discussed in Appendix J
together with related open problems.



CHAPTER 1. GAUSSIAN DIFFUSIONS

1. Gaussian diffusions. Probabilistic and analytic approaches

The simplest case of a parabolic second order equation is the
Gaussian diffusion, whose Green function can be written explicitly
as the exponential of a quadratic form. This chapter is devoted
to this simplest kind of diffusion equation. In the first section we
collect some well-known general facts about Gaussian diffusions
pointing out the connection between probabilistic and analytic ap-
proaches to its investigation. In the next section the complete
classification of its small time asymptotics is given, which is due
essentially to Chaleyat-Maurel [CME]. We give a slightly different
exposition stressing also the connection with the Young schemes.
Sections 1.3-1.5 are devoted to the long time behaviour of Gaussian
and complex stochastic Gaussian diffusions, and their (determinis-
tic) perturbations.

A Gaussian diffusion operator is a second order differential
operator of the form

L =

(
Ax,

∂

∂x

)
+

1

2
tr

(
G
∂2

∂x2

)
, (1.1)

where x ∈ Rm, A and G are m×m-matrices, the matrix G being
symmetric and non-negative-definite. The corresponding parabolic
equation ∂u/∂t = Lu can be written more explicitly as

∂u

∂t
= Aijxi

∂u

∂xj
+

1

2
Gij

∂2u

∂xi∂xj
. (1.2)

The Green function of the corresponding Cauchy problem is by
definition the solution uG(t, x, x0) of (1.2) with initial condition

uG(0, x, x0) = δ(x− x0),

where δ is Dirac’s δ-function.
We shall say that a square matrix is degenerate or singular, if

its determinant vanishes.
The following fact is well-known.
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Proposition 1.1 If the matrix

E = E(t) =

∫ t

0

eAτGeA
′τ dτ (1.3)

is non-singular (at least for small t > 0), then

uG(t, x, x0) = (2π)−m/2(detE(t))−1/2 exp{−1

2

(
E−1(x0 − eAtx), x0 − eAtx

)
}.

(1.4)
Non-singularity of E is a necessary and sufficient condition for the
Green function of (1.2) to be smooth in x, t for t > 0.

We shall sketch several proofs of this simple but important
result.

First proof. Let f(t, p) be the Fourier transform of uG(t, x, x0)
with respect to the variable x. Then f(t, p) satisfies the equation

∂f

∂t
= −

(
A′p,

∂f

∂p

)
−
(
1

2
(Gp, p) + tr A

)
f

and the initial condition f(0, p) = (2π)−m/2 exp{−ipx0}. Solving
this linear first order partial differential equation by means of the
standard method of characteristics, yields

f = (2π)−m/2 exp{−i(x0, e−A
′tp)− 1

2
(E(t)e−A

′tp, e−A
′tp)−t tr A}.

Taking the inverse Fourier transform of f and changing the variable
of integration p 7→ q = e−A

′tp one gets

uG = (2π)−m
∫

exp{i(eAtx− x0, q)−
1

2
(E(t)q, q)} dq,

which is equal to (1.4).
Second proof. This proof uses the theory of Gaussian stochas-

tic processes. Namely, we associate with the operator (1.2) the
stochastic process defined by the stochastic differential equation

dX = AX dt+
√
GdW, (1.5)
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where
√
G is the symmetric non-negative-definite square root of G

andW is the standardm-dimensional Brownian motion (or Wiener
process). Its solution with initial data X(0) = X0 is given by

X(t) = eAtX0 +

∫ t

0

eA(t−τ)
√
GdW (τ).

Direct calculations show that the correlation matrix of the process
X(t) is given by formula (1.4). Therefore, the probability density
of the transition x → x0 in time t is given by (1.3) and by the
general theory of diffusion processes (see, e.g. [Kal]), this transition
probability is just the Green function for the Cauchy problem of
equation (1.2).

Other proofs. Firstly, one can check by direct calculations that
the function given by (1.4) satisfies equation (1.2) and the required
initial condition. Secondly, one can deduce (1.4) using the WKB
method, as shown at the end of Section 3.1. Lastly, one can also
get (1.4) by the method of ”Gaussian substitution”, which will be
described in Section 1.4, where the Green function for stochastic
complex Gaussian diffusions will be constructed in this way.

We discuss now the connection between the non-singularity
property of E and a general analytic criterion for the existence of a
smooth Green function for second order parabolic equations. It is
convenient to work in coordinates, where the matrix G is diagonal.
It is clear that the change of the variables x → Cx, for some non-
singular matrix C, changes the coefficients of the operator L by the
law

A→ CAC−1, G→ CGC ′.

Therefore, one can always choose coordinates such that

L = (Ax,
∂

∂x
) +

1

2

m∑
j=n+1

∂2

∂x2j
, (1.6)

where m − n = rank G. It is convenient to introduce a special
notation for the coordinates involving the second derivatives. From
now we shall denote by x = (x1, ..., xn) the first n coordinates and
by y = (y1, ..., yk), where k = m− n, the remaining ones. In other
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words, the coordinate space is considered to be decomposed into
the direct sum

Rm = Rn+k = Rn ⊕Rk = X ⊕ Y, (1.7)

and L can be written in the form

L = L0 +
1

2
∆y, (1.6′)

where ∆y is the Laplace operator in the variables y, and

L0 = (Axxx,
∂

∂x
) + (Axyy,

∂

∂x
) + (Ayxx,

∂

∂y
) + (Ayyy,

∂

∂y
)

with

A =

(
Axx Axy

Ayx Ayy

)
(1.8)

according to the decomposition (1.7). The operator (1.6’) has the
so called Hörmander form. Application of the general theory of
such operators (see, e.g. [IK]) to the case of the operator (1.6’)
gives the following result.

Proposition 1.2. Let Id be the ideal generated by ∂
∂y1

, ..., ∂
∂yk

in the Lie algebra of linear vector fields in Rn+k generated by L0

and ∂
∂y1

, ..., ∂
∂yk

. The equation

∂u

∂t
= (L0 +

1

2
∆y)u

in Rn+k has a smooth Green function for t > 0 if and only if the
dimension of the ideal Id is maximal, i.e. it is equal to n+ k.

Due to Proposition 1.1, the condition of Proposition 1.2 is
equivalent to the non-singularity of the matrix E. We shall prove
this fact directly in the next section by giving as well the classifica-
tion of the main terms of the small time asymptotics of the matrix
E−1 for the processes satisfying the conditions of Proposition 1.2.
We conclude this section by a simple description of the ideal Id.
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Lemma 1.1 The ideal Id is generated as a linear space by the
vector fields

∂

∂yj
, [
∂

∂yj
, L0], [[

∂

∂yj
, L0], L0], ..., j = 1, ..., k,

or, more explicitly, by ∂
∂yj

, j = 1, ...k, and the vector fields, whose

coordinates in the basis { ∂
∂xi

}, i = 1, ..., n, are given by the columns

of the matrices (Axx)lAxy, l = 0, 1, ....

Proof.

[
∂

∂yj
, L0] = (Ayy)ij

∂

∂yi
+ (Axy)ij

∂

∂xi
.

Therefore, taking the first order commutators we obtain the vector
fields v1j = (Axy)ij

∂
∂xi

, whose coordinates in the basis { ∂
∂xi

} are

given by the columns of the matrix Axy. The commutators [v1i ,
∂
∂yj

]

do not produce new independent vectors. Therefore, new vector
fields can be obtained only by the second order commutators

[v1j , L0] = (Axy)ij(A
xx)li

∂

∂xl
+ (Axy)ij(A

yx)li
∂

∂yl
,

which produce a new set of vector fields v2j = (AxxAxy)lj
∂
∂xl

whose

coordinates in the basis { ∂
∂xi

} are the columns of the matrixAxxAxy.
The proof is completed by induction.

2. Classification of Gaussian diffusions by Young schemes

Let H0 = AxyY and let Hm, m = 1, 2, ..., be defined recur-
rently by the equation

Hm = AxxHm−1 +Hm−1.

In coordinate description, Hm is the subspace ofX = Rn generated
by the columns of the matrices Axy,AxxAxy,..., (Axx)mAxy. LetM
be the minimal natural number such that HM = HM+1. ClearlyM
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is well defined and 0 ≤M ≤ n−dimH0. Moreover, dim Id = n+k,
iff HM = X, or equivalently iff dimHm = n.

Lemma 2.1. If the correlation matrix E given by (1.3) corre-
sponding to the operator (1.6’) is non-singular, then dim Id = n+k.

Proof. Suppose dimId < n+k and consequently dimHM < n.
Then one can choose a basis in X whose first n− dimHM vectors
belong to the orthogonal complement H⊥

M of HM . In this basis,
the first n − dimHM rows of the matrix A given by (1.8) vanish
and therefore the matrix eATGeA

′T has the same property for all
t, and therefore so does the matrix E. Thus E is singular.

These arguments show in fact that if dim Id < n+ k, one can
reduce the Gaussian process defined by the operator L to a process
living in a Eucleadian space of lower dimension. From now on we
suppose that dim Id = n + k and thus HM = X. The natural
number M + 1 will be called further the degree of singularity of
the Gaussian diffusion. A finite non-increasing sequence of natural
numbers is called a Young scheme. Young schemes play an im-
portant role in the representation theory of classical groups. The
(clearly non-increasing) sequence M of M + 2 numbers mM+1 =
dimY = k, mM = dimH0, mM−1 = dimH1 − dimH0,...,m0 =
dimHM − dimHM−1 will be called the Young scheme of the op-
erator (1.6’). As we shall show these schemes completely define
the main term of the small time asymptotics of the inverse matrix
E−1 and therefore of the transition probability or the Green func-
tion of the corresponding Gaussian diffusion. To this end , let us
decompose X = HM in the orthogonal sum:

X = X0 ⊕ ...⊕XM−1 ⊕XM , (2.1)

where XJ , J = 0, ...,M are defined by the equation XM−J ⊕
HJ−1 = HJ , i.e. each XM−J is the orthogonal complement of
HJ−1 in HJ . To simplify the notation we shall sometimes de-
note Y by XM+1. The coordinates are therefore decomposed in
series (x, y) = (x0, ..., xM+1) with the dimension of each series
xJ = (xJ1 , ..., x

J
mJ

), J = 0, ...,M +1, being defined by the entry mJ

of the Young scheme M. Evidently in these coordinates the blocks
AJ,J+I of the matrix A vanish whenever I > 1 for all J = 0, ...,M .
Let AJ , J = 0, ...,M , denote the blocks AJ,J+1 of A, which are
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(mJ ×mJ+1)-matrices (with mJ rows and mJ+1 columns) of rank
mJ , and let

αJ = AJAJ+1...AM , J = 0, ...,M.

Let us find the main term E0
IJ(t) of the expansion in small t

of the blocks EIJ(t) of the correlation matrix (1.3).

Lemma 2.2. In the chosen coordinates, the blocks EIJ(t) of
the matrix (1.3) are given by

EIJ(t) = E0
IJ(t)(1+O(t)) =

t2M+3−(I+J)αIα
′
J(1 +O(t))

(2M + 3− (I + J))(M + 1− I)!(M + 1− J)!
.

(2.2)
Proof. Let us calculate first the main term of the expansion of

the blocks of the matrix Ω(t) = eAtGeA
′t in the integral in (1.3),

taking into account that according to our assumptions the block
GM+1,M+1 of G is the unit matrix and all other blocks of G vanish.
Writing

Ω(t) =

∞∑
p=0

tpΩ(p),

one has

Ω(p) =

p∑
q=0

1

q!(p− q)!
AqG(Ap−q)′. (2.3)

It is easy to see that for p < (2M + 2)− (I + J) the blocks Ω(p)IJ
vanish and for p = 2M + 2 − (I + J) only one term in sum (2.3)
survives, namely that with q = M + 1 − I, p − q = M + 1 − J .
Consequently, for this value of p

Ω(p)IJ =
1

(M − I + 1)!

1

(M − J + 1)!
αIα

′
J ,

which implies (2.2).
It turns out that the matrix E0(t) = {E0

IJ(t)} is invertible and
its inverse in appropriate coordinates depends only on the Young
scheme M. The following result is crucial.
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Lemma 2.3. There exist orthonormal coordinates in Y and
(not necessarily orthonormal) coordinates in XJ , J = 0, ...,M, such
that in these coordinates, each matrix AJ has the form

AJ = (0, 1mJ
), J = 0, ...,M,

where 1mJ
denote the (mJ ×mJ) unit matrix.

Remark. We need the coordinates in Y to be orthonormal in
order not to destroy the simple second order part of the operator
(1.6’).

Proof. Consider the chain

XM+1 → XM = H0 → H1 = XM−1 ⊕H0

→ H2 = XM−2 ⊕H1 → ...→ HM = X0 ⊕HM−1,

where the first arrow stands for the linear map Axy and all other
stand for Axx. Taking the projection on the first term in each
XM−J ⊕HJ−1 yields the chain

XM+1 → XM → XM−1 → XM−2 → ...→ X0, (2.4)

where each arrow stands for the composition Ã = Pr ◦ A of the
map A and the corresponding projection. Since

XM+1 ⊃ KerÃM+1 ⊃ ... ⊃ KerÃ2 ⊃ KerÃ,

one can expand Y = XM+1 as the orthogonal sum

XM+1 = KerÃ1 ⊕ (KerÃ2 ⊖KerÃ1)⊕ ...

⊕(KerÃM+1 ⊖KerÃM )⊕ (XM+1 ⊖KerÃM+1),

where KerÃj ⊖ KerÃj−1 means the orthogonal complement of
KerÃj−1 in KerÃj . Now choose an orthonormal basis in XM+1

which respects this decomposition, i.e. the first (mM+1 −mM ) el-
ements of this basis belong to the first term of this decomposition,
the next (mM −mM−1) elements belong to the second term and so
on. The images of the basis vectors under the action of Ãj in the
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chain (2.4) define the basis in XM−j+1 (not necessarily orthonor-
mal). The coordinates in X ⊕ Y defined in such a way satisfy the
requirements of the Lemma.

Corollary. In the coordinates of Lemma 2.3, if J ≥ I, then

αI = (0, 1mI
), αIα

′
J = (0, 1mI

), (2.5)

where the matrix 0 in the first and second formulas are vanishing
matrices with mI rows and mM −mI (resp. mJ −mI) columns.

Lemma 2.4. If E0
IJ(t) is defined by (2.2) and (2.5), then

by changing the order of the basis vectors one can transform the
matrix E0(t) to the block-diagonal matrix with m0 square blocks
ΛM+2, (m0 − m1) square blocks ΛM+1,..., (mM − mM−1) blocks
Λ2, and mM+1 −mM one-dimensional blocks Λ1 = t, where Λp(t)
denotes the (p× p)-matrix with entries

Λp(t)ij =
t2p+1−(i+j)

(2p+ 1− (i+ j))(p− i)!(p− j)!
, i, j = 1, ..., p. (2.6)

Proof. It is straightforward. Let us only point out that the
block representation of E0 in the blocks E0

IJ corresponds to the
partition of the coordinates in the parts corresponding to the rows
of the Young scheme M, and the representation of E0 in the block-
diagonal form with blocks (2.6) stands for the partition of coordi-
nates in parts corresponding to the columns of the Young scheme
M.

Example. If the Young scheme M = (3, 2, 1), i.e. if M = 1,
dimY = dimX = 3 and X = X0 ⊕X1 with dimX0 = 1, dimX1 =
2, the matrices A and E0(t) in the coordinates of Lemma 2.3 have
the forms respectively


⋆ 0 1 0 0 0
⋆ ⋆ ⋆ 0 1 0
⋆ ⋆ ⋆ 0 0 1
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

,

 and



t5

5·2·2 0 t4

4·2 0 0 t3

3·2
0 t3

3 0 0 t2

2 0
t4

4·2 0 t3

3 0 0 t2

2
0 0 0 t 0 0
0 t2

2 0 0 t 0
t3

3·2 0 t2

2 0 0 t


,
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where the entries denoted by ⋆ are irrelevant. Clearly by change of
order of the basis, E0 can be transformed to

t5

5·2·2
t4

4·2
t3

3·2 0 0 0
t4

4·2
t3

3
t2

2 0 0 0
t3

3·2
t2

2 t 0 0 0

0 0 0 t3

3
t2

2 0

0 0 0 t2

2 t 0
0 0 0 0 0 t


=

Λ3(t) 0 0
0 Λ2(t) 0
0 0 Λ1(t)

 .

Lemma 2.5.

(i) detΛp(t) = tp
2 2! · ... · (p− 1)!

p!(p+ 1)!...(2p− 1)!
,

(ii) the matrix E0(t) is non-singular and in the coordinates of
Lemma 2.3 its determinant is equal to

detE0(t) = (detΛ1(t))
mM+1−mM (detΛ2(t))

mM−mM−1 ...(detΛM+2(t))
m0−m1 ,

(2.7)
(iii) the maximal negative power of t in the small time asymp-

topics of the entries of (E0(t))−1 is −(2M+3) and there are exactly
m0 entries that have this maximal power.

Proof. (ii) and (iii) follow directly from Lemma 2.4. To prove
(i) notice that

detΛp(t) = [2!...(p− 1)!]−2 detλp(t),

where λp(t) is the matrix with entries

λp(t)ij =
t2p+1−(i+j)

2p+ 1− (i+ j)
. (2.8)

In order to see clearly the structure of these matrices, let us write
down explicitly the first three representatives:

λ1(t) = t, λ2(t) =

(
t3

3
t2

2
t2

2 t

)
, λ3(t) =

 t5

5
t4

4
t3

3
t4

4
t3

3
t2

2
t3

3
t2

2 t

 .
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The determinant of these matrices is well known (see, e.g. [Ak])
and can be easily found to be:

detλp(t) =
[2! · 3! · ... · (p− 1)!]3

p!(p+ 1)!...(2p− 1)!
tp

2

, (2.9)

which implies (i).
The entries of the matrices Λp(t)

−1 and therefore of (E0(t))−1

can be calculated by rather long recurrent formulas. It turns out
that these entries are always integer multipliers of negative powers
of t, for example, (Λ1(t))

−1 = 1
t ,

(Λ2(t))
−1 =

(
12
t3 − 6

t2

− 6
t2

4
t

)
, (Λ3(t))

−1 =

 6!
t5 − 6!

2t4
60
t3

− 6!
2t4

192
t3 − 36

t2
60
t3 − 36

t2
9
t

 .

Therefore, we have proved the following result.

Theorem 2.1. For an arbitrary Gaussian diffusion in the
Eucleadian space Rm whose correlation matrix is non-singular (or
equivalently, whose transition probability has smooth density), there

exists a scheme M = (mM+1,mM , ...,m0) such that
∑M+1
J=0 mJ =

m, and a coordinate system z in Rm such that in these coordinates
the inverse E(t)−1 of the correlation matrix (1.3) has the entries

E−1
ij (t) = (E0)−1

ij (t)(1 + (t)),

where E0(t) is an invertible matrix that depends only on YL, and
which is described in Lemmas 2.4, 2.5. The Green function for
small t has the form

uG(t, z; z0) = (2π)−n/2(1+O(t)) exp{−1

2
(E−1(t)(z0−eAtz), z0−eAtz)}

×[(detΛ1(t))
k−mM (detΛ2(t))

mM−mM−1 ...(detΛM+2(t))
m0−m1 ]−1/2.

(2.10)
In particular, the coefficient of the exponential in (2.8) has the form
of a constant multiple of t−α with

α =
1

2
[(mM+1−mM )+22(mM−mM−1+...+(M+2)2m0]. (2.11)
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Conversely we have

Theorem 2.2. For any Young scheme M satisfying the con-
ditions of Theorem 2.1, there exists a Gaussian diffusion, for which
the small time asymptotics of its Green function is (2.8). More-
over, there exists a Gaussian diffusion for which the matrix E0(t)
of the principle term of the asymptotic expansion of E is the exact
correlation matrix.

For example, if in the example with M = (3, 2, 1) considered
above, one places zero instead of all the entries denoted by ”stars”
in the expression for A, one gets a diffusion for which E0(t) is the
exact correlation matrix.

Notice that the case of a Young scheme consisting of only one
element (i.e. the case M + 1 = 0) corresponds to the case of non-
singular diffusion.

3. Long time behaviour of the Green function for Gaussian diffusions

This section lies somewhat apart from the main line of the
exposition. Here the large time asymptotics is discussed for some
classes of Gaussian diffusions including the most commonly used
Ornstein-Uhlenbeck and oscillator processes. One aim of this sec-
tion is to demonstrate that the small time asymptotics classification
given in the previous section has little to do with the large time
behaviour. Even the property of non-singularity of the matrix G of
second derivatives in the expression for the corresponding operator
L has little relevance. The crucial role in the long time behaviour
description belongs to the eigenvectors of the matrix A together
with a ”general position” property of these eigenvectors with re-
spect to the matrix G. We consider two particular cases of the
operator (1.1) with the matrix A being antisymmetric and with A
having only real eigenvalues.

First let A be antisymmetric so that the evolution eAt is or-
thogonal and there exists a unitary matrix U such that U−1AU is
diagonal. Let the rank of A be 2n ≤ m. Then one can write down
the spectrum of A as

iλ1, ..., iλk,−iλ1, ...,−iλk, 0, ..., 0



29

with λ1 > λ2 > ... > λk > 0, and to order the unit eigenvectors as
follows

v11 , ..., v
1
j1 , v

2
1 , ..., v

2
j2 , ..., v

k
1 , ..., v

k
jk
,

vk+1
1 , ..., vk+1

j1
, vk+2

1 , ..., vk+2
j2

, ..., v2k1 , ..., v2kjk , v
2k+1
1 , ..., v2k+1

m−2n,
(3.1)

where j1 + ...+ jk = n, the vectors vl1, ..., v
l
jl
, l = 1, ..., k, and their

complex conjugates vk+l1 = v̄l1, ..., v
k+l
jl

= v̄ljl correspond to the

eigenvalues iλl and−iλl respectively, and the vectors v2k+1
1 , ..., v2k+1

m−2n

belong to the kernel of A. With these notation, the columns of U
are the components of the vectors (3.1) and an arbitrary opera-
tor B : Rm 7→ Rm is represented in the basis (3.1) by a matrix
β = U⋆BU given by rectangular blocks βIJ , I, J = 1, ..., 2k + 1.
The correlation matrix (1.3) becomes UẼ(t)U⋆ with

Ẽ(t) =

∫ t

0

D(s)U⋆GUD⋆(s) ds =

∫ t

0

D(s)ΓD⋆(s) ds,

where D(s) is diagonal with diagonal elements e±iλj and 1, and
the matrix Γ = U⋆GU consists of the blocks

(ΓIJ)lp = (v̄Il , Gv
J
p ), l = 1, ..., I, p = 1, ...J.

For I = J these blocks are clearly nonnegative-definite selfadjoint
(jI × jI)-matrices.

Proposition 3.1. If for all I = 1, ..., 2k + 1 the square blocks
ΓII are non-singular, then

detE(t) = tm
2k+1∏
I=1

det ΓII(1 +O(t)),

as t→ ∞, moreover

(Ẽ−1)IJ =

{
(tΓII)

−1(1 +O( 1t )), J = I,
O(t−2), J ̸= I.

Proof. There are algebraic manipulations, which we omit.
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Notice that the non-singularity assumption in Proposition 3.1
is quite different from the non-singularuty assumption of the matrix
G that defines the second order part of the diffusion operator. In
order to meet the hypothesis of Proposition 3.1 it is enough that the
rank of G be equal to the maximal multiplicity of the eigenvalues
of A. For example, if the eigenvalues of A are different, then the
hypothesis of Proposition 3.1 means just that (v̄j , Gvj) ̸= 0 for all
eigenvalues vj of A, and it can be satisfied by the one-dimensional
projection. From Proposition 3.1 it follows that the large time
asymptotics of the Green function (1.4) in this situation is similar
to the standard diffusion with the unit matrix G and vanishing
drift.

Corollary. Let the hypothesis of Proposition 3.1 hold and
let all (necessarily positive) eigenvalues of all blocks (ΓII)−1, I =
1, ..., 2k+1, lie inside the interval [β1, β2]. Then for arbitrary ϵ > 0
and sufficiently large t, the Green function (1.4) satisfies the two-
sided estimates

(2πt)−m/2

(
2k+1∏
I=1

det ΓII

)−1/2

(1−ϵ) exp{−1

2
β2∥x0−eAtx∥2} ≤ uG(t, x;x0)

≤ (2πt)−m/2

(
2k+1∏
I=1

det ΓII

)−1/2

(1 + ϵ) exp{−1

2
β1∥x0 − eAtx∥2}.

An example of this situation is given by the stochastic process
defined by the motion of the classical oscillator perturbed by a
force given by white noise.

Now let us assume that A has only real eigenvalues λj . For
simplicity assume A is diagonalisable with k positive eigenvalues
µ1 ≥ ... ≥ µk > 0, l vanishing eigenvalues, and m− k − l negative
eigenvalues 0 > −νk+l+1 ≥ ... ≥ −νm. The matrix (1.3) has the
entries Eij = (e(λi+λj)t − 1)(λi + λj)

−1Gij if λi + λj ̸= 0, and
Eij = tGij , if λi + λj = 0. One easily derives the following:

Proposition 3.2. Let the quadratic matrices B1, B2, B3 be
non-degenerate, where (B1)ij = (µi + µj)

−1Gij with i, j = 1, ..., k,
(B2)ij = tGij with i, j = k+1, ..., k+l, and (B3)ij = (νi+νj)

−1Gij
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with i, j = k + l + 1, ..., n. Then, as t→ ∞,

detE(t) = exp{2
k∑
j=1

µjt}tl detB1 detB2 detB3(1 +O(t)),

moreover, (E(t)−1)ij is exponentially small whenever i or j does
not exceed k, and (E(t)−1)ij have a finite limit whenever both i, j >
k + l.

This result implies the corresponding asymptotics for the Green
function (1.4). An example of this situation is given by the diffu-
sion operator of the Orstein-Uhlenbeck process. The cases where
A has nontrivial Jordan blocks can be considered similarly. Let us
point out finally that two-dimensional diffusions described by

A =

(
0 1
−β 0

)
, G =

(
0 0
0 1

)
, and A =

(
0 1
0 −β

)
, G =

(
0 0
0 1

)
,

(the oscillator process and Orstein-Uhlenbeck process respectively)
belong to the two different classes described in Propositions 3.1
and 3.2 respectively but from the point of view of the small time
asymptotics classification of the previous section they belong to the
same class given by the Young scheme (1,1).

The results of this section can be used to estimate the escape
rate of transient Gaussian processes defined by equation (1.5) and
also of perturbations of them; see [AHK1],[AK],[K2], and section
1.5.
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4. Complex stochastic Gaussian diffusion

It is well-known that the Green function of the Cauchy prob-
lem for partial differential equations depending quadratically on
position and derivatives, i.e. on x and ∂/∂x, has Gaussian form, see
e.g. Proposition 1.1 for the case of diffusion. It was realised recently
that stochastic generalisations of such equations are of importance
for many applications. We present here a simple method for ef-
fective calculation of the corresponding Green functions. However,
in order not to get lost in complexities we shall not consider the
most general case but reduce the exposition to a class of such equa-
tions which contains the most important examples for the theory
of stochastic filtering, quantum stochastic analysis and continuous
quantum measurements. Namely, let us consider the equation

dψ =
1

2
(G∆ψ − βx2ψ) dt+ αxψ dB, ψ = ψ(t, x, [B]), (4.1)

where x ∈ Rm, dB = (dB1, ..., dBm) is the stochastic differential
of the standard Brownian motion in Rm, and G, β, α are complex
constants such that |G| > 0, ReG ≥ 0, Reβ ≥ |α|2. The last two
conditions ensure the conservativity of the system, namely that the
expectation of ∥ψ∥2 is not increasing in time, which one checks by
the formal application of the Ito formula. To justify these calcula-
tions one needs actually the well-posedness of the Cauchy problem
for equation (4.1) that follows for instance from the explicit ex-
pression for the Green function given below. We suppose also for
simplicity that ImG and Imβ are nonnegative.

Let us discuss the main examples. If G,α, β are real, (4.1)
is the so called stochastic heat equation, which is also the sim-
plest example of Zakai’s equation [Za] of stochastic filtering theory.
Its exact Green function was apparently first given in [TZ1] for
α = G = β = 1 and in [TZ2] for α = G = 1, β > 1. In the latter
case it was called in [TZ2] the stochastic Mehler formula, because
in the deterministic case α = 0, G, β positive this formula describes
the evolution of the quantum oscillator in imaginary time and is
sometimes called Mehler’s formula. If α,G are purely imaginary
and Reβ = |α|2, (4.1) represents a unitary stochastic Schrödinger
equation, which appeared recently in stochastic models of unitary
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evolution, see [HP], [TZ1], [K2]. It can be obtained by the for-
mal quantisation of a classical system describing a Newtonian free
particle or an oscillator perturbed by a white noise force (see next
Section). The explicit Green function for that equation was given
in [TZ1]. If G is imaginary, α real (more generally, α complex)
and Reβ = |α|2, equation (4.1) represents the simplest example
of the Belavkin quantum filtering equation describing the evolu-
tion of the state of a free quantum particle or a quantum oscillator
(when Imβ = 0 or Imβ > 0 respectively) under continuous (indi-
rect but non-demolition) observation of its position, see [Be1],[Be2]
and Appendix A. When α = β = 1, G = i, the Green function was
constructed in [BK], [K4] and a generalisation was given in [K1].
It is worth mentioning that in this case, it is physically more rele-
vant (see Appendix A) to consider the Brownian motion B (which
is interpreted as the output process) to have nonzero mean, and
to be connected with the standard (zero-mean) Wiener process W
(called in the filtering theory the innovation process) by the equa-
tion dB = dW + 2⟨x⟩ψ dt, where ⟨x⟩ψ =

∫
x|ψ|2(x) dx∥ψ∥−1 is the

mean position of the normalised state ψ. Since in quantum me-
chanics one is interested in normalised solutions, it is convenient
to rewrite equation (4.1) (using Ito’s formula) in terms of the nor-
malised state ϕ = ψ∥ψ∥−1 and the ”free” Wiener process W to
obtain, in the simplest case α = β = 1, G = i, the following norm
preserving but nonlinear equation

dϕ =
1

2

(
i∆ϕ− (x− ⟨x⟩ϕ)2ϕ

)
dt+ (x− ⟨x⟩ϕ)ϕdW. (4.2)

This equation and its generalisations are extensively discussed in
current physical literature on open systems, see e.g. [BHH], [QO],
and also Appendix A. It is worth while noting that the equation

dϕ =
1

2
(β∆ϕ−Gx2ϕ) dt+ αi

∂

∂p
ϕ dB, ϕ = ϕ(t, p, [B]), (4.1′)

which can be obtained from (4.1) by Fourier transformation, de-
cribes (under the appropriate choice of the parameters) the evo-
lution of a quantum particle or an oscillator under the continuous
observation of its momentum (see [Be1]).
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In view of so many examples it seems reasonable to give a
unified deduction of a formula describing all these situations, which
is done below in Theorem 4.1.

To obtain the Green function for equation (4.1) we calculate
first the dynamics of the Gaussian functions

ψ(x) = exp{−ω
2
x2 + zx− γ}, (4.3)

where ω, γ and the coordinates of the vector z are complex con-
stants and Reω > 0. It turns out that the Gaussian form of a
function is preserved by the dynamics defined by (4.1).

Proposition 4.1. For an initial function of Gaussian form
(4.3) with arbitrary initial ω0, z0, β0, solution to the Cauchy prob-
lem for (4.1) exists and has Gaussian form (4.3) for all t > 0.
Moreover, the dynamics of the coefficients ω, z, γ is given by the
differential equations ω̇ = −Gω2 + (β + α2)

dz = −ωGz dt+ αdB
γ̇ = 1

2G(ω − z2)
(4.4)

Proof. Let us write down the dynamics of z with undetermined
coefficients dz = zt dt + zB dB and let us assume the dynamics of
ω to be non-stochastic: dω = ω̇ dt, dγ = γ̇ dt. (This is justified be-
cause inserting the differentials of ω or γ in (4.1) with non-vanishing
stochastic terms, yields a contradiction.) Inserting ψ of form (4.3)
in (4.1) and using Ito’s formula, yields

−1

2
ω̇x2 dt+ x dz − γ̇ dt+

1

2
x2z2B dt

=
1

2
[G((−ωx+ z)2 − ω)− βx2] dt+ αxdB.

Comparing coefficients of dB, x2dt, xdt, dt yields (4.4).
Remark. For the purposes of quantum mechanics it is often

convenient to express the Gaussian function (4.2) in the equivalent
form

gωq,p(x) = c exp{−ω
2
(x− q)2 + ipx}, (4.5)
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where real q and p are respectively the mean position and the mean
momentum of the Gaussian function. One deduces from (4.4) that
the dynamics of these means under the evolution (4.1) is given by
the equations{

dq = 1
Reω [Im(Gω)p−Re(β + α2)q] dt+ Reα

Reω dB

dp = − 1
Reω [Im(ω̄(β + α2))q + |ω|2pReG] dt+ Im(ω̄α)

Reω dB.

The solution of equation (4.4) can be found explicitly. Namely,
let

σ =

√
β + α2

G
≡

√∣∣∣∣β + α2

G

∣∣∣∣ exp{ i2 arg
β + α2

G
}. (4.6)

Since ImG ≥ 0 and Reβ ≥ |α|2 one sees that −π
2 ≤ arg σ ≤ π

2 .
The solution to the first equation in (4.4) is

ω(t) =

{
σ ω0 coth(σGt)+σ
ω0+σ coth(σGt) , σ ̸= 0

ω0(1 + tGω0)
−1, σ = 0.

(4.7)

In the case ω0 ̸= σ the first formula in (4.7) can be also written in
the form

ω = σ coth(σGt+Ω(ω0)), Ω(ω0) =
1

2
log

ω0 + σ

ω0 − σ
. (4.8)

This implies the following result.
Proposition 4.2. For an arbitrary solution of form (4.3) of

equation (4.1)
lim
t→∞

ω(t) = σ.

From the second equation of (4.4) one gets

z(t) = exp{−G
∫ t

0

ω(s) ds}(z0 +
∫ t

0

exp{G
∫ τ

0

ω(s) ds} dB(τ)).

(4.9)
Furthermore, since∫ t

0

coth(σGτ+Ω(ω0)) dτ =
1

Gσ

[
log sinh(σGt+Ω(ω0))− log

σ√
ω2
0 − σ2

]
,
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inserting (4.7) in (4.9) yields

z(t) = (sinh(σGt+Ω(ω0)))
−1

[
σ√

ω2
0 − σ2

z0 + α

∫ t

0

sinh(σGτ +Ω(ω0)) dB(τ)

]
(4.10)

for σ ̸= 0, and similarly for σ = 0

z(t) = (1 + tGω0)
−1(z0 + α

∫ t

0

(1 + τGω0) dB(τ)). (4.11)

From the last equation of (4.4) one gets

γ(t) = γ0 +
G

2

∫ t

0

(ω(τ)− z2(τ)) dτ, (4.12)

and thus the following result is proved.

Proposition 4.3. The coefficients of the Gaussian solution
(4.3) of equation (4.1) are given by (4.7), (4.8), (4.10)-(4.12).

We can prove now the main result of the Section.

Theorem 4.1. The Green function uG(t, x;x0) of equation
(4.1) exists and has the Gaussian form

uG(t, x;x0) = CmG exp{−ωG
2

(x2+x20)+βGxx0−aGx−bGx0−γG},
(4.13)

where the coefficients CG, ωG, βG are deterministic (they do not
depend on the Brownian trajectory B(t)) and are given by

ωG = σ coth(σGt), βG = σ(sinh(σGt))−1, CG =

(
2π

σ
sinh(σGt)

)−1/2

,

(4.14)
and

ωG = βG =
1

tG
, CG = (2πtG)−1/2 (4.15)

for the cases σ ̸= 0 and σ = 0 respectively; the other coefficients
are given by

aG = α(sinh(σGt))−1

∫ t

0

sinh(σGτ) dB(τ), (4.16)
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bG = σG

∫ t

0

a(τ)

sinh(σGτ)
dτ, γG =

G

2

∫ t

0

a2(τ) dτ (4.17)

for σ ̸= 0 and

aG =
α

t

∫ t

0

τ dB(τ), bG =

∫ t

0

a(τ)

τ
dτ, γG =

1

2

∫ t

0

a2(τ) dτ

(4.18)
for σ = 0.

Remark. It follows in particular that the Green function (4.13)
is continuous everywhere except for the case when σG is purely
imaginary, in which case (4.14) has periodical singularities.

Proof. Since the Dirac δ-function is the weak limit of Gaussian
functions

ψϵ0 = (2πϵ)−1/2 exp{−(x− ξ)/2ϵ},

as ϵ→ 0, we can calculate uG(t, x, x0) as a limit of solutions ψϵ of
form (4.3) with initial data

ωϵ0 =
1

ϵ
, zϵ0 =

ξ

ϵ
, γϵ0 =

ξ2

2ϵ
+

1

2
log 2πϵ. (4.19)

Since clearly

Ω(ωϵ0) = ϵσ +O(ϵ2), (ωϵ0 − σ2)−1/2zϵ0 → x0,

as ϵ→ 0, substituting (4.19) in (4.7), (4.10), (4.11) yields

lim
ϵ→0

ωϵ = σ coth(σGt),

lim zϵ = (sinh(σGt))−1

(
σx0 + α

∫ t

0

sinh(σGt) dB(τ)

)
for σ ̸= 0 and

lim
ϵ→0

ωϵ =
1

tG
, lim

ϵ→0
zϵ =

1

tG

(
x0 + α

∫ t

0

τGdB(τ)

)
for σ = 0, which implies (4.16),(4.18) and the first two formulas in
(4.14), (4.15). Let us calculate γ. If σ ̸= 0,∫ t

0

ωϵ(τ) dτ = σ

∫ t

0

coth(σGτ +Ω(ωϵ0)) dτ
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=
log sinh(σGt+Ω(ωϵ0)− log σ√

ωϵ
0−σ2

G
=

log sinh(σGt)− log(ϵσ) + o(1)

G
,

and ∫ t

0

z2(τ) dτ = − σ

G
ξ2 coth(σGt) +

ξ2

Gϵ
+ o(1)

+

∫ t

0

2x0σα
∫ τ
0
sinh(σGs) dB(s) +

(
α
∫ τ
0
sinh(σGs) dB(s)

)2
sinh2(σGt)

dτ.

Substituting these formulas in (4.12) and taking the limit as ϵ→ 0
yields the remaining formulas. The simpler case σ = 0 is dealt with
similarly.

It is easy now to write down the Green function ũG(t, p, p0) of
equation (4.1’). Since (4.1’) is obtained from (4.1) by the Fourier
transformation,

ũG(t, p, p0) =
1

(2π)m

∫ ∫
uG(t, x, ξ) exp{iξp0 − ixp} dξdx. (4.20)

To evaluate this integral it is convenient to change the variables
(x, ξ) to y = x+ ξ, η = x− ξ. Then (4.20) takes the form

ũG =

(
CG
(4π)

)m
e−γG

∫
exp{−ωG − βG

4
y2−1

2
(aG+bG−ip0+ip)y} dy

×
∫

exp{−ωG + βG
4

η2 − 1

2
(aG − bG + ip0 + ip)η} dη.

It is easy to evaluate these Gaussian integrals using the fact that
ω2
G − β2

G = σ2. This yields the following result.

Proposition 4.4. The Green function of equation (4.1’) has
the form

ũG(t, p; p0) =

(
CG
σ

)m
exp{− ωG

2σ2
(p2+p20)+

βG
σ2
pp0−ãGp−b̃Gp0−γ̃G},

(4.21)
where

ãG = − i

σ2
(ωGaG + βGbG), b̃G =

i

σ2
(ωGbG + βGaG),
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γ̃G = γG − ωG(a
2
G + b2G)

2σ2
− βGaGbG

σ2
.

The explicit formulas for the Green functions of equations
(4.1), (4.1’) can be used in estimating the norms of the correspond-
ing integral operators (giving the solution to the Cauchy problem
of these equations) in different Lp spaces, as well as in some spaces
of analytic functions, see [K7].

The Gaussian solutions constructed here can serve as conve-
nient examples to test various asymptotic methods. Moreover, they
often present the principle term of an asymptotic expansion with
respect to a small time or a small diffusion coefficient for more com-
plicated models. This will be explained in detail in the following
chapters. Furthermore, since the Gaussian solutions are globally
defined for all times, they can be used to study the behaviour of
the solutions as time goes to infinity and to provide a basis for
scattering theory. In the next section we give some results in this
direction. To conclude this section let us mention another inter-
esting property of equation 4.1 and the corresponding nonlinear
equation 4.2. It was shown that the Gaussian form is preserved
by the evolution defined by these equations. However, they cer-
tainly have non-Gaussian solutions as well. An interesting fact
concerning these solutions is the effect of Gaussianisation, which
means that every solution is asymptotically Gaussian as t → ∞.
Moreover, unlike the case of the unitary Schrödinger equation of a
free quantum particle, where all solutions are asymptotically free
waves eipx (that is, Gaussian packets with the infinite dispersion),
the solutions of (4.1), (4.2) tend to a Gaussian function (4.3) with
a fixed finite non-vanishing ω. This fact has an important phys-
ical interpretation (it is called the watchdog effect for continuous
measurement, or the continuous collapse of the quantum state).
For Gaussian solutions it is obvious (see Proposition 4.2) and was
observed first in [Di2], [Be2]. For general initial data it was proved
by the author in [K4] (with improvements in [K7]). We shall now
state (without proof) the precise result.

Theorem 4.2 [K4],[K7]. Let ϕ be the solution of the Cauchy
problem for equation (4.2) with an arbitrary initial function ϕ0 ∈
L2, ∥ϕ0∥ = 1. Then for a.a. trajectories of the innovating Wiener
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process W ,
∥ϕ− π1/4g1−iq(t),p(t)∥ = O(e−γt)

as t→ ∞, for arbitrary γ ∈ (0, 1), where{
q(t) = qW + pW t+W (t) +

∫ t
0
W (s) ds+O(e−γt)

p(t) = pW +W +O(e−γt)

for some random constants qW , pW .
It follows in particular that the mean position of the solution

behaves like the integral of the Brownian motion, which provides
one of the motivations for the study of this process in the next
section.

We note also that finite dimensional analogues of the locali-
sation under continuous measurement and its applications are dis-
cussed in [K8], [Ju], [K14], where the notion of the coefficient of the
quality of measurement was introduced to estimate this localisation
quantitatively.

5. The escape rate for Gaussian diffusions
and scattering theory for its perturbations

In this Section we show how the results of the two previous
Sections can be used to estimate the escape rate for Gaussian diffu-
sions and to develop the scattering theory for small perturbations.
The results of this section will not be used in other parts of the
book. We shall show first how one estimates the escape rate in the
simplest nontrivial example, namely for the integral of the Brown-
ian motion. Then more general models will be discussed including
the stochastic Schrödinger equation.

LetW (t) be the standard Wiener process in Rn. Consider the
system

ẋ = p, dp = −ϵV ′(x) dt+ dW (5.1)

with some positive smooth function V (x) and some ϵ > 0. This
system describes a Newtonian particle in a potential field V dis-
turbed by a white noise force. The global existence theorem for
this system was proved in [AHZ]. Firstly, if V vanishes, the solu-
tion x(t) of (3.1) is simply the integral of the Brownian motion

Y (t) =
∫ t
0
W (s) ds.
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Theorem 5.1 [K6],[K2]. If n > 1, then, almost surely, Y (t) →
∞, as t→ ∞, moreover,

lim inf
t→∞

(|Y (t)|/g(t)) = ∞ (5.2)

for any positive increasing function g(t) on R+ such that
∫∞
0

(g(t)t−3/2)n dt
is a convergent integral.

Remark. For example, for any δ > 0 the function

g(t) = t
3
2−

1
n−δ

satisfies the conditions of the Theorem.
Proof. For an event B in the Wiener space we shall denote

by P (B) the probability of B with respect to the standard Wiener
measure. The theorem is a consequence of the following assertion.
Let A be a fixed positive constant and let BtA,g be the event in
Wiener space which consists of all trajectories W such that the
set {Y (s) : s ∈ [t, t+ 1]} has nonempty intersection with the cube
[−Ag(t), Ag(t)]n. Then

P (BtA,g) = (O(g(t)t−3/2) +O(t−1))n. (5.3)

In fact, (5.3) implies that
∑∞
m=1 P (B

m
A,g) <∞, if the conditions of

the Theorem hold. Then by the first Borell-Cantelli lemma, only
a finite number of the events BmA,β can hold. Hencs there exists a
constant T such that Y (t) /∈ [−Ag([t]), Ag([t])]n for t > T , where
[t] denotes the integer part of t. This implies the result.

Let us now prove (5.3). Clearly, it is enough to consider the
case n = 1. The density pt(x, y) of the joint distribution of W (t)
and Y (t) is well known to be

pt(x, y) =

√
3

πt2
exp

{
−2

t
x2 +

6

t2
xy − 6

t3
y2
}
.

In particular,

pt(x, y) ≤
√
3

πt2
exp

{
−x

2

2t

}
. (5.4)
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It is clear that

P (BtA,g) = P (Y (t) ∈ [−Ag(t), Ag(t)])

+2

∫ ∞

Ag(t)

dy

∫ +∞

−∞
pt(x, y)P

(
min

0≤τ≤1
(y + τx+

∫ τ

0

W (s) ds) < Ag(t)

)
dx

(5.5)
The first term of (5.5) is given by

1√
2πt3

∫ Ag(t)

−Ag(t)
exp

{
− y2

2t3

}
dy

and is of order O(g(t)t−3/2). The second term can be estimated
from above by the integral

2

∫ ∞

Ag(t)

dy

∫ +∞

−∞
pt(x, y)P

(
min

0≤τ≤1
τx+ min

0≤τ≤1
W (τ) < Ag(t)− y

)
dx.

We decompose this integral in the sum I1+I2+I3 of three integrals,
whose domain of integration in the variable x are {x ≥ 0}, {Ag(t)−
y ≤ x ≤ 0}, and {x < Ag(t)− y} respectively. We shall show that
the integrals I1 and I2 are of order O(t−3/2) and the integral I3 is
of order O(t−1), which will complete the proof of (5.3).

It is clear that

I1 = 2

∫ ∞

Ag(t)

dy

∫ ∞

0

pt(x, y)P

(
min

0≤τ≤1
W (τ) < Ag(t)− y

)
dx.

Enlarging the domain of integration in x to the whole line, integrat-
ing over x, and using the well known distribution for the minimum
of the Brownian motion we obtain

I1 ≤ 2

π
√
t3

∫ ∞

Ag(t)

exp

{
− y2

2t3

}
dy

∫ ∞

y−Ag(t)
exp

{
−z

2

2

}
dz.

Changing the order of integration we can rewrite the last expression
in the form

2

π
√
t3

∫ ∞

0

exp

{
−z

2

2

}
dz

∫ Ag(t)+z

Ag(t)

exp

{
− y2

2t3

}
dy.
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Consequently,

I1 ≤ 2

π
√
t3

∫ ∞

0

z exp

{
−z

2

2

}
dz = O(t−3/2).

We continue with I2. Making the change of variable x 7→ −x we
obtain

I2 = 2

∫ ∞

Ag(t)

dy

∫ y−Ag(t)

0

pt(−x, y)P
(

min
0≤τ≤1

< Ag(t)− y + x

)
dx.

Making the change of the variable s = y − Ag(t) and using the
distribution of the minimum of the Brownian motion we obtain
that

I2 = 2

∫ ∞

0

ds

∫ s

0

pt(−x, s+Ag(t)) dx

√
2

π

∫ ∞

s−x
exp

{
−z

2

2

}
dz.

Estimating pt(x, y) by (5.4) and changing the order of integration
we get

I2 ≤ 4√
2π

√
3

πt2

∫ ∞

0

dz exp

{
−z

2

2

}∫ ∞

0

dx exp

{
−x

2

2t

}∫ x+z

x

ds.

The last integral is clearly of order O(t−3/2). It remains to estimate
the integral I3. We have

I3 = 2

∫ ∞

Ag(t)

dy

∫ ∞

y−Ag(t)
pt(−x, y) dx = 2

∫ ∞

0

pt(−x, y) dx
∫ Ag(t)+x

Ag(t)

dy

≤ 2
√
3

πt2

∫ ∞

0

x exp{−x
2

2t
} dx = O(t−1).

The proof is complete.
It is evident that the method of the proof is rather general and

can be applied to other processes whenever a reasonable estimate
for the transition probability at large times is available. For exam-
ple, one easily obtains the following generalisation of the previous
result.
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Theorem 5.2. Let Yk be the family of processes defined re-
currently by the formulas Yk =

∫ t
0
Yk−1(s) ds, k = 1, 2, ..., with

Y0 = W being the standard n-dimensional Brownian motion. If
n > 1 and f(t) is an increasing positive function for which the
integral

∫∞
1

(f(t)t−(k+1/2))n dt is convergent, then

lim inf
t→∞

(|Yk(t)|/f(t)) = +∞

with probability one.
The same method can be used to estimate the rate of escape for

the processes discussed in Section 3. For example, for the Ornstein-
Uhlenbeck process defined by the stochastic differential system{

dX = v dt,
dv = −βv dt+ dW

(5.6)

with constant β > 0, the application of this method together with
the estimate of Proposition 3.2 leads to the following result.

Theorem 5.3 [AK]. Let n ≥ 3 and let f(t) be an increasing
positive function such that

∫∞
1

(f(t)/
√
t)n dt <∞. Let X(t, [W ]), v(t, [W ])

denote a solution of (5.6). Then almost surely

lim inf
t→∞

(|X(t, [W ])|/f(t)) = ∞. (5.7)

Similar results were obtained in [AK] for the processes de-
scribed in Proposition 3.1. Infinite-dimensional generalisations of
these results are also given in [AK]. Theorems 5.1-5.3 allow to de-
velop the scattering theory for small perturbations of the corre-
sponding Gaussian diffusions. For example, the following result
is a simple corollary of Theorem 5.1 and standard arguments of
deterministic scattering theory.

Theorem 5.4 [AHK1]. Let n > 2 and let the vector valued
function F (x) = V ′(x) is uniformly bounded, locally Lipschitz con-
tinuous and suppose furthermore that there exist constants C > 0
and α > 4n/(3n− 2) such that

|K(x)| ≤ C|x|−α ∀ x ∈ Rn, (5.8)
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|K(x)−K(y)| ≤ Cr−α|x− y| ∀ x, y : |x|, |y| > r. (5.9)

Then for any pair (x∞, p∞) ∈ R2n and for almost all W there
exists a unique pair (x0, p0) (depending on W ) such that the solu-
tion (x̃, p̃) to the Cauchy problem for system (5.1) with initial data
(x0, p0) has the following limit behaviour:

lim
t→∞

(p̃(t)−W (t)− p∞) = 0, (5.10)

lim
t→∞

(x̃(t)−
∫ t

0

W (s) ds− x∞ − tp∞) = 0. (5.11)

Moreover, the mapping Ω+([W ]) : (x∞, p∞) 7→ (x0, p0), which can
naturally be called the random wave operator, is an injective mea-
sure preserving mapping R2n 7→ R2n.

It is worth mentioning that the assumptions on the force F in
the theorem are weaker than those usually adopted to prove the
existence of wave operators for deterministic Newtonian systems.
In particular, the long range Coulomb potential satisfies the as-
sumption of Theorem 5.4. The reason for this lies in Theorem 5.1
which states that a particle driven by white noise force tends to
infinity faster than linearly in time. The question whether Ω+ is
surjective or not can be considered as the question of asymptotic
completeness of the wave operator Ω+. The following weak re-
sult was obtained by means of Theorem 5.1 and certain estimates
for the probability density for the processes defined by the system
(5.1).

Theorem 5.5 [AHK2]. Let F (x) = V ′(x) be bounded locally
Lipschitz continuous function from L2(Rn) and n > 2. Then there
exists ϵ0 > 0 such that for arbitrary ϵ ∈ (0, ϵ0] and any (x0, p0) there
exists with probability one a pair (x∞, p∞) such that (5.10),(5.11)
hold for the solution of the Cauchy problem for (5.1) with initial
data (x0, p0).

Hence, if the conditions of Theorems 5.4 and 5.5 are satisfied,
then for small ϵ > 0 the random wave operator for the scattering
defined by system (5.1) exists and is a measure preserving bijection
(i.e. it is complete).

Similarly one can obtain the existence of the random wave
operator for small perturbations of the Ornstein-Uhlenbeck process
(5.6) (see details in [AK]).
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The stochastic Newtonian system (5.1) formally describes the
dynamics of particle in the (formal) potential field V (x) − xẆ .
The formal Schrödinger equation for the corresponding quantised
system would have the form

ihψ̇ = (−h
2

2
∆ + V (x))ψ − xψẆ . (5.12)

To write this equation in a rigorous way, one should use stochastic
differentials and thus one obtains

ih dψ = (−h
2

2
∆ + V (x))ψ dt− xψ dSW. (5.13)

Using the transformation rule for going from the Stratonovich dif-
ferential to the Ito one ψ dSW = ψdW + 1

2dψdW one gets the Ito
form of stochastic Schrödinger equation

ih dψ = (−h
2

2
∆ + V (x))ψ dt− i

2h
x2ψ dt− xψ dW. (5.14)

This equation is one of the simplest (and also most important) ex-
amples of a Hudson-Parthasarathy quantum stochastic evolution
(with unbounded coefficients) [HP] describing in general the cou-
pling of a given quantum system with boson reservoir (the latter
being, in particular, the simplest model of a measuring appara-
tus). Formally, one can easily verify (using Ito calculus) that the
evolution defined by (5.14) is almost surely unitary. To make these
calculations rigorous one should use the well-posedness theorem for
the Cauchy problem of equation (5.14) obtained in [K1] for mea-
surable bounded potentials V . The idea of the proof is to develop a
perturbation theory, starting from equation (5.14) with vanishing
potential, i.e. from the equation

ih dϕ = −h
2

2
∆ϕdt− i

2h
x2ϕdt− xϕ dW. (5.15)

This equation has the form (4.1) with purely imaginary α,G and
real β and was considered in detail in the previous Section. The
properties of equation (5.15) obtained there can be used also for the
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development of the scattering theory for equation (5.14). Namely,
using Theorem 5.1 and the Gaussian solutions (4.2) of equation
(5.15) as the test solutions for the Cook method [Coo] one obtains
(see details of the proof in [K2]) the existence of the wave operator
for the scattering defined by the stochastic Schrödinger equation
(5.14), namely, the following result.

Theorem 5.6 [K2]. Let the potential V in (5.14) belong to
the class Lr(Rn) for some r ∈ [2, n) and let the dimension n be
greater than 2. Then for each solution of (4.3) (defined by an
initial function ψ0 ∈ L2(Rn)) there exists with probability one a
solution ϕ of (5.15) such that, in L2(Rn),

lim
t→∞

(ψ(t)− ϕ(t)) = 0.

This result is a more or less straightforward generalisation of
the corresponding deterministic result. Apparently a deeper theory
is required for the consideration of the perturbations of the general
equation (4.1), because already the ”free” dynamics for this case is
much more complicated, as Theorem 4.2 states.



CHAPTER 2. BOUNDARY VALUE PROBLEM
FOR HAMILTONIAN SYSTEMS

1. Rapid course in calculus of variations

In this preliminary section we present in a compact form the
basic facts of the calculus of variations which are relevant to the
asymptotical methods developed further. Unlike most standard
courses in calculus of variations, see e.g. [Ak], [ATF], [GH], we
develop primarily the Hamiltonian formalism in order to include in
the theory the case of degenerate Hamiltonians, whose Lagrangians
are singular (everywhere discontinuous) and for which in conse-
quence the usual method of obtaining the formulas for the first and
second variations (which lead to the basic Euler-Lagrange equa-
tions) makes no sense. Moreover, we draw more attention to the
absolute minimum, (and not only to local minima), which is usu-
ally discussed in the framework of the so called direct methods of
the calculus of variations.

A) Hamiltonian formalism and the Weierstrass condi-
tion. Let H = H(x, p) be a smooth real-valued function on R2n.
By ”smooth” we shall always mean existence of as many continu-
ous derivatives as appears in formulas and conditions of theorems.
For the main results of this section it is enough to consider H to
be twice continuously differentiable. Let X(t, x0, p0), P (t, x0, p0)
denote the solution of the Hamiltonian system{

ẋ = ∂H
∂p (x, p)

ṗ = −∂H
∂x (x, p)

(1.1)

with initial conditions (x0, p0) at time zero. The projections on
the x-space of the solutions of (1.1) are called characteristics of the
Hamiltonian H, or extremals. Suppose for some x0 and t0 > 0,
and all t ∈ (0, t0], there exists a neighbourhood of the origin in the
p-space Ωt(x0) ∈ Rn such that the mapping p0 7→ X(t, x0, p0) is
a diffeomorphism from Ωt(x0) onto its image and, moreover, this
image contains a fixed neighbourhood D(x0) of x0 (not depending
on t). Then the family Γ(x0) of solutions of (1.1) with initial data
(x0, p0), p0 ∈ Ωt(x0), will be called the family (or field) of charac-
teristics starting from x0 and covering D(x0) in times t ≤ t0. The
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discussion of the existence of this family Γ(x0) for different Hamil-
tonians is one of the main topics of this chapter and will be given
in the following sections. Here, we shall suppose that the family
exists, and therefore there exists a smooth function

p0(t, x, x0) : (0, t0]×D(x0) 7→ Ωt(x0)

such that
X(t, x0, p0(t, x, x0)) = x. (1.2)

The family Γ(x0) defines two natural vector fields in (0, t0]×D(x0),
namely, with each point of this set are associated the momentum
and velocity vectors

p(t, x) = P (t, x0, p0(t, x, x0)), v(t, x) =
∂H

∂p
(x, p(t, x)) (1.3)

of the solution of (1.1) joining x0 and x in time t.
Furthermore, to each solution X(t, x0, p0), P (t, x0, p0) of (1.1)

corresponds the action function defined by the formula

σ(t, x0, p0) =

∫ t

0

(P (τ, x0, p0)Ẋ(τ, x0, p0)−H(X(τ, x0, p0), P (τ, x0, p0))) dτ.

(1.4)
Due to the properties of the field of characteristics Γ(x0), one can
define locally the two-point function S(t, x, x0) as the action along
the trajectory from Γ(x0) joining x0 and x in time t, i.e.

S(t, x, x0) = σ(t, x0, p0(t, x, x0)). (1.5)

Using the vector field p(t, x) one can rewrite it in the equivalent
form

S(t, x, x0) =

∫ t

0

(p(τ, x) dx−H(x, p(τ, x)) dτ), (1.6)

the curvilinear integral being taken along the characteristicX(τ, x0, p0(t, x;x0)).
The following statement is a central result of the classical cal-

culus of variations.

Proposition 1.1. As a function of (t, x) the function S(t, x, x0)
satisfies the Hamilton-Jacobi equation

∂S

∂t
+H(x,

∂S

∂x
) = 0 (1.7)
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in the domain (0, t0]×D(x0), and moreover

∂S

∂x
(t, x) = p(t, x). (1.8)

Proof. First we prove (1.8). This equation can be rewritten as

P (t, x0, p0) =
∂S

∂x
(t,X(t, x0, p0))

or equivalently as

P (t, x0, p0) =
∂σ

∂p0
(t, x0, p0(t, x, x0))

∂p0
∂x

(t, x, x0).

Due to (1.2) the inverse matrix to ∂p0
∂x (t, x, x0) is

∂X
∂p0

(t, x0, p0(t, x, x0)).

It follows that equation (1.8) written in terms of the variables (t, p0)
has the form

P (t, x0, p0)
∂X

∂p0
(t, x0, p0) =

∂σ

∂p0
(t, x0, p0). (1.9)

This equality clearly holds at t = 0 (both parts vanish). Moreover,
differentiating (1.9) with respect to t one gets using (1.1) (and
omitting some arguments for brevity) that

−∂H
∂x

∂X

∂p0
+ P

∂2X

∂t∂p0
=
∂P

∂p0

∂H

∂p
+ P

∂2X

∂t∂p0
− ∂H

∂p

∂P

∂p0
− ∂H

∂x

∂X

∂p0
,

which clearly holds. Therefore, (1.9) holds for all t, which proves
(1.8).

To prove (1.7), let us first rewrite it as

∂σ

∂t
+
∂σ

∂p0

∂p0
∂t

(t, x) +H(x, p(t, p0(t, x))) = 0.

Substituting for ∂σ
∂t from (1.4) and for ∂σ

∂p0
from (1.9) yields

P (t, x0, p0)Ẋ(t, x0, p0) + P (t, x0, p0)
∂X

∂p0
(t, x0, p0)

∂p0
∂t

= 0. (1.10)
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On the other hand, differentiating (1.2) with respect to t yields

∂X

∂p0
(t, x0, p0)

∂p0
∂t

+ Ẋ(t, x0, p0) = 0,

which proves (1.10).

We now derive some consequences of Proposition 1.1 showing
in particular what it yields for the theory of optimisation.

Corollary 1. The integral in the r.h.s. of (1.6) does not
depend on the path of integration, i.e. it has the same value for all
smooth curves x(τ) joining x0 and x in time t and lying completely
in the domain D(x0).

Proof. This is clear, because, by (1.7) and (1.8), this is the
integral of a complete differential.

In the calculus of variations, the integral on the r.h.s. of (1.6)
is called the invariant Hilbert integral and it plays the crucial role
in this theory.

Let the Lagrange function L(x, v) be defined as the Legendre
transform of H(x, p) in the variable p, i.e.

L(x, v) = max
p

(pv −H(x, p)), (1.11)

and let us define the functional

It(y(.)) =

∫ t

0

L(y(τ), ẏ(τ)) dτ (1.12)

on all piecewise-smooth curves (i.e. these curves are continuous and
have continuous derivatives everywhere except for a finite number
of points, where the left and right derivatives exist) joining x0 and
x in time t, i.e. such that y(0) = x0 and y(t) = x. Together with
the invariant Hilbert integral, an important role in the calculus of
variations belongs to the so called Weierstrass function W (x, q, p)
defined (in the Hamiltonian picture) as

W (x, q, p) = H(x, q)−H(x, p)− (q − p,
∂H

∂p
(x, p)). (1.13)
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One says that theWeierstrass condition holds for a solution (x(τ), p(τ))
of system (1.1), if W (x(τ), q, p(τ)) ≥ 0 for all τ and all q ∈ Rn.
Note that if the Hamiltonian H is convex (even non-strictly) in the
variable p, then the Weierstrass function is non-negative for any
choice of its arguments, thus in this case the Weierstrass condition
holds trivially for all curves.

Corollary 2. (Weierstrass sufficient condition for a rela-
tive minimum). If the Weierstrass condition holds on a trajec-
tory X(τ, x0, p0), P (τ, x0, p0) of the field Γ(x0) joining x0 and x
in time t (i.e. such that X(t, x0, p0) = x), then the characteristic
X(τ, x0, p0) provides a minimum for the functional (1.12) over all
curves lying completely in D(x0). Furthermore S(t, x, x0) is the
corresponding minimal value.

Proof. For any curve y(τ) joining x0 and x in time t and lying
in D(x0) one has (from (1.11):

It(y(.)) =

∫ t

0

L(y(τ), ẏ(τ)) dτ ≥
∫ t

0

(p(t, y(τ))ẏ(τ)−H(y(τ), p(τ, y(τ))) dτ.

(1.14)
By Corollary 1, the r.h.s. here is just S(t, x, x0). It remains to
prove that S(t, x, x0) gives the value of It on the characteristic
X(τ, x0, p0(t, x.x0)). It is enough to show that

P (τ, x0, p0)Ẋ(τ, x0, p0)−H(X(τ, x0, p0), P (τ, x0, p0))

equals L(X(τ, x0, p0), Ẋ(τ, x0, p0)), where p0 = p0(t, x, x0), i.e. that

P (τ, x0, p0)
∂H

∂p
(X(τ, x0, p0), P (τ, x0, p0))−H(X(τ, x0, p0), P (τ, x0, p0))

≥ q
∂H

∂p
(X(τ, x0, p0), P (τ, x0, p0))−H(X(τ, x0, p0), q)

for all q. But this inequality is just the Weierstrass condition, which
completes the proof.

Remark. In the more usual Lagrangian picture, i.e. in terms of
the variables x, v connected with the canonical variables x, p by the



45

formula v(x, p) = ∂H
∂p (x, p), the Weierstrass function (1.13) takes

its original form

W (x, v0, v) = L(x, v)− L(x, v0)− (v − v0,
∂L

∂v
(x, v0))

and the invariant Hilbert integral (1.6) in terms of the field of
velocities (or slopes) v(t, x) (see (1.3)) takes the form∫

∂L

∂v
(x, v) dx−

(
(v,

∂L

∂v
(x, v))− L(x, v)

)
dt.

Before formulating the next result let us recall a fact from
convex analysis: if H is convex (but not necessarily strictly) and
smooth, and L is its Legendre transform (1.11), then H is in its
turn the Legendre transform of L, i.e.

H(x, p) = max
v

(vp− L(x, v)), (1.15)

moreover, the value of v furnishing maximum in this expression is
unique and is given by v = ∂H

∂p . The proof of this fact can be found

e.g. in [Roc]. In fact, we use it either for strictly convex H (with
∂2H
∂p2 > 0 everywhere), or for quadratic Hamiltonians, and for both
these cases the proof is quite straightforward.

Corollary 3. If H is (possibly non-strictly) convex, then the
characteristic of the family Γ joining x0 and x in time t is the
unique curve minimising the functional It (again in the class of
curves lying in D(x0)).

Proof. From the fact of the convex analysis mentioned above,
the inequality in (1.14) will be strict whenever ẏ(τ) ̸= v(τ, y) (the
field of velocities v was defined in (1.3)), which proves the unique-
ness of the minimum.

B) Conjugate points and Jacobi’s theory. The system
in variations corresponding to a solution x(τ), p(τ) of (1.1) is by
definition the linear (non-homogeneous) system{

v̇ = ∂2H
∂p∂x (x(τ), p(τ))v +

∂2H
∂p2 (x(τ), p(τ))w,

ẇ = −∂2H
∂x2 (x(τ), p(τ))v − ∂2H

∂x∂p (x(τ), p(τ))w.
(1.16)
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This equation holds clearly for the derivatives of the solution with
respect to any parameter, for instance, for the characteristics from
the family Γ(x0) it is satisfied by the matrices

v =
∂X

∂p0
(τ, x0, p0), w =

∂P

∂p0
(τ, x0, p0).

The system (1.16) is called the Jacobi equation (in Hamiltonian
form). One sees directly that (1.16) is itself a Hamiltonian system
corresponding to the quadratic inhomogeneous Hamiltonian

1

2

(
∂2H

∂x2
(x(τ), p(τ))v, v

)
+

(
∂2H

∂p∂x
(x(τ), p(τ))v, w

)
+
1

2

(
∂2H

∂p2
(x(τ), p(τ))w,w

)
(1.17)

Two points x(t1), x(t2) on a characteristic are called conjugate, if
there exists a solution of (1.16) on the interval [t1, t2] such that
v(t1) = v(t2) = 0 and v does not vanish identically on [t1, t2].

Proposition 1.2 (Jacobi condition in Hamiltonian form). Sup-
pose the Hamiltonian H is strictly convex and smooth. If a char-
acteristic x(τ) contains two conjugate points x(t1), x(t2), then for
any δ > 0, its interval [x(t1), x(t2 + δ)] does not yield even a local
minimum for the functional (1.12) among the curves joining x(t1)
and x(t2 + δ) in time t2 − t1 + δ.

The standard proof of this statement (see any textbook in
the calculus of variations, for example [Ak]) uses the Lagrangian
formalism and will be sketched at the end of subsection D) in a more
general situation. In Sect. 3, we shall present a Hamiltonian version
of this proof, which can be used for various classes of degenerate
Hamiltonians.

C) Connections between the field of extremals and the
two-point function. These connections are systematically used in
the construction of WKB-type asymptotics for pseudo-differential
equations.

Let us first write the derivatives of S(t, x, x0) with respect to
x0.

Proposition 1.3. Let the assumptions of Proposition 1.1 hold
for all x0 in a certain domain. Then

∂S

∂x0
(t, x, x0) = −p0(t, x, x0). (1.18)
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Moreover, as a function of t, x0, the function S(t, x, x0) satisfies the
Hamilton-Jacobi equation corresponding to the Hamiltonian H̃(x, p) =
H(x,−p).

Proof. If the curve (x(τ), p(τ)) is a solution of (1.1) joining x0
and x in time t, then the curve (x̃(τ) = x(t−τ), p̃(τ) = −p(t−τ)) is
the solution of the Hamiltonian system with Hamiltonian H̃ joining
the points x and x0 in time t. Both statements of the Proposition
follow directly from this observation and Proposition 1.1.

Corollary 1. If ∂X∂p0 (t, x0, p0) is a non-degenerate matrix, then

∂2S

∂x2
(t, x, x0) =

∂P

∂p0
(t, x0, p0)

(
∂X

∂p0
(t, x0, p0)

)−1

, (1.19)

∂2S

∂x20
(t, x, x0) =

(
∂X

∂p0
(t, x0, p0)

)−1
∂X

∂x0
(t, x0, p0), (1.20)

∂2S

∂x0∂x
(t, x, x0) = −

(
∂X

∂p0
(t, x0, p0)

)−1

. (1.21)

Proof. This follows from (1.2), (1.8), and (1.18) by differenti-
ating.

Formula (1.19) combined with the following result, which is
a consequence of (1.8) and Taylor’s formula, can be used for the
asymptotic calculations of S.

Corollary 2. Let x̃(t, x0), p̃(t, x0) denote the solution of (1.1)
with initial data (x0, 0). Then

S(t, x, x0) = S(t, x̃, x0) + (p̃(t, x0), x− x̃)

+

∫ 1

0

(1− θ)

(
∂2S

∂x2
(t, x̃+ θ(x− x̃), x0)(x− x̃), x− x̃

)
dθ. (1.22)

Finally let us mention here the formula for the ”composi-
tion of Jacobians” after splitting of a characteristic. The function
J(t, x, x0) = det ∂X∂p0 (t, x0, p0) is called the Jacobian (corresponding

to the family Γ(x0)).

Proposition 1.4. Under the assumptions of Proposition 1.3
let t1 + t2 ≤ t0 and define

f(η) = S(t1, x, η) + S(t2, η, x0).
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Denote q = p0(t1 + t2, x;x0) and

η̃ = X(t2, x0, q), p̃ = P (t2, x0, q).

Then

∂X

∂p0
(t1 + t2, x0, q) =

∂X

∂p0
(t1, η̃, p̃)

∂2f

∂η2
(η̃)

∂X

∂p0
(t2, x0, q).

In particular,

det
∂2f

∂η2
(η̃) = J(t1 + t2, x, x0)J

−1(t1, x, η̃)J
−1(t2, η̃, x0). (1.23)

Proof. Let us represent the map X(t1 + t2, x0, p0) as the com-
position of two maps

(x0, p0) 7→ (η = X(t2, x0, p0), pη = P (t2, x0, p0))

and (η, pη) 7→ X(t1, η, pη). Then

∂X

∂p0
(t1+t2, x0, p0) =

∂X

∂x0
(t1, η, pη)

∂X

∂p0
(t2, x0, p0)+

∂X

∂p0
(t1, η, pη)

∂P

∂p0
(t2, x0, p0)

For p0 = q we have η = η̃, pη = p̃η. Substituting in the last formula
for the derivatives ∂X

∂p0
and ∂X

∂x0
in terms of the second derivatives of

the two-point function by means of (1.19)-(1.21), yields the Propo-
sition.

D) Lagrangian formalism. We discuss now the Lagrangian
approach to the calculus of variations studying directly the minimi-
sation problem for functionals depending on the derivatives of any
order. Let the function L on Rn(ν+2), the Lagrangian, be given,
and assume that it has continuous derivatives of order up to and
including ν+2 in all its arguments. Consider the integral functional

It(y(.)) =

∫ t

0

L(y(τ), ẏ(τ), ..., y(ν+1)(τ) dτ) (1.24)



49

on the class of functions y on [0, t] having continuous derivatives up
to and including order ν, having a piecewise-continuous derivative
of order ν + 1 and satisfying the boundary conditions{

y(0) = a0, ẏ(0) = a1, ..., y(ν)(0) = aν ,
y(t) = b0, ẏ(t) = b1, ..., y(ν)(t) = bν .

(1.25)

Such functions will be called admissible. Suppose now that there
exists an admissible function ȳ(τ) minimising the functional (1.24).
It follows that for any function η(τ) on [0, t] having continuous
derivatives of order up to and including ν, having a piecewise-
continuous derivative of order ν + 1, and vanishing together with
all its derivatives up to and including order ν at the end points 0, t,
the function

f(ϵ) = It(y(.) + ϵη(.))

has a minimum at ϵ = 0 and therefore its derivative at this point
vanishes:

f ′(0) =

∫ t

0

(
∂L̄

∂y
η +

∂L̄

∂ẏ
η̇ + ...+

∂L̄

∂y(ν+1)
η(ν+1)

)
= 0,

where we denote ∂L̄
∂y(j)

= ∂L
∂y(j)

(ȳ(τ), ˙̄y(τ), ..., ȳ(ν+1)(τ)). Integrating

by parts and using boundary conditions for η, yields∫ t

0

[(
∂L̄

∂ẏ
−
∫ τ

0

∂L̄

∂y
ds

)
η̇(τ) +

∂L̄

∂ÿ
η̈(τ) + ...+

∂L̄

∂y(ν+1)
η(ν+1)(τ)

]
dτ = 0.

Continuing this process of integrating by parts one obtains∫ t

0

g(τ)η(ν+1)(τ) dτ = 0, (1.26)

where

g(τ) =
∂L̄

∂y(ν+1)
(τ)−

∫ τ

0

∂L̄

∂y(ν)
(τ1) dτ1+

∫ τ

0

(∫ τ1

0

∂L̄

∂y(ν−1)
(τ2) dτ2

)
dτ1+...

+(−1)ν+1

∫ τ

0

...

(∫ τν

0

∂L̄

∂y
(τν+1) dτν+1

)
...dτ1. (1.27)
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Proposition 1.5 (Second lemma of the calculus of variations).
If a continuous function g on [0, t] satisfies (1.26) for all η in the
class described above, then g is a polynomial of order ν, i.e. there
exist constants c0, c1, ..., cν such that

g(τ) = c0 + c1τ + ...+ cντ
ν . (1.28)

Proof. There exist constants c0, c1, ..., cν such that∫ t

0

(g(τ)− c0 − c1τ − ...− cντ
ν)τ j dτ = 0 (1.29)

for all j = 0, 1, ..., ν. In fact, (1.29) can be written in the form

c0
tj+1

j + 1
+ c1

tj+2

j + 2
+ ...+ cν

tj+ν+1

j + ν + 1
=

∫ t

0

g(τ)τ j dτ, j = 0, ..., ν.

The system of linear equations for c0, ..., cν has a unique solution,
because its matrix is of form (1.2.8) and has non-vanishing deter-
minant given by (1.2.9). Let us set

η̄(τ) =

∫ τ

0

(τ − s)ν

ν!
[g(s)− c0 − c1s− ...− cνs

ν ] ds.

It follows that

η̄(j)(τ) =

∫ τ

0

(τ − s)ν−j

(ν − j)!
[g(s)−c0−c1s−...−cνsν ] ds, j = 0, ..., ν,

and therefore, by (1.28), η̄ satisfies the required conditions and one
can take η = η̄ in (1.26), which gives∫ t

0

(g(τ)− c0 − c1τ − ...− cντ
ν)g(τ) dτ = 0.

Using (1.29) one can rewrite this equation in the form∫ t

0

(g(τ)− c0 − c1τ − ...− cντ
ν)2 dτ = 0,
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which implies (1.28).
Equation (1.28), with g(τ) given by (1.27), is called the Euler

equation in the integral form. Solutions of this equation are called
extremals of functional (1.24). The following simple but impor-
tant result was first stated by Hilbert in the case of the standard
problem, i.e. when ν = 0.

Proposition 1.6 (Hilbert’s theorem on the regularity of ex-
tremals). Let ȳ(τ) be an admissible curve for problem (1.24) satis-
fying equation (1.27), (1.28), and let the matrix

∂2L̄

(∂y(ν+1))2
(τ) =

∂2L

(∂y(ν+1))2
(ȳ(τ), ˙̄y(τ), ..., ȳ(ν+1)(τ))

be positive-definite for all τ ∈ [0, t]. Then ȳ(τ) has continuous
derivatives of order up to and including 2(ν + 1); moreover, it
satisfies the Euler differential equation

∂L

∂y
− d

dτ

∂L

∂ẏ
+

d2

d2τ

∂L

∂ÿ
− ...+ (−1)ν+1 d

ν+1

dτν+1

∂L

∂y(ν+1)
= 0. (1.30)

Proof. By the assumption of the Proposition and the implicit
function theorem, one can solve equation (1.27),(1.28) (at least
locally, in a neighbourhood of any point) for the last derivative
y(ν+1). This implies that ȳ(ν+1) is a continuously differentiable
function, moreover, differentiating (with respect to τ) the formula
for ȳ(ν+1) thus obtaines, one gets by induction the existence of the
required number of derivatives. (In fact, if L is infinitely differ-
entiable, one gets by this method that ȳ is also infinitely differ-
entiable.) Once the regularity of ȳ is proved, one obtains (1.30)
differentiating (1.27),(1.28) ν + 1 times.

Remark. The standard Euler-Lagrange equations correspond
to (1.27), (1.28) and (1.30) with ν = 0. It is worth mentioning also
that if one assumes from the beginning that a minimising curve
has 2(ν+1) derivatives one can easily obtain differential equations
(1.30) directly, without using the (intuitively not much appealing)
integral equations (1.27), (1.28).

We now present the Hamiltonian form of the Euler-Lagrange
equation (1.30) thus giving the connection between the Lagrangian
formalism of the calculus of variations and the Hamiltonian theory
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developed above. For this purpose, let us introduce the canonical
variables x = (x0, ..., xν) by x0 = y, x1 = ẏ, ..., xν = y(ν) and
p = (p0, ..., pν) by the equations

pν = ∂L
∂y(ν+1) (y, ẏ, ..., y

(ν), y(ν+1)),

pν−1 = ∂L
∂y(ν) − d

dτ

(
∂L

∂y(ν+1)

)
,

...
p0 = ∂L

∂ẏ − d
dτ

(
∂L
∂ÿ

)
+ ...+ (−1)ν dν

dτν

(
∂L

∂u(ν+1)

)
.

(1.31)

Proposition 1.7. Let ∂2L
(∂y(ν+1))2

≥ δ everywhere for some δ >

0. Then the equations (1.31) can be solved for y(ν+1), ..., y(2ν+1).
Moreover, y(ν+l+1) does not depend on p0, ..., pν−l−1, i.e. for all l:

y(ν+l+1) = fl(x, pν , pν−1, ..., pν−l). (1.32)

Proof. Due to the assumptions of the Proposition, the first equation
in (1.31) can be solved for y(ν+1):

y(ν+1) = f0(x0, ..., xν , pν). (1.33)

The second equation in (1.31) takes the form

pν−1 =
∂L

∂y(ν)
(x, y(ν+1))− ∂2L

∂y(ν+1)∂y
x1 − ...− ∂2L

∂y(ν+1)∂y(ν−1)
xν

− ∂2L

∂y(ν+1)∂y(ν)
y(ν+1) − ∂2L

(∂y(ν+1))2
y(ν+2).

One solves this equation with respect to y(ν+2) and proceeding in
the same way one obtains (1.32) for all l by induction.

The following fundamental result can be checked by direct
calculations that we omit (see e.g. [DNF]).

Proposition 1.8 (Ostrogradski’s theorem). Under the as-
sumptions of Proposition 1.7, the Lagrangian equations (1.30) are
equivalent to the Hamiltonian system (1.1) for the canonical vari-
ables x = (x0, ..., xν), p = (p0, ..., pν), with the Hamiltonian

H = x1p0 + ...+ xνpν−1 + f0(x, pν)pν − L(x0, ..., xν , f0(x, pν)),
(1.34)
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where f0 is defined by (1.33).
The most important example of a Lagrangian satisfying the

assumptions of Proposition 1.7 is when L is a quadratic form with
respect to the last argument, i.e.

L(x0, ..., xν , z) =
1

2
(g(x)(z + α(x)), z + α(x)) + V (x). (1.35)

The corresponding Hamiltonian (1.34) has the form

H = x1p0 + ...+ xνpν−1 +
1

2
(g−1(x)pν , pν)− (α(x), pν)− V (x).

(1.36)
To conclude, let us sketch the proof of Jacobi’s condition,

Prop. 1.2, for Hamiltonians of form (1.34) (which are degener-
ate for ν > 0) corresponding to functionals depending on higher
derivatives. One verifies similarly to Proposition 1.8 that the Jacobi
equations (1.16), being the Hamiltonian equations for the quadratic
approximation of the Hamiltonian (1.34), are equivalent to the La-
grangian equation for the quadratic approximation L̃ of the La-
grangian L around the characteristic x(.). Moreover, this (explic-
itly time- dependent) Lagrangian L̃(η, η′, ..., η(ν+1)) turns out to
be the Lagrangian of the second variation of (1.24), i.e. of the
functional

d2

dϵ2
|ϵ=0(It(x(.) + ϵη(.)).

For this functional η = 0 clearly furnishes a minimum. However,
if the point x(s), s ∈ (0, t) is conjugate to x(0), then a continu-
ous curve η̄ equal to a nontrivial solution of Jacobi’s equation on
the interval [0, s] and vanishing on [s, t] provides a broken mini-
mum (with derivative discontinuous at s) to this functional, which
is impossible by Proposition 1.6. Notice that we have only devel-
oped the theory for time-independent Lagrangians, but one sees
that including an explicit dependence on time t does not affect the
theory.

2. Boundary value problem for non-degenerate Hamiltonians

This section is devoted to the boundary value problem for the
system (1.1) with the Hamiltonian

H(x, p) =
1

2
(G(x)p, p)− (A(x), p)− V (x), (2.1)
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where G(x) is a uniformly strictly positive matrix, i.e. G(x)−1 ex-
ists for all x and is uniformly bounded. The arguments used for
this simple model (where the main results are known) are given in
a form convenient for generalisations to more complex models dis-
cussed later. We first prove the existence of the field of characteris-
tics Γ(x0), i.e. the uniqueness and existence for the local boundary
value problem for system (1.1), and then the existence of the global
minimum for functional (1.12), which also gives the global existence
for the boundary value problem. Finally the asymptotic formulas
for solutions are given. Before proceeding with the boundary value
problem, one needs some estimates on the solutions of the Cauchy
problem for the Hamiltonian system (1.1). For the case of the
Hamiltonian (2.1), (1.1) takes the form{

ẋ = G(x)p−A(x)
ṗi = − 1

2 (
∂G
∂xi

p, p) + ( ∂A∂xi
, p) + ∂V

∂xi
, i = 1, ...,m,

(2.2)

where we have written the second equation for each coordinate
separately for clarity.

Lemma 2.1. For an arbitrary x0 ∈ Rm and an arbitrary open
bounded neighbourhood U(x0) of x0, there exist positive constants
t0, c0, C such that if t ∈ (0, t0], c ∈ (0, c0] and p0 ∈ Bc/t, then the
solution X(s, x0, p0), P (s, x0, p0) of (2.2) with initial data (x0, p0)
exists on the interval [0, t], and for all s ∈ [0, t],

X(s, x0, p0) ∈ U(x0), ∥P (s, x0, p0)∥ < C(∥p0∥+ t). (2.3)

Proof. Let T (t) be the time of exit of the solution from the
domain U(x0), namely

T (t) = min (t, sup{s : X(s, x0, p0) ∈ U(x0), P (s, x0, p0) <∞}) .

Since G, A and their derivatives in x are continuous, it follows that
for s ≤ T (t) the growth of ∥X(s, x0, p0) − x0∥, ∥P (s, x0, p0)∥ is
bounded by the solution of the system{

ẋ = K(p+ 1)
ṗ = K(p2 + 1)



55

with the initial conditions x(0) = 0, p(0) = ∥p0∥ and some constant
K. The solution of the second equation is

p(s) = tan(Ks+ arctan p(0)) =
p(0) + tanKs

1− p(0) tanKs
.

Therefore, if ∥p0∥ ≤ c/t with c ≤ c0 < 1/K̃, where K̃ is chosen in
such a way that tanKs ≤ K̃s for s ≤ t0, then

1− ∥p0∥ tanKs > 1− ∥p0∥K̃s ≥ 1− c0K̃

for all s ≤ T (t). Consequently, for such s,

∥P (s, x0, p0)∥ ≤ ∥p0∥+ tanKs

1− c0K̃
, ∥X(s, x0, p0)−x0∥ ≤ Ks+K

c+ s tanKs

1− c0K̃
.

We have proved the required estimate but only for T (t) instead
of t. However, if one chooses t0, c0 in such a way that the last
inequality implies X(s, x0, p0) ∈ U(x0), it will follow that T (t) =
t. Indeed, if T (t) < t, then either X(T (t), x0, p0) belongs to the
boundary of U(x0) or P (T (t), x0, p0) = ∞, which contradicts the
last inequalities. The lemma is proved.

Lemma 2.2 There exist t0 > 0 and c0 > 0 such that if t ∈
(0, t0], c ∈ (0, c0], p0 ∈ Bc/t, then

1

s

∂X

∂p0
(s, x0, p0) = G(x0)+O(c+ t),

∂P

∂p0
(s, x0, p0) = 1+O(c+ t)

(2.4)
uniformly for all s ∈ (0, t].

Proof. Differentiating the first equation in (2.2) yields

ẍi =
∂Gik
∂xl

(x)ẋlpk +Gik(x)ṗk −
∂Ai
∂xl

ẋl

=

(
∂Gik
∂xl

pk −
∂Ai
∂xl

)
(Gljpj−Al)+Gik

(
−1

2
(
∂G

∂xk
p, p) + (

∂A

∂xk
, p) +

∂V

∂xk

)
.

(2.5)
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Consequently, differentiating the Taylor expansion

x(s) = x0 + ẋ(0)s+

∫ s

0

(s− τ)ẍ(τ) dτ (2.6)

with respect to the initial momentum p0 and using (2.3) one gets

∂X

∂p0
(s, x0, p0) = G(x0)s

+

∫ s

0

(
O(1 + ∥p0∥2)

∂X

∂p0
(τ, x0, p0) +O(1 + ∥p0∥)

∂P

∂p0
(τ, x0, p0)

)
(s−τ) dτ.

(2.7)
Similarly differentiating p(s) = p0 +

∫ s
0
ṗ(τ) dτ one gets

∂P

∂p0
(s, x0, p0)

= 1+

∫ s

0

(
O(1 + ∥p0∥2)

∂X

∂p0
(τ, x0, p0) +O(1 + ∥p0∥)

∂P

∂p0
(τ, x0, p0)

)
dτ.

(2.8)
Let us now regard the matrices v(s) = 1

s
∂X
∂p0

(s, x0, p0) and u(s) =
∂P
∂p0

(s, x0, p0) as elements of the Banach space Mm[0, t] of con-

tinuous m × m-matrix-valued functions M(s) on [0, t] with norm
sup{∥M(s)∥ : s ∈ [0, t]}. Then one can write equations (2.7), (2.8)
in abstract form

v = G(x0) + L1v + L̃1u, u = 1 + L2v + L̃2u,

where L1, L2, L̃1, L̃2 are linear operators in Mm[0, t] with norms
∥Li∥ = O(c2 + t2) and ∥L̃i∥ = O(c + t). This implies (2.4) for
c and t small enough. In fact, from the second equation we get
u = 1+O(c+ t)+O(c2+ t2)v, substituting this equality in the first
equation yields v = G(x0)+O(c+ t)+O(c2+ t2)v, and solving this
equation with respect to v we obtain the first equation in (1.4).

Now we are ready to prove the main result of this section,
namely the existence of the family Γ(x0) of the characteristics of
system (2.2) starting from x0 and covering a neighbourhood of x0
in times t ≤ t0.
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Theorem 2.1. (i) For each x0 ∈ Rm there exist c and t0 such
that for all t ≤ t0 the mapping p0 7→ X(t, x0, p0) defined on the ball
Bc/t is a diffeomorphism onto its image.

(ii) For an arbitrary small enough c there exist positive r =
O(c) and t0 = O(c) such that the image of this diffeomorphism
contains the ball Br(x0) for all t ≤ t0.

Proof. (i) Note first that, by Lemma 2.2, the mapping p0 7→
X(t, x0, p0) is a local diffeomorphism for all t ≤ t0. Furthermore,
if p0, q0 ∈ Bc/t, then

X(t, x0, p0)−X(t, x0, q0) =

∫ 1

0

∂X

∂p0
(t, x0, q0+s(p0−q0)) ds (p0−q0)

= t(G(x0) +O(c+ t))(p0 − q0) (2.9)

Therefore, for c and t sufficiently small, the r.h.s. of (2.9) cannot
vanish if p0 − q0 ≠ 0.

(ii), (iii) We must prove that for x ∈ Br(x0) there exists p0 ∈
Bc/t such that x = X(t, x0, p0), or equivalently, that

p0 = p0 +
1

t
G(x0)

−1(x−X(t, x0, p0)).

In other words the mapping

Fx : p0 7→ p0 +
1

t
G(x0)

−1(x−X(t, x0, p0)) (2.10)

has a fixed point in the ball Bc/t. Since every continuous mapping
from a ball to itself has a fixed point, it is enough to prove that Fx
takes the ball Bc/t in itself, i.e. that

∥Fx(p0)∥ ≤ c/t (2.11)

whenever x ∈ Br(x0) and ∥p0∥ ≤ c/t. By (2.3), (2.5) and (2.6)

X(t, x0, p0) = x0 + t(G(x0)p0 −A(x0)) +O(c2 + t2),

and therefore it follows from (2.10) that (2.11) is equivalent to

∥G(x0)−1(x− x0) +O(t+ c2 + t2)∥ ≤ c,
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which certainly holds for t ≤ t0, |x− x0| ≤ r and sufficiently small
r, t0 whenever c is chosen small enough.

Corollary. If (i) either A, V,G and their derivatives are uni-
formly bounded, or (ii) if G is a constant and A and V ′′ are uni-
formly bounded together with their derivatives, then there exist pos-
itive r, c, t0 such that for any t ∈ (0, t0] and any x1, x2 such that
|x1−x2| ≤ r there exists a solution of system (2.2) with the bound-
ary conditions

x(0) = x1, x(t) = x2.

Moreover, this solution is unique under the additional assumption
that ∥p(0)∥ ≤ c/t.

Proof. The case (i) follows directly from Theorem (2.1). Under
assumptions (ii), to get the analog of Lemma 2.1 one should take
in its proof the system {

ẋ = K(p+ 1)
ṗ = K(1 + p+ x)

as a bound for the solution of the Hamiltonian system. This system
is linear (here the asumption that G is constant plays the role) and
its solutions can be easily estimated. the rest of the proof remains
the same.

The proof of the existence of the boundary value problem given
above is not constructive. However, when the well-posedness is
given, it is easy to construct approximate solutions up to any order
in small t for smooth enough Hamiltonians. Again one begins with
the construction of the asymptotic solution for the Cauchy problem.

Proposition 2.1. If the functions G,A, V in (2.1) have k+1
continuous bounded derivatives, then for the solution of the Cauchy
problem for equation (2.2) with initial data x(0) = x0, p(0) = p0
one has the asymptotic formulas

X(t, x0, p0) = x0+ tG(x0)p0−A(x0)t+
k∑
j=2

Qj(t, tp0)+O(c+ t)k+1,

(2.12)

P (t, x0, p0) = p0 +
1

t

 k∑
j=2

Pj(t, tp0) +O(c+ t)k+1

 , (2.13)
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where Qj(t, q) = Qj(t, q
1, ..., qm), Pj(t, q) = Pj(t, q

1, ..., qm) are
homogeneous polynomials of degree j with respect to all their ar-
guments with coefficients depending on the values of G,A, V and
their derivatives up to order j at the point x0. Moreover, one has
the following expansion for the derivatives with respect to initial
momentum

1

t

∂X

∂p0
= G(x0) +

k∑
j=1

Q̃j(t, tp0) +O(c+ t)k+1, (2.14)

∂P

∂p0
= 1 +

k∑
j=1

P̃j(t, tp0) +O(c+ t)k+1, (2.15)

where Q̃j , P̃j are again homogeneous polynomials of degree j, but
now they are matrix-valued.

Proof. This follows directly by differentiating equations (2.2),
then using the Taylor expansion for its solution up to k-th order
and estimating the remainder using Lemma 2.1.

Proposition 2.2. Under the hypotheses of Proposition 2.1,
the function p0(t, x, x0) (defined by (1.2)), which, by Theorem 2.1,
is well-defined and smooth in BR(x0), can be expended in the form

p0(t, x, x0) =
1

t
G(x0)

−1

(x− x0) +A(x0)t+
k∑
j=2

Pj(t, x− x0) +O(c+ t)k+1

 ,
(2.16)

where Pj(t, x− x0) are certain homogeneous polynomials of degree
j in all their arguments.

Proof. It follows from (2.12) that x − x0 can be expressed as
an asymptotic power series in the variable (p0t) with coefficients
that have asymptotic expansions in powers of t. This implies the
existence and uniqueness of the formal power series of form (2.16)
solving equation (2.12) with respect to p0. The well-posedness
of this equation (which follows from Theorem 2.1) completes the
proof.

Proposition 2.3. Under the assumptions of Proposition 2.1,
the two-point function S(t, x, x0) defined in (1.5), can be expended



60

in the form

S(t, x, x0) =
1

2t
(x− x0 +A(x0)t, G(x0)

−1(x− x0 +A(x0)t))

+
1

t
(V (x0)t

2 +
k∑
j=3

Pj(t, x− x0) +O(c+ t)k+1), (2.17)

where the Pj are again polynomials in t and x−x0 of degree j (and
the term quadratic in x− x0 is written explicitly).

Proof. One first finds the asymptotic expansion for the action
σ(t, x0, p0) defined in (1.4). For Hamiltonian (2.1) one gets that
σ(t, x0, p0) equals∫ t

0

[
1

2
(G(X(τ, x0, p0))P (τ, x0, p0), P (τ, x0, p0)) + V (X(τ, x0, p0))

]
dτ,

and using (2.12), (2.13) one obtains

σ(t, x0, p0) =
1

t

1
2
(p0t, G(x0)p0t) + V (x0)t

2 +

k∑
j=3

Pj(t, tp0) +O(c+ t)k+1

 ,
where Pj are polynomials of degree ≤ j in p0. Inserting the asymp-
totic expansion (2.16) for p0(t, x, x0) in this formula yields (2.17).

Remark. One can calculate the coefficients of the expansion
(2.17) directly from the Hamilton-Jacobi equation without solving
the boundary value problem for (2.2) (as we shall do in the next
chapter). The theory presented above explains why the asymptotic
expansion has such a form and justifies the formal calculation of its
coefficients by means of, for example, the method of undetermined
coefficients.

By Theorem 2.1, all the assumptions of Proposition 1.1 hold
for the Hamiltonian (2.1); moreover, for all x0, the domain D(x0)
can be chosen as the ball Br(x0). It was proved in Corollary 2 of
Proposition 1.1 that the two-point function S(t, x, x0), defined by
(1.5),(1.6) in a neighbourhood of x0, is equal to the minimum of
the functional (1.12) over all curves lying in the domain Br(x0).
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We shall show first that (at least for r sufficiently small) it is in fact
the global minimum (i.e. among all curves, not only those lying in
Br(x0)).

Proposition 2.4. Let the potential V be uniformly bounded
from below. Then there exists r1 ≤ r such that for x ∈ Br1(x0)
the function S(t, x, x0) defined by (1.5) gives the global minimum
of the functional (1.12).

Proof. It follows from asymptotic representation (2.17) (in
fact, from only its first two terms) that there exist r1 ≤ r and
t1 ≤ t0 such that for a δ > −t0 inf V

max
∥x−x0∥=r1

S(t1, x, x0) ≤ min
t≤t1

min
∥y−x0∥=r

S(t, y, x0)− δ. (2.18)

Because L(x, ẋ)−V (x) is positive, the result of Proposition 2.4 fol-
lows from (2.18) using the fact that, on the one hand, the functional
(1.12) depends additively on the curve, and on the other hand, if
a continuous curve y(τ) joining x0 and x ∈ Br1(x0) in time t1 is
not completely contained in Br(x0), there exists t2 < t1 such that
|y(t2)− x0| = r and y(τ) ∈ Br(x0) for t ≤ t2.

The following result is a consequence of the Hilbert regularity
theorem (Proposition 1.6). However we shall give another proof,
which is independent of the Lagrangian formalism and which will
be convenient for some other situations.

Proposition 2.5. Suppose that the absolute minimum of the
functional (1.12) for the Hamiltonian (2.1) is attained by a piece-
wise smooth curve. Then this curve is in fact a smooth character-
istic, i.e. a solution of (2.2).

Proof. Suppose that y(τ) gives a minimum for It and at τ = s
its derivative is discontinuous (or it is not a solution of (2.2) in a
neighbourhood of τ = s). Then for δ sufficiently small, |y(s+ δ)−
y(s−δ)| < r1, where r1 is defined in Proposition 2.4, and replacing
the segment [y(s−δ), y(s+δ)] of the curve y(τ) by the characteristic
joining y(s−δ) and y(s+δ) in time 2δ one gets a trajectory, whose
action is be less then that of y(τ). This contradiction completes
the proof.

Proposition 2.6. (Tonelli’s theorem). Under the assump-
tions of Proposition 2.4, for arbitrary t > 0 and x0, x, there ex-
ists a solution (x(τ), p(τ)) of (2.2) with the boundary conditions
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x(0) = x0, x(t) = x such that the characteristic x(τ) attains the
global minimum for the corresponding functional (1.12).

Proof. Suppose first that the functions G,V,A are uniformly
bounded together with all their derivatives. Let t ≤ t0 and suppose
that kr1 < |x− x0| ≤ (k + 1)r1 for some natural number k. Then
there exists a piecewise-smooth curve y(s) joining x0 and x in time
t such that it has not more than k points y(s1), ..., y(sk), where the
derivatives ẏ(s) is discontinuous, and for all j, |y(sj)−y(sj−1)| ≤ r1
and which is an extremal on the interval [sj−1, sj ]. The existence
of such a curve implies in particular that J = inf It is finite. Now
let yn(s) be a minimising sequence for (1.12), i.e. a sequence of
piecewise- smooth curves joining x0 and x in time t such that
limn→∞ It(yn(.)) = J . Comparing the action along yn(s) with the
action along y(s) using (2.18) one concludes that, for n > n0 with
some n0, all curves yn(s) lie entirely in Bkr(x)) ∪ Br(x0). Conse-
quently, one can define a finite sequence of points yn(tj(n)), j ≤ k,
on the curve yn recursively by

tj(n) = sup{t > tj−1 : |yn(t)− yn(tj−1(n))| < r}.

Since all yn(tj(n)) belong to a compact set, it follows that there
exists a subsequence, which will again be denoted by yn such that
the number of the {tj} does not depend on n and the limits tj =
limn→∞ tj(n) and yj = limn→∞ yn(tj(n)) exist for all j. Consider
now the sequence of curves ỹn(s) constructed by the following rule:
on each interval [tj−1(n), tj(n)] the curve ỹn is the extremal joining
yn(tj−1(n)) and yn(tj(n)) in time tj(n) − tj−1(n). By corollary
2 of Proposition 1.1, the limit of the actions along ỹn is also J .
But, clearly, the sequence ỹn tends to a broken extremal ỹ (whose
derivatives may be discontinuous only in points tj) with the action
J , i.e. ỹ(s) gives a minimum for (1.12). By Proposition 2.5, this
broken extremal is in fact everywhere smooth. Finally, one proves
the result of Proposition 2.6 for all t > 0 by a similar procedure
using the splitting of the curves of a minimising sequence into parts
with the time length less than t0 and replacing these parts of curves
by extremals. The case when G,A, V are not uniformly bounded,
is proved by a localisation argument. Namely, any two points can
be placed in a large ball, where everything is bounded.
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We shall describe now the set of regular points for a variational
problem with fixed ends. As we shall see in the next chapter,
these are the points for which the WKB-type asymptotics of the
corresponding diffusion takes the simplest form.

Let us fix a point x0. We say that the pair (t, x) is a regular
point (with respect to x0), if there exists a unique characteristic
of (2.2) joining x0 and x in time t and furnishing a minimum to
the corresponding functional (1.12), which is not degenerate in the
sense that the end point x(t) is not conjugate to x0 along this
characteristic, which implies in particular that ∂X

∂p0
(t, x0, p0) is not

degenerate.

Proposition 2.7. For arbitrary x0, the set Reg(x0) of regular
points is an open connected and everywhere dense set in R+×Rm.
Moreover, for arbitrary (t,x), all pairs (τ, x(τ)) with τ < t lying
on any minimising characteristic joining x0 and x in time t are
regular. For any fixed t, the set {x : (t, x) ∈ Reg(x0)} is open and
everywhere dense in Rm.

Proof. The second statement is a direct consequence of Propo-
sition 2.5. In its turn, this statement, together with Proposition
2.6, implies immediately that the set Reg(x0) is everywhere dense
and connected. In order to prove that this set is open, suppose that
(t, x) is regular, and therefore ∂X

∂p0
(t, x0, p0) is non-degenerate. By

the inverse function theorem this implies the existence of a contin-
uous family of characteristics emanating of x0 and coming to any
point in a neighbourhood of (t, x). Then by the argument of the
proof of Corollary 2 to Proposition 1.1 one proves that each such
characteristic furnishes a local minimum to (1.12). Since at (t, x)
this local minimum is in fact global, one easily gets that the same
holds for neighbouring points. The last statement of the Proposi-
tion is a consequence of the others.

At the beginning of section 1.1 we defined the two-point func-
tion S(t, x, x0) locally as the action along the unique characteristic
joining x0 and x in time t. Then we proved that it gives a lo-
cal minimum, and then that it gives even a global minimum for
the functional (1.12), when the distance between x0 and x is small
enough. As a consequence of the last propositions, one can claim
this connection to be global.
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Proposition 2.8. Let us define the two-point function S(t, x, x0)
for all t > 0, x, x0 as the global minimum of the functional (1.12).
Then, in the case of the Hamiltonian (2.1), S(t, x, x0) is an ev-
erywhere finite and continuous function, which for all all (t, x, x0)
is equal to the action along a minimising characteristic joining x0
and x in time t. Moreover, on the set Reg(x0) of regular points,
S(t, x, x0) is smooth and satisfies the Hamilton-Jacobi equation
(1.7).

Remark 1. As stated in Proposition 2.8, the two-point function
S(t, x, x0) is almost everywhere smooth and almost everywhere sat-
isfies the Hamilton-Jacobi equation. In the theory of generalised
solutions of Hamilton-Jacobi-Bellman equation (see e.g. [KM1],
[KM2]) one proves that S(t, x, x0) is in fact the generalised solu-
tion of the Cauchy problem for equation (1.7) with discontinuous
initial data: S(0, x0, x0) = 0 and S(0, x, x0) = +∞ for x ̸= x0.

Remark 2. An important particular case of the situation con-
sidered in this section is the case of a purely quadratic Hamiltonian,
namely when H = (G(x)p, p). The solutions of the corresponding
system (1.1) (or more precisely, their projections on x-space) are
called geodesics defined by the Riemanian metric given by the ma-
trix g(x) = G−1(x). For this case, theorem 2.1 reduces to the well
known existence and uniqueness of minimising geodesics joining
points with sufficiently small distance between them. The proofs
for this special case are essentially simpler, because geodesics enjoy
the following homogeneity property. If (x(τ), p(τ)) is a solution of
the corresponding Hamiltonian system, then the pair (x(ϵt), ϵp(ϵt))
for any ϵ > 0 is a solution as well. Therefore, having the local dif-
feomorphism for some t0 > 0 one automatically gets the results for
all t ≤ t0.

Remark 3. There seems to be no reasonable general criterion
for uniqueness of the solution of the boundary value problem, as is
shown even by the case of geodesic flows (where uniqueness holds
only under the assumption of negative curvature). Bernstein’s the-
orem (see, e.g. [Ak]) is one of the examples of (very restrictive)
conditions that assure global uniqueness. Another example is pro-
vided by the case of constant diffusion and constant drift, which
we shall now discuss.
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Proposition 2.9 [M6, DKM1]. Suppose that in the Hamilto-
nian (2.1) G(x) = G and A(x) = A are constant and the matrix of
second derivatives of V is uniformly bounded. Then the estimates
(2.4) for the derivatives are global. More precisely,

1

t

∂X

∂p0
(t, x0, p0) = G(x0)+O(t2),

∂P

∂p0
(s, x0, p0) = 1+O(t2), (2.19)

∂2X

∂p20
= O(t4),

∂3X

∂p30
= O(t4) (2.20)

and therefore

∂2S

∂x2
=

1

tG
(1+O(t2)),

∂2S

∂x20
=

1

tG
(1+O(t2)),

∂2S

∂x∂x0
= − 1

tG
(1+O(t2))

(2.21)
uniformly for all t ≤ t0 and all p0. Moreover, for some t0 > 0
the mapping p0 7→ X(t, x0, p0) is a global diffeomorphism Rn 7→
Rn for all t ≤ t0, and thus the boundary value problem for the
corresponding Hamiltonian system has a unique solution for small
times and arbitrary end points x0, x such that this solution provides
an absolute minimum in the corresponding problem of the calculus
of variations.

Sketch of the proof. It follows from the assumptions that the
Jacobi equation (1.16) has uniformly bounded coefficients. This
implies the required estimates for the derivatives of the solutions
to the Hamiltonian system with respect to p0. This, in turn, implies
the uniqueness of the boundary value problem for small times and
arbitrary end points x0, x. The corresponding arguments are given
in detail in a more general (stochastic) situation in Section 7.

Similar global uniqueness holds for the model of the next sec-
tion, namely for the Hamiltonian (3.4), if g is a constant matrix,
α(x, y) = y and b(x, y) = b(x), V (x, y) = V (x) do not depend on y
and are uniformly bounded together with their derivatives of first
and second order; see details in [KM2].

3. Regular degenerate Hamiltonians of the first rank

We are turning now to the main topic of this chapter, to the
investigation of the boundary value problem for degenerate Hamil-
tonians. As in the first chapter, we shall suppose that the coordi-
nates (previously denoted by x) are divided into two parts, x ∈ Rn
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and y ∈ Rk with corresponding momenta p ∈ Rn and q ∈ Rk

respectively, and that H is non-degenerate with respect to q. More
precisely, H has the form

H(x, y, p, q) =
1

2
(g(x, y)q, q)− (a(x, y), p)− (b(x, y), q)− V (x, y),

(3.1)
where g(x, y) is a non-singular positive-definite (k×k)-matrix such
that

Λ−1 ≤ g(x, y) ≤ Λ (3.2)

for all x, y and some positive Λ. It is natural to try to classify the
Hamiltonians of form (3.1) in a neighbourhood of a point (x0, y0)
by their quadratic approximations

H̃x0,y0(x, y, p, q) = −
(
a(x0, y0) +

∂a

∂x
(x0, y0)(x− x0) +

∂a

∂y
(x0, y0)(y − y0), p

)

+
1

2
(g(x0, y0)q, q)− Ṽx0,y0(x, y)

−
[
b(x0, y0) +

∂b

∂x
(x0, y0)(x− x0) +

∂b

∂y
(x0, y0)(y − y0), q

]
, (3.3)

where Ṽx0,y0 is the quadratic term in the Taylor expansion of V (x, y)
near x0, y0. For the Hamiltonian (3.3), the Hamiltonian system
(1.1) is linear and its solutions can be investigated by means of lin-
ear algebra. However, it turns out that the qualitative properties
of the solutions of the boundary value problem for H are similar
to those of its approximation (3.3) only for rather restrictive class
of Hamiltonians, which will be called regular Hamiltonians. In the
next section we give a complete description of this class and further
we shall present an example showing that for non-regular Hamil-
tonians the solution of the boundary value problem may not exist
even locally, even though it does exist for its quadratic approxi-
mation. In this section we investigate in detail the simplest and
the most important examples of regular Hamiltonians, which corre-
spond in the quadratic approximation to the case, when k ≥ n and
the matrix ∂a

∂y (x0, y0) has maximal rank. For this type of Hamil-
tonian we shall make a special notational convention, namely we
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shall label the coordinates of the variables x and q by upper indices,
and those of the variables y and p by low indices. The sense of this
convention will be clear in the next chapter when considering the
invariant diffusions corresponding to these Hamiltonians.

Definition. The Hamiltonian of form (3.1) is called regular
of the first rank of degeneracy, if k ≥ n, g does not depend on y, the
functions a, b, V are polynomials in y of degrees not exceeding 1,2
and 4 respectively with uniformly bounded coefficients depending on
x, the polynomial V is bounded from below, and the rank of ∂a∂y (x, y)
everywhere equals to its maximal possible value n.

Such a Hamiltonian can be written in the form

H =
1

2
(g(x)q, q)−(a(x)+α(x)y, p)−(b(x)+β(x)y+

1

2
(γ(x)y, y), q)−V (x, y),

(3.4)
or more precisely as

H =
1

2
gij(x)q

iqj−(ai(x)+αijyj)pi−(bi(x)+β
j
i (x)yj+

1

2
γjli yjyl)q

i−V (x, y),

(3.4′)
where V (x, y) is a polynomial in y of degree ≤ 4, bounded from
below, and rank α(x) = n. The Hamiltonian system (1.1) for this
Hamiltonian has the form
ẋi = −(ai(x) + αij(x)yj)

ẏi = −(bi(x) + βji (x)yj +
1
2γ

jl
i (x)yjym) + gij(x)q

j

q̇i = αji(x)pj + (βij(x) + γilj (x)yl)q
j + ∂V

∂yi
(x, y)

ṗi = (∂a
j

∂xi +
∂αjl

∂xi yl)pj +

(
∂bj
∂xi +

∂βl
j

∂xi yl +
1
2

∂γlm
j

∂xi ylym

)
qj − 1

2
∂gjl
∂xi q

jql + ∂V
∂xi ,

(3.5)
where for brevity we have omitted the dependence on x of the
coefficients in the last equation.

Proposition 3.1. There exist constants K, t0, and c0 such
that for all c ∈ (0, c0] and t ∈ (0, t0], the solution of the system
(3.5) with initial data (x(0), y(0), p(0), q(0)) exists on the interval
[0, t] whenever

|y(0)| ≤ c

t
, |q(0)| ≤ c2

t2
, |p(0)| ≤ c3

t3
, (3.6)
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and on this interval

|x− x(0)| ≤ Kt(1 +
c

t
), |y − y(0)| ≤ Kt(1 +

c2

t2
), (3.7)

|q − q(0)| ≤ Kt(1 +
c3

t3
), |p− p(0)| ≤ Kt(1 +

c4

t4
). (3.8)

Proof. Estimating the derivatives of the magnitudes |y|, |q|, |p|
from (3.5), one sees that their growths do not exceed the growths
of the solutions of the system ẏ = σ(1 + q + y2)

q̇ = σ(1 + p+ yq + y3)
ṗ = σ(1 + yp+ q2 + y4)

(3.9)

for some constant σ, and with initial values y0 = |y(0)|, q0 =
|q(0)|, p0 = |p(0)|. Suppose (3.6) holds. We claim that the so-
lution of (3.9) exists on the interval [0, t] as a convergent series in
τ ∈ [0, t]. For example, let us estimate the terms of the series

p(t) = p0 + tṗ0 +
1

2
t2p̈0 + ...,

where the p
(j)
0 are calculated from (3.9). The main observation is

the following. If one allocates the degrees 1,2 and 3 respectively to
the variables y, q, and p, then the right hand sides of (3.9) have

degrees 2, 3 and 4 respectively. Moreover, p
(j)
0 is a polynomial of

degree j + 3. Therefore, one can estimate

p
(j)
0 ≤ νjσ

j

(
1 +

(c
t

)j+3
)

where νj are natural numbers depending only on combinatorics. A
rough estimate for νj is

νj ≤ 4 · (4 · 4) · (4 · 5)...(4 · (k + 2)) =
(j + 2)!

6
4j ,

because each monomial of degree ≤ d (with coefficient 1) can pro-
duce after differentiation in t not more than 4d new monomials of
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degree ≤ (d+1) (again with coefficient 1). Consequently, the series
for p(t) is dominated by

p0 +

∞∑
j=1

tj

j!

(j + 2)!

6
(4σ)j

(
1 +

(c
t

)j+3
)

≤ K

(
1 +

(c
t

)3)
,

for some K, if 4σc0 < 1 and 4σt0 < 1. Using similar estimates
for q and y we prove the existence of the solution of (3.5) on the
interval [0, t] with the estimates

|y| ≤ K
(
1 +

c

t

)
, |q| ≤ K

(
1 +

(c
t

)2)
, |p| ≤ K

(
1 +

(c
t

)3)
,

(3.10)
which directly imply (3.7).(3.8).

Using Proposition 3.1 we shall obtain now more precise for-
mulae for the solution of (3.5) for small times. We shall need the
development of the solutions of the Cauchy problem for (3.5) in
Taylor series up to orders 1,2,3 and 4 respectively for p, q, y, and x.
The initial values of the variables will be denoted by x0, y

0, p0, q0.
In order to simplify the forms of rather long expressions that ap-
pear after differentiating the equations of (3.5), it is convenient to
use the following pithy notation: µ will denote an arbitrary (uni-
formly) bounded function in x and expressions such as µyj will
denote polynomials in y = (y1, ...yk) of degree j with coefficients

of the type O(µ). Therefore, writing p(t) = p(0) +
∫ t
0
ṗ(τ) dτ and

using the last equation from (3.5) one gets

p = p(0)+

∫ t

0

[(µ+µy)p+(µ+µy+µy2)q+µq2+µ+µy+µy2+µy3+µy4] dτ.

(3.11)
Differentiating the third equation in (3.5) yields

q̈i =
∂αji

∂xm
ẋmpj + αjiṗj +

(
∂βij
∂xm

ẋm +
1

2

∂γimj
∂xl

ẋlym + γimj ẏm

)
qj

+(βij + γimj ym)q̇j +
∂2V

∂yi∂xm
ẋm +

∂2V

∂yi∂ym
ẏm, (3.12)
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and from the representation q(t) = q(0) + tq̇(0) +
∫ t
0
(t− τ)q̈(τ) dτ

one gets

qi = qi0 +

[
αji(x0)p

0
j + (βij(x0) + γimj (x0)y

0
m)qj0 +

∂V

∂yi
(x0, y

0)

]
t

+

∫ t

0

(t−τ)[(µ+µy)p+(µ+µy+µy2)q+µq2+µ+µy+µy2+µy3+µy4] dτ.

(3.13)
Furthermore,

ÿi =

(
∂bi
∂xm

+
∂βji
∂xm

yj +
1

2

∂γjli
∂xm

yjyl

)
(am + αmkyk)

−(βji + γjli yl)

(
gjmq

m − (bj + βmj ym +
1

2
γmkj ymyk)

)

− ∂gij
∂xm

(am+αmlyl)q
j+

(
αljpl + (βjl + γjml ym)ql +

∂V

∂yj

)
, (3.14)

or, in concise notation,

ÿ = µ+ µy + µy2 + µy3 + (µ+ µy)q + µp.

It follows that

y(3) = (µ+µy+µy2+µy3+µy4)+(µ+µy+µy2)q+µq2+(µ+µy)p.
(3.15)

Let (x̃, ỹ, p̃, q̃) = (x̃, ỹ, p̃, q̃)(t, x0, y
0, 0, 0) denote the solution

of (3.5) with initial condition (x0, y
0, 0, 0). From (3.14), (3.15) one

obtains

y = ỹ + tg(x0)q0 +
1

2
t2
[
g(x0)α(x0)p

0 + (ω + (Ωy0))q0
]

+

∫ t

0

(t−τ)2[(µ+µy+µy2+µy3+µy4)+(µ+µy+µy2)q+µq2+(µ+µy)p] dτ,

(3.16)
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where the matrices ω and Ωy0 are given by

ωil = gij(x0)β
j
l (x0)− βji (x0)gjl(x0)−

∂gil
∂xj

(x0)aj(x0), (3.17)

(Ωy0)il =

(
gij(x0)γ

jm
l (x0)gjl(x0)−

∂gil
∂xj

(x0)αjm(x0)

)
y0m.

(3.18)
Differentiating the first equation in (3.5) yields

ẍi =

(
∂ai

∂xm
+
∂αij

∂xm
yj

)
(am + αmlyl)− αij ẏj ,

and therefore

(x(3))i =

[(
2
∂αij

∂xm
αml +

∂αil

∂xm
αmj

)
yl + 2

∂αij

∂xm
am +

∂ai

∂xm
αmj

]
ẏj

−αij ÿj + µ+ µy + µy2 + µy3.

In particular, the consice formula for x(3) is the same as for ÿ and
for q̇. Let us write now the formula for x which one gets by keeping
three terms of the Taylor series:

x = x̃− 1

2
t2α(x0)g(x0)q0 −

1

6
t3[(αgα′)(x0)p

0 + (ω′ + (Ω′y0))q0]

+

∫ t

0

(t−τ)3[(µ+µy+µy2+µy3+µy4)+(µ+µy+µy2)q+µq2+(µ+µy)p] dτ,

(3.19)
where the entries of the matrices ω′ and Ω′y0 are given by

(ω′)ik = αij(x0)ωjk −
(
2
∂αij

∂xm
am +

∂ai

∂xm
αmj

)
(x0)gjk(x0), (3.20)

(Ω′y0)ik = αij(x0)(Ωy
0)jk−

(
2
∂αij

∂xm
αml +

∂αil

∂xm
αmj

)
(x0)gjk(x0)y

0
l .

(3.21)
One can now obtain the asymptotic representation for the so-

lutions of (3.5) and their derivatives with respect to the initial
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momenta in the form needed to prove the main result on the well-
posedness of the boundary value problem. In the following formu-
las, δ will denote an arbitrary function of order O(t+c), and α0 will
denote the matrix α(x0), with similar notation for other matrices
at initial point x0. Expanding the notations of Sect. 2.1 we shall
denote by (X,Y, P,Q)(t, x0, y

0, p0, q0) the solution of the Cauchy
problem for (3.5).

Proposition 3.2. Under the assumptions of Proposition 3.1,
for the solutions of (3.5) one has

X = x̃− 1

2
t2α0g0q0−

1

6
t3[α0g0α

′
0p

0+(ω′+(Ω′y0))q0]+ δ
4, (3.22)

Y = ỹ + tg0q0 +
1

2
t2[g0α

′
0p

0 + (ω + (Ωy0))q0] +
1

t
δ4, (3.23)

where the matrices ω, ω′, (Ωy0), (Ω′y0) are defined by (3.17),(3.18),(3.20),(3.21),
and the solution (x̃, ỹ, p̃, q̃) of (3.5) with initial conditions (x0, y

0, 0, 0)
is given by

x̃ = x0 − (a0 + α0y
0)t+O(t2), ỹ = y0 +O(t), (3.24)

p̃ = O(t), q̃ = O(t). (3.25)

Moreover,

∂X

∂p0
= −1

6
t3(α0g0α

′
0+δ),

∂X

∂q0
= −1

2
t2(α0g0+

t

3
(ω′+Ω′y0)+δ2),

(3.26)
∂Y

∂p0
=

1

2
t2(g0α

′
0 + δ),

∂Y

∂q0
= t(g0 +

t

2
(ω +Ωy0) + δ2), (3.27)

∂P

∂p0
= 1 + δ,

∂P

∂q0
=
δ2

t
, (3.28)

∂Q

∂p0
= t(α′

0 + δ),
∂Q

∂q0
= 1 + t(β′

0 + γ′y0) + δ2, (3.29)

where (β′
0 + γ′0y

0)ij = βij(x0) + γimj (x0)y
0
m.

Proof. (3.22)-(3.25) follow directly from (3.16), (3.19) and the
estimates (3.10). They imply also that the matrices

v1 =
1

t3
∂X

∂p0
, u1 =

1

t2
∂Y

∂p0
, v2 =

1

t2
∂X

∂q0
, u2 =

1

t

∂Y

∂q0
, (3.30)
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are bounded (on the time interval defined by Proposition 3.1). Let
us consider them as elements of the Banach space of continuous
matrix-valued functions on [0, t]. Differentiating (3.11) with respect
to p0, q0 and using (3.10) yields

∂P

∂p0
= 1+v1O(tc3+c4+t2c2)+u1O(c3+tc2)+

∂P

∂p0
O(t+c)+

∂Q

∂p0
O(t+c+

c2

t
),

(3.31)
∂P

∂q0
= v2O(c3+

c4

t
+tc2)+u2O(

c3

t
+c2)+

∂P

∂q0
O(t+c)+

∂Q

∂q0
O(t+c+

c2

t
).

(3.32)
Similarly, from (3.13)

∂Q

∂p0
= tα0+v1O(t2c3+tc4+t3c2)+u1O(tc3+t2c2)+

∂P

∂p0
O(t2+ct)+

∂Q

∂p0
O(t2+c2),

(3.33)
∂Q

∂q0
= 1 + t(β′

0 + γ′0y
0) + v2O(tc3 + c4 + t2c2) + u2O(c3 + tc2)

+
∂P

∂q0
O(t2 + tc) +

∂Q

∂q0
O(t2 + tc+ c2). (3.34)

From (3.33) one has

∂Q

∂p0
= (1 + δ2)

[
tδ
∂P

∂p0
+ v1tδ

4 + u1tδ
3 + tα0

]
. (3.35)

Inserting this in (3.31) yields

∂P

∂p0
= 1 + δ

∂P

∂p0
+ v1δ

4 + u1δ
3,

and therefore
∂P

∂p0
= 1 + δ + v1δ

4 + u1δ
3, (3.36)

∂Q

∂p0
= t(α0 + δ + v1δ

4 + u1δ
3). (3.37)

Similarly, from (3.32),(3.34) one gets

∂P

∂q0
=

1

t
(δ2 + v2δ

4 + u2δ
3), (3.38)
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∂Q

∂q0
= 1 + t(β′

0 + γ′0y
0) + δ2 + v2δ

4 + u2δ
3. (3.39)

Furthermore, differentiating (3.16) with respect to p0, q0 yields

u1 =
1

2
g0α

′
0 + v1δ

4 + u1δ
3 +

∂P

∂p0
δ +

∂Q

∂p0

δ2

t
,

u2 = g0 +
t

2
(ω +Ωy0) + v2δ

4 + u2δ
3 +

∂P

∂q0
δt+

∂Q

∂q0
δ2.

By (3.36)-(3.39), this implies

u1 =
1

2
g0α

′
0 + δ + v1δ

4 + u1δ
3,

u2 = g0 +
t

2
(ω +Ωy0) + δ2 + v2δ

4 + u2δ
3.

Similarly, differentiating (3.19) yields

v1 = −1

6
α0g0α

′
0 + δ + v1δ

4 + u1δ
3,

v2 = −1

2
α0g0 −

t

6
(ω′ +Ω′y0) + δ2 + v2δ

4 + u2δ
3.

From the last 4 equations one easily obtains

u1 =
1

2
g0α

′
0 + δ, u2 = g0 +

t

2
(ω +Ωy0) + δ2,

v1 = −1

6
α0g0α

′
0 + δ, v2 = −1

2
α0g0 −

t

6
(ω′ +Ω′y0) + δ2,

which is equivalent to (3.26)-(3.29). Formulas (3.30), (3.31) then
follow from (3.36)-(3.39).

We shall prove now the main result of this section.

Theorem 3.1. (i) There exist positive real numbers c and t0
(depending only on x0) such that for all t ≤ t0 and ∥y∥ ≤ c/t, the
mapping (p0, q0) 7→ (X,Y )(t, x0, y

0, p0, q0) defined on the polydisc
Bc3/t3 ×Bc2/t2 is a diffeomorphism onto its image.
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(ii) There exists r > 0 such that by reducing c and t0 if nec-
essary, one can assume that the image of this diffeomorphism con-
tains the polydisc Br/t(ỹ) × Br(x̃). These c, t0, r can be chosen
smaller than an arbitrary positive number δ.

(iii) Assume the matrix (α(x)g(x)α′(x))−1 is uniformly bounded.
Then c, t0, r do not depend on x0.

Proof. (i) From Proposition 3.2, one gets(
X
Y

)
(t, x0, y

0, p0, q0)−
(
X
Y

)
(t, x0, y

0, π0, ξ0) = tGδ(t, x0)

(
p0 − π0

q0 − ξ0

)
,

where

Gδ(t, x0) =

(
− 1

6 t
2(α0g0α

′
0 + δ) − 1

2 t(α0g0 + δ)
1
2 t(g0α

′
0 + δ) g0 + δ

)
. (3.40)

To prove (i), it is therefore enough to prove that the matrix (3.40)
is invertible. We shall show that its determinant does not vanish.
Using the formula

det

(
a b
c d

)
= det d · det(a− bd−1c) (3.41)

(which holds for arbitrary matrices a, b, c, d with invertible d) one
gets

detGδ(t, x0) = det(g0 + δ)

× det

[
−1

6
t2(α0g0α

′
0 + δ) +

1

4
t2(α0g0 + δ)(g−1

0 + δ)(g0α
′
0 + δ)

]
.

The second factor is proportional to det(α0g0α
′
0+δ) and therefore,

neither factor vanishes for small δ.
(ii) As in the proof of Theorem 2.1, one notes that the existence

of (x, y) such that (x, y) = (X,Y )(t, x0, y
0, p0, q0) is equivalent to

the existence of a fixed point of the map

Fx,y

(
p0

q0

)
=

(
p0

q0

)
+ t−1G(t, x0)

−1

(
x−X(t, x0, y

0, p0, q0)
y − Y (t, x0, y

0, p0, q0)

)
,
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where

G(t, x0) =

(
− 1

6 t
2α0g0α

′
0 − 1

2 t(α0g0 +
1
3 t(ω

′ +Ω′y0))
1
2 tg0α

′
0 g0 +

t
2 (ω +Ωy0)

)
.

By (3.22), (3.23),

Fx,y

(
p0

q0

)
= t−1G(t, x0)

−1

(
x− x̃+ δ4

y − ỹ + δ4/t

)
.

To estimate G(t, x0)
−1 notice first that G(t, x0) is of form (3.40)

and therefore it is invertible. Moreover, by the formula(
a b
c d

)−1

=

(
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

−d−1c(a− bd−1c)−1 (d− ca−1b)−1

)
(3.42)

(which holds for an invertible matrix

(
a b
c d

)
with invertible blocks

a, d), one gets that G(t, x0) has the form(
O(t−2) O(t−1)
O(t−1) O(1)

)
.

Therefore, to prove that Fx,y(p
0, q0) ∈ Bc3/t3 × Bc2/t2 one must

show that
O(∥x− x̃∥+ t∥y − ỹ∥+ δ4) ≤ c3,

which is certainly satisfied for small c, t0 and r.
(iii) Follows directly from the above proof, because all param-

eters depend on the estimates for the inverse of the matrix (3.40).

Since x̃−x0 = O(t) for any fixed y0, it follows that for arbitrary
(x0, y

0) and sufficiently small t, the polydisc Br/2(x0) × Br/2t(y0)
belongs to the polydisc Br(x̃) × Br/t(ỹ). Therefore, due to The-
orem 3.1, all the assumptions of Proposition 1.1 are satisfied for
Hamiltonians (3.4), and consequently, all the results of Proposi-
tion 1 and its corollaries hold for these Hamiltonians. We shall
prove now, following the same line of arguments as in the previous
section, that the two-point function S(t, x, y;x0, y

0) in fact gives
the global minimum for the corresponding functional (1.12). To
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get the necessary estimates of S, we need a more precise formula
for the inverse of the matrix (3.40).

Let us express Gδ(t, x0) in the form

Gδ(t, x0) =

(
1 0
0

√
g0

)(
− 1

6 t
2(A0A

′
0 + δ) − t

2 (A0 + δ)
1
2 t(A

′
0 + δ) 1 + δ

)(
1 0
0

√
g0

)
,

where A0 = α0
√
g0. Denoting the matrix g

−1/2
0 by J and using

(3.42) yields that Gδ(t, x0)
−1 equals(

1 0
0 J

)(
12
t2 (A0A

′
0)

−1(1 + δ) 3
t (A0A

′
0)

−1A0β
−1(1 + δ)

− 6
tA

′
0(A0A

′
0)

−1(1 + δ) −β−1 + δ

)(
1 0
0 J

)
,

(3.43)
where −β = 1 − 3

2A
′
0(A0A

′
0)

−1A0. In the simplest case, when
k = n, i.e. when the matrix α(x) is square non-degenerate, (3.43)
reduces to

Gδ(t, x0)
−1 =

(
12
t2 (α0g0α

′
0)

−1(1 + δ) 6
t (g0α

′
0)

−1(1 + δ)

− 6
t (α0g0)

−1(1 + δ) −2g−1
0 + δ

)
.

(3.44)
To write down the formula for the general case, let us decompose
Y = Rk as the orthogonal sum Y = Y1 ⊕ Y2, where Y2 = KerA0.
Let us denote again by A0 the restriction of A0 to Y1. Then A−1

0

exists and β|Y1
= − 1

2 , β|Y2
= 1. With respect to this decomposi-

tion,

Gδ(t, x)
−1 =

 1 0 0
0 J11 J12
0 J21 J22



×

 12
t2 (A0A

′
0)

−1(1 + δ) 6
t (A

′
0)

−1(1 + δ) δ
t

− 6
tA

−1
0 (1 + δ) −2 + δ δ
δ
t δ 1 + δ

 1 0 0
0 J11 J12
0 J21 J22

 .

(3.45)
From (1.19), (3.30), (3.31) one gets

∂2S

∂(x, y)2
(t, x, y, x0, y

0) =
1

t

(
1 + δ δ2/t

t(α′
0 + δ 1 + δ

)
Gδ(t, x0)

−1.

(3.46)
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In the case n = k, this takes the form

∂2S

∂(x, y)2
(t, x, y, x0, y

0) =

(
12
t3 (α0g0α

′
0)

−1(1 + δ) 6
t2 (g0α

′
0)

−1(1 + δ)
6
t2 (α0g0)

−1(1 + δ) 4
t g

−1
0 + δ

)
,

(3.47)
and in the general case, from (3.45)-(3.46) one gets (omitting some
arguments for brevity) that ∂2S/∂(x, y)2 equals

=

 12
t3 ((A0A

′
0)

−1 + δ) 6
t2 ((A

′
0)

−1J11 + δ) 6
t2 ((A

′
0)

−1J12 + δ)
6
t2 (J11A

−1
0 + δ) 1

t (4J
2
11 + J12J21 + δ) 1

t (4J11J12 + J12J22 + δ)
6
t2 (J21A

−1
0 + δ) 1

t (4J21J11 + J22J21 + δ) 1
t (4J21J12 + J2

22 + δ)

 .

(3.48)
Therefore, from (1.22) one gets the following.

Proposition 3.3. For small t and (x, y) in a neighbourhood
of (x0, y

0) the two-point function S(t, x, y;x0, y
0) is equal to

6

t3
(
(A−1

0 + δ)(x− x̃), A−1
0 (x− x̃)

)
+

6

t2
(
(J11 + δ)(y1 − ỹ1), (A

−1
0 + δ)(x− x̃)

)
+

6

t2
(
(J12 + δ)(y2 − ỹ2), (A

−1
0 + δ)(x− x̃)

)
+

1

2t

(
y1 − ỹ1, (4J

2
11 + J12J21 + δ)(y1 − ỹ1)

)
+

1

2t

(
y2 − ỹ2, (4J21J12 + J2

22 + δ)(y2 − ỹ2)
)

+
1

t
(y1 − ỹ1, (4J11J12 + J21J22 + δ)(y2 − ỹ2)) . (3.49)

Expanding x̃, ỹ in t we can present this formula in terms of
x0, y

0. Let us write down the main term (when δ = 0), for brevity
only in the case k = n:

S0(t, x, y, x0, y
0) =

6

t3
(g−1

0 α−1
0 (x− x0), α

−1
0 (x− x0))

+
6

t2
(g−1

0 α−1
0 (x− x0), y + y0 + 2α−1

0 a0)

+
2

t

[
(y, g−1

0 y) + (y, g−1
0 y0) + (y0, g

−1
0 y0)

]
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+
6

t

[
(y + y0, g

−1
0 α−1

0 a0) + (g−1
0 α−1

0 a0, α
−1
0 a0)

]
.

Equivalently, this can be expressed in a manifestly positive form

S0(t, x, y, x0, y
0) =

1

2t
(y − y0, g

−1
0 (y − y0)) +

6

t3
(g−1

0 z, z) (3.50)

with

z = α−1
0 (x− x0) +

t

2
(y + y0 + 2α−1

0 a0).

Using these expressions one proves the following property of ex-
tremals quite similarly to the proof of Proposition 2.4.

Proposition 3.4. There exists r′ ≤ r such that for (x, y) ∈
Br′/2(x0)× Br′/2t(y0), the solution of the boundary value problem
(x, y)(0) = (x0, y

0) and (x, y)(t) = (x, y) for system (3.5), which
exists and is unique under the additional assumption (p0, q0) ∈
Bc3/t3 ×Bc2/t2 , furnishes the absolute minimum for the functional
(1.12) corresponding to the Hamiltonian (3.4).

Proposition 3.5. Let the absolute minimum of the functional
(1.12) for Hamiltonian (3.4) be given by a piecewise-smooth curve.
Then this curve is in fact a smooth characteristic and it contains
no conjugate points.

Proof. The first part is proved as in Proposition 2.5. Let us
prove the Jacobi condition for the degenerate Hamiltonian (3.4),
i.e. that a minimising characteristic does not contain conjugate
points. First of all we claim that if a solution (x(τ), p(τ)) of the
Hamiltonian system (1.1) corresponding to an arbitrary Hamilto-
nian of form (2.1) with non-negative-definite (but possibly singular)
matrix G furnishes a minimum for the functional (1.12), then the
curve η(τ) = 0 gives a minimum for the functional (1.12) defined
on curves with fixed endpoints η(0) = η(t) = 0 and corresponding
to the quadratic time dependent Hamiltonian H̃t of form (1.17).
In fact, let the extremal (x(τ), p(τ)) furnish a minimum for (1.12)
corresponding to the Hamiltonian (2.1). This implies that for ar-
bitrary ϵ > 0 and smooth η(τ) such that η(0) = η(t) = 0:∫ t

0

max
w

[(p(τ) + ϵw)(ẋ(τ) + ϵη̇(τ))
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−H(x+ ϵη, p(τ) + ϵw)− p(τ)ẋ(τ) +H(x(τ), p(τ))] dτ ≥ 0.

Since H is a polynomial in p of second degree, one has

H(x+ ϵη, p+ ϵw) = H(x, p) + ϵ
∂H

∂x
(x, p)η + ϵ

∂H

∂p
(x, p)w +O(ϵ3)

+
1

2
ϵ2
[(∂2H

∂x2
(x, p)η, η

)
+ 2

(
∂2H

∂x∂p
(x, p)(η +O(ϵ)), w

)
+

((
∂2H

∂p2
(x, p) +O(ϵ)

)
w,w

)]
with O(ϵ) independent of w. Substituting this expression in the
previous formula, integrating by parts the term p(τ)η̇, then using
equations (1.1) and dividing by ϵ2 yields∫ t

0

max
w

[wη̇ − 1

2

(
∂2H

∂x2
(x, p)η, η

)
− 2

(
∂H

∂x∂p
(x, p)(η +O(ϵ)), w

)

−1

2

((
∂2H

∂p2
(x, p) +O(ϵ)

)
w,w

)
] dτ +O(ϵ) ≥ 0.

Taking the limit as ϵ→ 0 one gets∫ t

0

max
w

(wη̇ − H̃t(η, w)) dτ ≥ 0,

as claimed.
Now let H have the form (3.4). Then H̃t has this form as

well, only it is time dependent. One sees easily that with this
additional generalisation the analogue of Theorem 3.1 is still valid
and therefore, the first part of Proposition 3.5 as well. Suppose
now that on a characteristic x(τ) of (3.5) that furnishes minimum
for the corresponding functional (1.12), the points x(s1), x(s2) are
conjugate, where 0 ≤ s1 < s2 < t. Then there exists a solution
v, w of the Jacobi equation (1.16) on the interval [s1, s2] such that
v(s1) = v(s2) = 0 and v is not identically zero. Then the curve ṽ(s)
on [0, t], which is equal to v on [s1, s2] and vanishes outside this
interval, gives a minimum for the functional (1.12) corresponding
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to Hamiltonian H̃t. But this curve is not smooth at τ = s2, which
contradicts to the first statement of Proposition 3.5.

We can now prove the analogue of Tonelli’s theorem for the
Hamiltonian (3.4), namely the global existence of the boundary
value problem.

Proposition 3.6. For arbitrary t > 0 and arbitrary x0, y
0, x, y,

there exists a solution of the Hamiltonian system (3.5) with bound-
ary conditions (x, y)(0) = (x0, y

0), (x, y)(t) = (x, y), which furnish
global minimum for the corresponding functional (1.12).

Proof. The only difference from the proof of Proposition 3.5
is that the radius of balls can depend on y0, but this is not of
importance, because the proof is given by means of exhausting Rm

by compact sets.

As a consequence, we have

Proposition 3.7. Propositions 2.7 and 2.8 hold also for
Hamiltonians of the form (3.4).

To conclude we give some estimates on the derivatives of the
two-point function

Proposition 3.8. For arbitrary j and l ≤ j

∂jS

∂xl∂yj−l
(t, x̃, ỹ, x0, y

0) = t−(l+1)R(t, y0),

where R(t, y0) has a regular asymptotic expansion in powers of t
and y0.

Proof. This is proved by induction on j using (1.19).

This Proposition, together with (1.19), suggests that the func-
tion tS(t, x̃+ x, ỹ+ y;x0, y

0) can be expressed as a regular asymp-
totic expansion in the variables x/t and y. This important conse-
quence will be used in the next chapter for effective calculations
of the two-point function. We shall also need there estimates for
the higher derivatives of the solutions of the Cauchy problem for
(3.5) with respect to initial momenta, which one easily gets from
Theorem 3.1 together with the Taylor expansion of the solutions
up to any order.
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Proposition 3.9. Let x0, x1, p0, p1 denote respectively x, y, p, q.
The following estimates hold

∂2XI

∂pJ0 ∂p
K
0

= O
(
t6−I−J−K

)
.

More generally, if H has sufficiently many bounded derivatives,
then

∂KXI

∂pI10 ...∂p
IK
0

= O
(
t3K−I−I1−...−IK

)
.

4. General regular Hamiltonians
depending quadratically on momenta

We now consider here general regular Hamiltonians (RH). These
are the Hamiltonians for which, roughly speaking, the boundary-
value problem enjoys the same properties as for their quadratic
(or Gaussian) approximation. As we shall see in the next chapter,
the main term of the small time asymptotics for the correspond-
ing diffusion is then also the same as for the Gaussian diffusion
approximation. In fact, the motivation for the following definition
will be better seen when we consider formal power series solutions
of the corresponding Hamilton-Jacobi equation in the next chapter,
but rigorous proofs seem to be simpler to carry out for boundary
value-problem for Hamiltonian systems.

Since the Gaussian diffusions were classified in the previous
chapter by means of the Young schemes, it is clear that RH should
also be classified by these schemes.

Definition. Let M = {mM+1 ≥ mM ≥ ... ≥ m0 > 0} be a
non-degenerate sequence of positive integers (Young scheme). Let
XI denote Eucleadian space RmI of dimension mI with coordinates
xI , I = 0, ...,M , and Y = XM+1 = RM+1. Let pI , I = 0, ...,M,
and q = pM+1 be the momenta corresponding to xI and y respec-
tively. The M-degree, degM P , of a polynomial P in the variables
x1, ..., xM , y = xM+1 is by definition the degree, which one gets
prescribing the degree I to the variable xI , I = 0, ...,M +1. A RH
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corresponding to a given Young scheme is by definition a function
of the form

H(x, y, p, q) =
1

2
(g(x0)q, q)−R1(x, y)p0 − ...

−RM+1(x, y)pM −RM+2(x, y)q −R2(M+2)(x, y), (4.1)

where the RI(x, y) are (vector-valued) polynomials in the variables
x1, ...xM , y = xM+1 of the M-degree degMRI = I with smooth
coefficients depending on x0, and g(x0) depends only on the vari-
able x0 and is nondegenerate everywhere. Moreover, the matrices
∂RI

∂xI (which, due to the condition on degMRI , depend only on x0)
have everywhere maximal rank, equal to mI−1, and the polynomial
R2(M+1) is bounded from below. When the coefficients of the poly-
nomials RI are uniformly bounded in x0, we shall say that the RH
has bounded coefficients.

All results of the previous section hold for this more general
class of Hamiltonians with clear modifications. The proofs are
similar, but with notationally heavier. We omit the details and
give only the main estimates for the derivatives of the solution
of the corresponding Hamilton system with respect to the initial
momenta. These estimates play a central role in all proofs. To ob-
tain these estimates, one should choose the convenient coordinates
in a neighbourhood of initial point, which were described in the
previous chapter, in Theorem 1.2.1. Let us note also that the as-
sumption of the boundedness of the coefficients of the polynomials
in (4.1) insures the uniformity of all estimates with respect to the
initial value x00, and is similar to the assumptions of boundedness
of the functions A, V,G defining the non-degenerate Hamiltonians
of Section 2.

Theorem 4.1. There exist positive constants K, t0, c0 such
that for all c ∈ (0, c0], t ∈ (0, t0] the solution of the Hamiltonian
system (1.1) corresponding to the regular Hamiltonian (4.1) exists
on the interval [0, t] whenever the initial values of the variables
satisfy the estimates

|x10| ≤
c

t
, ..., |xM+1

0 | ≤
(c
t

)M+1

,
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|pM+1
0 | ≤

(c
t

)M+2

, ..., |p10| ≤
(c
t

)2M+2

, |p00| ≤
(c
t

)2M+3

.

On the interval 0 < t < t0 the growth of the solution is governed
by the estimates

|X(t)I | ≤ K

(
1 +

(c
t

)I)
, |P (t)I | ≤ K

(
1 +

(c
t

)2M+3−I
)
, I = 0, ...,M+1,

(4.2)
the derivatives with respect to initial momenta have the form[

∂(X0, ..., XM+1)

∂(P 0
0 , ..., P

M+1
0 )

]
IJ

= t2M+3−I−JβIJ(1 +O(t)), (4.3)

[
∂(X0, ..., XM+1)

∂(P 0
0 , ..., P

M+1
0 )

]−1

IJ

= t−(2M+3−I−J)γIJ(1 +O(t)), (4.4)

where βIJ , γIJ are matrices of the maximal rank min(mI ,mJ), and
for higher derivatives one has the estimates

∂KXI

∂pI10 ...∂p
IK
0

= O
(
t(3+2M)K−I−I1−...−IK

)
. (4.5)

Clearly, the Lagrangians corresponding to degenerate Hamil-
tonians are singular. However, it turns out that the natural optimi-
sation problems corresponding to degenerate regular Hamiltonians
are problems of the calculus of variations for functionals depending
on higher derivatives. To see this, consider first a Hamiltonian (3.1)
such that n = k and the map y 7→ a(x, y) is a diffeomorphism for
each x. Then the change of variables (x, y) 7→ (x, z): z = −a(x, y)
implies the change of the momenta pold = pnew − (∂a/∂x)tqnew,
qold = −(∂a/∂y)tpnew and the Hamiltonian (3.1) takes the form

1

2

(
∂a

∂y
g(x, y(x, z))(

∂a

∂y
)tq, q

)
+ (z, p)

+

(
∂a

∂y
b(x, y(x, z))− ∂a

∂x
z, q

)
− V (x, y(x, z)).
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In the case of Hamiltonian (3.4), the new Hamiltonian takes the
form

1

2

(
α(x)g(x)αt(x)q, q

)
+ (z, p)

+

(
α(x)(b(x) + β(x)y +

1

2
(γ(x)y, y))− (

∂a

∂x
+
∂α

∂x
y, z), q

)
−V (x, y)

with y = −α(x)−1(z + a(x)). This Hamiltonian is still regular of
form (3.4), but at the same time it has the form (1.36) of a Hamil-
tonian corresponding to the problem of the calculus of variations
with Lagrangian depending on first and second derivatives. There-
fore, all results of the previous section correspond to the solution of
the problems of that kind. In general, not all regular Hamiltonians
(4.1) can be transformed to the form (1.36) but only a subclass of
them. General results on regular Hamiltonians give the existence
and the estimates for the solutions of problems with Lagrangian
(1.35). For example, one has the following result.

Theorem 4.2. Let x0, ..., xn ∈ Rn and let a smooth function
L be given by the formula

L(x0, ..., xm, z) =
1

2
(g(x0)(z + α(x0, ..., xm), z + α(x0, ..., xm))+V (x0, ..., xm),

(4.6)
with g(x0) being strictly positive-definite matrix, α and V being
polynomials of m-degree m + 1 and 2(m + 1) respectively, where
degm xj = j, and V being positive. Then there exists a solution
of equation (1.30) with boundary conditions (1.25), which provides
the absolute minimum for functional (1.24).

One also can specify the additional conditions under which
this solution is unique for small times.

We have noticed that the Hamiltonians with the Young scheme
whose entries are equal may correspond to the Lagrangians depend-
ing on (M+2) derivatives. The general RH with the Young scheme
(mM+1,mM , ...,m0) may correspond to the variational problems
with Lagrangians depending on M +2 derivatives of m0 variables,
M + 1 derivatives of (m1 −m0) variables and so on. Theorem 4.2
can be generalised to cover these cases as well.

To conclude this section let us give a simple example of non-
regular Hamiltonian, whose quadratic approximation is regular of
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the first rabk (at least in a neighbourhood of almost every point)
but for which the solution of the boundary value problem does not
exist even locally. In this simplest case x and y are one-dimensional
and H even does not depend on x. Let

H(x, y, p, q) = −f(y)p+ 1

2
q2 (4.7)

with an everywhere positive function f , which therefore can not be
linear (consequently H is not regular). The corresponding Hamil-
tonian system has the form

ẋ = −f(y), ẏ = q, ṗ = 0, q̇ = f ′(y)p.

Therefore ẋ is always negative and there is no solution of the Hamil-
tonian system joining (x0, y0) and (x, y) whenever x > x0, even for
small positive t. On the other hand, if f(y) is a nonlinear diffeo-
morphism, say f(y) = y3 + y, then it is not difficult to prove the
global existence of the solutions to the boundary value problem for
the corresponding Hamiltonian (4.7), though H is still non-regular.
In fact, regularity ensures not only the existence of the solutions
but also some ”nice” asymptotics for them.

5. Hamiltonians of exponential growth in momenta

In this section we generalise partially the results of Section
2 to some non-degenerate Hamiltonians, which are not quadratic
in momentum. First we present a theorem of existence and local
uniqueness for a rather general class of Hamiltonians and then give
some asymptotic formulas for the case mainly of interest, when the
Hamiltonians increase exponentially in momenta.

Definition 1. We say that a smooth function H(x, p) on
R2m is a Hamiltonian of uniform growth, if there exist continuous
positive functions C(x), κ(x) on Rn such that

(i) ∂2H
∂p2 (x, p) ≥ C−1(x) for all x, p;

(ii) if |p| ≥ κ(x), the norms of all derivatives of H up to and
including the third order do not exceed C(x)H(x, p) and moreover,

C−1(x)H(x, p) ≤ ∥∂H
∂p

(x, p)∥ ≤ C(x)H(x, p), (5.1)
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∥∂g
∂p

(x, p)∥ ≤ C(x)H(x, p)
∂2H

∂p2
(x, p), (5.2)

where

g(x, p) =
∂2H

∂p∂x

∂H

∂p
− ∂2H

∂p2
∂H

∂x
; (5.3)

(iii) for some positive continuous function δ(x) one has∣∣∣∣∣
(
∂2H

∂p2
(x, p)

)−1
∣∣∣∣∣ ≤ C(x)

∣∣∣∣∣
(
∂2H

∂p2
(x+ y, p+ q)

)−1
∣∣∣∣∣ (5.4)

whenever |y| ≤ δ, |q| ≤ δ, |p| ≥ κ(x).

The main properties of the boundary-value problem for such
Hamiltonians are given in Theorems 5.1, 5.2 below. The function
H(x, p) = α(x) cosh p with α(x) > 0 is a simple example. In fact in
this book we are interested in the finite-dimensional generalisations
of this example, which are described in Theorem 5.3 below.

Let a Hamiltonian of uniform growth be given. Following the
same plan of investigation as for quadratic Hamiltonians we study
first the Cauchy problem for the corresponding Hamiltonian sys-
tem.

Proposition 5.1. For an arbitrary neighbourhood U(x0) of x0
there exist positive K, c0, t0 such that if H(x0, p0) ≤ c/t with c ≤ c0,
t ≤ t0, then the solution X(s) = X(s, x0, p0), P (s) = P (s, x0, p0) of
the Hamiltonian system exists on [0, t]; moreover, on this interval
X(s) ∈ U(x0) , ∥P (s)− p0∥ ≤ K(t+ c) and

∂X(s)

∂p0
= s

∂2H

∂p2
(x0, p0)(1 +O(c)),

∂P (s)

∂p0
= 1 +O(c). (5.5)

If in addition, the norms of the derivatives of H of order up to and

including k do not exceed C(x)H(x, p) for large p, then ∂lX(s)

∂pl0
=

O(c) for l ≤ k − 2. In particular,

∂2X(s)

∂p20
(s) = s

∂3H

∂p3
(x0, p0) +O(c2).
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Proof. We can suppose that ∥p0∥ > 2maxx∈U(x0) κ(x), be-
cause the case of p0 from any fixed compact is considered trivially).
Let

T (t) = min(t, sup{s > 0 : X(s) ∈ U(x0), ∥P (s)∥ > κ}).

Using Definition 5.1 and the conservation of H along the trajecto-
ries of the Hamiltonian flow one obtains

∥Ṗ (s)∥ ≤
∣∣∣∣∂H∂x

∣∣∣∣ ≤ C(X(s))H(X(s), P (s)) = C(X(s))H(x0, p0) ≤ C(X(s))
c

t
;

hence |P (s)− p0| = O(c) and similarly |X(s)− x0| = O(c) for s ≤
T (t). If one chooses small c0 in such a way that the last inequalities
would imply X(s) ∈ U(x0) and |P (s)| > κ(X(s)), the assumption
T (t) < t would lead to a contradiction. Consequently, T (t) = t for
such c0. It remains to prove (5.5). For p0 (or, equivalently, c/t)
from any bounded neighbourhood of the origin the result is trivial.
Let us suppose therefore again that |p0| is large enough. Following
the lines of the proof of Lemma 2.2 let us differentiate the integral
form of the Hamiltonian equations{

X(s) = x0 + s∂H∂p (x0, p0) +
∫ s
0
(s− τ)g(X,P )(τ) dτ

P (s) = p0 −
∫ s
0
∂H
∂x (X,P )(τ) dτ

, (5.6)

to obtain
∂X(s)
∂p0

= s∂
2H
∂p2 (x0, p0) +

∫ s
0
(s− τ)

(
∂g
∂x

∂X
∂p0

+ ∂g
∂p

∂P
∂p0

)
(τ) dτ

∂P (s)
∂p0

= 1−
∫ s
0

(
∂2H
∂x2

∂X
∂p0

+ ∂2H
∂x∂p

∂P
∂p0

)
dτ

.

Considering now the matrices v(s) = 1
s
∂X(s)
∂p0

and u(s) = ∂P (s)
∂p0

as
vectors of the Banach space of continuous m × m-matrix-valued
functions M(s) on [0, t] with the norm sup{∥M(s)∥ : s ∈ [0, t]} one
deduces from the previous equations that{
v = ∂2H

∂p2 (x0, p0) +O(t2)H2(x0, p0)v +O(t)maxs |∂g∂p (X(s), P (s))|u
u = 1 +O(t2)H(x0, p0)v +O(t)H(x0, p0)u

.
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Due to (5.2),(5.4),∣∣∣∣∂g∂p (X(s), P (s))

∣∣∣∣
∣∣∣∣∣
(
∂2H

∂p2
(x0, p0)

)−1
∣∣∣∣∣

≤ C(x0)

∣∣∣∣∂g∂p (X(s), P (s))

∣∣∣∣
∣∣∣∣∣
(
∂2H

∂p2
(x(s), P (s))

)−1
∣∣∣∣∣

≤ H(X(s), P (s))C(X(s))C(x0) = C(X(s))C(x0)H(x0, p0),

and thus the previous system of equations can be written in the
form {

v = ∂2H
∂p2 (x0, p0) +O(c2)v +O(c)∂

2H
∂p2 (x0, p0)u

u = 1 +O(tc)v +O(c)u
.

From the second equation one gets

u = (1 +O(c))(1 + (tc)v), (5.7)

and inserting this in the first one yields

v =
∂2H

∂p2
(x0, p0)(1 +O(c)) +O(c2)v,

and consequently

v = (1 +O(c))
∂2H

∂p2
(x0, p0),

which yields the first equation in (5.5). Inserting it in (5.7) yields
the second equation in (5.5). Higher derivatives with respect to p0
can be estimated similarly by differentiating (5.6) sufficient number
of times and using induction. Proposition is proved.

Theorem 5.1. For any c ≤ c0 with small enough c0 there
exists t0 such that for all t ≤ t0 the map p0 7→ X(t, x0, p0) defined
on the domain Dc = {p0 : H(x0, p0) ≤ c/t} is a diffeomorphism
on its image, which contains the ball Bcr(x0) and belongs to the
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ball Bcr−1(x0) for some r (that can be chosen arbitrary close to
C−1(x0)c whenever c is small enough).

Proof. From Proposition 5.1 one concludes that 1
t
∂X(t)
∂p0

is
bounded from below in Dc by some positive constant. This implies
that the map under consideration is a diffeomorphism on its image,
which one shows by the same arguments as in the proof of Theorem
2.1. To estimate this image, let us estimate X(t, x0, p0)−x0 on the
boundary of the domain Dc, namely when H(x0, p0) = c/t. From
(5.6) it follows that

∥X(t, x0, p0)− x0∥ = ∥t∂H
∂p

(x0, p0) +

∫ t

0

(t− s)g(x, p)(s) ds∥

≥ tC−1(x0)H(x0, p0)−t2C(x)2H(x0, p0)
2 = tc−1(x0)H(x0, p0)(1+O(c)).

Since the image of the boundary of Dc is homeomorphic to Sm−1

and therefore divides the space into two open connected compo-
nents, it follows from the last estimate that the ball with the cen-
tre at x0 and the radius rt belongs to the image of Dc, where r
can be chosen arbitrary close to C−1(x0)c, if c is sufficiently small.
Similarly one proves that

∥X(t, x0, p0)− x0∥ ≤ tC(x)H(x0, p0)(1 +O(c)),

which implies the required upper bound for the image of Dc.

Proposition 5.2. There exist t0, r, c such that if |x − x0| ≤
rc, the solution to the boundary value problem with the condition
x(0) = x0, x(t) = x, for the Hamiltonian system with the Hamilto-
nian H exists for all t ≤ t0 and is unique under additional condition
that H(x0, p0) ≤ c/t. If |x− x0|/t be outside a fixed neighbourhood
of the origin, then the initial momentum p0 and the initial velocity
ẋ0 on this solution satisfy the estimates

r
|x− x0|

t
≤ H(x0, p0) ≤

|x− x0|
rt

, ẋ0 =
x− x0
t

(1 +O(|x− x0|))
(5.8)

and the two-point function S(t, x, x0) on this solution has the form

S(t, x, x0) = tL(x0,
x− x0
t

(1+O(|x−x0|)))+O(|x−x0|2). (5.9)
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If C(x), C−1(x), κ(x), κ−1(x), δ(x) from Definition 5.1 are bounded
(for all x uniformly), the constants t0, r, c can be chosen indepen-
dently of x0.

Proof. Everything, except for the formula for S, follows di-
rectly from the previous theorem and the estimates used in its
proof. To prove (5.9), we write

S(t, x, x0) =

∫ t

0

L(x0 +O(|x− x0|), ẋ0 +O(|x− x0|)H2(x0, p0)) dτ

= tL(x0,
x− x0
t

(1+O(|x−x0|)))+O(t|x−x0|)
∂L

∂x
(x0+O(c),

x− x0
t

(1+O(c))),

which implies (5.9), since

∂L

∂x
(x, v) = −∂H

∂x

(
x,
∂L

∂v
(x, v)

)
. (5.10)

Proposition 5.3. For ẋ0 (or equivalently (x− x0)/t) from a
bounded neighbourhood of ∂H∂p (x, 0)

1

t
S(t, x;x0) = L(x0,

x− x0
t

) +O(t); (5.11)

moreover, if H(x, 0) = 0 for all x, then

L(x0, ẋ0) =
1

2

([
∂2H

∂p2
(x0, 0)

]−1(
ẋ0 −

∂H

∂p
(x0, 0)

)
, ẋ0 −

∂H

∂p
(x0, 0)

)
+...,

(5.12)

1

t
S(t, x, x0) =

1

2
(1+O(t))

([
∂2H

∂p2
(x0, 0)

]−1
x− x̃(t, x0)

t
,
x− x̃(t, x0)

t

)
+...,

(5.13)
where ... in (5.12),(5.13) denote the higher terms of the expansion
with respect to ẋ0 − ∂H

∂p (x0, 0) and

x− x̃(t, x0)

t
=
x− x0
t

− ∂H

∂p
(x0, 0) +O(t)
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respectively, and each coefficient in series (5.12) differs from the
corresponding coefficient of (5.13) by the value of the order O(t).

Remark. The number of available terms in asymptotic series
(5.12) or (5.13) depends of course on the number of existing deriva-
tives of H.

Proof. Formula (5.11) is proved similarly to (5.9). Next, since
H(x, 0) = 0, the Lagrangian L(x0, v) (resp. the function S(t, x;x0))
has its minimum equal to zero at the point v = ∂H

∂p (x0, 0) (resp. at

x = x̃(t, x0), where x̃ is as usual the solution of the Hamiltonian
system with initial data x(0) = x0, p(0) = 0). At last, one compares
the coefficients in series (5.12),(5.13) using (1.19) and the obvious
relations

∂kX

∂pk0
= t

∂k+1H

∂pk+1
0

(x0, p0) +O(c2),
∂kP

∂pk0
= O(t), k > 1, (5.14)

which hold for p0 from any bounded domain.
Now we can prove the smooth equivalence of the two-point

functions of the Hamiltonian H(x, p) and the corresponding Hamil-
tonian H(x0, p) with a fixed x0. This result plays a key role in the
construction of the semi-classical asymptotics for the Feller pro-
cesses given in Chapter 6.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold and
H(x, 0) = 0 for all x. Then there exists a smooth map z(t, v, x0)
defined for v from the ball of the radius rc/t such that

(i) for fixed t, x0 the map v 7→ z(t, v, x0) is a diffeomorphism
on its image,

(ii) for v from a bounded domain

∥z(t, x, x0)− v∥ = O(t)∥v∥+O(t), (5.15)

(ii) if v is outside a neighbourhood of the origin, then

z(t, v, x0) = (1 + ω(t, v))Dtv +O(t), (5.16)

where ω(t, v) = O(|x− x0|) is a scalar function and Dt is a linear
diffeomorphism of Rd of the form 1+O(t) with a uniformly bounded
derivative in t;
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(iii) z takes S(t, x, x0) into tL(x, (x− x0)/t), i.e.

L(x0, z(t,
x− x0
t

, x0) =
1

t
S(t, x, x0). (5.17)

Proof. It follows from Propositions 5.2, 5.3 and E2. More
precisely, one repeats the proof of Propositions E1, E2 of Appendix
E to obtain a diffeomorphism that takes the function L(x0, v) in the
function S(t, x, x0)/t considered both as the functions of v = (x−
x0)/t and depending on t, x0 as parameters. Due to Proposition 5.3,
the linear and the local partsD3, D2 of the required diffeomorphism
have the form 1 + O(t). Due to (5.9), the dilatation coefficient ω
from (E1) has the order O(|x− x0|). To get (5.16) one needs then
only take in account the necessary shift on the difference between
minimum points of L and S which is of the order O(t) due to
Proposition 5.3.

We shall concentrate now on a more concrete class of Hamilto-
nians and shall obtain for these Hamiltonians more exact estimates
of the objects introduced above. For any vector p we shall denote
by p̄ a unit vector in the direction p, i.e. p̄ = p/∥p∥.

Definition 5.2. We say that a smooth function H(x, p) on
R2m is a Hamiltonian of exponential growth, if there exist two pos-
itive continuous functions a(x, p̄) ≥ b(x, p̄), on Rm × Sm−1 and a
positive continuous function C(x) on Rm such that

(i) for p outside a neighbourhood of the origin, the norms of all
derivatives of H up to and including the third order do not exceed
C(x)H(x, p);

(ii) H(x, p) ≤ C(x) exp{a(x, p̄)|p|} for all x, p;

(iii) ∂2H
∂p2 (x, p) ≥ C−1(x) exp{b(x, p̄)|p|} for all x, p.

Notice that the condition on the growth of the Hamiltonian im-
plies that the matrix of the second derivatives of the corresponding
Lagrangian L(x, ẋ) tends to zero, as ẋ → ∞ (see Remark after
Theorem 5.3), which means that the corresponding problem of the
calculus of variations has certain degeneracy at infinity. Neverthe-
less, similarly to the case of Hamiltonians from Definition 5.1, one
can show the existence of the solution to the boundary-value prob-
lem (with the condition x(0) = x0, x(t) = x) for the Hamiltonian
systems with Hamiltonians of exponential growth and the unique-
ness of such solution for |x − x0| < t∆, where ∆ ∈ (0, 1) depends
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on the difference a(x, p̄)−b(x, p̄) and can be chosen arbitrary small
whenever this difference can be chosen arbitrary small. We are not
going into detail, because actually we are interested in a more re-
strictive class of Hamiltonians that satisfy both Definitions 5.1 and
5.2. This class of Hamiltonians is provided by the Lévy-Khintchine
formula with the Lévy measure having finite support, namely, the
Hamiltonians of this class are given by the formula

H(x, p) =
1

2
(G(x)p, p)−(A(x), p)+

∫
Rm\{0}

(
e−(p,ξ) − 1 +

(p, ξ)

1 + ξ2

)
dνx(ξ),

(5.18)
where G(x) is a nonnegative matrix, νx is a so called Lévy measure
on Rm \ {0}, which means that∫

Rm\{0}
min(ξ2, 1) dνx(ξ) <∞

for all x, and the support of the Lévy measure ν is supposed to be
a bounded set in Rm. The last assumption insures that function
(5.18) is well defined for all complex p and is an entire function with
respect to p. We suppose that all G(x), A(x), νx are continuously
differentiable (at least thrice). Notice that(

∂2H

∂p2
(x, p)v, v

)
= (G(x)v, v) +

∫
Rm\{0}

(ξ, v)2e−(p,ξ) dνx(ξ),

and therefore ∂2H
∂x2 is always nonnegative. Moreover, one sees di-

rectly that for Hamiltonian (5.18), properties (i),(ii) from Defini-
tion 5.2 hold with the function a being the support function of the
set −supp νx, i.e.

a(x, p̄) = max{(p̄,−ξ) : −ξ ∈ supp νx}. (5.19)

The following results give simple sufficient conditions on νx that
ensure that corresponding function (5.18) is a Hamiltonian of ex-
ponential growth. We omit rather simple proofs.

Proposition 5.4. (i) Let the function β on Rm × Sm−1 be
defined by the formula

β(x, v̄) = sup{r : rv̄ ∈ supp νx}.
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If β is continuous and everywhere positive, then Hamiltonian (5.18)
is of exponential growth with the function a defined in (5.19) and
any continuous b(x, p) < a(x, p).

(ii) If there exists ϵ > 0 such that for any v̄ ∈ Sm−1 the convex
hull of supp νx∩{ξ : (ξ, v̄) ≥ ϵ} depends continuously on x and has
always nonempty interior, then function (5.18) is of exponential
growth with the function a defined as above and

b(x, v̄) = min
w∈Sm−1

max{|(w, ξ)| : ξ ∈ supp νx ∩ {ξ : (−ξ, v̄) ≥ ϵ} }.
(5.20)

Examples. Letm = 2, G and A vanish in (5.18), and let νx = ν
does not depend on x. If the support of ν consists of only three
points, thenH of form (5.18) is not of exponential growth. Actually

in this case ∂2H
∂p2 tends to zero, as p tends to infinity along some

directions, and one can show that the boundary-value problem have
no solution for some pairs of points x, x0. On the other hand, if the
support of ν consists of four vertices of a square with the centre at
the origin, thenH of form (5.18) again is not of exponential growth.
However, it satisfies the condition of Proposition 5.4 (ii) with ϵ = 0,
and one can prove that for this Hamiltonian the boundary-value
problem is always solvable.

In order that function (5.18) would satisfy all conditions of
Definition 5.1, it seems necessarily to make some assumptions on
the behaviour of ν near the boundary of its support. We are not
going to describe the most general assumptions of that kind. In
the next statement we give only the simplest sufficient conditions.

Theorem 5.3. Let νx have a convex support, containing the
origin as an inner point, with a smooth boundary, ∂ supp νx, de-
pending smoothly on x and having nowhere vanishing curvature,
and moreover, let νx(dξ) = f(x, ξ) dξ in a neighbourhood of ∂ supp νx
with a continuous f not vanishing on ∂ supp νx. Then H of form
(5.18) satisfies the requirements of both Definitions 5.1 and 5.2
with a(x, p̄) given by (5.19), and moreover for large p and some
continuous C(x)

C−1(x)|p|−(m+1)/2 exp{a(x, p̄)|p|} ≤ H(x, p) ≤ C(x)|p|−(m+1)/2 exp{a(x, p̄)|p|},
(5.21)
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∂2H

∂p2
(x, p) ≥ C−1(x)

H(x, p)

|p|
,

C−1(x)
Hd(x, p)

|p|d−1
≤ det

∂2H

∂p2
(x, p) ≤ C(x)

Hd(x, p)

|p|d−1
, (5.22)

and

max(|g(x, p)|, |∂g
∂p

(x, p)|) ≤ C(x)
H(x, p)

|p|
,

Remark. If the above f(x, ξ) vanishes at ∂ supp νx, but has
a non-vanishing normal derivative there, then the same holds but
with m+ 2 instead of m+ 1 in (5.21).

Proof. Clear that for p from any compact set H is bounded
together with all its derivatives and the matrix of the second deriva-
tives is bounded from below by a positive constant. It is also
obvious that (5.22) implies (5.2). In order to obtain the precise
asymptotics of H as p → ∞ notice first that for large p the be-
haviour of H and its derivatives is the same (asymptotically) as by
the function

H̃(x, p) =

∫
U(x,ν)

exp{|p|(p̄, ξ)}f(x,−ξ) dξ,

where U(x, ν) is an arbitrary small neighbourhood of ∂ supp νx.
To estimate this integral we consider it as the Laplace integral
with the large parameter |p| (depending on the additional bounded
parameter p̄). The phase of this integral S(ξ, p̄) = (ξ, p̄) takes
its maximum at the unique point ξ0 = ξ0(p̄, x) on the boundary
∂ supp νx of the domain of integration, the unit vector p̄ provides
an outer normal vector to this boundary at ξ0, and the value of this
maximum is given by the support function (5.19). Moreover, this
maximum is not degenerate (due to the condition of not vanishing
curvature) in the sense that the normal derivative of S at ξ0 (the
derivative with respect to ξ in the direction p̄) does not vanish
(because it equals p̄) and the (m − 1) × (m − 1)-matrix A(x, ξ0)
of the second derivatives of S restricted to ∂ supp νx at ξ0 is not
degenerate. Thus by the Laplace method (see e.g. Proposition B5)
one finds for large |p|

H(x, p) = |p|−(d+1)/2 exp{a(x, p̄)|p|}f(x,−ξ0)
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×(2π)(d−1)/2 (detA(x, ξ0))
−1/2

(1 +O(|p|−1)). (5.23)

Similarly one finds that ∂H∂p (x, p) and
(
∂2H
∂p2 (x, p)v, v

)
equal respec-

tively to

|p|−(d+1)/2 exp{a(x, p̄)|p|}f(x,−ξ0)ξ0

×(2π)(d−1)/2 (detA(x, ξ0))
−1/2

(1 +O(|p|−1)). (5.24)

and

|p|−(d+1)/2 exp{a(x, p̄)|p|}f(x,−ξ0)(ξ0, v)2

×(2π)(d−1)/2 (detA(x, ξ0))
−1/2

(1 +O(|p|−1)). (5.25)

Similarly one finds the asymptotic representations for other deriva-
tives ofH, which implies (5.1),(5.21) and the required upper bounds
for all derivatives of H. To get a lower bound for the eigen-
values of the matrix of the second derivatives of H notice that
due to the above formulas

(
∂2H
∂p2 (x, p)v, v

)
is of the same order as

H(x, p) whenever v is not orthogonal to ξ0. If v = v0 is such that
(v0, ξ0) = 0, then the major term of the corresponding asymptotic
expansion vanishes, which means the drop in at least one power
of |p|. To get (5.22) one must show that the second term in this
expansion does not vanish for any such v0. This follows from the
general explicit formula for this term (see e.g. in Proposition B5)
and the fact that the amplitude in the corresponding Laplace inte-
gral has zero of exactly second order at ξ0. To complete the proof
of the Proposition, it remains to note that writing down the major

terms of the expansions of ∂2H
∂p2 ,

∂H
∂x ,

∂2H
∂p∂x ,

∂H
∂p one sees that the

terms proportional to |p|−(d+1) cancel in the expansions for g or its
derivative in p, which implies the required estimates for g.

Remark. Notice that from the formulas

v =
∂H

∂p

(
x,
∂L

∂v
(x, v)

)
,

∂2L

∂v2
(x, v) =

(
∂2H

∂p2

)−1(
x,
∂L

∂v
(x, v)

)
,

(5.26)
connecting the derivatives of H and its Legendre transform L, it
follows that if H is a Hamiltonian from Theorem 5.3, the first (resp.
the second) derivative of the corresponding Lagrangian ∂L

∂v (x, v)
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(resp. ∂2L
∂v2 (x, v) increases like log |v| (resp. decreases like |v|−1) as

|v| → ∞.

Proposition 5.5. For a Hamiltonian from Theorem 3.1, if
|x − x0| ≤ rc, t ≤ t0 and (x − x0)/t does not approach the origin,
one has the following estimates for the initial momentum p0 =
p0(t, x, x0) and the two-point function S(t, x, x0) of the solution to
the boundary-value problem with conditions x(0) = x0, x(t) = x
(recall that the existence and uniqueness of this solution is proved
in Theorem 5.1):

|p0|
(
1 +

O(log(1 + |p0|))
|p0|

)
=

1

a(x0, p̄0)
log(1 +

|x− x0|
t

) +O(1),

(5.27)
−σt+ C|x− x0| ≤ S(t, x;x0) ≤ σt+ C|x− x0|. (5.28)

with some constants σ,C.
Proof. Estimate (5.27) follow directly from (5.8) and (5.24).

Next, from (5.22) one has

| log t|−1 |x− x0|
Ct

≤ ∂2H

∂p2
(x0, p0) ≤ C

|x− x0|
t

(5.29)

for small t and some constant C, which implies, due to (5.5), that
for θ not approaching zero

C−1|x−x0|−1 ≤
(
∂X

∂p0

)−1

(t, x, x0+θ(x−x0)) ≤ | log t|C|x−x0|−1.

(5.30)
Hence, from (1.22) and (5.13) one obtains

−σt+ C|x− x0| ≤ S(t, x;x0) ≤ σt+ C|x− x0|| log t|.

In order to get rig of log t on the r.h.s. (which is not very important
for our purposes) one needs to argue similarly to the proof of (5.31)
below. We omit the details.

Now one can use the same arguments as in Section 2 to get
the following

Proposition 5.6. The statements (and the proofs) of Propo-
sition 2.4-2.8 are valid for Hamiltonians from Theorem 3.1. In par-
ticular, for t ≤ t0 , |x−x0| ≤ r with small enough r, t0 there exists
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a unique solution to the boundary value problem for the Hamilto-
nian system with Hamiltonian H that provides the global minimum
for the corresponding problem of the calculus of variations.

Further we shall need the estimates for the function z from
Theorem 5.2 and its derivatives.

Proposition 5.7. Let H belong to the class of Hamiltonians
described in Theorem 3.1 and z be the corresponding mapping from
Theorem 5.2. If v = (x − x0)/t does not approach the origin and
|x− x0| ≤ rc, then

p0−
∂L

∂v
(x0, v) = O(|x−x0|),

∂L

∂v
(x0, v)−

∂L

∂v
(x0, z(t, v, x0)) = O(|x−x0|),

(5.31)
and

∂ω

∂v
= O(t),

∂ω

∂t
= O(|v|), ∂2ω

∂v2
= O(t)|v|−1| log t|. (5.32)

Proof. Plainly for any w

∂L

∂v
(x0, w)−

∂L

∂v
(x0, v) =

∫ 1

0

∂2L

∂v2
(x0, v + s(w − v)) ds(w − v),

≤ max
s∈(0,1)

(
∂2H

∂p2
(x0,

∂L

∂v
(x0, v + s(w − v)))

)−1

(w − v).

First let w = ẋ0 = ∂H
∂p (x0, p0). From the first equation in (5.6) and

the estimates for g in Theorem 5.3 it follows that

|ẋ0 − v| = O(t)|g(x, p)| = O(t)|p|−1H2(x, p)

= O(t)| log t|−1H2(x, p) = O(t−1)|x− x0|2| log t|−1.

Therefore, due to (5.22), one has∣∣∣∣∂L∂v (x0, ẋ0)− ∂L

∂v
(x0, v)

∣∣∣∣ = O(| log t|) t

|x− x0|
|x− x0|2

t
| log t|−1 = O(|x−x0|),

i.e. the first inequality in (5.31). Now let w = z(t, v, x0). In that
case it follows from (5.16) that |z(t, v, x0) − v| = O(t−1)|x − x0|2
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only, i.e. without an additional multiplier of the order | log t| as in
the previous situation. Therefore, the previous arguments would
lead here to an additional multiplier of the order | log t| on the r.h.s.
of the second inequality (5.31). Hence, one needs here a more care-
ful consideration. Namely, as it was noted in the proof of Theorem

5.3, the matrix ∂2H
∂p2 (x0, p) has the maximal eigenvalue of the or-

der H(x0, p) and the corresponding eigenvector is asymptotically
(for large p) proportional to ξ0 = ξ0(x0, p̄). Other eigenvalues are
already of the order |p|−1H(x, p). Therefore, in order to obtain
the required estimate it is enough to show that the ratio of the
projection of the vector z(t, v, x0)− v on the direction of ξ0(x0, p̄)
(for p around p0) and the projection of z(t, v, x0) − v on the per-
pendicular hyperplane is not less than of the order | log t|. But the
vector z(t, v, x0)− v is proportional to v = (x− x0)/t, which in its
turn is close to ∂H

∂p (x0, p0). Hence, one must prove that the vector
∂H
∂p (x0, p0) lies essentially in the direction of ξ0(x0, p̄0). But this is

surely true, because due to (5.24) the principle term of the asymp-
totics of ∂H

∂p (x0, p0) is proportional to ξ0 and next terms differs

exactly by the multiplier of the order | log t|−1.
Let us turn now to the proof of (5.32). Differentiating (5.17)

with respect to x yields

∂S

∂x
= (1+ω)

∂L

∂v
(x0, z(t,

x− x0
t

, x0))Dt+

(
∂L

∂v
(x0, z(t,

x− x0
t

, x0)), Dtv

)
∂ω

∂v
.

Hence

∂ω

∂v
=

∂S
∂x − (1 + ω)∂L∂v (x0, z(t,

x−x0

t , x0))Dt(
∂L
∂v (x0, z(t,

x−x0

t , x0)), Dtv
) . (5.33)

To estimate the denominator in this formula notice that(
∂L

∂v
(x0, z(t,

x− x0
t

, x0)), Dtv

)
=

(
∂L

∂v
(x0, z(t,

x− x0
t

, x0)), z

)
(1+O(|x−x0|)

≥ H(x0,
∂L

∂v
(x0, z(t,

x− x0
t

, x0)))(1 +O(|x− x0|)),

which is of the order |x − x0|/t. Turning to the estimate of the
nominator we present it as the sum of two terms, first being the
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difference between the final momentum ∂S
∂x and the initial momen-

tum p0 on a trajectory, which is of the order O(|x − x0|) due to
Lemma 5.1, and the second being the difference between p0 and
∂L
∂v (x0, z), which is of the order O(|x − x0|) due to (5.31). Conse-
quently, taking into account the estimates for the nominator and
denominator gives the first estimate in (5.32).

Differentiating (5.17) with respect to t yields

∂S

∂t
= L(x0, z) + t

∂L

∂v
Dt

(
∂ω

∂t
v − 1

t
(1 + ω)

∂z

∂v
v

)
up to a nonessential smaller term. Since S satisfies the Hamilton-
Jacobi equation it follows that

∂ω

∂t
=

(1 + ω)
(
∂L
∂v ,

∂z
∂v v
)
−H(x, ∂S∂x )− L(x0, z)

t∂L∂v (x0, z)v
.

The nominator is of the order O(|x − x0|2)/t, because the main
term has the form

∂L

∂v
(x0, z)z − L(x0, z)−H(x,

∂S

∂x
)

=

(
H(x0,

∂L

∂v
)−H(x,

∂L

∂v
)

)
+

(
H(x,

∂L

∂v
)−H(x,

∂S

∂x
)

)
,

which is of the orderO(|x−x0|2)t−1, due to the estimates of the first
order derivatives of H. The denominator is of the order |x − x0|,
which proves the second formula in (5.32).

Differentiating (5.17) two times in x yields

t
∂2S

∂x2
−(1+ω)

∂2L

∂v2
−∂ω
∂v

⊗∂
2L

∂v2
v−
(
∂L

∂v
⊗ ∂ω

∂v
+
∂ω

∂v
⊗ ∂L

∂v

)
=

(
∂L

∂v
, v

)
∂2ω

∂v2
.

(5.34)

The coefficient at ∂2ω
∂v2 in this formula was already found to be of

the order O(|x− x0|/t). Thus one needs to show that the l.h.s. of
(5.34) has the order t| log t|. All tensor products on the l.h.s. of
(5.34) certainly have this order due to the first estimate in (5.32).
Next,

t
∂2S

∂x2
=

(
∂2H

∂p2

)−1

(x0, p0)(1+O(|x−x0|) =
(
∂2H

∂p2

)−1

(x0, p0)+O(t)| log t|.
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Therefore, it remains to show that(
∂2H

∂p2

)−1

(x0, p0)−
(
∂2H

∂p2

)−1

(x0,
∂L

∂v
(x0, z(v))) = O(t)| log t|.

(5.35)
Using (5.31) and the mean value theorem for the difference on the
l.h.s. of (5.35) leads directly to the estimate O(t)| log t|2 for this
difference. But slightly more careful considerations, similar to those
used in the proof of the second inequality (5.31) allow to decrease
the power of | log t|, which gives the required estimate.

Proposition 5.8. Let H, z and v be the same as in Proposi-
tion 5.7. Then:

∂z

∂v
(t, v, x0) = 1+O(|x−x0|),

∂2z

∂v2
(t, v, x0) = O(t)(1+log+

|x− x0|
t

),

(5.36)
where we used the usual notation log+M = max(0, logM).

Proof. For v outside a neighbourhood of the origin, it fol-
lows directly from Proposition 5.7. Notice only that for brevity we
used always the estimate | log t| for |p0|, but in formula (5.36) we
have restored a more precise estimate for |p0| from (5.27). For the
bounded v formulas (5.36) follow from Proposition 5.3 and explicit
formulas for z from the proof of Lemma E2.

6. Complex Hamiltonians and calculus of variations for saddle-points

Here we discuss the solutions to the boundary-value problem
for complex Hamiltonians depending quadratically on momenta.
As we have seen in Sect.1, in the case of real Hamiltonians, a solu-
tion to the Hamiltonian system furnishes a minimum (at least lo-
cally) for a corresponding problem of calculus of variations. It turns
out that for complex Hamiltonians the solutions of Hamiltonian
equations have the property of a saddle-point. Let x = y+iz ∈ Cm,
p = ξ + iη ∈ Cm and

H =
1

2
(G(x)p, p)− (A(x), p)− V (x), (6.1)

where

G(x) = GR(x)+iGI(x), A(x) = AR(x)+iAI(x), V (x) = VR(x)+iVI(x)
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are analytic matrix-, vector-, and complex valued functions in a
neighbourhood of the real plane. Moreover, G is non-degenerate,
GR, GI are symmetric and GR is non-negative for all x. Under
these assumptions, one readily sees that all the results and proofs
of Lemma 2.1, Lemma 2.2, Theorem 2.1 and Propositions 2.1-2.3
on the existence of the solutions of the Hamiltonian system and the
asymptotic expansions for the two-point function are valid for this
complex situation, where x0 is considered to be any complex num-
ber in the domain where G,A, V are defined, and initial momenta
are complex as well. In particular, one gets therefore the existence
of the family Γ(x0) of complex characteristics joining x0 with any
point x from some complex domain D(x0) in time t ≤ t0, and the
corresponding complex momentum field p(t, x) = (ξ + iη)(t, y, z),
which in its turn defines the complex invariant Hilbert integral
(1.6). Let us clarify what optimisation problem is solved by the
complex characteristics of the family Γ(x0).

Notice first that

ReH =
1

2
(GRξ, ξ)−

1

2
(GRη, η)− (GIξ, η)− (AR, ξ)+ (AI , η)−VR,

(6.2)

ImH =
1

2
(GIξ, ξ)−

1

2
(GIη, η)+ (GRξ, η)− (AI , ξ)− (AR, η)−VI ,

(6.3)
and if (x(s), p(s)) is a complex solution to (1.1), then the pairs
(y, ξ), (y, η), (z, ξ), (z, η) are real solutions to the Hamiltonian
systems with Hamiltonians ReH, ImH, ImH, −ReH respectively.
Next, if G−1

R exists, then

(GR+iGI)
−1 = (GR+GIG

−1
R GI)

−1−iG−1
R GI(GR+GIG

−1
R GI)

−1,

and if G−1
I exists, then

(GR+iGI)
−1 = G−1

I GR(GI+GRG
−1
I GR)

−1−i(GI+GRG−1
I GR)

−1.

Therefore, since GR, GI are symmetric, (G−1)R, (G
−1)I are also

symmetric. Moreover, GR > 0 is equivalent to (G−1)R > 0, and
GI > 0 is equivalent to (G−1)I < 0.

By definition, the Lagrangian corresponding to the Hamilto-
nian H is

L(x, ẋ) = (pẋ−H(x, p))|p=p(x) (6.4)
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with p(x) uniquely defined from the equation ẋ = ∂H
∂p (x, p). There-

fore, the formula for L is the same as in the real case, namely

L(x, ẋ) =
1

2
(G−1(ẋ+A(x)), ẋ+A(x)) + V (x). (6.4′)

Consequently

ReL(y, z, ẏ, ż) = ξ(y, z, ẏ, ż)ẏ−η(y, z, ẏ, ż)ż−ReH(y, z, ξ(y, z, ẏ, ż), η(y, z, ẏ, ż)),
(6.5)

ImL(y, z, ẏ, ż) = η(y, z, ẏ, ż)ẏ+ξ(y, z, ẏ, ż)ż−ImH(y, z, ξ(y, z, ẏ, ż), η(y, z, ẏ, ż)),
(6.6)

where (ξ, η)(y, z, ẏ, ż) are defined from the equations

ẏ =
∂ReH

∂ξ
= GRξ−GIη−AR, ż = −∂ReH

∂η
= GRη+GIξ−AI .

(6.7)

Proposition 6.1 For all ξ, η

ξẏ − η(y, z, ẏ, ż)ż −ReH(y, z, ξ, η(y, z, ẏ, ż)) ≤ ReL(y, z, ẏ, ż)

≤ ξ(y, z, ẏ, ż)ẏ − ηż −ReH(y, z, ξ(y, z, ẏ, ż), η), (6.8)

or equivalently

ReL(y, z, ẏ, ż) = max
ξ

min
η

(ξẏ−ηż−ReH(x, p)) = min
η

max
ξ

(ξẏ−ηż−ReH(x, p)).

(6.8′)
In other words, ReL(y, z, ẏ, ż) is a saddle-point for the function
(ξẏ − ηż −ReH(x, p)). Moreover, ReL is convex with respect to ẏ
and concave with respect to ż (strictly, if GR > 0 strictly). Fur-
thermore, if GI ≥ 0, then

ImL(y, z, ẏ, ż) = max
ξ

min
η

(ξż+ηẏ−ImH(x, p)) = min
η

max
ξ

(ξż+ηẏ−ImH(x, p)),

(6.9)
i.e. Im(y, z, ẏ, ż) is a saddle-point for the function ξż + ηẏ −
ImH(x, p). Moreover, if GI ≥ 0, then ImL is convex with respect
to ż and concave with respect to ẏ (strictly, if GI > 0 strictly).
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Proof. Formula (6.7) is obvious, since the function ξẏ − ηż −
ReH(x, p) is concave with respect to ξ and convex with respect to

η. Furthermore, ∂
2L
∂ẋ2 = (G−1)(x) due to (6.4’). Therefore

∂2ReL

∂ẏ2
= Re

∂2L

∂ẋ2
= (G−1)R(x),

∂2ReL

∂ż2
= −Re∂

2L

∂ẋ2
= −(G−1)R(x),

which proves the required properties of ReL, because (G−1)R ≥ 0.
The statements about ImL are proved similarly.

Consider now the complex-valued functional

It(x(.)) =

∫ t

0

L(x(τ), ẋ(τ)) dτ,

defined on piecewise-smooth complex curves x(τ) joining x0 and
x in time t, i.e. such that x(0) = x0, x(t) = x. As in Section
1, we define S(t, x;x0) = It(X(.)), where X(s) is the (unique)
characteristic of the family Γ(x0) joining x0 and x in time t.

Proposition 6.2. The characteristic X(s) = Y (s) + iZ(s) of
the family Γ(x0) joining x0 and x in time t is a saddle-point for the
functional ReIt, i.e. for all real piecewise smooth y(τ), z(τ) such
that y(0) = y0, z(0) = z0, y(t) = y, z(t) = z and y(τ) + iZ(τ),
Y (τ) + iz(τ) lie in the domain D(x0)

ReIt(Y (.)+iz(.)) ≤ ReIt(Y (.)+iZ(.)) = ReS(t, x, x0) ≤ ReIt(y(.)+iZ(.)).
(6.10)

In particular,

ReIt(Y (.)+iZ(.)) = min
y(.)

max
z(.)

ReIt(y(.)+iz(.)) = max
z(.)

min
y(.)

ReIt(y(.)+iz(.)).

(6.11)
If GI(x) ≥ 0, then similar fact holds for ImIt, namely

ImIt(Y (.)+iZ(.)) = min
z(.)

max
y(.)

ImIt(y(.)+iz(.)) = max
y(.)

min
z(.)

ImIt(y(.)+iz(.)).

(6.12)
Proof. Let us prove, for example, the right inequality in (6.10).

Notice

ReIt(y(.), Z(.)) =

∫ t

0

(ξ(y, Z, ẏ, Ż)ẏ − η(y, Z, ẏ, Ż)Ż
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−ReH(y, Z, ξ(y, Z, ẏ, Ż), η(y, Z, ẏ, ż)))(τ) dτ

≥
∫ t

0

(ξ(y, Z)ẏ−η(y, Z, ẏ, Ż)Ż−ReH(y, Z, ξ(y, Z), η(y, Z, ẏ, Ż))(τ) dτ,

due to the left inequality in (6.8). The last expression can be
written in equivalent form as∫ t

0

[ξ(y, Z)ẏ − η(y, Z)Ż −ReH(y, Z, ξ(y, Z), η(y, Z)](τ) dτ

+

∫ t

0

[(η(y, Z)− η(y, Z, ẏ, Ż))Ż

+ReH(y, Z, ξ(y, Z), η(y, Z))−ReH(y, Z, ξ(y, Z), η(y, Z, ẏ, Ż))](τ) dτ.

Let us stress (to avoid ambiguity) that in our notation, say, η(y, z)(τ)
means the imaginary part of the momentum field in the point
(τ, (y + iz)(τ) defined by the family Γ(x0), and η(y, z, ẏ, ż) means
the solution of equations (6.7). Now notice that in the last expres-
sion the first integral is just the real part of the invariant Hilbert
integral and consequently one can rewrite the last expression in the
form

ReS(t, x;x0)−
∫ t

0

[ReH(y, Z, ξ(y, Z), η(y, Z, ẏ, Ż))−ReH(y, Z, ξ(y, Z), η(y, Z))

−
(
η(y, Z, ẏ, Ż)− η(y, Z),

∂ReH

∂η
(y, Z, ξ(y, Z), η(y, Z)

)
] dτ.

The function under the second integral is negative (it is actually
the real part of the Weierstrass function), since with respect to η
the function ReH is concave. It follows that

ReIt(y(.), Z(.)) ≥ ReS(t, x : x0) = ReIt(Y (.), Z(.)).

Further on we shall deal mostly with a particular case of
Hamiltonian (6.1), namely with the case of vanishing A and a con-
stant G.
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Proposition 6.3 If the drift A vanishes and the diffusion ma-
trix G is constant, then formula (2.19)-(2.21) hold. More exact
formulas can be written as well:

∂2S

∂x2
=

1

t
G−1(1 +

1

3
t2
∂2V

∂x2
(x0)G+O(t2c)),

∂2S

∂x20
=

1

t
G−1(1 +

1

3
t2
∂2V

∂x2
(x0)G+O(t2c)), (6.13)

∂2S

∂x∂x0
= −1

t
G−1(1− 1

6
t2
∂2V

∂x2
(x0)G+O(t2c)). (6.14)

and,

∂X

∂p0
= tG(1+

1

6
t2
∂2V

∂x2
(x0)G+O(t2c)),

∂P

∂p0
= 1+

1

2
t2
∂2V

∂x2
(x0)G+O(t2c),

(6.15)
where c is from Theorem 2.1.

Proof. Under the assumptions of the Proposition

X(t, x0, p0) = x0 + tGp0 +
1

2
G
∂V

∂x
(x0)t

2 +
t3

6
G
∂2V

∂x2
Gp0 +O(t4p20),

P (t, x0, p0) = p0 +
∂V

∂x
(x0)t+

t2

2

∂2V

∂x2
Gp0 +O(t3p20).

This implies (6.15) and also the estimate

∂X

∂x0
= 1 +

1

2
t2G

∂2V

∂x2
(x0) +O(t2c).

These estimates imply (6.13), (6.14) due to (1.19)-(1.21).
In the theory of semiclassical approximation , it is important

to know whether the real part of the action S is nonnegative.

Proposition 6.4. (i) If GR is strictly positive for all x, then
ReS(t, x;x0) restricted to real values x, x0 is nonnegative and con-
vex for small enough t and x− x0.

(ii) Let GR and the drift A vanish for all x, and let GI be a
constant positive matrix, which is proportional to the unit matrix.



108

Then ReS restricted to real values x, x0 is nonnegative and convex
for small enough t, x− x0 iff VR is nonnegative and strictly convex
with respect to y = Rex.

Proof. (i) Follows directly from representation (2.17).
(ii) It follows from (6.13), (6.14) that (under assumptions (ii))

ReS(t, x, x0) is convex in x and x0 for real x and x0 whenever VR
is convex for real V . Consequently, to prove the positivity of ReS
it is enough to prove the positivity of S(t, x̃, x0) for all x0, because,
this is a minimum of S, as a function of x0. Using expansion (2.17)
yields

S(t, x̃, x0) = tV (x0) +O(t3)∥∂V
∂x

∥2.

Since V (x) is nonnegative, it follows that V (x̂0) ≥ 0 at the point x̂0
of its global minimum. The previous formula implies directly that
S(t, x̃, x0) is positive (for small t at least) whenever V (x̂0) > 0. If
V (x̂0) = 0, then S is clearly non-negative outside a neighbourhood
of x̂0. Moreover, in the neighbourhood of x̂0, it can be written in
the form

S(t, x̃, x0) =
t

2

(
∂2V

∂x2
(x̂0)(x0 − x̂0), x0 − x̂0

)
+O(t|x0−x̂0|3)+O(t3|x0−x̂0|2),

which is again non-negative for small t.

7. Stochastic Hamiltonians

The theory developed in the previous Sections can be ex-
tended to cover the stochastic generalisations of Hamiltonian sys-
tems, namely the system of the form{

dx = ∂H
∂p dt+ g(t, x) ◦ dW

dp = −∂H
∂x dt− (c′(t, x) + pg′(t, x)) ◦ dW,

(7.1)

where x ∈ Rn, t ≥ 0, W = (W 1, ...Wm) is the standard m-
dimensional Brownian motion (◦, as usual, denotes the Stratonovich
stochastic differential), c(t, x) and g(t, x) = gij(t, x) are given vector-
valued and respectively (m × n)-matrix -valued functions and the
Hamiltonian H(t, x, p) is convex with respect to p. Stochastic
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Hamiltonian system (7.1) correspond formally to the singular Hamil-
tonian function

H(t, x, p) + (c(t, x) + pg(t, x))Ẇ (t),

where Ẇ is the white noise (formal derivative of the Wiener pro-
cess). The corresponding stochastic Hamilton-Jacobi equation clearly
has the form

dS +H(t, x,
∂S

∂x
) dt+ (c(t, x) + g(t, x)

∂S

∂x
) ◦ dW = 0. (7.2)

To simplify the exposition we restrict ourselves to the most
important particular case, when g = 0 in (7.1) and the functions
H and c do not depend explicitly on t. Namely, we shall consider
the stochastic Hamiltonian system{

dx = ∂H
∂p dt

dp = −∂H
∂x dt− c′(x) dW.

(7.3)

and the stochastic Hamilton-Jacobi equation

dS +H(x,
∂S

∂x
) dt+ c(x) dW = 0. (7.4)

In that case the Ito and the Stratonovich differentials coincide. The
generalisation of the theory to (7.1) and (7.2) is almost straight-
forward. As the next stage of simplification we suppose that the
matrix of the second derivative of H with respect to all its argu-
ments is uniformly bounded. An example of this situation is given
by the standard quantum mechanical Hamiltonian p2 − V (x). In
that important for the application case one can get rather nice re-
sults on the existence of the solution to the boundary-value prob-
lem uniform with respect to the position of the boundary values
x0, x. However, the restriction to this type of Hamiltonians is by no
means necessary. More general Hamiltonians that was discussed in
Sections 2-6 can be considered in this framework similarly and the
result are similar to those obtained for the deterministic Hamilto-
nian systems of Sections 2-6.



110

Theorem 7.1 [K1], [K2]. For fixed x0 ∈ Rn and t > 0 let
us consider the map P : p0 7→ X(t, x0, p0), where X(τ, x0, p0),
P (τ, x0, p0) is the solution to (7.3) with initial values (x0, p0). Let
all the second derivatives of the functions H and c are uniformly
bounded, the matrix HesspH of the second derivatives of H with
respect to p is uniformly positive (i.e. HesspH ≥ λE for some
constant λ), and for any fixed x0 all matrices HesspH(x0, p) com-
mute. Then the map P is a diffeomorphism for small t ≤ t0 and
all x0.

Proof. Clear that the solution of the linear matrix equation

dG = B1Gdt+B2(t) dW, G|t=0 = G0, (7.5)

where Bj = Bj(t, [W ]) are given uniformly bounded and non-
anticipating functionals on the Wiener space, can be represented
by the convergent series

G = G0 +G1 +G2 + ... (7.6)

with

Gk =

∫ t

0

B1(τ)Gk−1(τ) dτ +

∫ t

0

B2(τ)Gk−1(τ) dW (τ). (7.7)

Differentiating (7.3) with respect to the initial data (x0, p0) one
gets that the matrix

G =
∂(X,P )

∂(x0, p0)
=

( ∂X
∂x0

∂X
∂p0

∂P
∂x0

∂P
∂p0

)
(x(τ, [W ]), p(τ, [W ]))

satisfies a particular case of (7.5):

dG =

(
∂2H
∂p∂x

∂2H
∂p2

−∂2H
∂x2 − ∂2H

∂x∂p

)
(X,P )(t)Gdt−

(
0 0

c′′(X(t)) 0

)
GdW

(7.8)
with G0 being the unit matrix. Let us denote by Õ(tα) any function
that is of order O(tα−ϵ) for any ϵ > 0, as t → 0. Applying the log
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log law for stochastic integrals [Ar] first to the solutions of system
(7.3) and then calculating G1 by (7.7) we obtain

G1 =

(
t

(
∂2H
∂p∂x

∂2H
∂p2

−∂2H
∂x2 − ∂2H

∂x∂p

)
(x0, p0) +

(
0 0

c′′(x0)Õ(t1/2) 0

))(
E 0
0 E

)

up to a term of order Õ(t3/2). Application of the log log law to
the next terms of series (7.5) yields for the remainder G − G0 −
G1 the estimate Õ(t3/2). Thus, we have the convergence of series
(7.5) for system (7.8) and the following approximate formula for
its solutions:

∂X

∂x0
= E+t

∂2H

∂p∂x
(x0, p0)+Õ(t3/2),

∂X

∂p0
= t

∂2H

∂p2
(x0, p0)+Õ(t3/2),

(7.9)
∂P

∂x0
= Õ(t1/2),

∂P

∂p0
= E + t

∂2H

∂x∂p
(x0, p0) + Õ(t3/2). (7.10)

These relations imply that the map P : p0 7→ X(t, x0, p0) is a local
diffeomorphism and is globally injective. The last statement follows
from the formula

X(t, x0, p
1
0)−X(t, x0, p

2
0) = t(1 +O(t))(p10 − p20),

which one gets by the same arguments as in the proof of Theorem
2.1. Moreover, from this formula it follows as well that x(t, p0) →
∞, as p0 → ∞ and conversely. From this one deduces that the
image of the map P : p0 7→ X(t, x0, p0) is simultaneously closed and
open and therefore coincides with the whole space, which completes
the proof of the Theorem.

Let us define now the two-points function

SW (t, x, x0) = inf

∫ t

0

(L(y, ẏ) dτ − c(y) dW ), (7.11)

where inf is taken over all continuous piecewise smooth curves y(τ)
such that y(0) = x0, y(t) = x, and the Lagrangian L is, as usual,
the Legendre transform of the Hamiltonian H with respect to its
last argument.
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Theorem 7.2. Under the assumptions of Theorem 7.1

(i) SW (t, x, x)) =

∫ t

0

(p dx−H(x, p) dt− c(x) dW ), (7.12)

where the integral is taken along the solution X(τ), P (τ) of system
(7.3) that joins the points x0 and x in time t (and which exists and
is unique due to Theorem 7.1),

(ii) P (t) =
∂SW (t, x, x0)

∂x
, p0 = −∂SW (t, x, x0)

∂x0
,

(iii) S satisfies equation (7.4), as a function of x,
(iv) S(t, x, x0) is convex in x and x0.
Proof. The proof can be carried out by rather long and tedious

direct differentiations with the use of the Ito formula. But fortu-
nately, we can avoid it by using the following well known fact [SV,
Su, WZ]: if we approximate the Wiener trajectoriesW in some (or-
dinary) stochastic Stratonovich equation by a sequence of smooth
functions

Wn(t) =

∫ t

0

qn(s) ds (7.13)

(with some continuous functions qn), then the solutions of the cor-
responding classical (deterministic) equations will tend to the so-
lution of the given stochastic equation. For functions (7.13), equa-
tion (7.4) as well as system (7.3) become classical and results of
the Theorem become well known (see, for instance, [MF1],[KM1]).
In Section 1.1 we have presented these result for the case of Hamil-
tonians which do not depend explicitly on t, but this dependence
actually would change nothing in these considerations. By the
approximation theorem mentioned above the sequence of corre-
sponding diffeomorphisms Pn of Theorem 7.1 converges to the dif-
feomorphism P , and moreover, due to the uniform estimates on
their derivatives (see (7.9),(7.10)), the convergence of Pn(t, x0, p0)
to P (t, x0, p0) is locally uniform as well as the convergence of the
inverse diffeomorphisms P−1

n (t, x) → P−1(t, x). It implies the con-
vergence of the corresponding solutions Sn to function (2.2) to-
gether with their derivatives in x. Again by the approximation
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arguments we conclude that the limit function satisfies equation
(7.4). Let us note also that the convex property of S is due to
equations (1.19),(1.20),(7.9),(7.10).

By similar arguments one gets the stochastic analogue of the
classical formula to the Cauchy problem for Hamilton-Jacobi equa-
tion, namely the following result

Theorem 7.3 [TZ1],[K1]. Let S0(x) is a smooth function and
for all t ≤ t0 and x ∈ Rn there exists a unique ξ = ξ(t, x) such
that x(t, ξ) = x for the solution x(τ, ξ), p(τ, ξ) of system (7.3) with
initial data x0 = ξ, p0 = (∂S0/∂x)(ξ). Then

S(t, x) = S0(ξ) +

∫ t

0

(p dx−H(x, p) dt− c(x) dW ) (7.14)

(where the integral is taken along the trajectory x(τ, ξ), p(τ, ξ)) is a
unique classical solution of the Cauchy problem for equation (1.4)
with initial function S0(x).

Theorems 7.1, 7.2 imply simple sufficient conditions for the
assumptions of Theorem 2.3 to be true. The following result is a
direct corollary of Theorem 7.2.

Theorem 7.4. Under the assumptions of Theorem 7.1 let the
function S0(x) is smooth and convex. Then for t ≤ t0 there exists
a unique classical (i.e. everywhere smooth) solution to the Cauchy
problem of equation (7.4) with initial function S0(x) and it is given
by equation (7.14) or equivalently by the formula

RtS0(x) = S(t, x) = min
ξ

(S0(ξ) + SW (t, x, ξ)). (7.15)

One can directly apply the method of constructing generalised
solution to deterministic Bellman equation from [KM1],[KM2] to
the stochastic case, which gives the following result (details in
[K1],[K2]):

Theorem 7.5. For any bounded from below initial function
S0(x) there exists a unique generalised solution of the Cauchy prob-
lem for equation (7.3) that is given by formula (7.15) for all t ≥ 0.

Let us mention for the conclusion that the results of Propo-
sitions 2.4-2.8 can be now obtained by the similar arguments for
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the stochastic Hamiltonians. Furthermore, most of the results of
the previous Section can be obtained also for complex stochastic
Hamiltonian system of form (7.3). For example, let us formulate
one of the results.

Theorem 7.6. Consider a complex stochastic Hamilton-Jacobi
equation of form (7.4), with H of form (6.1) supposing that G,A, V, c
are analytic in the band {|Imx| ≤ 2ϵ} with some ϵ > 0 and such
that G,A, V ′′, c′ are uniformly bounded there together with all their
derivatives. Then there exist δ > 0, t0 > 0 and a smooth fam-
ily Γ of solutions of the corresponding Hamiltonian system (7.3)
joining uniquely in time t ≤ t0 any two points x0, x such that
|x − x0| ≤ δ, |Imx| ≤ ϵ, |Imx0| ≤ ϵ. Moreover, all trajec-
tories from Γ are saddle-points for the corresponding functional∫ t
0
(L(y, ẏ) dτ − c(y) dW ) (in the sense of Section 2.6), and the cor-

responding random two-point function SW (t, x, x0) satisfies (almost
surely) equation (7.4).



Chapter 3. SEMICLASSICAL APPROXIMATION
FOR REGULAR DIFFUSION

1. Main ideas of the WKB-method with imaginary phase

In this chapter we construct exponential WKB-type asymp-
totics for solutions of equations of type

h
∂u

∂t
=
h2

2
tr

(
G(x)

∂2u

∂x2

)
+ h

(
A(x),

∂u

∂x

)
− V (x), (1.1)

where t ≤ 0, x ∈ Rm, V,A and G are smooth real, vector-valued,
and matrix-valued functions onRm respectively, G(x) is symmetric
non-negative, and h is a positive parameter. Equivalently, one can
write equation (1.1) in the ”pseudo-differential form”

h
∂u

∂t
= H

(
x,−h ∂

∂x

)
u = Lu (1.2)

with the Hamiltonian function

H(x, p) =
1

2
(G(x)p, p)− (A(x), p)− V (x). (1.3)

Our main aim will be the construction of the Green function of
equation (1.1), i.e. of the solution uG(t, x, x0) with Dirac initial
data

uG(t, x, x0) = δ(x− x0). (1.4)

The solution of the Cauchy problem for equation (1.1) with gen-
eral initial data u0(x) can be then given by the standard integral
formula

u(t, x) =

∫
uG(t, x, x0)u0(x0) dx0. (1.5)

In this introductory section we describe the main general steps of
the construction of the formal asymptotic solution for the problem
given by (1.1) and (1.4), presenting in a compact but systematic
way rather well-known ideas (see, e.g. [MF1], [M1],[M2], [KM2]),
which were previously used only for non-degenerate diffusions, i.e.
when the matrix G in (1.1) was non-degenerate (and usually only
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for some special cases, see [MC1],[DKM1], [KM2]). Here we shall
show that these ideas can also be applied for the case of regular (in
particular degenerate) Hamiltonians of type (1.3) introduced and
discussed in the previous chapter from the point of view of the cal-
culus of variations. In fact, the results of the previous chapter form
the basis that allows us to carry out successfully (effectively and
rigorously) the general steps described in this section. Moreover,
it seems that regular Hamiltonians form the most general class, for
which it can be done in this way. As we shall see in Section 3.6, for
non-regular Hamiltonians, the procedure must be modified essen-
tially, even at the level of formal expansions, if one is interested in
small time asymptotics, but for small h asymptotics (with fixed t),
this procedure seems to lead to correct results even for non-regular
degenerate diffusions. We shall construct two types of asymptotics
for (1.1), (1.4), namely, small time asymptotics, when t→ 0 and h
is fixed, say h = 1, and (global) small diffusion asymptotics, when
t is any finite number and h→ 0.

Step 1. One looks for the asymptotic solution of (1.1), (1.4)
for small h in the form

uasG (t, x, x0, h) = C(h)ϕ(t, x, x0) exp{−S(t, x, x0)/h}, (1.6)

where S is some non-negative function called the action or entropy,
and C(h) is a normalising coefficient.

In the standard WKB method traditionally used in quantum
mechanics to solve the Schrödinger equation, one looks for the so-
lutions in ”oscillatory form”

C(h)ϕ(t, x, x0) exp{−
i

h
S(t, x, x0)} (1.7)

with real functions ϕ and S called the amplitude and the phase re-
spectively. For this reason one refers sometimes to the ansatz (1.6)
as to the WKB method with imaginary phase, or as to exponential
asymptotics, because it is exponentially small outside the zero-set
of S. The difference between the asymptotics of the types (1.6)
and (1.7) is quite essential. On the one hand, when justifying the
standard WKB asymptotics of type (1.7) one should prove that the
exact solution has the form

C(h)ϕ(t, x, x0) exp{−
i

h
S(t, x, x0)}+O(h) (1.8)
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(additive remainder), which can be proved under rather general
conditions by L2 methods of functional analysis [MF1]. For asymp-
totics of form (1.6) this type of justification would make no sense,
because the expression (1.6) is exponentially small outside the zero-
set of S. Thus, to justify (1.6) one should instead prove that the
exact solution has the form

C(h)ϕ(t, x, x0) exp{−S(t, x, x0)/h}(1 +O(h)), (1.9)

which must be carried out by some special pointwise estimates. Be-
cause of the multiplicative remainder in (1.9) one calls asymptotics
of this type multiplicative. On the other hand, essential difference
between (1.6) and (1.7) lies in the fact that if one adds different
asymptotic expressions of form (1.9), then, unlike the case of the
asymptotics (1.8), in the sum only the term with the minimal en-
tropy survives at each point (because other terms are exponentially
small in compared with this one), and therefore for the asymptotics
(1.9) the superposition principle transforms into the idempotent su-
perposition principle (S1, S2) 7→ min(S1, S2) at the level of actions.
For a detailed discussion of this idempotent superposition principle
and its applications see [KM1],[KM2].

It seems that among parabolic differential equations only sec-
ond order equations can have asymptotics of the Green function of
form (1.9). Considering more general pseudo-differential equations
one gets other classes, which enjoy this property, for example, the
so called tunnel equations introduced in [M1], [M2] (see Chapter
6).

Inserting (1.6) in (1.1) yields

h

(
∂ϕ

∂t
− 1

h
ϕ
∂S

∂t

)
=
h2

2
tr G(x)

(
∂2ϕ

∂x2
− ϕ

h

∂2S

∂x2

)
+h

(
A(x),

∂ϕ

∂x
− 1

h
ϕ
∂S

∂x

)

+
1

2

(
G(x)

∂S

∂x
,
∂S

∂x

)
ϕ− h

(
G(x)

∂S

∂x
,
∂ϕ

∂x

)
− V (x). (1.10)

Comparing coefficients of h0 yields the Hamilton-Jacobi equation

∂S

∂t
+H

(
x,
∂S

∂x

)
= 0 (1.11)
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corresponding to the Hamiltonian function (1.3), or more explicitly

∂S

∂t
+

1

2

(
G(x)

∂S

∂x
,
∂S

∂x

)
−
(
A(x),

∂S

∂x

)
− V (x) = 0. (1.12)

Comparing coefficients of h one gets the so called transport equa-
tion

∂ϕ

∂t
+

(
∂ϕ

∂x
,
∂H

∂p
(x,

∂S

∂x
)

)
+

1

2
tr

(
∂2S

∂x2
∂2H

∂p2
(x,

∂S

∂x
)

)
ϕ(x) = 0,

(1.13)
or more explicitly

∂ϕ

∂t
−
(
A(x),

∂ϕ

∂x

)
+

(
G(x)

∂S

∂x
,
∂ϕ

∂x

)
+

1

2
tr

(
G(x)

∂2S

∂x2

)
ϕ = 0.

(1.13′)
Therefore, if S and ϕ satisfy (1.12), (1.13), then the function u of
form (1.6) satisfies equation (1.1) up to a term of order h2, i.e.

h
∂uasG
∂t

−H
(
x,−h ∂

∂x

)
uasG = −h

2

2
C(h) tr

(
G(x)

∂2ϕ

∂x2

)
exp{−S(t, x)

h
}.

(1.14)
As is well known and as was explained in the previous chapter, the
solutions of the Hamilton-Jacobi equation (1.12) can be expressed
in terms of the solutions of the corresponding Hamiltonian system{

ẋ = −∂H
∂p = G(x)p−A(x)

ṗ = ∂H
∂x = ∂

∂x (A(x), p)−
1
2
∂
∂x (G(x)p, p) +

∂V
∂x

. (1.15)

Step 2. If we had to solve the Cauchy problem for equation
(1.1) with a smooth initial function of form (1.6), then clearly in
order to get an asymptotic solution in form (1.6) we would have to
solve the Cauchy problem for the Hamilton-Jacobi equation (1.11).
The question then arises, what solution of (1.11) (with what initial
data) one should take in order to get asymptotics for the Green
function. The answer is the following. If the assumptions of Theo-
rem 2.1.1 hold, i.e. there exists a family Γ(x0) of characteristics of
(1.15) going out of x0 and covering some neighbourhood of x0 for
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all sufficiently small t, then one should take as the required solution
of (1.15) the two-point function S(t, x, x0) defined in the previous
chapter (see formulas (2.1.5), (2.1.6) for local definition and Propo-
sition 2.2.8 for global definition). As was proved in the previous
chapter (see Propositions 2.2.8 and 2.3.7), for regular Hamiltoni-
ans this function is an almost everywhere solution of the Hamilton-
Jacobi equation. One of the reasons for this choice of the solution
of (1.12) lies in the fact that for the Gaussian diffusion described
in the first chapter this choice of S leads to the exact formula for
Green function. Another reason can be obtained considering the
Fourier transform of equation (1.1). Yet another explanation is
connected with the observation that when considering systemati-
cally the idempotent superposition principle on actions as described
above one finds that the resolving operator for the Cauchy prob-
lem (of generalised solutions) for the nonlinear equation (1.11) is
”linear” with respect to this superposition principle and the two-
point function S(t, x, x0) can be interpreted as well as ”the Green
function” for (1.11) (see details in [KM1],[KM2]). Therefore, by
the ”correspondence principle”, the Green function for (1.1) should
correspond to ”the Green function” for (1.11). All this reasoning
are clearly heuristic, and the rigorous justification of asymptotics
constructed in this way needs to be given independently.

Step 3. This is to construct solutions of the transport equa-
tion (1.13). The construction is based on the well known (and
easily proved) Liouville theorem, which states that if the matrix
∂x
∂α of derivatives of the solution of an m-dimensional system of
ordinary differential equations ẋ = f(x, α) with respect to any
m-dimensional parameter α is non-degenerate on some time inter-
val, then the determinant J of this matrix satisfies the equation
J̇ = Jtr ∂f∂x . Let us apply the Liouville theorem to the system

ẋ =
∂H

∂p

(
x,
∂S

∂x
(t, x, x0)

)
,

which is the first equation of (1.15), whose momentum p is ex-
pressed in terms of the derivatives of the two-point function ac-
cording to Proposition 1.1 of the second chapter. Considering the
initial momentum p0 as the parameter α one gets in this way that



102

on the characteristic X(t, x0, p0) the determinant J = det ∂X∂p0 sat-
isfies the equation

J̇ = J tr

(
∂2H

∂p∂x
+
∂2H

∂p2
∂2S

∂x2

)
,

or more explicitly (using (1.4))

J̇ = J tr

(
G
∂2S

∂x2
− ∂A

∂x
+
∂G

∂x
p

)
,

which yields the equation for J−1/2

(J−1/2). = −1

2
J−1/2 tr

(
∂2H

∂p∂x
+
∂2H

∂p2
∂2S

∂x2

)
, (1.16)

or more explicitly

(J−1/2). = −1

2
J−1/2tr

(
G
∂2S

∂x2
− ∂A

∂x
+
∂G

∂x
p

)
. (1.16′)

Now consider the behaviour of the function ϕ satisfying the trans-
port equation (1.13) along the characteristic X(t, x0, p0). The total
time derivative is d

dt =
∂
∂t + ẋ ∂

∂x . Consequently denoting this total
time derivative by a dot above a function and using (1.15) one can
rewrite (1.13) as

ϕ̇+
1

2
ϕ tr

(
∂2H

∂p2
(x,

∂S

∂x
)
∂2S

∂x2

)
= 0, (1.17)

or more explicitly

ϕ̇+
1

2
ϕ tr

(
G(x)

∂2S

∂x2

)
= 0. (1.17′)

This is a first order linear equation, whose solution is therefore
unique up to a constant multiplier. Introducing the new unknown
function α by ϕ = J−1/2α one gets the following equation for α
using (1.16),(1.17):

α̇ =
1

2
α tr

∂2H

∂p∂x
(x,

∂S

∂x
),
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whose solution can be expressed in terms of the solutions of (1.15).
Thus one finds a solution for (1.13) in the form

ϕ(t, x, x0) = J−1/2(t, x, x0) exp

{
1

2

∫ t

0

tr
∂2H

∂p∂x
(x(t))p(t)) dτ

}
,

(1.18)
or more explicitly

ϕ(t, x, x0) = J−1/2(t, x, x0) exp

{
1

2

∫ t

0

tr

(
∂G

∂x
(x(t))p(t))− ∂A

∂x
(x(t))

)
dτ

}
,

(1.18′)
where the integral is taken along the solution (X,P )(t, x0, p0(t, x, x0))
of (1.15) joining x0 and x in time t.

Notice that J−1/2(t, x, x0) and therefore the whole function
(1.18) are well defined only at regular points (see the definitions
at the end of Section 2.2), because at these points the minimising
characteristic joining x0 and x in time t is unique and J does not
vanish there. This is why in order to get a globally defined function
of form (1.6) (even for small t) one should introduce a molyfier.
Namely, let for t ∈ (0, t0] and x in some domain D = D(x0), all
points (t, x) are regular (such t0 and domain D(x0) exist for regular
Hamiltonians again due to the results of the previous chapter) and
let χD be a smooth function such that χD vanishes outside D, is
equal to one inside D except for the points in a neighbourhood of
the boundary ∂D of D, and takes value in [0, 1] everywhere. Then
the function

uasG = C(h)χD(x− x0)ϕ(t, x, x0) exp{−S(t, x, x0)/h} (1.19)

with ϕ(t, x;x0) of form (1.18) is globally well defined for t ≤ t0 and
(by (1.14)) satisfies the following equation:

h
∂uasG
∂t

−H

(
x,−h ∂

∂x

)
uasG = −h2F (t, x, x0), (1.20)

where F (which also depends on h and D) is equal to

F = C(h)

[
1

2
tr

(
G(x)

∂2ϕ

∂x2

)
χD(x− x0)− h−1f(x)

]
×exp

{
−S(t, x, x0)

h

}
,

(1.21)
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where f(x) has the form O(ϕ)(1+O(∂S∂x ))+O(∂ϕ∂x ) and is non van-
ishing only in a neighbourhood of the boundary ∂D of the domain
D.

Step 4. All the constructions that we have described are cor-
rect for regular Hamiltonians by the results of the previous chapter.
The only thing that remains in the formal asymptotic construction
is to show that uasG as defined by (1.19) satisfies the Dirac initial
condition (1.4). But for regular Hamiltonians this is simple, be-
cause, as we have seen in the previous chapter and as we shall show
again by another method in the next section, the main term (for
small t and x− x0) of the asymptotics of the two-point function is
the same as for its quadratic or Gaussian diffusion approximation,
and one can simply refer to the results of the first chapter. Alterna-
tively, having the main term of the asymptotics of S(t, x, x0), one
proves the initial condition property of (1.19) (with appropriate
coefficient C(h)) by means of the asymptotic formula for Laplace
integrals, see e.g. Appendix B. Consequently, the function (1.19) is
a formal asymptotic solution of the problem given by (1.1), (1.4) in
the sense that it satisfies the initial conditions (1.4), and satisfies
equation (1.1) approximately up to order O(h2). Moreover, as we
shall see further in Section 4, the exact Green function will have
the form (1.9) with the multiplicative remainder 1 + O(h) having
the form 1 + O(ht), which will imply that we have got automati-
cally also the multiplicative asymptotics for the Green function for
small times and fixed h, say h = 1. The same remark also applies
to the next terms of the asymptotics which are described below.

Step 5. Till now we have constructed asymptotic solutions to
(1.1) up to terms of the order O(h2). In order to construct more
precise asymptotics (up to order O(hk) with arbitrary k > 2), one
should take instead of the ansatz (1.6) the expansion

uasG = C(h)(ϕ0(t, x) + hϕ1(t, x) + ...+ hkϕk(t, x)) exp{−S(t, x)/h}.
(1.22)

Inserting this in (1.1) and comparing the coefficients of hj , j =
0, 1, ..., k + 1, one sees that

h
∂uasG
∂t

−H
(
x,−h ∂

∂x

)
uasG =

hk+2

2
tr

(
G(x)

∂2ϕk
∂x2

)
exp{−S(t, x)

h
},

(1.23)
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if (1.12), (1.13) hold for S and ϕ0 and the following recurrent sys-
tem of equations (higher order transport equations) hold for the
functions ϕj , j = 1, ..., k:

∂ϕj
∂t

−
(
A(x),

∂ϕj
∂x

)
+

(
G(x)

∂S

∂x
,
∂ϕ

∂x

)
+

1

2
tr

(
G(x)

∂2S

∂x2

)
ϕj

=
1

2
tr

(
G(x)

∂2ϕj−1

∂x2

)
,

which takes the form

ϕ̇j +
1

2
tr

(
G(x)

∂2S

∂x2

)
ϕj =

1

2
tr

(
G(x)

∂2ϕj−1

∂x2

)
(1.24)

in terms of the total derivative along the characteristics. The
change of unknown ϕk = ϕ0ψk, k = 1, 2, ..., yields

ψ̇j =
1

2
ϕ−1
0 tr

(
G(x)

∂2(ψj−1ϕ0)

∂x2

)
and the solution to this equation with vanishing initial data can be
found recursively by the integration

ψj =
1

2

∫ t

0

ϕ−1
0 tr

(
G(x)

∂2(ψj−1ϕ0)

∂x2

)
(x(τ)) dτ. (1.25)

By this procedure one gets a function of form (1.22), which is a
formal asymptotic solution of (1.1) and (1.4) of order O(hk+2), i.e.
it satisfies the initial condition (1.4) exactly and satisfies equation
(1.1) approximately up to order O(hk+2), or more precisely, since
each ψj is obtained by integration, for small times t the remainder
is of the form O(tkhk+2).

Example. To conclude this section, let us show how the
method works on the simple example of Gaussian diffusions pre-
senting the analytic proof of formula (1.1.4). Consider the Hamil-
tonian

H = −(Ax, p) +
1

2
(Gp, p) (1.26)
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with constant matrices A,G, and the corresponding equation (1.2):

∂u

∂t
=
h

2
tr

(
G
∂2u

∂x2

)
+

(
Ax,

∂u

∂x

)
. (1.27)

Let us use formulas (2.1.5), (2.1.4) to calculate the two-point func-
tion S(t, x, x0). For this purpose we need to solve the boundary
value problem for the corresponding Hamiltonian system{

ẋ = −Ax+Gp
ṗ = A′p.

(1.28)

The solution of (1.28) with initial data x0, p0 has the form{
P = eA

′tpo
X = e−Atx0 +

∫ t
0
e−A(t−τ)GeA

′τ dτ p0,

and therefore the function p0(t, x, x0) defined by (2.1.2) is (globally)
well defined if the matrix E(t) of form (1.3) is non-degenerate, and
is given by

p0(t, x, x0) = E−1(t)(eAtx− x0).

Therefore from (2.1.4), (2.1.5) one gets

S(t, x, x0) =
1

2

∫ t

0

(Gp(τ), p(τ)) dτ =
1

2

∫ t

0

(GeA
′τp0, e

A′τp0) dτ

=
1

2
(E(t)p0, p0) =

1

2
(E−1(t)(x0 − eAtx), x0 − eAtx)

and from (1.18)

ϕ = (det
∂X

∂p0
)−1/2et tr A/2 = (detE(t))−1/2.

It follows from (1.14) that since ϕ does not depend on x, the r.h.s.
of (1.14) vanishes, i.e. in the situation under consideration the
asymptotic solution of form (1.6) constructed is in fact an exact
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solution and is defined globally for all t and x. Therefore one gets
the formula for the Green function

(2πh)−m/2(detE(t))−1/2 exp{− 1

2h
(E−1(x0 − eAtx), x0 − eAtx)},

(1.29)
the coefficient C(h) being chosen in the form (2πh)−m/2 in order
to meet the initial condition (1.4), which one verifies directly. Ex-
pression (1.29) coincide with (1.1.4) for h = 1.

2. Calculation of the two-point function
for regular Hamiltonians

The most important ingredient in the asymptotics of second
order parabolic equations is the two-point function. It was investi-
gated in the previous chapter in the case of regular Hamiltonians; it
was proved that this function is smooth and satisfies the Hamilton-
Jacobi equation almost everywhere, and a method of calculation of
its asymptotic for small times and small distances was proposed: by
means of the asymptotic solutions of the boundary value problem
for corresponding Hamiltonian system. In this section we describe
an alternative, more direct method of its calculation for small times
and small distances. This method seems to be simpler for calcula-
tions but without the rigorous results of the previous chapter, the
proof of the correctness of this method seems to be rather difficult
problem (especially when the coefficients of the Hamiltonian are
not real analytic).

In the case of a non-degenerate matrix G in (1.12), one can
represent the two-point function in the form (2.2.17) for small t and
x − x0. Substituting (2.2.17) in (1.12) yields recursive formulas,
by which the coefficients of this expansion can be calculated to
any required order. These calculations are widely represented in
the literature, and therefore we omit the details here. We shall
deal more carefully with degenerate regular Hamiltonians of form
(2.3.1), where the corresponding Hamilton-Jacobi equation has the
form

∂S

∂t
+

1

2

(
g(x)

∂S

∂y
,
∂S

∂y

)
− a(x, y)

∂S

∂x
− b(x, y)

∂S

∂y
− V (x, y) = 0.

(2.1)
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A naive attempt to try to solve this equation (following the proce-
dure of the non-degenerate case) by substituting into this equation
an expression of the form Reg(t, x − x0, y − y0)/t with Reg being
a regular expansion with respect to its argument (i.e. as a non-
negative power series), or even more generally substituting t−lReg
with some l > 0, does not lead to recurrent equations but to a
difficult system, for which neither uniqueness nor existence of the
solution is clear even at the formal level. In order to get recurrent
equations one should chose the arguments of the expansion in a
more sophisticated way. Corollary to Proposition 2.1.3 suggests
that it is convenient to make the (non-homogeneous) shift of the
variables, introducing a new unknown function

σ(t, x, y) = S(t, x+ x̃(t), y + ỹ(t), x0, y0), (2.2)

where (x̃, ỹ, p̃, q̃)(t) denote the solution of the corresponding Hamil-
tonian system with initial conditions (x0, y0, 0, 0). In terms of the
function σ the Hamilton-Jacobi equation (2.1) takes the form

∂σ

∂t
−(a(x+x̃(t), y+ỹ(t))−a(x̃(t), ỹ(t)))∂σ

∂x
−(b(x+x̃(t), y+ỹ(t))−b(x̃(t), ỹ(t)))∂σ

∂y

−g(x̃(t), ỹ(t))q̃(t)∂σ
∂y

+
1

2

(
g(x+ x̃(t), y + ỹ(t))

∂σ

∂y
,
∂σ

∂y

)
− V (x+ x̃(t), y + ỹ(t)) = 0.

(2.3)
The key idea (suggested by Proposition 2.3.7) for the asymptotic
solution of this equation in the case of general regular Hamilto-
nian (2.4.1) is to make the change of variables (x0, ..., xM , y) 7→
(ξ0, ..., ξM , y) defined by the formula xI = tM−I+1ξI , I = 0, ...,M .
Introducing the new unknown function by the formula

Σ(t, ξ0, ..., ξM , y) = σ(t, tM+1ξ0, ..., tξM , y) (2.4)

and noting that

∂Σ

∂ξI
=

∂σ

∂xI
tM−I+1, I = 0, ...,M,
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∂Σ

∂t
=
∂σ

∂t
+ (M + 1)tMξ0

∂σ

∂x0
+ ...+ ξM

∂σ

∂xM
,

one write down equation (2.3) for the case of Hamiltonian (2.4.1)
in terms of the function Σ:

∂Σ

∂t
+

1

2

(
g(tM+1ξ0 + x̃0(t))

∂Σ

∂y
,
∂Σ

∂y

)

−
(
g(x̃0(t))q̃(t),

∂Σ

∂y

)
−R2(M+2)(x(t, ξ) + x̃(t), y + ỹ)

− t
Mξ0 +R1(x(t, ξ) + x̃(t), y + ỹ(t))−R1(x̃(t), ỹ(t))

tM+1

∂Σ

∂ξ0
− ...

−ξ
M +RM+1(x(t, ξ) + x̃(t), y + ỹ(t))−RM+1(x̃(t), ỹ(t))

t

∂Σ

∂ξM

−(RM+2(x(t, ξ) + x̃(t), y + ỹ(t))−RM+2(x̃(t), ỹ(t)))
∂Σ

∂y
. (2.5)

It turns out that by expanding the solution of this equation as a
power series in its arguments one does get uniquely solvable re-
current equations. In this procedure lies indeed the source of the
main definition of regular Hamiltonians, which may appear to be
rather artificial at first sight. This definition insures that after ex-
pansion of obtained formal power series solution of (2.5) in terms
of initial variables (t, x, y) one gets the expansion of S in the form
t−(2M+3)Reg(t, x − x̃, y − ỹ) (where Reg is again a regular, i. e.
positive power series, expansion with respect to its arguments), and
not in the form of a Laurent type expansion with infinitely many
negatives powers. More precisely, the following main result holds.

Theorem 2.1. Under the assumptions of the main definition
of regular Hamiltonians (see Sect. 4 in Chapter 2), there exists a
unique solution of equation (2.5) of the form

Σ =
Σ−1

t
+Σ0 + tΣ1 + t2Σ2 + ... (2.6)

such that Σ−1 and Σ0 vanish in the origin, Σ−1 is strictly convex in
a neighbourhood of the origin, and all Σj are regular power series
in (ξ, y). Moreover, in this solution
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(i) Σ−1 is the quadratic form with the matrix 1
2 (E

0)−1(1),
where E0(t) and its inverse are as in Lemmas 1.2.2, 1.2.4,

(ii) all Σj are polynomials in (ξ, y) such that the degrees of
Σ−1, Σ0,..., ΣM−1 do not exceed 2, the degrees of ΣM ,..., Σ2M do
not exceed 3 and so on, i.e. the degree of Σk(M+1)−1+j does not
exceed k + 2 for any j = 0, ...,M and k = 0, 1, ...

Corollary. For the function σ corresponding to Σ according
to (2.4) (and to the two-point function S according to (2.2)) one
obtains an expansion in the form

σ(t, x, y) = t−(2M+3)
∞∑
j=0

tjPj(x, y), (2.7)

where each Pj is a polynomial in (x1, ..., xM+1) of degree degM Pj ≤
j with the coefficients being regular power series in x0. Moreover,
P0 and its derivative vanish at the origin.

Remark 1. Clearly, in order to have the complete series (2.6)
or (2.7) one must assume all coefficients of the Hamiltonian to
be infinitely differentiable functions of x0. More generally, one
should understand the result of Theorem 2.1 in the sense that if
these coefficients have continuous derivatives up to the order j,
then the terms Σl of expansion (2.6) can be uniquely defined for
l = −1, 0, 1, ..., j− 1 and the remainder can be estimated by means
of the Theorem 3.2 of the previous chapter.

Remark 2. One can see that if the conditions on the degrees
of the coefficients of the regular Hamiltonians (RH) 2.4.1 are not
satisfied, then after the series expansion of the solution (2.6) with
respect to t, x, y one necessarily gets infinitely many negative pow-
ers of t and therefore the definition of RH gives a necessary and
sufficient condition for a second order parabolic equation to have
the asymptotics of the Green function in the form (0.6) with ϕ and
S being regular power series in (x− x0), t (up to a multiplier t−α).

This section is devoted to the constructive proof of Theorem
2.1, which is based essentially on Proposition 7.1 obtained in the
special section at the end of this chapter. For brevity, we confine
ourselves to the simplest nontrivial case, when M = 0, i.e. to the
case, which was considered in detail in Section 2.3, and we shall
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use the notations of Section 2.3. The general case is similar, but
one should use the canonical coordinate system in a neighbour-
hood of x0, y0, which was described in Chapter 2. In the case of
Hamiltonian (2.3.4), equation (2.5) takes the form

∂Σ

∂t
− ξ + (a(tξ + x̃)− a(x̃)) + α(tξ + x̃)(y + ỹ)− α(x̃)ỹ

t

∂Σ

∂ξ

−[b(tξ + x̃)− b(x̃)) + (β(tξ + x̃)(y + ỹ)− β(x̃)ỹ)

+
1

2
(γ(tξ + x̃)(y + ỹ), y + ỹ)− 1

2
(γ(x̃)ỹ, ỹ)]

∂Σ

∂y

−
(
g(x̃)q̃,

∂Σ

∂y

)
+

1

2

(
g(tξ + x̃)

∂Σ

∂y
,
∂Σ

∂y

)
− V (tξ + x̃, y + ỹ) = 0,

(2.8)
where

Σ(t, ξ, y) = σ(t, tξ, y) = S(t, tξ + x̃, y + ỹ;x0, y
0). (2.9)

We are looking for the solution of (2.8) of form (2.6) with additional
conditions as described in Theorem 2.1. Inserting (2.6) in (2.8) and
comparing coefficients of t−2 yields

−Σ−1 − (α0y + ξ)
∂Σ−1

∂ξ
+

1

2

(
g0
∂Σ−1

∂y
,
∂Σ−1

∂y

)
= 0. (2.10)

Actually we already know the solution. It is the quadratic form
(2.3.49) with t = 1 and δ = 0. However, let us prove indepen-
dently in the present setting a stronger result, which includes the
uniqueness property.

Proposition 2.1. Under the additional assumption that Σ−1

vanishes and is strictly convex at the origin, equation (2.10) has
a unique analytic solution (in fact a unique solution in the class
of formal power series) and this solution is the quadratic form
(2.3.49), where t = 1 and δ = 0.

Proof. We consider only the case k = n, i.e. a quadratic
non-degenerate matrix α(x0). The general case similar, but one
needs the decomposition of Y as the direct sum of the kernel of
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α(x0)
√
g(x0) and its orthogonal complement (as in Section 2.3),

which results in more complicated expressions. Thus, let α0 be
quadratic and non-degenerate. It follows then directly that Σ−1(0, 0) =

0 implies that ∂Σ−1

∂y (0, 0) = 0. Furthermore, differentiating (2.10)
with respect to y yields

−∂Σ−1

∂y
− α0

∂Σ−1

∂ξ
− (α0y + ξ)

∂2Σ−1

∂y∂ξ
+

(
g0
∂Σ−1

∂y
,
∂2Σ−1

∂y2

)
= 0,

and using the non-degeneracy of α0 one sees that ∂Σ−1

∂ξ (0) also
vanishes.

Let us now find the quadratic part

1

2
(Aξ, ξ) + (Bξ, y) +

1

2
(Cy, y) (2.11)

of Σ−1 supposing that A is non-degenerate. From (2.10) one has

−1

2
(Aξ, ξ)− (Bξ, y)− 1

2
(Cy, y)

−(α0y + ξ)(Aξ +B′y) +
1

2
(g0(Bξ + Cy), Bξ + Cy) = 0. (2.12)

This equation implies the 3 equations for the matrices A,B,C:

A =
1

3
B′g0B, 2B + α′

0A = Cg0B, +
1

2
C +Bα0 =

1

2
Cg0C.

(2.13)
By the first equation of (2.13) and the non-degeneracy of A and g0,
the matrix B is non-degenerate as well. Therefore, inserting the
first equation in the second one gets

2 +
1

3
α′
0B

′g0 = Cg0 or g0Bα0 = 3g0C − 6.

Inserting this in the third equation (2.13) yields

(g0C)
2 − 7g0C + 12 = 0,

and consequently g0C is equal to 3 or 4 (here by 3, for example,
we mean the unit matrix multiplied by 3).
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Supposing g0C = 3 gives

C = 3g−1
0 , B = 3g−1

0 α−1
0 , A = 3(α−1

0 )′g−1
0 α−1

0 ,

and the quadratic form (2.11) is then equal to

3

2

[
(g−1

0 α−1
0 ξ, α−1

0 ξ) + 2(g−1
0 α−1

0 ξ, y) + (g−1
0 y, y)

]
=

3

2

[
g
−1/2
0 (α−1

0 ξ + y)
]2
,

so that this form would not be strictly positive. Thus, we must
take g0C = 4, and therefore

C = 4g−1
0 , B = 6g−1

0 α−1
0 , A = 12(α−1

0 )′g−1
0 α−1

0 ,

and the quadratic form (2.11) is

6(g−1
0 α−1

0 ξ, α−1
0 ξ) + 6(g−1

0 α−1
0 ξ, y) + 2(g−1

0 y, y). (2.14)

Therefore, the quadratic part of Σ−1 is as required. It remains
for us to prove that all terms σj , j > 2, vanish in the expansion
Σ−1 = σ2 + σ3 + ... of Σ−1 as a series of homogeneous polynomials
σj . For σ3 one gets the equation

−σ3 − (α0y + ξ)
∂σ3
∂ξ

+

(
g0
∂σ2
∂ξ

,
∂σ3
∂y

)
= 0

or, by (2.14),

−σ3 − (α0y + ξ)
∂σ3
∂ξ

+ (6α−1
0 ξ + 4y)

∂σ3
∂y

= 0.

This implies that σ3 = 0 by Proposition 7.1, since for the case
under consideration the matrix A in (7.1) is(

−1 −α0

6α−1
0 4

)
(2.15)

and has eigenvalues 1 and 2 for any invertible α0. (The simplest
way to prove the last assertion is to use (2.3.41) when calculating
the characteristic polynomial for the matrix (2.15).) One proves
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similarly that all σj , j > 2, vanish, which completes the proof of
Proposition 2.1.

Therefore, Σ−1 is given by (2.14). For example, in a particular
important case with unit matrices g0 and α0, one has

Σ−1 = 6ξ2 + 6(ξ, y) + 2y2. (2.16)

Furthermore, comparing the coefficients of t−1 in (2.8) and
using (2.3.24), (2.3.25) yields

−(α0y + ξ)
∂Σ0

∂ξ
+

(
g0
∂Σ−1

∂y
,
∂Σ0

∂y

)
−
(
β0y +

1

2
(γ0y, y),

∂Σ−1

∂y

)

−
(
∂a

∂x
(x0)ξ +

∂α

∂x
(x0)ξ(y + y0)− ∂α

∂x
(x0)(a0 + α0y

0)y,
∂Σ−1

∂ξ

)
= 0.

(2.17)
This equation is of the type (7.1) with F being a sum of polynomi-
als of degree 2 and 3, and the matrix A given by (2.15). Thus,
by Proposition 7.1, the solution (with the additional condition
Σ0(0, 0) = 0) is defined uniquely and is a polynomial of degree
2 and 3 in ξ, y. The statement of Theorem 2.1 about the other Σj
can be obtained by induction using Proposition 7.1, because com-
paring the coefficients of t−(k+1) in (2.8) always yields equation
of the type (7.1) on Σk with the same matrix A. Thus, we have
completed the proof of Theorem 2.1.

3. Asymptotic solution of the transport equation

After the asymptotics of the two-point function has been car-
ried out, the next stage in the construction of the exponential mul-
tiplicative asymptotics of the Green function for a second order
parabolic equation is the asymptotic solution of the transport equa-
tion (1.13). On the one hand, it can be solved using (1.18) and the
results of the previous chapter. We shall use this representation
of the solution in the next section to get the estimates for the re-
mainder (1.21). On the other hand, when one is interested only in
small time and small distances from initial point, one can solve the
transport equation by formal expansions similarly to the construc-
tion of the two-point function in the previous section. We shall now
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explain this formal method in some detail. In the non-degenerate
case one simply looks for the solution of (1.13) in the form of a reg-
ular power series in t and (x − x0) with a multiplier (2πht)−m/2.
It is a rather standard procedure and we omit it. Let us consider
the case of a degenerate regular Hamiltonian (2.4.1). Proceeding
as in the previous section one first make a shift in the variables
introducing the function

ψ(t, x, y) = ϕ(t, x+ x̃(t), y + ỹ(t), x0, y0), (3.1)

and then one must make the change of the variables xI = tM−I+1ξI

as in (2.4). A new feature in comparison with (2.4) consists in the
observation that in the case of the transport equation one also
needs ”the explicit introduction of the normalising constant”, i.e.
one defines the new unknown function by the formula

Ψ(t, ξ0, ..., ξM , y) = tαψ(t, tM+1ξ0, ..., tξM , y), (3.2)

where α is some positive constant (which is to be calculated). For
the Hamiltonian (2.4.1) written in terms of the function Ψ equation
(1.13) takes the form

∂Ψ

∂t
− α

t
Ψ+

1

2
Ψ tr

(
g(tM+1ξ0 + x̃0(t))

∂2Σ

∂y2

)

+

(
g(tM+1ξ0 + x̃0(t))

∂Ψ

∂y
,
∂Σ

∂y

)
−
(
g(x̃0(t))q̃(t),

∂Ψ

∂y

)
− t

Mξ0 +R1(x(t, ξ) + x̃(t), y + ỹ(t))−R1(x̃(t), ỹ(t))

tM+1

∂Ψ

∂ξ0
− ...

−ξ
M +RM+1(x(t, ξ) + x̃(t), y + ỹ(t))−RM+1(x̃(t), ỹ(t))

t

∂Ψ

∂ξM

−(RM+2(x(t, ξ) + x̃(t), y + ỹ(t))−RM+2(x̃(t), ỹ(t)))
∂Ψ

∂y
. (3.3)

The main result of this section is the following.

Theorem 3.1. There exists a unique α > 0, in fact this αis
given by (1.2.11), such that there exists a solution of (3.3) in the
form

Ψ = Ψ+ tΨ1 + t2Ψ2 + ... (3.4)
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with each Ψj being a regular power series in (ξ, y) and Ψ0 being
some constant. Moreover, this solution is unique up to a constant
multiplier and all Ψj turn out to be polynomials in ξ, y such that
the degree of Ψk(M+1)−1−j, j = 0, ...,M , does not exceed k − 1 for
any k = 1, 2, ...

Proof. Inserting (3.4) in (3.3) and using the condition that Ψ0

is a constant one gets comparing the coefficients of t−1:

αΨ0 +
1

2
Ψ0 tr

(
g(x00)

∂2Σ−1

∂y2
(x0, y0)

)
= 0,

and therefore

α =
1

2
tr

(
g(x00)

∂2Σ−1

∂y2
(x0, y0)

)
. (3.5)

Clearly α is positive. Using the canonical coordinates of Lemmas
1.2.2, 1.2.4, one proves that (3.5) coincides with (1.2.11). The
remaining part of the proof of the theorem is the same as the proof
of Theorem 2.1. Comparing the coefficients of tq, q = 0, 1, ..., one
get a recurrent system of equations for Ψq of the form (2.8) with
polynomials Fq of the required degree. Proposition 2.1 completes
the proof.

Corollary. The function ψ(t, x, y) corresponding to the solu-
tion ϕ of (1.13) via (3.1) has the form of a regular power expansion
in (t, x, y) with multiplier Ct−α, where C is a constant.

This implies in particular that the solution ϕ of the trans-
port equation also has the form of a regular power expansion in
t, x − x0, y − y0 with the same multiplier. Comparing the asymp-
totic solution constructed with the exact solution for Gaussian ap-
proximation, one sees that in order to satisfy the initial condition
(1.4) by the function uasG of form (1.19), where S and ϕ are con-
structed above, one must take the constant C such that Ct−α is
equal to the amplitude (pre-exponential term) in formula (1.2.10)
multiplied by h−m/2. With this choice of C the dominant term
of the asymptotic formula (1.19) will coincide with the dominant
term of the asymptotics (1.2.10) for its Gaussian approximation,
which in its turn by Theorem 1.2.2 coincides with the exact Green
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function for the ”canonical representative” of the class of Gaussian
diffusions defined by the corresponding Young scheme.

4. Local asymptotics of the Green function for regular Hamiltonians

In Sect. 1.1 we have described the construction of the asymp-
totic solution (1.19) for problem (1.1), (1.4) and in Sect. 1.2, 1.3
we have presented an effective procedure for the calculation of all
its elements. In this section we are going to justify this asymtp-
totical formula, i.e. to prove that the exact Green function can
be presented in form (1.9). Roughly speaking, the proof consists
in two steps. One should obtain an appropriate estimate for the
remainder (1.21) and then use it in performing a rather standard
procedure (based on Du Hammel principle) of reconstructing the
exact Green function by its approximation. When one is inter-
ested only in asymptotics for small times and small distances, it
is enough to use only the approximations for S and ϕ obtained in
two previous sections (a good exposition of this way of justification
for non-degenerate diffusion see e.g. in [Roe]). But in order to be
able to justify as well the global ”small diffusion” asymptotics, as
we intend to do in the next section, one has to use the exact global
formulas (2.5), (1.18) for S and ϕ. We shall proceed systematically
with this second approach. The starting point for justification is
the estimate of the r.h.s. in (1.14), when ϕ is given by (1.18).

Proposition 4.1. If ϕ is given by (1.18), then the r.h.s. of
(1.14) (in a neighbourhood of x0, where (1.18) is well defined) has
the form

O(h2)C(h)t2M+2 exp{−S(t, x, x0)
h

}ϕ(t, x;x0) = O(h2t2M+2uasG ),

where as always M+1 is the rank of the regular Hamiltonian under
consideration.

Proof. We omit the details concerning the simplest case of
non-degenerate diffusion (M + 1 = 0) and reduce ourselves to the
degenerate regular case, when M ≥ 0 and therefore the Hamilto-
nian is defined by (2.4.1). Then clearly the first term under the
integral in (1.18) vanishes and it is enough to prove that

∂ν

∂yj
J−1/2(t, x, x0) = O(tν(M+1))J−1/2(t, x, x0), ν = 1, 2, (4.1)
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∂ν

∂yj
exp

{
−1

2

∫ t

0

tr
∂A

∂x
(X(τ)) dτ

}
= O(tν(M+1) exp

{
−1

2

∫ t

0

tr
∂A

∂x
(X(τ)) dτ

}
, ν = 1, 2, (4.2)

where X(τ) = X(τ, x0, p0(t, x;x0)). We have

∂

∂xI
J−1/2 = −1

2
J−1/2

(
J−1 ∂J

∂xI

)
= −1

2
J−1/2 tr

(
∂

∂xI

(
∂X

∂p0

)(
∂X

∂p0

)−1
)

= −1

2
J−1/2 ∂2XK

∂pL0 ∂p
N
0

(
∂X

∂p0

)−1

LI

(
∂X

∂p0

)−1

NK

, (4.3)

and by estimates (2.4.3)-(2.4.5) it can be presented in the form

J−1/2O
(
t6+4M−K−L−N t−(2M+3−L−I)t−(2M+3−N−K)

)
= J−1/2O(tI).

For the derivatives with respect to y = xM+1, one has I = M + 1
and one gets (4.1) with ν = 1. Differentiating the r.h.s. in (4.3)
once more and again using (2.4.3)-(2.4.5) one gets (4.1) for ν = 2.
Let us turn now to (4.2). Let us prove only one of these formula,
namely that with ν = 1, the other being proved similarly. Note that
due to the main definition of RH, the function under the integral in
(4.2) depends only on x0 and x1, because it is a polynomial Q1(x)
in x1, ..., xM+1 of M-degree ≤ 1. Therefore, one should prove that

∂

∂y
exp

{
−1

2

∫ t

0

Q1(X(τ)) dτ

}
= O(tM+1) exp

{
−1

2

∫ t

0

Q1(X(τ)) dτ

}
.

(4.4)
One has

∂

∂y
exp

{
−1

2

∫ t

0

Q1(X(τ)) dτ

}

=

∫ t

0

1∑
I=0

∂Q1

∂xI
∂XI

∂pK0
(τ)

(
∂X

∂p0

)−1

K,M+1

(t) dτ exp

{
−1

2

∫ t

0

Q1(X(τ)) dτ

}
,

and using again (2.4.3)-(2.4.5) one sees that the coefficient before
the exponential in the r.h.s. of this expression has the form∫ t

0

O
(
τ2M+3−1−K)O (t−(2M+3−K−M−1)

)
dτ = O(tM+1),
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which proves (4.4) and thus completes the proof of Proposition 4.1.
Consider now the globally defined function (1.19). For RH

(2.4.1) it is convenient to take the polydiscDr
t = Br(x

0
0)×Br/t(x10)×

...×BrM+1/tM+1(xM+1
0 ) as the domain D. The following is the di-

rect consequence of the previous result.

Proposition 4.2. For the remainder F in (1.21) one has the
estimate

F = O(tM+1)uasG +O

(
(exp{− Ω

ht2M+3
}
)

with some positive Ω.

Now, in order to prove the representation (1.9) for the exact
solution of (1.1),(1.4) we shall use the following classical general
method. Due to the Du Hammel principle (the presentation of
the solutions of a non-homogeneous linear equation in terms of
the general solution of the corresponding homogeneous one), the
solution uasG of problem (1.21), (1.4) is equal to

uasG (t, x;x0) = uG(t, x;x0)−h
∫ t

0

∫
Rm

uG(t−τ, x, η)F (τ, η, x0) dηdτ,

(4.6)
where uG is the exact Green function for equation (1.1). It is
convenient to rewrite (4.6) in the abstract operator form

uasG = (1− hFt)uG, (4.7)

with Ft being the integral operator

(Ftϕ)(t, x, ξ) = (ϕ⊗F )(t, x, ξ) ≡
∫ t

0

∫
Rm

ϕ(t−τ, x, η)F (τ, η, ξ) dηdτ,

(4.8)
where we have denoted by ϕ ⋆ F the (convolution type) integral in
the r.h.s. of (4.8). It follows from (4.7) that

uG = (1− hFt)−1uasG = (1 + hFt + h2F2
t + ...)uasG

= uasG + huasG ⊗ F + h2uasG ⊗ F ⊗ F + .... (4.9)
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Therefore, in order to prove the representation (1.9) for uG one
ought to show the convergence of series (4.9) and its presentation
in form (1.9). This is done in the following main Theorem of this
section.

Theorem 4.1. For small t, the Green function of equation
(1.2) with regular Hamiltonian (2.4.1), whose coefficients can in-
crease polynomially as x→ ∞, has the form

uG = uasG (1 +O(ht)) +O(exp{− Ω

ht
}), (4.10)

where uasG is given by (1.19) with the domain D defined in Propo-
sition 4.2 above, the functions S and ϕ defined by formulas (2.1.5)
and (1.18), and calculated asymptotically in Sect. 1.2, 1.3. More-
over, the last term in (4.10) is an integrable function of x, which
is exponentially small as x→ ∞.

Remark 1. The result of this theorem is essentially known
for the case of non-degenerate diffusion. Let us note however that
usually in the literature one obtains separately and by different
methods the small time and small distance asymptotics, either
without a small parameter h (see e.g. a completely analytical
exposition in [Roe], [CFKS]), or with a small parameter (see e.g
[Var1],[MC1],[Mol], which are essentially based on the probabilis-
tic approach), and global estimates often given for bounded coeffi-
cients and without a small parameter. (see e.g. [PE], [Da1], where
completely different technique is used). Therefore, the uniform an-
alytic exposition of all these facts together as given here can be
perhaps of interest even in non-degenerate situation.

Remark 2. In our proof of the Theorem we obtain first for
the case of bounded coefficients the estimate for the additive re-
mainder in (4.10) in the form O(e−|x|), which allows afterwards to
extend the result to the case of polynomially increasing coefficients.
More elaborate estimate of the series (4.9) in the case of bounded
coefficients gives for the additive remainder in (4.10) more exact
estimate O(exp{−Ω|x|2/ht}), which allows to generalise the result
of the Theorem to the case of the unbounded coefficients increasing
exponentially as x→ ∞.

Remark 3. In the previous arguments, namely in formula (4.6),
we have supposed the existence of the Green function for (1.1),
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which follows surely from general results on parabolic second or-
der equations, see e.g. [IK]. But this assumption proves to be a
consequence of our construction. In fact, when the convergence
of series (4.9) and its representation in form (1.9) is proved, one
verifies by simple direct calculations that the sum of series (4.9)
satisfies equation (1.1).

Remark 4. When the Theorem is proved, the justification of
more exact asymptotics as constructed in Sect. 1, Step 5, can be
now carried out automatically. In fact, if

h
∂uasG
∂t

−H(x,−h ∂

∂x
)uasG = O(tjhk)uasG ,

then from (4.6)

uG = uasG +

∫ t

0

∫
Rm

uG(t− τ, x, η)O(tjhk)uasG (τ, η, x0) dηdτ,

and due to (4.10) and the semigroup property of uG one concludes
that

uG = uasG (1 +O(tj+1hk)) +O(exp{− Ω

ht
}).

Proof. Though in principle the convergence of (4.9) is rather
clear from the estimate of the first nontrivial term by the Laplace
method using Proposition 2.1.4, the rigorous estimate of the whole
series involves the application of the Laplace method infinitely
many times, where one should keep control over the growth of the
remainder in this procedure, which requires a ”good organisation”
of the recursive estimates of the terms of (4.9). Let us present the
complete proof in the simplest case of the non-degenerate diffusion,
the general case being carried out similarly due to Proposition 4.2,
but requires the consideration of polydisks instead of the disks,
which makes all expressions much longer. Consider first the dif-
fusion with bounded coefficients. In non-degenerate case one can
take the ball Br(x0) as the domain D for the molifier χD. Let

Ω = min{tS(t, x, ξ) : |x− ξ| = r − ϵ}. (4.11)

For given δ > 0, h0 > 0 one can take t0 such that for t ≤ t0, h ≤ h0

(2πht)−m/2 ≤ exp{ δ
th

}, 1

ht
≤ exp{ δ

th
}. (4.12)
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To write the formulas in a compact form let us introduce additional
notations. Let

f(t, x, x0) = Θr(|x− x0|)(2πht)−m/2 exp{−S(t, x, x0)/h}, (4.13)

gk(t, x, x0) = Θkr(|x− x0|) exp{−
Ω− δ

ht
}. (4.14)

From Proposition 4.2

F (t, x, x0) = O(uasG (t, x, x0)) +O((ht)−1 exp{−S(t, x, x0)/h}),

where the second function has a support in the ring Bx0
(r)\Bx0

(r−
ϵ). Using these formulas and the estimates for the solution ϕ of the
transport equation one can choose a constant C > 1 such that

1

C
χD(x− x0)f(t, x, x0) ≤ uasG (t, x, x0) ≤ Cf(t, x, x0), (4.15)

F (t, x, x0) ≤ C(f(t, x, x0) + g1(t, x, x0)). (4.16)

To estimate the terms uasG ⊗F ⊗F... in series (4.9) we shall system-
atically use the simple estimate of the Laplace integral with convex
phase, namely the formula (B3) from Appendix B. Let us choose d
such that

∂2S

∂x2
(t, x, ξ) ≥ d

t
,

∂2S

∂ξ2
(t, x, ξ) ≥ d

t
(4.17)

for |x − ξ| ≤ r and t ≤ t0. Such d exists due to the asymptotic
formula for S given in Sect. 2.2 or 3.3. We claim that the following
inequalities hold (perhaps, for a smaller t0):

f⊗f ≤ td−m/2(f+g2), f⊗gk ≤ td−m/2gk+1, gk⊗g1 ≤ td−m/2gk+1.
(4.18)

In fact, since

min
η

(S(t− τ, x, η) + S(τ, η, x0)) = S(t, x, x0) (4.19)

and the minimum point η0 lies on the minimal extremal joining x0
and x in time t, it follows from (B3) that

(f ⊗ f)(t, x, x0) ≤ θ2r(x− x0)

∫ t

0

(2πh(t− τ))−m/2(2πhτ)−m/2
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× exp{−S(t, x, x0)/h}
(
d

t
+

d

t− τ

)−m/2

(2πh)m/2 dτ

= Θ2r(|x− x0|)d−m/2t(2πht)−m/2 exp{−S(t, x, x0)/h}.

To estimate this function outside Br(x0) we use (4.12) and thus
get the first inequality in (4.18). Furthermore,

(f ⊗ gk)(t, x, x0)

≤ gk+1(x−x0)
∫ t

0

∫
Rd

(2πh(t−τ))−m/2 exp{−S(t−τ, x, η)/h}dηdτ.

Since S ≥ 0 and due to (B3), this implies the second inequality in
(4.18). At last, obviously, gk ⋆ g1 ≤ tbmr

mg2k+1, where bm denotes
the volume of the unit ball in Rm. This implies the last inequality
in (4.18) for small enough t0.

It is easy now to estimate the terms of series (4.18):

huasG ⊗ F ≤ hC2(f ⊗ f + f ⊗ g1) = hC2td−m/2(f + 2g2),

h2(uasG ⊗F )⊗f ≤ h2C3td−m/2(f+2g2)(f+g1) ≤ C(Chtd−m/2)2(f+2g2+4g3),

and by induction

hk−1Fk−1uasG ≤ C[Chtd−m/2]k−1(f + 2g2 + 4g3 + ...+ 2k−1gk).

Since 2g2 + 4g3 + ...+ 2k−1gk ≤ 2kgk, one has for k > 1

hk−1Fk−1uasG ≤ 2C(2Cthd−m/2)k−1(f + gk).

Therefore, series (4.9) is convergent (uniformly on the compacts);
outside the ball Brk, k ≥ 1, it can be estimated by

2C

∞∑
l=k

(2Cthd−m/2)l exp{−Ω− δ

th
} ≤ 2C(2Cthd−m/2)k

1− 2Ct0h0d−m/2
exp{−Ω− δ

th
},

(4.20)
and inside the ball Br, |uG − uasG | does not exceed

4C2thd−m/2

1− 2Ct0h0d−m/2

[
(2πht)−m/2 exp{−S(t, x, x0)/h}+ exp{−Ω− δ

th
}
]
.

(4.21)
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Notice that the number k in (4.20) is of the order |x − x0|/r and
therefore the coefficient tk can be estimated by a function of the
form e−κ|x−x0| with some κ > 0. The statement of the theorem
follows now from (4.16),(4.20),(4.21).

Now let the functions A,G, V are not bounded but can in-
crease polynomially as x → ∞ (the uniform boundedness of V
from below is supposed always). This case can be reduced to the
case of bounded coefficients in following way. Let x0 be given and
let G̃(x), Ã(x), Ṽ (x) be the functions which are uniformly bounded
and coincide withG(x), A(x), V (x) respectively in a neighbourhood
of x0. Taking the Green function ũG of the diffusion equation with
coefficients G̃, Ã, Ṽ as the first approximation to the Green function
uG(t, x, x0) yields for uG the series representation

uG = ũG + ũG ⊗ F + ũG ⊗ F ⊗ F + ...

with

F =
1

2
tr(G̃−G)

∂2ũG
∂x2

− (Ã−A)
∂ũ

∂x
− (ṽ − V )ũ.

Due to the exponential decrease (of type e−κ|x−x0| with some κ >
0) of ũ (and, as one shows similarly, the same rate of decrease holds
for the first and second derivatives of ũ) all terms of this series are
well defined and it is convergent, which completes the proof.

Let us note that by passing we have proved a convergent series
representation for the Green function, i.e. the following result,
which we shall use in Chapter 9.

Proposition 4.3. Under the assumptions of Theorem 4.1, the
Green function of equation (1.2) can be presented in the form of
absolutely convergent series (4.9), where

uasG = C(h)χD(x− x0)ϕ(t, x, x0) exp{−S(t, x, x0)/h},

F is defined by (1.21) and the operation ⊗ is defined by (4.8).
Theorem 4.1 gives for the Green function of certain diffusion

equations the multiplicative asymptotics for small times and small
distances, but only a rough estimate for large distances. In the
next section we shall show how to modify this asymptotics in order
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to have an asymptotic representation valid for all (finite) distances.
There is however a special case when the global asymptotic formula
is as simple as the local one (at least for small times), this is the case
of diffusion equations with constant drift and diffusion coefficients.
This special case is important for the study of the semi-classical
spectral asymptotics of the Shrödinger equation and therefore we
formulate here the corresponding result obtained in [DKM1].

Theorem 4.2. Let V (x) be a positive smooth function in Rm

with uniformly bounded derivatives of the second, third and fourth
order. Then there exists t0 > 0 such that for t ≤ t0 the boundary
value problem for the corresponding Hamiltonian system with the
Hamiltonian H = 1

2p
2 − V (x) is uniquely solvable for all x, x0 and

t0 and the Green function for the equation

h
∂u

∂t
=
h2

2
∆u− V (x)u (4.22)

has the form

uG(t, x, x0, h) = (2πh)−m/2J(t, x, x0)
−1/2 exp{−S(t, x, x0)/h}(1+O(ht3))

(4.23)
with O(ht3) being uniform with respect to all x, x0.

Remark. Notice the remainder is of the order t3, which holds
only in the described situation.

5. Global small diffusion asymptotics and large deviations

In the previous section we have written the exponential asymp-
totics of the Green function of equation (1.1) for small times. More-
over, for large distances it states only that the Green function is
exponentially small. In order to obtain the asymptotics for any
finite t and also give a more precise formula for large x − x0, one
can use the semigroup property of the Green function. Namely, for
any n ∈ N , τ > 0, and x ∈ Rm

uG(nτ, x, x0)

=

∫
Rm

...

∫
Rm

uG(τ, x, η1)uG(τ, η1, η2)...uG(τ, ηn−1, x0) dη1...dηn−1.

(5.1)
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Notice that according to the result of sect. 2.2, 2.3, the set
Reg(x0) of regular pairs (t, x), i.e such pairs for which there exists
a unique minimising extremal joining x0 and x in time t, is open
and everywhere dense in R+ × Rm for any regular Hamiltonian.
Therefore, formula (1.19) without the multiplier χD is correctly
defined globally (for all x and t > 0) almost everywhere, because
S(t, x, x0) is defined globally for all t, x as the minimum of the func-
tional (2.1.12) and for regular points S, ϕ are given by (2.24),(2.2.5),
and (1.18) with integrals in both formulas taken along the unique
minimising extremal. It turns out that though this function does
not give a correct asymptotics to the Green function in a neigh-
bourhood of a non-regular point, its convolution with itself already
does. We restrict ourselves to the approximations of the first order.
Next orders can be obtained by formulas (1.22)- (1.25).

Theorem 5.1. For any t, x and τ < t

uG(t, x;x0) = (2πh)−m(1 +O(h))

∫
Rm

ϕ(t− τ, x, η)ϕ(τ, η, x0)

× exp

{
−S(t− τ, x, η) + S(τ, η, x0)

h

}
dη. (5.2)

In particular, for any (t, x) ∈ Reg(x0)

uG(t, x, x0) = (2πh)−m/2ϕ(t, x, x0)(1 +O(h)) exp{−S(t, x, x0)/h},
(5.3)

Proof. First let us show that the integral in (5.2) is well de-
fined. To this end, we use the Cauchy inequality and (1.18) to
estimate (5.2) by∫

Rm

J−1(t− τ, x, η) exp

{
−2S(t− τ, x, η)

h

}
dη

×
∫
Rm

J−1(τ, η, x0) exp

{
−2S(τ, η, x0)

h

}
dη

We shall estimate the second integral in this product, the first
one being dealt in the completely similar way. Let us make in
this second integral the change of the variable of integration η 7→
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p0(τ, η, x0), where p0 is the initial momentum of the minimising
extremal joining x0 and η in time τ . The mapping η 7→ p0 is well
defined for regular, and thus for almost all η. Thus the second
integral can be estimated by the integral∫

Rm

exp

{
−2S(τ, η(τ, x0, p0), x0)

h

}
dp0,

which already does not contain any singularities. To see that this
integral converges one only need to observe that due to the esti-
mates of the two-point function S, the function under the integral
here is decreasing exponentially as p0 → ∞.

We have shown that integral (5.2) is well defined. It follows
from the Laplace method and Proposition 2.1.4 that that for reg-
ular t, x formula (5.2) can be written in form (5.3). To show that
(5.2) presents the global asymptotics for the Green function, let
us start first with the simplest case of equation (4.22), where the
asymptotics of the Green function for small times is proved to be
given by (4.23). For any t there exists n ∈ N such that t/n < t0
and one can present the Green function for the time t in form
(5.1) with function (4.23) instead of uG. If the point (t, x) is reg-
ular, then there is only one and non-degenerate minimum point
(η1, ..., ηn−1)

min of the ”compound action”

S(τ, x, η1) + S(τ, η1, η2) + ...+ S(τ, ηn−1, x0)

given by the formula

ηminj = X(jτ, x0, p0(t, x, x0)),

i.e. all ηminj lie on the unique minimising extremal. Using Propo-
sition 2.1.4 and the Laplace method one gets (5.3). Alternatively,
one can use the induction in n. Thus we have proved (5.3) for
all regular points. Now, for any non-regular (t, x) let us use (5.1)
with n = 2. It follows from the Laplace method that only those η
contribute to the first order asymptotics of this integral that lie on
minimising extremals (which may not be unique now) joining x0
and x in time t. But by the Jacobi theory these points η are regular
with respect to x0 and x and hence around this point one can use
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formula (5.3) for uG. Therefore the asymptotics of this integral is
the same as that of (5.2).

In the case of a general regular Hamiltonian, there is only one
additional difficulty. Namely, if one calculates the asymptotic of
the Green function for a regular point using (5.1) with the function
(4.10) instead of uG, then for sufficiently large n and x − x0 the
exponentially small remainders in (4.10) begin to spoil the correct
phase of the corresponding Laplace integral. Hence, in order to get
the correct asymptotics for (t, x) from any fixed compact one should
improve (4.10) respectively. Namely, in proving theorem 4.1, one
must take instead of the approximation (1.19), its convolution with
itself of the form

ũasG (nτ, x, x0)

=

∫
Rm

...

∫
Rm

uasG (τ, x, η1)u
as
G (τ, η1, η2)...u

as
G (τ, ηn−1, x0) dη1...dηn−1.

Formulas (4.9) and (4.10) are then modified respectively. Increas-
ing n to infinity, one increases to infinity the range of x for which
(5.2) is valid. This argumentation completes the proof.

The global integral formula (valid for regular and non-regular
points) for the asymptotics of the Green function for non-degenerate
diffusion was first written by Maslov [M2] by means of his tunnel
canonical operator. We have given here an equivalent but essen-
tially more simple formula (5.2) thus avoiding the beautiful but
rather sophisticated definition of the tunnel canonical operator (see
[M2], [DKM1]). Moreover, we have presented the rigorous proof in-
cluding a large class of degenerate diffusions.

For some non-regular points, the integral (5.2) can still be
calculated explicitly. The two important cases are the following.

(i) There exist a finite number of non-degenerate extremals
joining x0 and x in time t. Then (5.2) is equal to the sum of
expressions (5.3) corresponding to each extremal.

(ii) There is a (non-degenerate) closed manifold of extremals
(as for instance is often the case for geodesics on symmetric spaces)
joining x0 and x in time t. Then one integrates (5.2) by means of
the modified Laplace method (see, e.g. [Fed1], [K3]) standing for
the case of the whole manifold of minimal points of the phase.
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For general non-regular points one can write down explicitly
only the logarithmic asymptotics of the solution. To this end, let us
recall first a general result on logarithmic asymptotics of Laplace
integrals.

Proposition 5.1 [MF2],[Fed1]. Let the functions f and ϕ in
the integral

F (h) =

∫
Rm

ϕ(x) exp{−S(x)
h

} dx (5.4)

be continuous, ϕ having finite support supp ϕ. Let M(S) denote
the set of all x ∈ supp ϕ, where S is equal to its minimum M ,
and let Mc(S) ⊂ supp ϕ be the set of x, where S(x) ≤ M + c.
Denote by V (c) the volume of the set Mc(S). Suppose ϕ ≥ δ in a
neighbourhood of M(S) for some positive constant δ.

(i) Then

lim
h→0

h logF (h) = −M. (5.5)

(ii) If

lim
c→0

log V (c)

log c
= α > 0, (5.6)

then

logF (h) = −M
h

+ α log h+ o(log h). (5.7)

(iii) If V (0) = 0 and (5.7) holds, then (5.6) holds as well.
(iv) If M(S) consists of a unique point and S is real analytic

in a neighbourhood of this point, then the limit (5.6) exists and
(5.7) holds.

The last statement is in fact a consequence of a theorem from
[BG], see e.g. [At].

Theorem 5.1 and Proposition 5.1 imply the principle of large
deviation for the Green function of regular diffusions.

Proposition 5.2. For all t, x

lim
h→0

huG(t, x, x0) = −S(t, x, x0). (5.8)

This principle for regular points of non-degenerate diffusion was
obtained by Varadhan, see [Var1]-[Var4]. In some cases, one can
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calculate the logarithmic asymptotic more precisely. For instance,
Theorem 5.1 and Proposition 5.1 imply the following result.

Proposition 5.3. If there exists a unique minimising ex-
tremal joining x0 and x in time t (generally speaking, degenerate,
i.e. the points x0 and x can be conjugate along this extremal) and
if S(t, y, x0) is real analytic in a neighbourhood of this extremal,
then there exists α > 0 such that for small h

log huG(t, x, x0) = −S(t, x, x0)
h

+ α log h+ o(log h). (5.9)

Formula (5.9) for the case of non-degenerate diffusion was first
written in [MC1] (and proved there under some additional assump-
tions), where α was called the invariant of the degeneracy of the
extremal.

Let us present the solution of the general large deviation prob-
lem for regular diffusions. If in (1.1) the last term V (x) vanishes,
then the corresponding second order equation describes the evolu-
tion of the expectations (and its adjoint operator - the probability
density) of the diffusion process defined by the stochastic equation

dX = A(X) dt+ h
√
G(x) dW. (5.10)

One is especially interested in the solution of (1.1) with the discon-
tinuous initial function

u0(x) =

{
1, if x ∈D
0, otherwise,

(5.11)

where D is some closed bounded domain in Rm. This solution
corresponds to the diffusion starting in D. The problem of large
deviation is to find the small h asymptotics of this solution on large
distances from D. The solution of (1.1), (5.11) is given by formula
(1.5),(5.3). To simplify it, one can use the Laplace method. As in
the case of the Green function, for a general non-regular point only
the logarithmic limit can be found explicitly. Namely, the following
result is the direct consequence of formulas (1.5), (5.2), (5.5).

Proposition 5.4 (Large deviation principle for regular diffu-
sions). For the solution u(t, x) of the problem (1.2), (5.11) with a
regular Hamiltonian, one has

lim
h→0

h log u(t, x) = −S(t, x),



131

where S(t, x) is the generalised solution of the Cauchy problem for
Hamilton-Jacobi equation (1.11) with initial data

S(0, x) =

{
0, if x ∈ D
+∞, otherwise,

i.e.. S(t, x) is given by the formula

S(t, x) = min
ξ

(S(t, x, ξ) + S(0, ξ)) = min
ξ∈D

S(t, x, ξ), (5.12)

where S(t, x; ξ) denotes as always the corresponding two-point func-
tion.

The explicit formula (without integration) for the asymptotics
of u(t, x) exists on the open everywhere dense set of regular (with
respect to the domain D) points, where the critical point of the
phase used in the integration of (1.5) by the Laplace method is
unique and non-degenerate. On the complement to this set the
asymptotics can be only written in the integral form similar to
(5.3). Let us give the precise results, which follow more or less
straightforwardly from (1.5), (5.2) and the Laplace method. For
the case of the equation of form (4.22) this result was proved in
[DKM1]. Let Hamiltonian (1.3) be regular with vanishing V , i.e
for some Young scheme M it has the form (2.4.1) with vanishing
R2(M+1). Let Y (t, y0) denote the solution of the system

ẏ = −A(y) (5.13)

with initial value y(0) = y0. Note that the solution of (5.13) is
in fact the characteristic of the Hamiltonian system on which the
momentum vanishes identically (the insertion of the vanishing mo-
mentum in the Hamiltonian system does not lead to a contradiction
due to the assumption of vanishing V ). Let Dt denote the smooth
manifold with boundary, which is the image ofD = D0 with respect
to the mapping y0 7→ Y (t, y0).

Proposition 5.5. On the set IntDt of the internal points
of the domain Dt the solution u(t, x) of problem (1.1), (5.11) can
be presented in the form of regular series in h. More precisely, if
x ∈ IntDt, then

u(t, x) =

(
det

∂Y

∂y0
(t, y0)

)−1/2

(1 + hϕ1 + ...+ hkϕk +O(hk+1)),
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where ϕj can be found by the formulas similar to (1.24), (1.25).
As we have mentioned, the most interesting is the problem

of calculating the solution far away from D, in particular out-
side Dt. To formulate the result of the calculation of the Laplace
integral (1.5) in that case, we need some other notations. Con-
sider the m-dimensional manifold Λ0 = ∂D × R+ with coordi-
nates (α1, ..., αm−1, s), where s ≥ 0 and α = (α1, ..., αm−1) are
some orthogonal coordinates on ∂D. Let n(α) denote the unit vec-
tor of the external normal to ∂D at the point α and let Γ(D) be
the family of characteristics X(t, α, sn(α)) with initial conditions
x0 = α, p0 = sn(α). For any t and x ∈ Rm \Dt, there exists a pair
(α, s) = (α, s)(t, x) (perhaps not unique) such that the character-
istic X(t, α, sn(α)) comes to x at the time t and S(t, x) (as defined
in (5.12)) is equal to the action (2.1.4) along this characteristic. In
fact, α is the coordinate of the point ξ ∈ D that furnishes minimum
in (5.8). Clear that p0 is perpendicular to ∂D at ξ and thus has
the form p0 = sn(α) for some s > 0. Let RegD denote the set of
pairs (t, x) such that (α, s)(t, x) is unique and moreover, the Jaco-
bian J(t, x) = det ∂X

∂(α,s) does not vanish. Similarly to the proof of

Proposition 2.2.7, 2.3.7 one shows that the set RegD is open and
everywhere dense in the outside of the set {(t, x ∈ Dt)}.

Proposition 5.6. For (t, x) ∈ RegD the solution u(t, x) of
problem (1.2), (5.11) has the following asymptotics for small h:

u(t, x) =

(
det

∂X

∂(α, s)
|(α,s)=(α,s)(t,x)

)−1/2

× exp{−S(t, x)
h

}(1 + ...+ hkϕk +O(hk+1)).

The asymptotics of the global representation (1.5), (5.3) can
be also calculated explicitly for some classes of non-regular points
described similarly to the case of the Green function (see (i), (ii)
after Theorem 5.2 and Theorem 5.4).

6. Non-regular degenerate diffusions: an example

In this Chapter we have constructed the theory of global semi-
classical asymptotics and large deviations for a class of degenerate
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diffusions that were called regular. This class is characterised in
particular by regular asymptotic representation (0.6) of the Green
function. It seems however that the global small h asymptotics are
valid actually for a larger class of degenerate diffusions. We present
here an example of a non-regular diffusion for which small h and
small time asymptotics can be calculated explicitly, so to say, by
hands, and shall see that the small h asymptotics can be obtained
as well by a formal application of the formulas of Section 6. We
consider the equation

h
∂u

∂t
=
h2

2

∂2u

∂y2
+
h

2
y2
∂u

∂x
, (6.1)

which corresponds to the simple non-regular Hamiltonian H =
(q2 − y2p)/2 discussed at the end of Section 2.3, where we have
noted that for this Hamiltonians the boundary value problem is
not solvable if x > x0 for any time. We are going to construct the
Green function uG for this equation corresponding to the initial
point (0, 0), i.e. the solution with initial condition

uG(t, x, y)|t=0 = δ(x)δ(y).

Proposition 6.1. (i) The Green function uG vanishes for
x ≥ 0,

(ii) If x < 0 and y = 0, then

uG(t, x, 0) =
1√

|x|ht3/2
exp{−π

2|x|
ht2

}(1 +O(
ht2

|x|
)), (6.2)

(iii) if x < 0 and y < 0, then there exists a unique real solution
λ(t, x, y) > −π2 of the equation

4x

ty2
=

1

sinh2
√
λ
− cot

√
λ√

λ
, (6.3)

and

uG =
1

2πht2
√
|S′′(λ(t, x, y))|

√ √
λ(t, x, y)

sinh
√
λ(t, x, y)
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× exp{− 1

ht
S(λ(t, x, y))}(1 +O(ht)), (6.4)

where the function S is defined by the formula

S(λ; t, x, y) =
λx

t
+

√
λ

2
y2 coth

√
λ; (6.5)

moreover λ(t, x, y) ∈ (−π2, 0), λ = 0, λ > 0 respectively for
x < −ty2/6, x = −ty2/6, x > −ty2/6 and in the first case√√

λ/ sinh
√
λ should be understood as

√√
|λ|/ sin

√
|λ|; at last,

for small

ϵ =
x

ty2
+

1

6

the function λ(t, x, y) can be presented as the convergent power se-
ries in ϵ: λ = 45ϵ+O(ϵ2), so that for small ϵ

uG =
3
√
5

2πht2|y|
(1 +O(ϵ))(1 +O(th)) exp{− y2

2ht
(1 +O(ϵ))}. (6.6)

Sketch of the proof. It is done essentially by direct calculations
using the Fourier transform and the saddle-point method. Namely,
carrying out the h-Fourier transform Fh of equation (6.1) with
respect to the variable y one finds for ũ(t, x, p) = (Fhu)(t, x, p) the
equation

h
∂ũ

∂t
=
h2

2

∂2ũ

∂y2
+
i

2
y2ũ,

which is actually the equation of the evolution of the quantum os-
cillator in imaginary time and with the complex frequency

√
−ip =√

|p| exp{−iπ sgnp/4}. Since the Green function for such equation
is well known, one obtains for uG the following integral represen-
tation

uG = − i

(2πh)3/2t5/2

∫ i∞

−i∞

√ √
λ

sinh
√
λ
exp{− 1

ht
S(λ(t, x, y))} dλ.

(6.7)
Notice that the function under the integral in this representation
is regular everywhere except for singularities at points −k2π2, k =
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1, 2, ..., and is a one-valued analytic function on the complex plane
cut along the line (−∞, π2). For λ = Reiϕ with |ϕ| < π, one has

| sinh
√
λ|2 = sinh2(

√
R cos

ϕ

2
) + sin2(

√
R sin

ϕ

2
),

ReS(λ; t, x, y)) =
x

t
R cosϕ

+
y2
√
R
[
cos ϕ2 sinh(2

√
R cos ϕ2 ) + sin ϕ

2 sin(2
√
R sin ϕ

2 )
]

2
[
cosh(2

√
R cos ϕ2 )− cos(2

√
R sin ϕ

2 )
] .

It implies that for x ≥ 0 one can close the contour of integration
by a semi-circle on the right half of the complex plane, which by
Cauchy theorem gives the statement (i) of the Proposition. Let
x < 0 and y = 0. Then one can transform the contour of integration
in (6.7) to the contour C which goes from −∞ to −π2 along the
lower edge of the half-line (−∞,−π2) and then returns to the −∞
along the upper edge of this half-line (notice that all singularities at
λ = −k2π2 are of the type z−1/2 and are therefore integrable). The

simple analysis of the argument of
√
sinh

√
λ shows that the values

of the integrand in (6.7) on the upper edge of the cut coincides
(respectively differs by the sign) with its corresponding values on
the lower edge on the intervals ((2kπ)2, (2k + 1)2π2) (resp. on
the intervals ((2k − 1)2π2, (2kπ)2)), which yields (after the change
λ = v2) the formula

uG =
4

(2πh)3/2t5/2

∞∑
k=1

∫ 2kπ

π(2k−1)

(−1)k−1v exp{−v
2|x|
ht2

}
√

v

| sin v|
dv

=

√
2

(πh)3/2t5/2

∫ π

0

∞∑
k=1

(−1)k−1 (u+ π(2k − 1))3/2√
sinu

exp{−|x|(u+ π(2k − 1))2

ht2
} dv

For large |x|/(ht2) all terms in this sum are exponentially small as
compared with the first one. Calculating this first term for large
|x|/(ht2) by the Laplace method yields (6.2).

Consider now the main case x < 0, y < 0. To calculate this
integral asymptotically for small h one can use the saddle-point
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method. The equation S′(λ) = 0 for saddle points is just equation
(6.3), and simple manipulations show the properties of the solu-
tion λ(t, x, y) given in the formulation of the Proposition. Now
the application of the saddle-point method to the integral in (6.7)
amounts to the shift of the contour of integration on λ(t, x, y) and
the following calculation of thus obtained integral by means of the
Laplace method, which yields (6.4), (6.6) and thus completes the
proof.

Notice now that as we have mentioned above, the formal appli-
cation of semi-classical formulas of Sections 1 or 5, i.e. of represen-
tation (1.19) with S being the two point function corresponding to
Hamiltonian H = (q2 − y2p)/2 and ϕ being given by (1.18), would
give the same result as we have obtained above using the explicit
expression for the h-Fourier transform of uG. In fact, the Cauchy
problem for the Hamiltonian system with the Hamiltonian H and
initial conditions (0, 0, p0, q0) has the explicit solution

y =
q0√
p
0

sinh(
√
p0t), x =

q20
4p0

(t−
sinh(2

√
p0t)

2
√
p0

),

and the problem of finding the solution to the boundary value prob-
lem with x(t) = x, y(t) = y reduces to the solution of equation (6.3)
for λ = pt2. For x > 0 there is no solution to this boundary value
problem, i.e. S is infinity and the uG should vanish. Similarly for
x < 0 one finds that semi-classical formulas (5.2), (5.1) yield (6.2)
and (6.4). That is where the natural question arises, which we pose
for the conclusion. For what class of non-regular Hamiltonians, to
begin with those given by (2.4.7), one can justify asymptotic rep-
resentations of type (1.19) or (5.2) for the Green function with the
two-point function as the phase? Notice that unless f = y2 as
in the example before, exact representation of type (6.7) does not
exist, and since these Hamiltonians are not regular (unless f = y)
the machinery presented above in Sections 3-5 also does not work.
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7. Analytic solutions to some linear PDE

In this short section we collect some general facts on analytic
(or even formal power series) solutions to linear first order partial
differential equations of the form

λS +

(
Ax,

∂S

∂x

)
= F (x), (7.1)

where x ∈ Rd, F (x) is a polynomial, λ is a constant and A is a
matrix with strictly positive eigenvalues a1 ≤ ... ≤ ad which are
simple, i.e. there exists an invertible matrix C such that C−1AC =
D is the diagonal matrix diag(a1, ..., ad). These facts are used
in the asymptotic calculations of the two point function and of
the solutions to the transport equation, which are carried out in
Sections 3.2, 3.3 and Chapter 4.

Let p be the smallest non-negative integer such that λ+pa1 >
0. In the most of examples λ > 0, and therefore p = 0.

Proposition 7.1.(i) Let F (x) be a homogeneous polynomial
of degree q ≥ p. Then there exists a solution S of (7.1) which is a
polynomial of degree q with coefficients defined by:

∂qS

∂xi1 ...∂xiq
=

1

λ+ aj1 + ...+ ajq
(C−1)j1i1 ...(C

−1)jqiq
∂qF

∂xl1 ...∂xlq
Cl1j1 ...Clqjq .

(7.2)
This solution is unique in the class of real analytic functions (in
fact, even in the class of formal power series) under the additional
assumption that all its derivatives at the origin up to order p − 1
vanish (this additional assumption is void in the main case p = 0).

(ii) Let F be a sum F =
∑m
q=p Fq of homogeneous polynomials

Fq of degree q. If m = ∞, let us suppose that this sum is ab-
solutely convergent in a ball BR (R may be finite or not). Then
the analytic solution of (7.2) exists and is again unique under the
condition above, and is given by the sum

∑m
q=p Sq of the solutions

corresponding to each Fq. If m = ∞, this sum is convergent in the
same ball BR, as the sum presenting the function F .

Proof. The change of variables x = Cy transforms (7.1) to

λS̃ +
d∑

m=1

amym
∂S̃

∂ym
= F̃ (y), (7.3)
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where S̃(y) = S(Cy) and F̃ (y) = F (Cy). Differentiating this equa-
tion k ≥ p times yields

(λ+ai1+...+aik)
∂kS̃

∂yi1 ...∂yik
+
∑

amym
∂k+1S̃

∂ym∂yi1 ...∂yik
=

∂kF̃

∂yi1 ...∂yik
.

It follows that under the conditions of (i) only the derivatives of
order q at the origin do not vanish, and for the derivatives of order
q one gets

∂qS̃

∂yi1 ...∂yiq
(0) =

1

λ+ ai1 + ...+ aiq

∂qF̃

∂yi1 ...∂yiq
(0). (7.4)

Returning to the original variables x yields (7.2), because

∂qS

∂xi1 ...∂xiq
(0) =

∂qS̃

∂yj1 ...∂yjq
(0)(C−1)j1i1 ...(C

−1)jqiq ,

∂qF̃

∂yj1 ...∂yjq
(0) =

∂qF

∂xl1 ...∂xlq
(0)Cl1j1 ...Clqjq .

Similar arguments prove (ii) for finite m. If m = ∞, the con-
vergence of the series representing the solution S (and thus the
analyticity of S in the ball BR) follows from (7.4), because this
equations imply that∣∣∣∣∣ ∂qS̃

∂yi1 ...∂yiq
(0)

∣∣∣∣∣ = O(1)

q

∣∣∣∣∣ ∂kF̃

∂yi1 ...∂yiq
(0)

∣∣∣∣∣ .
We are going now to present an equivalent form of formula

(7.2), which is more convenient for calculations. This formula will
be used only in Section 4.3.

Cosider the graph Γq with vertices of two kinds such that there
are exactly dq vertices of each kind, and the vertices of the first kind
(resp. second kind) are labeled by the sequences (l1, ..., lq)x (resp.
(l1, ..., lq)y) with each lj ∈ {1, ..., d}. The graph Γq is considered to
be a complete oriented bipartite graph, which means that any pair
of the vertices of different kind are connected by a (unique) arc,
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and the vertices of the same kind are not connected. Let us define
the weights of the arcs by the formulas

W [(l1, ..., lq)x → (j1, ..., jq)y] = Cl1j1 ...Clqjq ,

W [(j1, ..., jq)y → (l1, ..., lq)x] = (C−1)j1l1 ...(C
−1)jqlq .

Furthermore, let us consider the weight of any vertex of the first
kind to be one, and the weights of the vertices (j1, ..., jq)y of the
second kind being equal to (λ+aj1 + ...+ajq )

−1. The weight of any
path in the graph Γq will be equal (by definition) to the product
of the weights of its arcs and vertices. In particular, the weight of
a two-step path is given by the formula

W [(l1, ..., lq)x → (j1, ..., jq)y → (i1...iq)x]

=W [(l1, ..., lq)x → (j1, ..., jq)y]
1

λ+ aj1 + ...+ ajq
W [(j1, ..., jq)y → (i1, ..., iq)x].

(7.5)
The foolowing statement is a direct consequence of Proposition

7.1 and the definition of the bipartite weighted graph Γq.

Coroolary. Formula (7.2) can be written in the following
geometric form

∂qS

∂xi1 ...∂xiq

=
∑

(l1,...,lq)x

∑
(j1,...,jq)y

∂qF

∂xl1 ...∂xlq
W [(l1, ..., lq)x → (j1, ..., jq)y → (i1...iq)x].

(7.6)
Let us discuss now the computational aspects of this formula

for a special type of equation (7.1), which appears in the calcula-
tion (in Chapter 4) of the trace of the Green function of regular
invariant diffusions corresponding to the stochastic geodesic flows.
This equation has additional symmetries, which allow to reduce
a large number of calculations encoded in formulas (7.2) or (7.6).
The equation we are going to discuss, has the form

λf −
(
ξ + y,

∂f

∂ξ

)
+

(
6ξ + 4y,

∂f

∂y

)
= F, (7.7)
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where ξ and y belong to Rk, λ is a positive integer, and F is a
polynomial in ξ, y. By Proposition 2.1 it is enough to be able to
calculate the solutions corresponding to homogeneous polynomials
F of each degree q. The solution is then given by the polynomial
of degree q whose coefficients are calculated from (7.6). In the
case of equation (7.7), A is the block-diagonal 2k× 2k-matrix with

2×2-blocks

(
−1 −1
6 4

)
on its diagonal. The corresponding matrix

C is then also block-diagonal with 2× 2-blocks

(
1 −1
−2 3

)
on its

diagonal. It means that the change of the variables, which was used
in the proof of Proposition 7.1 is now (ξ, y)i 7→ (η, z)i, i = 1, ..., k,
with (

ξi

yi

)
=

(
1 −1
−2 3

)(
ηi

zi

)
= C

(
ηi

zi

)
,(

ηi

zi

)
=

(
3 1
2 1

)(
ξi

yi

)
= C−1

(
ξi

yi

)
, (7.8)

and thus equation (7.3) is

f̃ + ηi
∂f̃

∂ηi
+ 2zi

∂f̃

∂zi
= F̃ (η, z),

which implies

∂q+pf̃

∂ηi1 ...∂ηiq∂zj1 ...∂zjp
=

1

λ+ q + 2p

∂q+pF̃

∂ηi1 ...∂ηiq∂zj1 ...∂zjp
. (7.9)

Due to the special block-diagonal form of C one sees that in the
sum (7.2) consisting of (2k)2q terms only 22q terms do not neces-
sarily vanish. Moreover, there is a large amount of symmetry, since
A has only two different eigenvalues. Using simple combinatorial
considerations we shall obtain now the following result.

Proposition 7.2. If F is a polynomial of degree q and λ is
positive number, then the unique analytic solution of (7.5) is the
homogeneous polynomial of degree q in ξ, y with derivatives of the
order q at the origin given by the formula

∂qf

∂ξI∂yJ
=
∑
Ĩ⊂I

∑
J̃⊂J

A|I|,|J|
|Ĩ|,|J̃|

∂qF

∂ξĨ∂yI\Ĩ∂ξJ\J̃∂yJ̃
, (7.10)
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where I and J are arbitrary sequences of indices from {1, ..., k} such
that |I|+ |J | = q, and the coefficients A are given by the formula

Aσκ
µν =

µ∑
l=0

σ−µ∑
m=0

κ−ν∑
n=0

ν∑
p=0

ClµC
m
σ−µC

n
κ−νC

p
ν

× 1

λ+ 2q − l −m− n− p
(−1)m−n+κ2p−l(−3)l−p+ν−µ6σ, (7.11)

where Cji are the binomial coefficients.
Proof. In the case under consideration the vertices of the first

kind (resp. of the second) of the graph Γq can be labeled by se-
quences ξI , yJ (resp. ηI , zJ), where both I and J are sequences of
numbers from the set 1, ..., k of the lengths |I| and |J | respectively
with |I|+ |J | = q. Consequently, formula (7.6) takes the form

∂qf

∂ξI∂yJ
=
∑
Ĩ⊂I

∑
J̃⊂J

∂qF

∂ξĨ∂yI\Ĩ∂ξJ\J̃∂yJ̃

×
∑
ω

W [(ξĨ , yI\Ĩ , ξJ\J̃ , yJ̃) → (ωĨ , ωI\Ĩ , ωJ\J̃ , ωJ̃) → (ξĨ , ξI\Ĩ , yJ\J̃ , yJ̃)],

(7.12)
where each ω can be either η or z with the corresponding index.
Therefore we obtained (7.10), and it remains only to obtain formula
for the weights in (7.12). To this end, we denote by l m, n and

p the number of varibles η in ωĨ , ωI\Ĩ , ωJ\J̃ and ωJ̃ respectively,
and we have

Aσκ
µν =

µ∑
l=0

σ−µ∑
m=0

κ−ν∑
n=0

ν∑
p=0

ClµC
m
σ−µC

n
κ−νC

p
νW

µ,σ−µ,k−ν,ν
l,m,n,p ,

where Wµ,σ−µ,k−ν,ν
l,m,n,p is the weight of an arc having l transactions

of the type ξ → η → ξ, µ − l transactions of the type ξ → z → ξ,
m transactions of the type y → η → ξ, σ − µ − m transactions
of the type y → z → ξ, n transactions of the type ξ → η → y,
k − ν − n transactions of the type ξ → z → y, p transactions of
the type y → η → y, and ν − p transactions of the type y → z →
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y. Due to (7.8), the weights of the transactions η → ξ, η → y,
z → ξ, z → y equal to 1,−2,−1, 3 respectively, and the weights
of the transactions ξ → η, ξ → z, y → η, y → z equal to 3, 2, 1, 1
respectively. Multiplying the corresponding weights yields

Wµ,σ−µ,k−ν,ν
l,m,n,p =

1

λ+ 2q − l −m− n− p

×3l2µ−l(−1)µ−l(−2)m(−1)σ−µ−m3n(−2)n2k−ν−n3k−ν−n(−2)p3ν−p,

which implies (7.11), and the Proposition is proved.
Notice that it follows from (7.9) that

Aσκ
00 = (−6)σ−κAκσ

00 . (7.13)

In the next chapter, we shall need to solve equation (7.7) for the
polynomials F of the fourth order. Actually, we shall need the full
solution for the case of polynomials of order 2, and only a part of
it for orders 3 and 4. We obtain now the neccesary formulas as an
example of the application of Proposition 7.2.

Proposition 7.3. Let fj be the solution of equation (7.7) with
λ = 1 and the r.h.s. Fj being a homogeneous polynomials in ξ, y of
degree j. Then f0 = F0 and

f1 =

(
5

6

∂F1

∂ξi
− ∂F1

∂yi

)
ξi +

1

6

∂F1

∂ξi
yi, (7.14)

f2 =
1

2

[
6

5

∂2F2

∂yi∂yj
− 9

10

(
∂2F2

∂yi∂ξj
+

∂2F2

∂yj∂ξi

)
+

4

5

∂2F2

∂ξi∂ξj

]
ξiξj

+

[
−1

5

∂2F2

∂yi∂ξj
+

3

20

∂2F2

∂ξi∂ξj
+

1

10

∂2F2

∂yi∂yj
+

1

20

∂2F2

∂ξi∂yj

]
ξiyj

+
1

2

[
1

30

∂2F2

∂ξi∂ξj
− 1

60

(
∂2F2

∂ξi∂yj
+

∂2F2

∂ξj∂yi

)
+

2

15

∂2F2

∂yi∂yj

]
yiyj .

(7.15)
Moreover,

∂3f3
∂ξi∂ξj∂ξk

= −54

35

∂3F3

∂yi∂yj∂yk
+
39

35

(
∂3F3

∂ξi∂yj∂yk
+

∂3F3

∂yi∂ξj∂yk
+

∂3F3

∂yi∂yj∂ξk

)
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−61

70

(
∂3F3

∂ξi∂ξj∂yk
+

∂3F3

∂ξi∂yj∂ξk
+

∂3F3

∂yi∂ξj∂ξk

)
+

113

140

∂3F3

∂ξi∂ξj∂ξk
,

(7.16)
and

∂4f4
∂ξi∂ξj∂ξk∂ξl

=
72

35

∂4F4

∂yi∂yj∂yk∂yl
+

263

315

∂4F4

∂ξi∂ξj∂ξk∂ξl

−51

35

(
∂4F4

∂ξi∂yj∂yk∂yl
+

∂4F4

∂yi∂ξj∂yk∂yl
+

∂4F4

∂yi∂yj∂ξk∂yl
+

∂4F4

∂yi∂yj∂yk∂ξl

)
− 92

105

(
∂4F4

∂yi∂ξj∂ξk∂ξl
+

∂4F4

∂ξi∂yj∂ξk∂ξl
+

∂4F4

∂ξi∂ξj∂yk∂ξl
+

∂4F4

∂ξi∂ξj∂ξk∂yl

)
+
38

35

∑
I⊂{i,j,k,l}:|I|=2

∂4F4

ξI∂y{i,j,k,l}\I
. (7.17)

Proof. Using (7.10) yields

∂f

∂ξi
= A10

00

∂F

∂yi
+A10

10

∂F

∂ξi
,

∂f

∂yi
= A00

01

∂F

∂ξi
+A01

01

∂F

∂yi
,

and from (7.11) one obtains

A10
00 =

1∑
m=0

6

3−m
(−1)m = 6

(
1

3
− 1

2

)
= −1,

A10
10 =

1∑
l=0

6

3− l
2−l(−3)l−1 = 6

(
−1

9
+

1

4

)
=

5

6
,

A01
00 =

1∑
n=0

1

3− n
(−1)1−n = −1

3
+

1

2
=

1

6
,

A01
01 =

1∑
p=0

1

3− p
(−1)2p(−3)1−p = 1− 1 = 0,
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which implies (7.14).
To get (7.15) one first uses (7.10) to obtain the formulas

∂2f

∂ξi∂ξj
= A20

00

∂2F

∂yi∂yj
+A20

10

(
∂2F

∂ξi∂yj
+

∂2f

∂yi∂ξj

)
+A20

20

∂2F

∂ξi∂ξj
,

∂2f

∂ξi∂yj
= A11

00

∂2F

∂yi∂ξj
+A11

10

∂2F

∂ξi∂ξj
+A11

01

∂2F

∂yi∂yj
+A11

11

∂2F

∂ξi∂yj
,

∂2f

∂yi∂yj
= A02

00

∂2F

∂ξi∂ξj
+A02

01

(
∂2F

∂ξi∂yj
+

∂2F

∂yi∂ξj

)
+A02

02

∂2F

∂yi∂yj
.

(7.18)
Using (7.11) one calculates

A20
00 =

2∑
m=0

Cm2 62
1

5−m
(−1)m = 36(

1

5
− 1

2
+

1

3
) =

6

5
,

A20
10 =

1∑
l=0

1∑
m=0

62
1

5− l −m
(−1)m+l−12−l3l−1 = 36(− 1

15
+

1

12
+
1

8
−1

6
) = − 9

10
,

A20
20 =

2∑
l=0

Cl26
2 1

5− l
2−l(−3)l−2 = 36(

1

45
− 1

12
+

1

12
) =

4

5
,

A02
01 =

1∑
n=0

1∑
p=0

1

5− n− p
(−1)−n−p+32p3−p+1 = −3

5
+
3

4
+
2

4
−2

3
= − 1

60
,

A02
02 =

2∑
p=0

Cp2
1

5− p
(−1)p2p32−p =

9

5
− 3 +

4

3
=

2

15
,

A02
00 =

2∑
n=0

Cn2
1

5− n
(−1)−n+2 =

1

5
− 1

2
+

1

3
=

1

30
,

the last coefficient could be also obtain using the previous calcula-
tions and formula (7.13). Furthermore,

A11
00 = 6

1∑
m=0

1∑
n=0

1

5−m− n
(−1)m−n+1 = 6

(
−1

5
+

1

2
− 1

3

)
= −1

5
,
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A11
01 = 6

1∑
m=0

1∑
p=0

1

5−m− p
(−1)m−p2p3−p+1 = 6

(
3

5
− 3

4
− 2

4
+

2

3

)
=

1

10
,

A11
10 = 6

1∑
l=0

1∑
n=0

1

5− l − n
(−1)l−n2−l3l−1 = 6

(
1

15
− 1

12
− 1

8
+

1

6

)
=

3

20
,

A11
11 = 6

1∑
l=0

1∑
p=0

1

5− l − p
(−1)l−p+12p−l3l−p = 6

(
−1

5
+

1

6
+

3

8
− 1

3

)
=

1

20
.

Substituting these formulas in (7.18) yields (7.15).
To obtain (7.16) one uses (7.10) to write

∂3f3
∂ξi∂ξj∂ξk

= A30
00

∂3F3

∂yi∂yj∂yk
+A30

10

(
∂3F3

∂ξi∂yj∂yk
+

∂3F3

∂yi∂ξj∂yk
+

∂3F3

∂yi∂yj∂ξk

)

+A30
20

(
∂3F3

∂ξi∂ξj∂yk
+

∂3F3

∂ξi∂yj∂ξk
+

∂3F3

∂yi∂ξj∂ξk

)
+A30

30

∂3F3

∂ξi∂ξj∂ξk
.

(7.19)
Then one uses formula (7.11) to calculate

A30
00 = 63

3∑
m=0

Cm3
1

7−m
(−1)m = 63

(
1

7
− 1

2
+

3

5
− 1

4

)
= −54

35
,

A30
10 = 63

1∑
l=0

2∑
m=0

Cm2
1

7− l −m
(−1)m+l−12−l3l−1

= 63
(
− 1

21
+

1

9
− 1

15
+

1

12
− 1

5
+

1

8

)
=

39

35
,

A30
20 = 63

2∑
l=0

1∑
m=0

Cl2
1

7− l −m
(−1)m+l2−l3l−2

= 63
(
1

9
(
1

7
− 1

6
) +

1

3
(
1

5
− 1

6
) +

1

4
(
1

5
− 1

4
)

)
= −61

70
,

A30
30 = 63

3∑
l=0

Cl3
1

7− l
2−l(−3)l−3 = 63

(
− 1

189
+

1

36
− 1

20
+

1

32

)
=

113

140
.
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Substituting these coefficients in (7.19) yields (7.16). Similarly,
to get (7.17) one needs the following coefficients (which are again
obtained from the general formula (7.11):

A40
40 = 64

4∑
l=0

Cl4
1

9− l
2−l(−3)l−4 = 64

(
1

9

1

34
− 1

4

1

27
+

1

42
− 1

36
+

1

80

)
=

263

315
,

A40
30 = 64

3∑
l=0

1∑
m=0

Cl3
1

9− l −m
(−1)m+l−32−l3l−3 = − 92

105
,

A40
20 = 64

2∑
l=0

2∑
m=0

Cl2C
m
2

1

9− l −m
(−1)m+l−22−l3l−2 =

38

35
,

A40
10 = 64

1∑
l=0

3∑
m=0

Cm3
1

9− l −m
(−1)m+l−12−l3l−1 = −51

35
,

A40
00 = 64

4∑
m=0

Cm4
1

9−m
(−1)m = 64

(
1

9
− 1

2
+

6

7
− 2

3
+

1

5

)
=

72

35
.

Proposition is proved.



Chapter 4. INVARIANT DEGENERATE DIFFUSION
ON COTANGENT BUNDLES

1. Curvilinear Ornstein-Uhlenbeck process and stochastic geodesic flow

In this chapter we apply the theory developed in the previous
chapter to the investigation of invariant degenerate diffusions on
manifolds. We confine ourselves to the case of a regular degenerate
diffusion of rank one. Since in the conditions of the regularity of a
Hamiltonian the linearity of some coefficient in the second variable
y is included, one has to suppose when constructing an invariant
object that this second variable lives in a linear space. Therefore,
an invariant operator ought to be defined on a vector bundle over
some manifold: coordinates y in fibres and coordinate x on a base.
We reduce ourselves to the most commonly used vector bundle,
namely to the cotangent bundle T ⋆M of a compact n-dimensional
manifold M . In local coordinates, a regular Hamiltonian H of a
degenerate diffusion of rank one has form (2.3.4), where the matrix
g is positive definite and α is non-degenerate. The corresponding
diffusion equation (3.1.2) has the form

h
∂u

∂t
= Lu = H

(
x, y,−h ∂

∂x
,−h ∂

∂y

)
=
h2

2
gij

∂2u

∂yi∂yj

+h(ai(x)+αij(x)yj)
∂u

∂xi
+h(bi(x)+β

j
i (x)yj+

1

2
γjli (x)yjyl)

∂u

∂yi
−V (x, y)u.

(1.1)
In this section, we give the complete description of the invariant
operators of that kind on T ⋆M . Let us recall that a tensor γ of
type (q, p) on a manifold M is by definition a set of np+q smooth

functions γ
i1...ip
j1...jq

(x) on x that under the change of coordinates x 7→
x̃ changes by the law

γ̃
i1...ip
j1...jq

(x̃) = γ
k1...kp
l1...lq

(x)
∂x̃i1

∂xk1
...
∂x̃ip

∂xkp
∂xl1

∂x̃j1
...
∂xlq

∂x̃jq
.

To each tensor of the type (0, p) corresponds the polylinear function
on the cotangent bundle T ⋆M defined by the formula γ(x, y) =
γi1...ip(x)yi1 ...yip .
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Theorem 1.1 Suppose the following objects are given on M :
(i) Riemanian metric, which in local coordinates x on M is

given by a positive definite matrix g(x), x ∈M ;
(ii) non-degenerate tensor α = {αij(x)} of the type (0, 2) (non-

degeneracy means that the matrix α is non-degenerate everywhere)
and a tensor a = {ai(x)} of the type (0, 1) (i.e. a vector field); these
tensors obviously define a quadratic function f(x, y) = αij(x)yiyj+
ai(x)yi on T

⋆M ;
(iii) tensors b, β, γ of the types (1, 0), (1, 1), (1, 2) respectively;
(iv) the sum V of tensors of the types (0, 0), (0, 1), (0, 2), (0, 3), (0, 4),

which defines a bounded from below function V (x, y) on T ⋆M .
Then the second order differential operator

L =
1

2
gij(x)

∂2

∂yi∂yj
+
∂f

∂yi
(x, y)

∂

∂xi
− ∂f

∂xi
(x, y)

∂

∂yi

+

(
bi(x) + βji (x)yj +

1

2
γkli (x)ykyl

)
∂

∂yi
− V (x, y) (1.2)

is an invariant operator on T ⋆M , which is a regular diffusion of
the rank one.

Conversely, each such operator has this form.

Proof. Under the change of the variables x 7→ x̃(x) the mo-
ments change by the rule ỹ = y ∂x∂x̃ . Therefore,

∂u

∂yi
=

∂u

∂ỹj

∂ỹj
∂yi

,
∂2u

∂yi∂yj
=

∂2u

∂ỹk∂ỹm

∂ỹm
∂yj

∂ỹk
∂yi

, (1.3)

∂u

∂xi
=

∂u

∂x̃j
∂x̃j

∂xi
+
∂u

∂ỹj

∂ỹj
∂xi

,
∂ỹk
∂yj

=
∂xj

∂x̃k
. (1.4)

It follows, in particular, that under the change (x, y) 7→ (x̃, ỹ), the
second order part of (1.1), the first order part of (1.1), and the
zero order part of (1.1) transforms to second order, first order, and
zero order operators respectively, and consequently, if the operator
(1.1) is invariant, then its second order part, its first order part,
and its zero order part must be invariant. In order that the zero
order term V (x, y)u was invariant it is necessary and sufficient that
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V (x, y) is invariant and therefore V (x, y) is a function. From the
invariance of the second order part one has

gij(x)
∂2u

∂yi∂yj
= gij(x)

∂2u

∂ỹk∂ỹm

∂ỹm
∂yj

∂ỹk
∂yi

= gij(x)
∂2u

∂ỹk∂ỹm

∂xj

∂x̃m
∂xi

∂x̃k
= g̃km(x̃)

∂2u

∂ỹk∂ỹm
,

and consequently, the invariance of the second order part is equiv-
alent to the requirement that g is a tensor, and therefore defines a
riemannian metric. Let us write now the condition of the invari-
ance of the first order part of operator (1.1). Changing the variable
(x, y) 7→ (x̃, ỹ) in the first order part of (1,1) one has

(
ai(x) + αij(x)yj

) ∂u
∂xi

+

(
bi(x) + βji (x)yj +

1

2
γjli (x)yjyl

)
∂u

∂yi

=

(
ai(x) + αij(x)ỹm

∂x̃m

∂xj

)(
∂u

∂x̃l
∂x̃l

∂xi
+
∂u

∂ỹl

∂ỹl
∂xi

)
+

(
bi(x) + βji (x)ỹm

∂x̃m

∂xj
+

1

2
γjli (x)ỹmỹp

∂x̃m

∂xj
∂x̃p

∂xl

)
∂u

∂ỹq

∂ỹq
∂yi

.

Therefore, the invariance of this first order part is equivalent to the
following two equations:

ãi(x̃) + α̃ij(x̃)ỹj =

(
al(x) + αlj(x)ỹm

∂x̃m

∂xj

)
∂x̃i

∂xl
, (1.5)

and(
b̃i(x̃) + β̃ji (x̃)ỹj +

1

2
γ̃jli (x̃)ỹj ỹl

)
=

(
al(x) + αlj(x)ỹm

∂x̃m

∂xj

)
∂ỹi
∂xl

+

(
bq(x) + βjq(x)ỹm

∂x̃m

∂xj
+

1

2
γjlq (x)ỹmỹp

∂x̃m

∂xj
∂x̃p

∂xl

)
∂ỹi
∂yq

. (1.6)

From (1.5) one obtains that a and α are tensors, as is required.
Next,

∂ỹi
∂xl

= −ỹp
∂x̃p

∂xl∂xm
∂xm

∂x̃i
,
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Therefore, equating in (1.6) the terms which do not depend on ỹ,
the terms depending on ỹ linearly, and the terms depending on ỹ
quadratically, one gets that b is a tensor of the type (1, 0), and that
the law of the transformation of β and γ has the form

γ̃mpi (x̃) = γjlq (x)
∂x̃m

∂xj
∂x̃p

∂xl
∂xq

∂x̃i
− 2αlj(x)

∂x̃m

∂xj
∂2x̃p

∂xl∂xq
∂xq

∂x̃i
,

β̃pi (x̃) = βjq(x)
∂x̃p

∂xj
∂xq

∂x̃i
− al(x)

∂2x̃p

∂xl∂xm
∂xm

∂x̃i
.

Since
∂ãp

∂x̃i
(x̃) =

∂aj

∂xq
∂xq

∂x̃i
∂x̃p

∂xj
+ al(x)

∂2x̃p

∂xl∂xm
∂xm

∂x̃i
,

∂α̃mp

∂x̃i
(x̃) =

∂αlj

∂xq
∂xq

∂x̃i
∂x̃m

∂xl
∂x̃p

∂xj
+ 2αlj(x)

∂2x̃p

∂xq∂xl
∂xq

∂x̃i
∂x̃m

∂xj
,

it follows that {γmpi + ∂αmp

∂xi } and {βpi + ∂ap

∂xi } are tensors of the
types (1, 2) and (1, 1) respectively. Denoting these tensors again
by γ and β respectively, yields representation (1.2). The proof is
complete.

Let us write the stochastic differential equation for the diffu-
sion process corresponding to the operator (1.2) with vanishing V .
Let r : M 7→ RN be an embedding of the Riemanian manifold M
in the Euclidean space (as is well known, such embedding always
exists). The operator (1.2) stands for the diffusion on T ⋆M defined
by the stochastic system{

dx = ∂f
∂y dt

dyi = − ∂f
∂xi dt+ (bi(x) + βji (x)yj +

1
2γ

kl
i (x)ykyl) dt+

∂rj

∂xi dwj ,

(1.7)
where w is the standardN -dimensional Wiener process. This state-
ment follows from the well known formula for the Riemanian metric

gij(x) =

N∑
k=1

∂rk

∂xi
∂rk

∂xj

and the Ito formula. It is interesting to note that though system
(1.7) depends explicitly on the embedding r, the corresponding
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operator L defining the transition probabilities for diffusion process
(1.7) depends only on the Riemanian structure.

One sees that system (1.7) describes a curvilinear version of the
classical Ornstein-Uhlenbeck process (see e.g. [Joe] for an invarian
definition) defined originally (see, e.g.[Nel1]) by the system (x, y ∈
Rn) {

ẋ = y
dy = −∂V

∂x dt− βy dt+ dw(t)
(1.8)

as a model of Brownian motion, where β ≥ 0 is some constant and
V (x) is some (usually bounded from below) function (potential).
System (1.8) defines a Newton particle (Hamiltonian system with
the Hamiltonian V (x) + y2/2) disturbed by the friction force βy
and by the white noise random force dw. System (1.7) describes a
Hamiltonian system (defined by the Hamiltonian function f which
is quadratic in momentum but with varying coefficients) with ad-
ditional deterministic force (defined by the 1-form b), the friction
βji (x)yj +

1
2γ

kl
i (x)ykyl (which can depend on the first and second

degree of the velocity) and the white noise force depending on the
position of the particle.

In the case of vanishing b, β, γ system (1.7) is a stochastic
Hamiltonian system with non-homogeneous singular random Hamil-
tonian f(x, y) + r(x)ẇ, which describes the deterministic Hamilto-
nian flow disturbed by the white noise force:{

dx = ∂f
∂y dt

dy = −∂f
∂x dt+

∂
∂x (r, dw).

(1.9)

The ”plane” stochastic Hamiltonian systems, i.e. (1.9) for M =
Rn, were investigated recently in connection with their application
to the theory of stochastic partial differential equation, see [K1],
[TZ1], [TZ2].

The mostly used example of the Hamiltonian system on the
cotangent bundle T ⋆M of a Riemanian manifold is of course the
geodesic flow, which stands for the Hamiltonian function f = (G(x)y, y)/2,
where G(x) = g−1(x). For this f , system (1.9) takes the form{

ẋ = G(x)y
dy = − 1

2
∂
∂x (G(x)y, y) dt+

∂
∂x (r, dw),

(1.10)
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This system was called in [K1] the stochastic geodesic flow. The
investigation of its small time asymptotics was begun in [AHK2].
Corresponding Hamiltonian (2.3.4) of the stochastic geodesic flow
is

H =
1

2
(g(x)q, q)− (G(x)y, p) +

1

2

(
∂

∂x
(G(x)y, y), q

)
(1.11)

and the invariant diffusion equation is

∂u

∂t
= Lu =

h

2
tr

(
g(x)

∂2u

∂yi∂yj

)
+

(
G(x)y,

∂u

∂x

)
−1

2

(
∂

∂x
(G(x)y, y),

∂u

∂y

)
.

(1.12)
It depends only on the Riemanian structure and therefore its prop-
erty should reflect the geometry ofM , which explain more explicitly
in the next sections.

2. Small time asymptotics for stochastic geodesic flow

The stochastic geodesic flow is a good example for performing
the general results of the previous chapter. Using these results we
present now the calculation of the main terms of the small time
asymptotics for the Green function of equation (1.12), i. e. its
solution with the initial data

uG(0, x, y;x0, y
0) = δ(x− x0)δ(y − y0) (2.1)

in a neighbourhood of the point (x0, y
0) ∈ T ⋆M .

All calculations will be carried out in normal coordinates around
x0 (see, e.g. [CFKS]), in which x0 = 0,

gij(x) = δji +
1

2
gklijx

kxl +O(|x|3), (2.2)

and det g(x) = 1 identically. These conditions imply that

n∑
i=1

gklii = 0 ∀k, l (2.3)
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and that the Gaussian (or scalar) curvature in x0 is equal to

R =
∑
i,k

gikik . (2.4)

Remark. Some authors do not include the requirement det g =
1 in the definition of normal coordinates. Notice however that if
a system of coordinates x on a n-dimensional riemanian manifold
M satisfies all other conditions of normality but for the condition
det g = 1, then the coordinates x̃ defined by the formula

x̃1 =

∫ x1

0

√
g(s, x2, ..., xn) ds, x̃i = xi, i ≥ 2,

satisfies all the conditions of normality given above, as one checks
easily (see [CFKS]).

Moreover, from (2.2) one gets obviously the expansions

Gij = δji −
1

2
gklijx

kxl +O(|x|3), (2.5)

for the inverse matrix G(x) = g−1(x), and also

∂Gij
∂xk

(x) = −gklij +O(|x|2). (2.6)

To find the asymptotics of the two-point function one should solve
the main equation (3.2.12), which for the case of Hamiltonian (1.11)
takes the form

∂Σ

∂t
− ξ +G(tξ + x̃)(y + ỹ)−G(x̃)ỹ

t

∂Σ

∂ξ
−
(
g(x̃)q̃,

∂Σ

∂y

)

+
1

2

[(
∂G

∂x
(tξ + x̃)(y + ỹ), y + ỹ

)
−
(
∂G

∂x
(x̃)ỹ, ỹ

)]
∂Σ

∂y

+
1

2

(
g(tξ + x̃)

∂Σ

∂y
,
∂Σ

∂y

)
= 0. (2.7)

Using (2.2), (2.3) one concludes that

x̃ = x0 − ty0 +O(t3), ỹ = y0 +O(t2), q̃ = O(t2), (2.8)
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and then one rewrites (2.7) in the coordinate form (using now low
indices for both ξ and y:

∂Σ

∂t
−
(ξ + y)i − t2

2 g
kl
ij [(ξk − y0k)(ξl − y0l )(yj + y0j )− y0ky

0
l y

0
j ] +O(t3)

t

∂Σ

∂ξi

−
[
t

2
gklij [(ξl − y0l )(yi + y0i )(yj + y0j ) + y0i y

0
j y

0
l ] +O(t2)

]
∂Σ

∂yk

+
1

2
(1 +

t2

2
gklij (ξk − y0k)(ξl − y0l ) +O(t3))

∂Σ

∂yi

∂Σ

∂yj
= 0. (2.9)

Following the arguments of Sect.2 of the previous chapter one looks
for the solution of this equation in form (3.2.6), where Σ−1 is a pos-
itive quadratic form and Σ0(0, 0) = 0. For Σ−1 one gets equation
(3.2.10) with α0 and g0 being unit matrices. Its solution is given
by (3.2.16). For Σ0 one finds then the equation

−(y + ξ)
∂Σ0

∂ξ
+ (6ξ + 4y)

∂Σ0

∂y
= 0,

whose solution vanishes, due to Proposition 3.7.1. Furthermore,
for Σ1 one obtains the equation

Σ1 − (y + ξ)i
∂Σ1

∂ξi
+ (6ξ + 4y)i

∂Σ1

∂yi

+gklij [(ξk − y0k)(ξl − y0l )(yj + y0j )− y0ky
0
l y

0
j ](6ξ + 3y)i

−gklij [(ξl − y0l )(yi + y0i )(yj + y0j ) + y0i y
0
j y

0
l ](3ξ + 2y)k

+gklij (ξk − y0k)(ξl − y0l )(3ξ + 2y)i(3ξ + 2y)j = 0.

Opening the brackets one presents this equation in the form

Σ1 − (y + ξ)i
∂Σ1

∂ξi
+ (6ξ + 4y)i

∂Σ1

∂yi
= F (ξ, y), (2.10)

where F is the sum F2 + F3 + F4 of the homogeneous polynomials
of degree 2,3,4 given by the formulas

F2 = gklij [(12ξiξk−4yiyk)y
0
j y

0
l−(18ξiyj+7yiyj+9ξiξj)y

0
ky

0
l+(3ξkξl+2ξkyl)y

0
i y

0
j ],

(2.11)
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F3 = gklij [(−6ξiξkξl + 3ξkξlyi + 4ξkyiyl)y
0
j

+(36ξiξkyj + 11ξkyiyj − 2yiyjyk + 18ξiξjξk)y
0
l ], (2.12)

F4 = gklij [2ξkyiyjyl − 4ξkξlyiyj − 18ξiξkξlyj − 9ξiξjξkξl]. (2.13)

The solution of this equation is the sum of the solutions Σ2
1, Σ

3
1,

Σ4
1 corresponding to F2, F3, and F4 in the r.h.s. of (2.10). These

solutions can be calculated by formula (3.7.10). For instance, Σ2
1 is

given by (3.7.15) with F2 being equal to (2.11). These calculations
are rather long, but the form of the solution is clear:

Σ1 = gklijRijkl(ξ, y, y
0), (2.14)

where Rijkl are homogeneous polynomials of degree 4 in the vari-
ables ξ, y, y0. Similarly one sees that the other terms Σj are homo-
geneous polynomials in ξ, y, y0 of degree j + 3, which is important
to know when making the estimates uniform in y0.

Let us find now the first nontrivial term of the asymptotic
solution of the transport equation. In the case of Hamiltonian
(1.11), the general equation (3.3.3) takes the form

∂Ψ

∂t
− α

t
Ψ− ξ +G(ξt+ x̃)(y + ỹ)−G(x̃)ỹ

t

∂Ψ

∂ξ

+
1

2

[(
∂G

∂x
(tξ + x̃)(y + ỹ), y + ỹ

)
−
(
∂G

∂x
(x̃)ỹ, ỹ

)]
∂Ψ

∂y

−
(
g(x̃)q̃,

∂Ψ

∂y

)
+

(
g(tξ + x̃)

∂Σ

∂y
,
∂Ψ

∂y

)
+
1

2
Ψ tr

(
g(tξ + x̃)

∂2Σ

∂y2

)
= 0,

(2.15)
where

Ψ(t, ξ, y) = tαϕ(t, tξ + x̃, y + ỹ; 0, y0). (2.16)

From (3.3.5) one finds α = 2n. Looking for the solution of (2.15)
in the form

Ψ = 1 + tΨ1 + t2Ψ2 + ...

one gets comparing the terms at t0 the following equation (since
Σ0 = 0):

Ψ1 −
(
ξ + y,

∂Ψ1

∂ξ

)
+

(
6ξ + 4y,

∂Ψ1

∂y

)
= 0.
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Due to Proposition 3.7.1, Ψ1 vanishes. Comparing the coefficients
at t yields

Ψ2 −
(
ξ + y,

∂Ψ2

∂ξ

)
+

(
6ξ + 4y,

∂Ψ2

∂y

)

+tr

(
1

2

∂2Σ1

∂y2
+ gkl(ξk − y0k)(ξl − y0l )

)
= 0. (2.17)

It is again the equation of type (2.10) with the polynomials of
degree 0,1,2 in the r.h.s. The solution of this equation is therefore
given by Proposition 3.7.3. Again the calculations are rather long
but the form of the solution is clear:

Ψ2 =
∑
i

giiklPkl + gikil Qkl +GkliiRkl, (2.18)

where Pkl, Qkl, Rkl are some homogeneous polynomials in ξ, y, y0

of degree 2.

3. The trace of the Green function and geometric invariants

It turns out that similarly to the case of non-degenerate dif-
fusion on a compact manifold (see, e.g. [Gr],[Roe]), the resolving
operator for the Cauchy problem for equation (1.12) belongs to the
trace class, i.e. the trace

tre−tL =

∫
T⋆M

uG(t, x, y;x, y) dxdy (3.1)

exists. Moreover, this integral can be developed in asymptotic
power series in t with coefficients being the invariants of the Riema-
nian manifold. For brevity, let us put h = 1. The following result
was announced in [AHK2] and its complete proof will be published
elsewhere. We shall sketch here only the main line of necessary
calculations using the technique developed in Section 3.7.

Theorem 3.1. Integral (3.1) exists and has the asymptotical
expansion for small time in the form

(2πt3)−n/2(V olM + a3t
3 + a4t

4 + ...),
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the first nontrivial coefficient a3 being proportional to the Gaussian
curvature G(M) =

∫
M
Rdx of M and V olM =

∫
M
dx being the

Riemanian volume.

Sketch of the Proof. The existence of the expansion follows
from the asymptotic formula for the Green function obtained above.
Let us show how to prove the last statement, indicating as well the
main steps of the exact calculation of a3. From (3.2.2),(3.2.4) it
follows that

S(t, x0, y
0;x0, y

0) = Σ(t,
x0 − x̃

t
, y0 − ỹ).

Therefore in normal coordinate around the point x0 = 0 one has

S =
1

t

(
6
x̃2

t2
− 6

x̃

t
(y0 − ỹ) + 2(y0 − ỹ)2

)
+tΣ1

(
− x̃
t
, y0 − ỹ

)
+O(t2).

Using (2.3.5), (2.3.14) and expansion (2.2), (2.5),(2.6) let us make
formulas (2.8) more precise:{

x̃i = −ty0i + 1
6 t

3(gklij − 1
2g
ij
kl)y

0
j y

0
ky

0
l +O(t4)

ỹi = y0i +
1
4 t

2gijkly
0
j y

0
ky

0
l +O(t3).

(3.3)

Therefore

S =
6

t

∑
i

(y0i−
1

6
t2(gklij−

1

2
gijkl)y

0
j y

0
ky

0
l )

2−3t

2
y0i g

ij
kly

0
ky

0
l y

0
j+tΣ1(y

0, 0)+O(t2).

Consequently,

S =
6

t
(y0, y0)− 5

2
tgklij y

0
i y

0
j y

0
ky

0
l + tΣ1(y

0, 0) +O(t2). (3.4)

Therefore, to get the first nontrivial term of the expansion of S one
needs the solution of (2.10) at y = 0, ξ = y0.

Similarly, we have

ϕ(t, 0, y0; 0, y0) = t−2nΨ(t,− x̃
t
, y0 − ỹ)
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= t−2n(1+t2Ψ2(−
x̃

t
, y0−ỹ)+O(t3) = t−2n(1+t2Ψ2(y

0, 0)+O(t3)),

(3.5)
and therefore we need the solution of (2.17) also only at y = 0, ξ =
y0. From (2.14) and (2.18) it follows that

Σ1(y
0, 0) = σgklij y

0
i y

0
j y

0
ky

0
l , (3.6)

Ψ2(y
0, 0) =

∑
k

(βgijkk + γgkkij + δgikjk)y
0
i y

0
j (3.7)

with some constants σ, β, γ, δ.
The key point in the proof of the theorem is the following fact.

Lemma 3.1. In formula (3.6), one has σ = 5
2 .

Proof. To simplify calculations let us first note that formula
(7.31) will not change if we take instead of the tensor gklij its sym-

metrisation, and therefore, when calculating Σ1(y
0, 0) from equa-

tion (7.18) we can consider the coefficients gklij in the expression for
F to be completely symmetric (with respect to any change of the
order of its indices i, j, k, l. In particular, it means that instead of
F2 and F3 from (2.11), (2.12) we can take

F̃2 = (6ξiξj − 16ξiyj − 11yiyj)g
kl
ij y

0
ky

0
l , (3.8)

F̃3 = (12ξiξjξk + 39ξiξkyj + 15ξiyjyk − 2yiyjyk)g
kl
ij y

0
l . (3.9)

Next, clearly

Σ1(y
0, 0) =

1

2

∂2Σ2
1

∂ξi∂ξj
yi0y

j
0+

1

3!

∂3Σ3
1

∂ξi∂ξj∂ξk
yi0y

j
0y
k
0+

1

4!

∂4Σ4
1

∂ξi∂ξj∂ξk∂ξl
yi0y

j
0y
k
0y
l
0,

(3.10)
where Σp1, p = 2, 3, 4, denote the corresponding homogeneous part
of Σ1. Now taking into consideration the assumed symmetricity of
the coefficients of gklij one gets from (3.7.15) and (3.8) that

1

2

∂2Σ2
1

∂ξi∂ξj
(y0, 0) =

(
−6

5
× 11 +

9

10
× 16 +

4

5
× 6

)
gklij y

0
ky

0
l ,= 6gklij y

0
ky

0
l ,

from (3.7.16) and (3.9) that

1

3!

∂3Σ3
1

∂ξi∂ξj∂ξk
=

(
54

35
× 2 +

39

35
× 15− 61

70
× 39 +

113

140
× 12

)
gklij y

0
l = −9

2
gklij y

0
l ,
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and from (3.7.17) and (2.13) that

1

4!

∂4Σ4
1

∂ξi∂ξj∂ξk∂ξl
=

(
−263

315
× 9− 51

35
× 2 +

92

105
× 18− 38

35
× 4

)
gklij = gklij .

Subsituting these formulas to (3.10) yields

Σ1(y
0, 0) = (6− 9

2
+ 1)gklij y

0
i y

0
j y

0
ky

0
l =

5

2
gklij y

0
i y

0
j y

0
ky

0
l ,

and the Lemma is proved.
End of the proof of the Theorem. Due to the Lemma, the sum

of the second and third terms in the expression (3.4) for S vanishes.
Therefore, due to (3.4), (3.6), (3.7), and to the fact that the odd
degrees of y0 do not contribute to the integral, one concludes that
the integral

∫
u(t, 0, y; 0, y) dy is equal to(√

3

πt2

)n ∫
e−6y2/t[1+t2

∑
k

(βgijkk+γg
kk
ij +δg

ik
jk)yiyj+O(t3|y|6)+O(t4|y|4)] dy.

Due to (2.3), (2.4), this is equal to

=

(√
3

πt2

)n(
tπ

6

)n/2
[1 +

1

12
t3δR+O(t4)].

Integrating this expression over M obviously gives (3.2) with a3 =
δG(M)/12.



Chapter 5. TRANSITION PROBABILITY DENSITIES
FOR STABLE JUMP-DIFFUSIONS

1. Asymptotic properties of one-dimensional stable laws

This chapter is devoted to a study of the transition probability
densities for stable jump-diffusions and its natural modifications
such as truncated stable jump-diffusions and stable-like diffusions.
In the last section, some applications to the study of the sample
path properties of these processes are presented.

In this introductory section we recall the well known asymp-
totical expansions of one-dimensional stable densities More circum-
stantial exposition of the theory of one-dimensional stable laws and
their applications can be found e.g. in [Lu] or [Zo]. Let us comment
only that the first term of the large distance asymptotics for stable
laws seemed first to appear in [Pol], and the whole expansions was
obtained in [Fel]. The characteristic function of the general (up
to a shift) one-dimensional stable law with the index of stability
α ∈ (0, 2), α ̸= 1, is

exp{−σ|y|αeiπ2 γ sgn y} (1.1)

(see e.g. Appendix C), where the parameter γ (which measures
the skewness of the distribution) satisfies the conditions |γ| ≤ α,
if 0 < α < 1, and |γ| ≤ 2 − α, if 1 < α < 2. Parameter σ > 0
is called the scale. For α = 1 only in symmetric case, i.e. for
γ = 0, the characteristic function can be written in form (1.1). In
order to have unified formulas we exclude the non-symmetric stable
laws with the index of stability α = 1 from our exposition and will
always consider γ = 0 whenever α = 1. The probability density
corresponding to characteristic function (1.1) is

S(x;α, γ, σ) =
1

2π

∫ +∞

−∞
exp{−ixy − σ|y|αeiπ2 γ sgn y} dy. (1.2)

Due to the evident relations

S(−x;α, γ, σ) = S(x;α,−γ, σ), (1.3)
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S(x;α, γ, σ) = σ−1/αS(xσ−1/α;α, γ, 1), (1.4)

it is enough to investigate the properties of the normalised density
S(x;α, γ, 1) for positive values of x. Clearly for these x

S(x;α, γ, 1) =
1

π
Re

∫ ∞

0

exp{−ixy − yαei
π
2 γ} dy. (1.5)

It follows that all S are infinitely differentiable and bounded

|S(x;α, γ, σ)| ≤ 1

απ
(σ cos

π

2
γ)−1/αΓ(1/α).

Using a linear change of the variable in (1.5) yields for x > 0

S(x;α, γ, 1) =
1

πx
Re

∫ ∞

0

exp{−y
α

xα
ei

π
2 γ}e−iy dy. (1.6)

Proposition 1.1. For small x > 0 and any α ∈ (0, 2), the
function S(x;α, γ, 1) has the following asymptotic expansion

S(x;α, γ, 1) ∼ 1

πx

∞∑
k=1

Γ(1 + k/α)

k!
sin

kπ(γ − α)

2α
(−x)k. (1.7)

Moreover, for α ∈ (1, 2) (resp. for α = 1), the series on the r.h.s.
of (1.7) is absolutely convergent for all x (resp. for x from a neigh-
bourhood of the origin) and its sum is equal to S(x;α, γ, 1). The
asymptotic expansion can be differentiated infinitely many times.

Proof. Expanding the function e−ixy in (1.5) in the power
series yields for S(x;α, γ) the expression

1

π
Re

∫ ∞

0

exp{−yαeiπγ/2
(
1− ixy + ...+

(−ixy)k

k!
+ θ

(xy)k+1

(k + 1)!

)
dy

with |θ| ≤ 1. Since∫ ∞

0

yβ−1 exp{−λyα} dy = α−1λ−β/αΓ(β/α), Re λ > 0
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(and these integrals are absolutely convergent for Reλ > 0), one
obtains

S(x;α, γ, 1) =
1

πα
Re

k∑
m=0

exp{−iπγ(m+ 1)

2α
} (−ix)

m

m!
Γ(
m+ 1

α
)+Rk+1

with

|Rk+1| ≤ Γ(
k + 2

α
)
|x|k+1

(k + 1)!
.

Therefore, we have got an asymptotic expansion for S. It is conve-
nient to rewrite this expansion in the form

S(x;α, γ, 1) ∼ 1

πxα
Re−

∞∑
k=1

(−x)k Γ(k/α)
(k − 1)!

exp{−iπ
2
(
γ

α
k− k+1)}.

Using the formula Γ(k/α) = Γ(1 + k/α)α/k and taking the real
part yields (1.7). The statement about convergence follows from
the asymptotic formula for Γ-function (Stirling formula), which
implies that the radius of convergence of series (1.7) is equal to
infinity, is finite, or is zero, respectively if α ∈ (1, 2), α = 1, or
α ∈ (0, 1).

We are going to discuss now the behaviour of stable densities
for large x.

Proposition 1.2 (Zolotarev’s identity). If x > 0 and α ∈
( 12 , 1) or α ∈ (1, 2), then

S(x;α, γ, 1) = x−(1+α)S

(
x−α;

1

α
,
1

α
(γ + 1)− 1, 1

)
. (1.8)

Proposition 1.3. For any α ∈ (0, 2) and x→ ∞, the function
S(x;α, γ) has the following asymptotic expansion:

S(x;α, γ, 1) ∼ 1

πx

∞∑
k=1

Γ(1 + kα)

k!
sin

kπ(γ − α)

2
(−x−α)k. (1.9)

Moreover, for α ∈ (0, 1) (resp. α = 1, γ = 0), the series on
the r.h.s. of (1.9) is absolutely convergent for all finite x−α (resp.
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for x−α in a neighbourhood of the origin) and its sum is equal
to S(x;α, γ). Asymptotic expansion (1.9) can be differentiated in-
finitely many times.

Proof of Propositions 1.2, 1.3. First let α ∈ (0, 1]. Due to the
Cauchy theorem, one can change the path of integration in (1.6)
to the negative imaginary axes, i.e.

S(x;α, γ) =
1

πx
Re

∫ −i∞

0

exp{−y
α

xα
ei

π
2 γ}e−iy dy, (1.10)

because the magnitude of the integral along the arch l = {y =
re−iϕ, ϕ ∈ [0, π2 ]} does not exceed∫ π/2

0

r exp{−r sinϕ− rα

xα
cos(αϕ− π

2
γ)} dϕ,

and tends to zero as r → ∞, due to the assumptions on α and γ.
Changing now the variable y = ze−iπ/2 in (1.10) yields

S(x;α, γ) = Re− i

πx

∫ ∞

0

exp{−z − zα

xα
e−i

π
2 (γ−α)} dz.

Expanding exp{− zα

xα e
−iπ2 (γ−α)} in power series and evaluating the

standard integrals one gets

S(x;α, γ) = Re− i

πx

∞∑
k=1

Γ(1 + kα)

k!
(−x−α)k exp{ikπ

2
(α− γ)},

which implies (1.9). As in the proof of Proposition 1.1, one sees
from the asymptotic formula for Γ-function that the radius of con-
vergence of series (1.9) is equal to infinity for α ∈ (0, 1) and is
finite non-vanishing for α = 1. Therefore, we have proved (1.9)
for α ∈ (0, 1]. Comparing formulas (1.9) for α ∈ (1/2, 1) and
(1.7) for α ∈ (1, 2) one gets Zolotarev’s identity (1.8). Using this
identity and asymptotic expansion (1.7) for α ∈ ( 12 , 1) one obtains
asymptotic formula (1.9) for α ∈ (1, 2). Surely one can easily jus-
tify asymptotic expansion (1.9) for α ∈ (1, 2) independently from
Zolotarev’s identity, see proof of Proposition 2.2 below.
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2. Asymptotic properties of finite dimensional stable laws

Here we generalise the results of the previous section to the
case of finite dimensional symmetric stable densities, and then de-
duce some estimates for its derivatives, which will be used in the
following sections.

Let us start with some bibliographical comments on the sub-
ject of this section. The results of Proposition 2.1 are rather trivial
but I am not aware whether they appeared somewhere. The results
of Proposition 2.2, 2.3 are partially known. Namely, the first term
of the large distance asymptotic expansion of stable laws with the
uniform spectral measure was obtained in general form in [BG], (see
also a different proof in [Ben1]), though some particular cases were
known in physics essentially earlier, see e.g. [Cha]. Some generali-
sations of these results to the infinite dimensional situation can be
found in [Ben2]. On the other hand, the existence of an asymptotic
expansion in powers of |x|−1 was proved for more general Fourier
integrals in [Fed2]. In our Propositons 2.2, 2.3, we present explicit
formulas for asymptotic expansions of general finite dimensional
stable laws, also taking care of the estimates of the remainder,
which is of vital importance for our purposes. Further on we give
the asymptotic expansions and global estimates for the derivatives
of stable densities and for some relevant functions. Some estimates
for these functions follow from more general estimates obtained in
[Koch], but in [Koch] these functions are estimated in terms of
some rational expressions, and our estimates are given in terms of
the stable densities themselves, which bacomes possible when us-
ing the unimodality property of stable laws (see Proposition 2.4),
which could not be used in a more general situation considered in
[Koch].

The general symmetric stable density (up to a shift) has the
form

S(x;α, σµ) =
1

(2π)d

∫
Rd

exp{−σ|p|α
∫
Sd−1

|(p̄, s)|αµ(ds)}e−ipx dp,

(2.1)
where the measure µ on Sd−1 is called the spectral measure, and
where we have written explicitly a parameter σ, the scale (which
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is normally included in µ), having in mind the future applications
to stable motions, where σ plays the role of the time.

We shall denote by p̄ the unit vector in the direction of p,
i.e. p̄ = p/|p|. Using for p̄ spherical coordinates (θ, ϕ), θ ∈ [0, π],
ϕ ∈ Sd−2 with the main axis directed along x and then changing
the variable θ to t = cos θ yields

S(x;α, σµ) =
1

(2π)d

∫ ∞

0

d|p|
∫ 1

−1

dt

∫
Sd−1

dϕ

exp{−σ|p|α
∫
Sd−1

|(p̄, s)|αµ(ds)} cos(|p||x|t)|p|d−1(1− t2)(d−3)/2.

(2.2)
Changing the variable of integration |p| to y = |p||x| one can write
it in the equivalent form

S(x;α, σµ) =
1

(2π|x|)d

∫ ∞

0

dy

∫ 1

−1

dt

∫
Sd−1

dϕ

exp{−σ yα

|x|α

∫
Sd−1

|(p̄, s)|αµ(ds)} cos(yt)yd−1(1− t2)(d−3)/2. (2.3)

Proposition 2.1. If

C1 ≤
∫
Sd−1

|(p̄, u)|αµ(du) ≤ C2 (2.4)

for all p̄ and some positive constants C1 ≤ C2, then for small
|x|/σ1/α the density S has the asymptotic expansion

S(x;α, σµ) ∼ 1

(2πσ1/α)d

∞∑
k=0

(−1)k

(2k)!
ak(x̄)

(
|x|
σ1/α

)2k

(2.5)

with

ak(x̄) =

∫ ∞

0

d|p|
∫ 1

−1

dt

∫
Sd−1

dϕ

× exp{−|p|α
∫
Sd−1

|(p̄, s)|αµ(ds)}|p|2k+d−1(1− t2)(d−3)/2. (2.6)
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These coefficients satisfy the estimates

C
−(d+2k)/α
2 ≤ ak(x̄)α

Ad−2Γ
(
2k+d
α

)
B
(
k + 1

2 ,
d−1
2

) ≤ C
−(d+2k)/α
1 , (2.7)

where A0 = 2, Ad−2 for d > 2 denotes the area of the sphere Sd−2,
and Γ(p), B(p, q) denote the Euler Gamma and Beta functions re-
spectively; in particular, if C1 = C2 = 1 (the case of the uniform
spectral measure), the coefficients ak do not depend on x̄ and

ak = α−1Ad−2Γ

(
2k + d

α

)
B

(
k +

1

2
,
d− 1

2

)
. (2.8)

The modulus of each term in expansion (2.5) serves also as an
estimate of the remainder in this asymptotic representation, i.e.
for each m, S(x;α, σµ) equals

1

(2πσ1/α)d

(
m∑
k=0

(−1)k

(2k)!
ak(x̄)

(
|x|
σ1/α

)2k

+ θ
am+1(x̄)

(2m+ 1)!

(
|x|
σ1/α

)2m+1
)

(2.9)
with |θ| ≤ 1. Finally, if α > 1 (resp. α = 1), the series on
the r.h.s. of (2.5) is absolutely convergent for all |x| (resp. in a
neighbourhood of the origin) and equals S(x;α, σµ).

Proof. This is rather trivial and uses no new ideas as compared
with the one-dimensional case. Let first C1 = C2 = 1. Expanding
the function cos(|p||x|) in (1.2) in the power series and integrating
in ϕ, yields

S(x;α, σ) =
Ad−2

(2π)d

∫ ∞

0

d|p|
∫ 1

−1

dt exp{−σ|p|α}|p|d−1(1−t2)(d−3)/2

(
k∑

m=0

(−1)m
(|p||x|t)2m

(2m)!
+ θ

(|p||x|t)2m+2

(2m+ 2)!

)
with |θ| ≤ 1. Since∫ 1

−1

t2m(1− t2)(d−3)/2 dt = B(m+
1

2
,
d− 1

2
),
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and ∫ ∞

0

yβ−1 exp{−σyα} dy = α−1σ−β/αΓ(β/α), Reβ > 0,

one can integrate in |p| and t to obtain for S(x;α, σ) the expression

Ad−2

(2π)dασd/α
[ k∑
m=0

(−1)m

(2m)!

(
|x|
σ1/α

)2m

Γ

(
2m+ d

α

)
B

(
m+

1

2
,
d− 1

2

)

+
θ

(2m+ 1)!

(
|x|
σ1/α

)2m+1

Γ

(
2m+ 2 + d

α

)
B

(
m+

3

2
,
d− 1

2

)]
with |θ| ≤ 1. Consequently one obtains the required expansion
with ak given in (2.8). The statement about the convergence of
the series for α ≥ 1 follows from the Stirling formula for the Γ
function and the well known expression of the function B in terms
of Γ. The case of general µ is more or less the same: one expands
cos(|p||x|t) in (2.2) in the power series and then changes the variable
of integration σ1/α|p| to |p| in each term. Assumption (2.4) ensures
firstly the existence of the integrals in (2.6) (in fact, only the left
part of (2.4) is necessarily for that) and secondly it allows us to
estimate ak(x̄) by means of corresponding coefficients (2.8).

We shall consider now two approaches to the construction of
the asymptotic expansion of S in a more involved case, namely for
large distances. The first of them, will be applied only to the case of
the uniform spectral measure, but it gives explicit formulae for the
coefficients in terms of special functions. To explain this method,
let us recall first some facts on the Bessel and Whittaker functions
(see [WW]). For any complex z that is not a negative real and any
real n > 1/2 the Bessel function Jn(z) and the Whittaker function
W0,n(z) can be defined by the integral formulae

Jn(z) =
(z/2)n

Γ(n+ 1/2)
√
π

∫ 1

−1

(1− t2)n−1/2 cos(zt) dt,

W0,n(z) =
e−z/2

Γ(n+ 1/2)

∫ ∞

0

[t(1 + t/z)]n−1/2e−t dt,
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where arg z is understood to take its principle value, i.e. |arg z| <
π. Furthermore, for these n and z these functions are connected
by the formula

Jn(z) =
1√
2πz

[
exp{1

2

(
n+

1

2

)
πi}W0,n(2iz)

+ exp{−1

2

(
n+

1

2

)
πi}W0,n(−2iz)

]
,

which for real positive z implies

Jn(z) = 2Re
[ 1√

2πz
exp{1

2
(n+

1

2
)πi}W0,n(2iz)

]
. (2.10)

If n = m + 1/2 with nonnegative integer m, then W0,n can be
expressed in elementary functions

W0,n(z) = e−z/2
(
1+

n2 − (1/2)2

z
+

(n2 − (1/2)2)(n2 − (3/2)2)

2z2
+ ...

+
(n2 − (1/2)2)...(n2 − (m− 1/2)2)

m!zm
)
]. (2.11)

In particular, W0,1/2(z) = e−z/2. More generally, for any n > 1/2
one has the following asymptotic expansion as z → ∞, |arg z| ≤
π − ϵ with some ϵ > 0:

W0,n(z) ∼ e−z/2
[
1 +

n2 − (1/2)2

z
+

(n2 − (1/2)2)(n2 − (3/2)2)

2z2
+ ...

]
.

(2.12)

Proposition 2.2. Let the spectral measure µ of a stable law be
uniform. If, in particular, (2.4) holds with C1 = C2 = 1, we shall
denote S(x;α, σµ) by S(x;α, σ). In that case, for |x|/σ1/α → ∞,
one has the asymptotic expansion

S(x;α, σ) ∼ 1

(2π|x|)d
∞∑
k=1

ak
k!

(σ|x|−α)k (2.13)



155

with

ak = (−1)k+1Ad−22
−αk−1 sin(

π

2
kα)

∫ ∞

0

ξαk+(d−1)/2W0, d2−1(ξ) dξ.

(2.14)
In particular, a1 is positive for all d, and for odd dimensions d =
2m+ 3, m ≥ 0,

ak = (−1)k+1A2m+1 sin(
π

2
kα)Γ(m+ 2 + αk)

×
(
2m+1+

(m+ 1
2 )

2 − ( 12 )
2

2(m+ 1 + αk)
2m+

((m+ 1
2 )

2 − ( 12 )
2)((m+ 1

2 )
2 − ( 32 )

2)

3!(m+ αk + 1)(m+ αk)
2m−1

+...+
((m+ 1

2 )
2 − ( 12 )

2)...((m+ 1
2 )

2 − (m− 1
2 )

2)

m!(m+ αk + 1)(m+ αk)...(2 + αk)

)
. (2.15)

Moreover, for α ∈ (0, 1) (resp. α = 1) this series is convergent for
all |x|−1 (resp. in a neighbourhood of the origin) and its sum is
equal to S(x;α, σ). Furthermore, as in the case of the expansion
of Proposition 2.1, each term in (2.13) serves also as an estimate
for the remainder, in the sense that the difference between S and
the sum of the (k − 1) terms of the expansion does not exceed in
magnitude the magnitude of the k-th term.

Proof. Due to (2.3), (2.4) with C1 = C2 = 1 and the definition
of the Bessel functions,

S(x;α, σ) =
Ad−2

(2π|x|)d

∫ ∞

0

2d/2−1Γ(
d− 1

2
)
√
πJ d

2−1(y)y
d/2 exp{−σ yα

|x|α
} dy.

(2.16)
The key point in the proof is to use (2.10) and rewrite the last
expression in the form

S(x;α, σ) =
Ad−2

(2π|x|)d
Re

∫ ∞

0

Γ(
d− 1

2
)

×W0, d2−1(2iy)(2y)
(d−1)/2 exp{−σ yα

|x|α
}e(d−1)πi/4 dy. (2.17)

Suppose now that α ∈ (0, 1]. From the asymptotic formula
(2.9) it follows that one can justify the change of the variable of
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the path of integration in (2.17) to the negative imaginary half line.
Taking this new path of integration and then changing the variable
of integration y = −iξ yields

S(x;α, σ) =
Ad−2

(2π|x|)d
Re− i

∫ ∞

0

Γ(
d− 1

2
)

×W0, d2−1(2ξ)(2ξ)
(d−1)/2 exp{−σ ξα

|x|α
e−iαπ/2} dξ. (2.18)

Expanding the exponent under this integral in the power series
and taking the real part yields (2.13),(2.14). Estimating coeffi-
cients (2.14) using the asymptotic formula (2.12) and the fact that
zm−1/2W0,m(z) is continuous for z ≥ 0 (which follows from the def-
inition of W0,n given above) one easily gets the convergence of the
series (2.13) and the estimate a1 > 0. In the case of odd dimensions
one calculates coefficients (2.14) explicitly using (2.11).

Let α ∈ (1, 2). In this case one cannot rotate the contour
of integration in (2.17) through the whole angle π/2, but one can
rotate it through the angle π/(2α). This amounts to the possibility
of making the change of the variable in (2.17) y = ze−iπ/2α and
then considering z to be again real, which gives

S(x;α, σ) =
Ad−2

(2π|x|)d
Re
[∫ ∞

0

Γ(
d− 1

2
)W0, d2−1

(
2z exp{ iπ(α− 1)

2α
}
)

×(2z)(d−1)/2 exp{iσ zα

|x|α
+
i

4
(d− 1)π − i

π(d+ 1)

4α
} dz

]
.

Using the Taylor formula for exp{iσ zα

|x|α } yields

S(x;α, σ) =
Ad−2

(2π|x|)d
Re exp{ πi

4α
(α(d− 1)− (d+ 1))}Γ

(
d− 1

2

)

×
∫ ∞

0

(2z)
d−1)

2

[
1 +

m∑
k=1

(iσzα)k

xαkk!

+
θ

(m+ 1)!

(σzα)m+1

xα(m+1)

]
W0, d2−1

[
2z exp{ iπ(α− 1)

2α
}
]
dz
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with |θ| ≤ 1. It implies the asymptotic expansion (2.13) with

ak = Ad−2Re exp{
πi

4α
(α(d− 1)− (d+ 1))}Γ

(
d− 1

2

)
2(d−1)/2ik

×
∫ ∞

0

zαk+(d−1)/2W0, d2−1

(
2z exp{ iπ(α− 1)

2α
}
)
dz.

To simplify this expression, one makes here a new rotation of the
path of integration, which amounts to the change of the variable

ξ = 2z exp{ iπ(α−1)
2α } and again considering ξ to be real. After

simple manipulations one obtains the same formula (2.14) as for
the case α ∈ (0, 1).

Consider now the general case.

Proposition 2.3. Let the spectral measure µ of a stable law
satisfy the r.h.s inequality in (2.4) and moreover, let µ has a smooth
density with respect to Lebesgue measure. Then for large |x|/σ1/α

the density S(x;α, σµ) has an asymptotic expansion of type (2.13)
with some ak = ak(x̄) depending continuously on α, µ and x̄ and
with a1 being positive.

Proof. Let ϵ ∈ (0, 1/2) and let χ(t) be a smooth even function
R → [0, 1] that equals one (resp. zero) for |t| ≤ 1 − 2ϵ (resp. for
|t| ≥ 1− ϵ). Denote

gµ(t, ϕ) = gµ(t, ϕ;α, x̄) =

∫
Sd−1

|(p̄, s)|α µ(ds).

Notice that gµ depends on x̄ because the choice of polar coordinates
(t, ϕ) for p̄ depends on x̄. The existence of a smooth density for µ
implies that gµ is differentiable with respect to t. Let

f1(t) = (1− t2)(d−3)/2χ(t), f2(t) = (1− t2)(d−3)/2(1− χ(t)),

and let us present density (2.3) as the sum S1 + S2 with

Sj =
1

(2π|x|)d

∫ ∞

0

dy

∫ 1

−1

dt

∫
Sd−1

dϕ exp{−σ yα

|x|α
gµ(t, ϕ)} cos(yt)yd−1fj(t).
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Expanding the exponent in the expression for S1 in the power series
leads straightforwardly to the asymptotic expansion

S1 ∼ 1

(2π|x|)d
∞∑
k=0

1

k!
bk(x̄)

(
σ

|x|α

)k
, (2.19)

where

bk(x̄) = (−1)k
∫ ∞

0

Fk(y)y
kα+d−1 dy (2.20)

and

Fk(y) = Re

∫ ∞

−∞

∫
Sd−1

e−iytf1(t)g
k
µ(t, ϕ) dtdϕ.

Since f1(t)
∫
gkµ(t, ϕ) dϕ is a smooth function of t with a compact

support, its Fourier transform Fk belongs to the Schwartz space
on R. Hence all coefficients (2.20) are well defined, and (2.19)
presents an asymptotic expansion. More precisely, in order to be
able to represent S1 as the sum of k terms of this expansion with
the estimate of the remainder of the form O((σ/|x|α)m+1), it is
sufficient to assume the existence of l > kα+d bounded derivatives
of the density of the measure µ.

Next, in the expression for S2 the variable t does not approach
zero, and consequently, to expand S2 one can use for each t, ϕ the
method used for expanding one-dimensional densities. Consider,
for instance , the case α ≤ 1. Clearly

S2 =
2

(2π|x|)d
Re

∫ ∞

0

dy

∫ 1

1−2ϵ

dt

∫
Sd−1

dϕ exp{−σy
α

|x|α
gµ(t, ϕ)}e−iytyd−1f2(t).

For any t, ϕ one can rotate the contour of integration in y to the
negative imaginary axe. Changing then y to y = −iz yields

S2 =
2

(2π|x|)d
Re

∫ ∞

0

dy

∫ 1

1−2ϵ

dt

∫
Sd−1

dϕ

× exp{−σz
α

|x|α
gµ(t, ϕ)e

−iαπ/2}e−zt(−iz)d−1f2(t).
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Expanding the first exponent in the power series and taking stan-
dard integrals over z yields the asymptotic expansion

S2 ∼ 1

(2π|x|)d
∞∑
k=0

1

k!
ck(x̄)

(
σ

|x|α

)k
(2.21)

with

ck(x̄) = 2Re

∫ 1

1−2ϵ

dt

∫
Sd−1

dϕ(−gµ(t, ϕ))k(−i)df2(t)e−iπαk/2t−(αk+d)Γ(αk+d),

(2.22)
where again the modulus of each term serves also as an estimate to
the remainder. The sum of expansions (2.19) and (2.21) gives the
expansions for S. To prove the assertion it remains to show that
the first coefficient b0+ c0 in this expansion vanishes. The simplest
way to see it is to refer to Proposition 2.2. Namely, due to the
construction, the first coefficient b0 + c0 does not depend on the
spectral measure µ, and due to Proposition 2.2, it vanishes when
the spectral measure is uniform. Hence, it vanishes for any µ. We
can also prove this directly. Let us prove it, for example, for the
case of an odd dimension d = 2m + 1. In that case, c0 vanishes
(because the integral in (2.22) is purely imaginary in this case) and
we must show that

b0 =

∫ ∞

0

F0(y)y
2m dy

vanishes. But F0 is the Fourier transform of the function f1(t) =

(1 − t2)m−1χ(t). Hence, b0 = f
(2m)
1 (0), which obviously vanishes.

The case of α ≥ 1 is considered similarly, only one should rotate the
contour of integration in the expression for S2 through the angle
π/(2α), as in the proof of Proposition 2.2.

Proposition 2.4. For any K > 1 there exists C > 1 such that
C−1|x|−d ≤ S(x;α, σµ) ≤ C|x|−d whenever K−1 ≤ |x|/σ1/α ≤ K
uniformly for all spectral measures satisfying (2.4) and all α from
any compact subinterval of the interval (0, 2).

Proof. Due to the small distance and large distance asymp-
totics and the property of unimodality of symmetric stable laws
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(see Appendix F), it follows that the stable densities are always
(strictly) positive. On the other hand, it follows from (2.3) that
|x|dS(x, α, σµ) is a continuous function of |x|/σ1/α, gµ, and x̄.
Since on any compact set it achieves its minimal and maximal
values, which are both positive, the statement of the Proposition
readily follows.

In the following sections, we shall need also estimates for the
derivatives of stable densities with respect to x or σ, and also for
more general relevant functions of the form

ϕb,ν(x;α, σµ)

=
1

(2π)d

∫
Rd

|p|bg(p̄, b, ν) exp{−σ|p|α
∫
Sd−1

|(p̄, s)|αµ(ds)}e−ipx dp,

(2.23)
where the real parameter b is supposed to be such that b > −1,
b ̸= 0, the measure ν on Sd−1 may be not necessarily positive, but
having finite |ν|, and

gν(p̄; b) =

∫
Sd−1

|(p̄, s)|bν(ds).

The study of these functions can be carried out in the same way as
that of S(x;α, σµ). For instance, the function ϕb,ν can be presented
in form (2.2) with the additional multiplier |p|bgν(p̄; b) under the
integral, which yields for small xσ−1/α (whenever inequalities (2.4)
hold) the asymptotic representation

ϕb,ν(x;α, σµ) ∼
1

(2πσ1/α)dσb/α

∞∑
k=0

(−1)k

(2k)!
ak(x̄)

(
|x|
σ1/α

)2k

(2.24)

with ak satisfying the estimates

ak(x̄) ≤
Ad−2

α
Γ

(
2k + d+ b

α

)
B

(
k +

1

2
,
d− 1

2

)
C

−(d+2k+b)/α
1 sup

p̄
|g(p̄, b, ν)|.

(2.25)
In particular, if C1 = C2 = 1 and ν = µ,

ak = α−1Ad−2Γ

(
2k + d+ b

α

)
B

(
k +

1

2
,
d− 1

2

)
.
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As in the case of expansion of S, the modulus of each term in
expansion (2.24) serves also as an estimate for the remainder.

Turning to the estimate of ϕ for large x, consider first the
case when gν(p̄; b) = gµ(p̄;α) = 1. For such ϕb,ν , which we shall
denote for brevity ϕb = ϕb(x;α, σ), one obtains representations
(2.16),(2.17) with the additional multiplier (y/|x|)b under the inte-
gral, and representation (2.18) with the multiplier (−iξ/|x|)b under
the integral. Consequently, in that case, for large |x|/σ1/α, one ob-
tains for ϕb the asymptotic expansion similar to (2.13), namely

ϕb(x;α, σ) ∼
1

(2π|x|)d|x|b
∞∑
k=0

ak
k!

(σ|x|−α)k (2.26)

with

ak = (−1)k+1Ad−22
−αk−1−b sin(

π

2
(kα+b))

∫ ∞

0

ξαk+b+(d−1)/2W0, d2−1(ξ) dξ.

(2.27)
Notice that a0 ̸= 0 in the expansion for ϕb unlike the case of ex-
pansion (2.13). In particular, for all x

ϕb(x;α, σ) = − Ad−2 sin(πb/2)

(2π)d21+b|x|d+b

∫ ∞

0

ξb+(d−1)/2W0, d2−1(ξ) dξ(1+
ωσ

|x|α
)

(2.28)
with ω < |a1|/|a0|. For general µ, ν one uses the approach from
Proposition 2.3 to obtain the corresponding expansion for ϕ. All
facts about ϕ that we shall need further are summarised in the
following statement.

Proposition 2.5. For any positive K there exists a positive
C such that for all α from any compact subinterval of the interval
(0, 2), all b from a compact subset of the set (−1, 0) ∪ (0,∞), all µ
satisfying (2.4) and all uniformly bounded |ν| one has

ϕb,ν(x;α, σµ) ≤ Cσ−b/αS(x;α, σµ) (2.29)

or
ϕb,ν(x;α, σµ) ≤ C|x|α−bσ−1S(x;α, σµ) (2.30)

respectively for |x|σ−1/α ≤ K or |x|σ−1/α ≥ K. In particular,

ϕb,ν(x;α, σµ) ≤ Cσ−1S(x;α, σµ),
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if α ≥ b and both |x| and σ are bounded. Moreover, if additionally
ν is non-negative and also satisfies (2.4), then

ϕb,ν(x, α, σµ) = − 1

σ
S(x; b, σν)(1+O(σ|x|−α)+O(σ|x|−b)) (2.31)

Furthermore,∣∣∣∣∂ϕb,ν∂b
(x;α, σµ)

∣∣∣∣ ≤ C(1 + | log σ|)σ−b/αS(x;α, σµ) (2.32)

or∣∣∣∣∂ϕb,ν∂b
(x;α, σµ)

∣∣∣∣ ≤ C(1 + | log |x||+ | log σ|)|x|α−bσ−1S(x;α, σµ)

(2.33)
respectively for |x|σ−1/α ≤ K or |x|σ−1/α ≥ K.

Proof. Comparing the asymptotic expansions of ϕ for small
and large x with the corresponding expansions for S one obtains
(2.29), (2.30) for small and large |x|σ−1/α. For finite |x|σ−1/α these
estimates are equivalent and they follow from Proposition 2.4. To
estimate the derivative

∂ϕb,ν(x;α, σµ)

∂b
=

1

(2π)d

∫
Rd

|p|b
∫
Sd−1

|(p̄, v)|b(log |p|+log |(p̄, v)|)ν(dv)

× exp{−σ|p|α
∫
Sd−1

|(p̄, s)|αµ(ds)}e−ipx dp, (2.34)

or equivalently

∂ϕb,ν(x;α, σµ)

∂b
=

1

(2π)d

∫
Rd

yb

|x|b

∫
Sd−1

|(p̄, v)|b(log y−log |x|+log |(p̄, v)|)ν(dv)

× exp{−σ yα

|x|α

∫
Sd−1

|(p̄, s)|αµ(ds)}e−ipx dp, (2.35)

one does in the same way using also the well known integral∫ ∞

0

xβ−1 log x exp{−σxα} dx = α−2σ−β/α [Γ′(β/α)− Γ(β/α) log σ]
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(which follows from the trivial formula
∫∞
0
xβ−1 log xe−x dx = Γ′(β)).

For example, for small |x|σ−1/α one gets (from (2.34)) for
∂ϕb,ν

∂b a
representation of type (2.2) with the additional multiplier |p|bgν(p̄; b)(log |p|+
log |(p̄, ν)|). The term log |(p̄, ν)| is bounded from above and from
below, and therefore the corresponding term is estimated in the
same way as in the case of ϕb,ν . In its turn, the term log |p| will
transform to (log |p| − α−1 log σ) after the change of the variable
σ1/α|p| to |p|, which gives the additional term with log σ in (2.32).
For large |x|σ−1/α one deals with representation (2.35) in the same
way as in Proposition 3.2 to obtain (2.33).

To prove the important asymptotic equation (2.31) one must
show that the major (non-vanishing) term of the expansion of the
function ϕb,ν(x;α, σµ) as |x|σ−1/α → ∞ coincides (up to the mul-
tiplier −σ) with the major term of the expansion of S(x; b, σν) as
|x|σ−1/b → ∞. For the case of the uniform measures µ, ν, it follows
from (2.28),(2.13), (2.14). In order to see this in the general case,
one follows the line of the arguments of the proof of Proposition
2.3 and presents ϕb,ν in the form ψ1 + ψ2 with

ψj =
1

(2π|x|)d|x|b

∫ ∞

0

dy

∫ 1

−1

dt

∫
Sd−1

dϕ

× exp{−σ yα

|x|α
gµ(t, ϕ)} cos(yt)yb+d−1fj(t)gν(t, ϕ),

where fj are the same as in Proposition 2.3. The function ψ2 is
the rewritten in the form

ψ2 =
2

(2π|x|)d|x|b
Re

∫ ∞

0

dy

∫ 1

1−2ϵ

dt

∫
Sd−1

dϕ exp{−σz
α

|x|α
gµ(t, ϕ)e

−iαπ/2}

×e−zt(−iz)b+d−1f2(t)gν(t, ϕ).

One sees now directly that the first terms (corresponding to k = 1)
of the expansions of S1 and S2 from Proposition 2.3 coincide (up to
the multiplier −σ) with the zero terms (corresponding to k = 0) of
the corresponding expansions of ψ1 and ϕ2 respectively, and thus
(2.31) follows.
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Similarly one can estimate the partial derivatives ∂S
∂x . More-

over, since ϕα,µ coincides with −∂S
∂σ and

∂S

∂α
(x;α, σµ) = −σ ∂ϕb,µ(x;α, σµ)

∂b

∣∣∣∣
b=α

one obtains the estimates for the derivative of S with respect to σ
and α from Proposition 2.5. Thus one obtains the following result.

Proposition 2.6. Suppose as usual that (2.4) holds. There
exists a constant C such that for the derivative of S with respect to
σ one has the asymptotic equation

∂S

∂σ
(x;α, σµ) =

1

σ
S(x;α, σµ)(1 +O(σ|x|−α)). (2.36)

and the global estimate∣∣∣∣∂S∂σ (x;α, σµ)
∣∣∣∣ ≤ C

σ
S(x;α, σµ). (2.37)

Moreover, for the derivatives of S with respect to x and α one has
the global estimates∣∣∣∣∂S∂x (x;α, σµ)

∣∣∣∣ ≤ Cmin(σ−1/α, |x|−1)S(x;α, σµ), (2.38)

and∣∣∣∣∂S∂α (x;α, σµ)
∣∣∣∣ ≤ C(1+| log σ|+logmax(1, |x|))S(x;α, σµ). (2.39)

These estimates are uniform for α from any compact subinterval
of the interval (0, 2).

The results of Propositions 2.1, 2.3 can be easily generalised
to the case of non-symmetric stable laws. On the other hand,
the property of unimodality, which was crucial for Proposition 2.4
and the subsequent results, is not known for general stable laws.
However, it is known for general one-dimensional stable laws, see
Appendix F. Therefore, one obtains the following result.
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Proposition 2.7. The statements of Proposition 2.4 -2.6 hold
also for general one-dimensional stable densities S(x;α, γ, σ) uni-
formly for |γ| ≤ α − ϵ (resp. |γ| ≤ 2 − α − ϵ) with any positive ϵ
whenever α < 1 (resp. α > 1).

As a corollary of the formulas of this Section, let us present
now some identities (which seem to be of independent interest)
expressing the stable densities in odd dinensions in terms of the
one-dimensional densities.

Proposition 2.8. Let

Sd(|x|;α) =
1

(2π)d

∫
Rd

exp{−i(p, x)− |p|−α} dp

be the density of the d-dimensional stable law of the index α with
the uniform spectral measure, which obviously depends on |x| only.
Let S

(k)
d (|x|;α) denote its k-th derivative with respect to |x|. Then

S3(|x|;α) =
−1

2π|x|
S′
1(|x|;α),

S5(|x|;α) =
A3

8π4|x|2

(
S′′
1 (|x|;α)−

1

4|x|
S′
1(|x|;α)

)
,

and in general for each positive integer m

S2m+3 =
(−1)m+1A2m+1

(2π)2m+2

[ 2m

|x|m+1
S
(m+1)
1 − 2m−1

2!|x|m+2

(
(m+

1

2
)2 − (

1

2
)2
)
S
(m)
1

+...+
(−1)m

(m+ 1)!|x|2m+1

(
(m+

1

2
)2 − (

1

2
)2
)
...

(
(m+

1

2
)2 − (m− 1

2
)2
)
S′
1

]
.

Proof. To get this result, one can either compare the coeffi-
cients of the power expansions (for large |x|, if α ≤ 1, and for small
|x|, if α ≥ 1) of the l.h.s. and the r.h.s. of these identities, or
one can use formulas (2.17), (2.11) to express the l.h.s. as the one-
dimensional Fourier transform of some elementary function and to
compare this function with the corresponding function of the r.h.s.

3. Transition probability density for stable jump-diffusions
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This section is devoted to the construction and asymptotic
properties of the transition probability densities (Green functions)
for stable processes with varying coefficients. In the case of α > 1,
the existence of the transition probability density for such a process
was first proved in a more general framework in [Koch]. For gen-
eral α it is proved in [Neg],[KN], but under the additional assump-
tion that the coefficients (functions A(x) and µ(x)) are infinitely
smooth. The arguments of paper [Koch] are based on the theory
of hypersingular integrals developed essentially in [Sam1],[Sam2]
(and based also on the regularisation procedure from [Las]), and
the arguments of papers [Neg], [KN] are based on the classical the-
ory of ΨDO with symbols Sσρ,δ introduced by Hörmander, and its
extension to the case of symbols with varying order. We prove the
existence of this density by a different method. The main new re-
sult is to provide local multiplicative asymptotics and global in x
both-sided estimates of this density for finite times, taking into ac-
count also the parameter h. For h = 1 these results were obtained
in [K11]. We need nontrivial dependence on h in the next chapter,
in order to be able to investigate the semiclassical asymptotics as
h→ 0 of the Green functions constructed here. We use here stan-
dard notations of the theory of pseudo-differential equations that
are collected in Appendix D.

Let us recall that the solution uG(t, x;x0;h) to the Cauchy
problem

h
∂u

∂t
= Φ(x,−ih∇)u, x ∈ Rd, t ≥ 0, (3.1)

u(x)|t=0 = δ(x− x0) (3.2)

is called the Green function (or the fundamental solution) of equa-
tion (3.1). If the function Φ does not depend on x, the Green
function (if it exists) can be written explicitly

uG(t, x;x0;h) = uG(t, x−x0;h) = (2πh)−d
∫
Rd

exp{Φ(p)t+ ip(x− x0)

h
} dp,

(3.3)
because its h-Fourier transform obviously satisfies the equation
h(∂û/∂t)(t, p) = Φ(p)û(t, p) with initial condition û(0, p) = (2πh)−d/2 exp{−ipx0/h}.

To simplify the formulas, we restrict our consideration to the
case of processes with the uniform spectral measure (but with vary-
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ing scale), noting that due to the general formulas of the previous
section, all results can be automatically generalised to the case of
general one-dimensional stable diffusions, namely to the case when
the skewness parameter γ depends nontrivially on x with the only
restriction that if α < 1 (resp. α > 1), then |γ(x)| ≤ α − ϵ (resp.
|γ| ≤ 2−α−ϵ) for all x and some positive ϵ, and to the case of gen-
eral symmetric stable diffusions, having a varying spectral measure
µ(x, ds) with the only restriction that it satisfies (2.4) uniformly for
all x (see details concerning general spectral measures in [K11]).

As it follows from the theory of stochastic processes (see. e.g.
[Ja] or Appendix C,D), the transition probability density for the
stable processes with varying scale G(x) > 0 and shift A(x) is the
Green function ustG for equation (3.1) with the symbol

Φ(x, p) = ipA(x)−G(x)∥p∥α. (3.4)

Due to (3.3), if G and A are constants, the solution to (3.1),
(3.2),(3.4) is equal to

uα(t, x−x0;G,A, h) = (2πh)−d
∫
Rd

exp{−G∥p∥
αt+ ip(x+At− x0)

h
} dp,

(3.5)
and therefore

uα(t, x−x0, G,A, h) = uα(t, x+At−x0, G, 0, h) = S(x0−At−x;α,Gthα−1),
(3.6)

where the function S(x;α, σ) was introduced in Proposition 2.2.
From (3.6) and the results of the previous sections we get directly
the following estimates for u and its derivatives in t and x:

Proposition 3.1. For any B > 0, K > 0, there exists a
constant C > 1 such that for

G ≤ B, G−1 ≤ B, ∥A∥ ≤ B, (3.7)

the following estimates hold uniformly for α from any compact sub-
set of the interval (0, 2):

(i) if |x0 −At− x| ≤ K(thα−1)1/α, then

1

C
(thα−1)−d/α ≤ uα(t, x− x0;G,A, h) ≤ C(thα−1)−d/α, (3.8)
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(ii) if |x0 −At− x| ≥ K(thα−1)1/α, then

thα−1

C|x0 −At− x|d+α
≤ uα(t, x− x0;G,A, h) ≤

Cthα−1

|x0 −At− x|d+α
,

(3.9)
(iii) for all t, x∣∣∣∣∂uα∂t (t, x− x0;G,A, h)

∣∣∣∣ ≤ C

t
uα(t, x− x0;G,A, h), (3.10)

∣∣∣∣∂uα∂x (t, x− x0;G;A, h)

∣∣∣∣ ≤ C

(thα−1)1/α
uα(t, x− x0;G,A, h),

(3.11)∣∣∣∣∂uα∂x (t, x− x0, G;A, h)

∣∣∣∣ ≤ C

|x0 −At− x|
uα(t, x− x0;G,A, h).

(3.12)
Corollary. If α ≥ 1 (resp. α ≤ 1), for any pairs (G1, A1), (G2, A2)

satisfying (3.7)

uα(t, x− x0;G1, A1, h) ≤ Cuα(t, x− x0;G2, A2, h) (3.13)

with some constant C and all sufficiently small t/h (resp. h/t).
If A1 = A2, the same holds for all h, t uniformly for α from any
compact subset of the open interval (0, 2).

Naturally, one expects that for small times the Green function
of equation (3.1) with varying coefficients can be approximated by
the Green function (3.6) of the corresponding problem with con-
stant coefficients, i.e. by the function uα(t, x−x0;G(x0), A(x0), h).
This is in fact true. To prove this we first prepare some estimates
of the convolutions of uα with itself and relevant functions.

Remark. In future we shall often omit for brevity some of
the last arguments in the notation for uα, when it will not lead to
ambiguity.

Lemma 3.1. Let (3.7) holds. (i) If α > 1, then uniformly for
δ ∈ [0, 1], t ≤ h ≤ h0 with any h0 and x0∫

min(δ, |η|)uα(t, η;G(x0), A(x0), h) dη = O((thα−1)1/α), (3.14)
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if A ≡ 0, this holds uniformly for t ≤ t0, h ≤ h0, δ ∈ [0, 1];
(ii) if α ≤ 1, A ≡ 0, then∫
min(δ, |η|)uα(t, η;G(x0), A(x0), h) dη = O(thα−1) (3.14′)

uniformly for δ ∈ (0, 1), t ≤ h ≤ h0 with any h0.

Proof. We shall consider A ≡ 0 for brevity, because one sees
from the proof, that if α > 1 and t ≤ h, the presence of A does not
change anything. We decompose our integral in the sum I1 + I2
corresponding to the decomposition of the domain of integration
in the union D1 ∪D2 with

D1 = {η : |η| ≤ (thα−1)1/α}, D2 = {η : |η| ≥ (thα−1)1/α}.

Then, due to (3.8), I1 = O(1)(thα−1)1/α, which is plainly of the
form O(thα−1) for α ≤ 1 and t ≤ h.

Next, if α > 1,

I2 = O(t)hα−1

∫
D2

dη

|η|α+d−1
= O(t)hα−1

∫ ∞

(thα−1)1/α
|η|−α dη = O(1)(thα−1)1/α.

If α ≤ 1, we decompose I2 = I ′1 + I ′′2 decomposing D2 in the union
D′

2 ∪D′′
2 with

D′
2 = {η : (thα−1)1/α ≤ |η| ≤ 1}, D′′

2 = {η : |η| ≥ 1}.

We have

I ′2 = O(t)hα−1

∫
D′

2

dη

|η|α+d−1
= O(t)hα−1

∫ 1

0

|η|−α d|η| = O(t)hα−1,

I ′′2 = O(t)hα−1

∫
D′′

2

dη

|η|α+d
= O(t)hα−1

∫ ∞

1

|η|−1−αd|η| = O(t)hα−1,

which completes the proof.

Proposition 3.2. Under the same assumptions as in Lemma
3.1, one has∫
Rd

uα(t−τ, x−η;G(η), A(η))min(δ, |η−x0|)τ−1uα(τ, η−x0;G(x0), A(x0)) dη
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≤ b(t−1 min(δ, |x−x0|)+∆(τ, h))uα(t, x−x0;G(x0), A(x0)) (3.15)

with some b, where

∆(t, h) =

{
(t/h)α

−1−1, α > 1,
hα−1, α ≤ 1.

(3.16)

Proof. Again consider A = 0 for brevity. Consider separately
two domains of the values of x:

M1 = {x : |x−x0| ≥ (thα−1)1/α}, M2 = {x : |x−x0| ≤ (thα−1)1/α}.

First let x ∈M1. Then

|x− x0| ≥
1

2
((t− τ)hα−1)1/α +

1

2
(τhα−1)1/α.

We decompose the integral on the l.h.s. of (3.15) into the sum
I1 + I2 corresponding to the partition of the domain of integration
in the union D1 ∪D2 with

D1 = {|x− η| ≥ 1

2
|x− x0|}, D2 = {|x− η| ≤ 1

2
|x− x0|}.

In D1

|x− η| ≥ 1

2
|x− x0| ≥

1

4
((t− τ)hα−1)1/α,

and consequently

uα(t−τ, x−η) =
O(t− τ)hα−1

|x− η|d+α
=
O(t− τ)hα−1

|x− x0|d+α
=
O(t− τ)

t
uα(t, x−x0;G(x0)).

Hence

I1 =
O(t− τ)

t
uα(t, x−x0;G(x0))

∫
min(δ, |η − x0|)

τ
uα(τ, η−x0;G(x0)) dη,

(3.17)
and due to Lemma 3.1, one has

I1 =
O(t− τ)

t
uα(t, x− x0, G(x0))∆(τ, h).
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Next, in D2,

3

2
|x− x0| ≥ |η − x0| ≥

1

2
|x− x0| ≥

1

4
(τhα−1)1/α,

and consequently there

min(δ, |η−x0|)uα(τ, η−x0;G(x0)) = O(1)min(δ, |x−x0|)
τ

t
uα(t, x−x0;G(x0)).

Hence

I2 = O(t−1)min(1, |x− x0|)uα(t, x− x0;G(x0)).

Thus the required estimates are proved for x ∈ M1. Next, let
x ∈M2. Then uα(t, x−x0) is of the order (thα−1)−d/α. If t−τ > τ ,
one can estimate uα(t− τ, x− η) by ((t− τ)hα−1)−d/α, which is of
the order (thα−1)−d/α. Consequently, the integral on the l.h.s. of
(3.15) can be estimated by

O(1)uα(t, x− x0;G(x0))

∫
min(δ, |η − x0|)

τ
uα(τ, η − x0;G(x0)) dη,

which is again of the order ∆(τ, h)uα(t, x−x0;G(x0)). If τ > t−τ ,
one decomposes the integral in the sum I1 + I2 by making the
partition of the domain of integration in the union D1 ∪D2 with

D1 = {|η − x0| ≤ 2(thα−1)1/α}, D2 = {|η − x0| ≥ 2(thα−1)1/α}.

In D1 one estimates uα(τ, η − x0) by (thα−1)1/α, and obtains for
I1 the estimate ∆(t, h)uα. In D2 one has plainly that |η − x| ≥
(thα−1)1/α, and therefore

uα(t−τ, x−η) =
O(t− τ)

t
thα−1(thα−1)−(d+α)/α =

O(t− τ)

t
uα(t, x−x0),

and one gets for I2 the estimate (3.17). The proof is complete.

Proposition 3.3. Under the assumptions of Lemma 3.1∫
min(δ, |x− η|)uα(t− τ, x− η;G(η), A(η))
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×(τ)−1 min(δ, |η − x0|)uα(τ, η − x0;G(x0), A(x0)) dη

= O(1)∆(τ, h)uα(t, x− x0;G(x0), A(x0)) (3.18)

uniformly for δ ∈ [0, 1], where ∆(τ, h) is from (3.16).

Proof. It is quite similar to the proof of the previous Propo-
sition. Consider again A = 0 and set M1, M2 as in the previous
Proposition. In M1 one makes the same decomposition in domains
D1 and D2. In D1

min(δ, |x−η|)uα(t−τ, x−η;G(η)) = O(δ)uα(t, x−x0;G(x0))(t−τ)/t,

and consequently the integral on the l.h.s. of (3.18) has the form

O(1)uα(t, x−x0;G(x0))
t− τ

t

∫
min(δ, |η − x0|)

τ
uα(t, η−x0;G(x0))

= O(1)∆(τ, h)uα(t, x− x0;G(x0)).

In D2 one estimates the integral by

O(1)min(δ, |x−x0|)uα(t, x−x0;G(x0))
1

t

∫
min(δ, |x−η|)uα(t, x−η;G(η)),

which gives nothing new. Similarly one analyses the case with
x ∈M2, where we omit the details.

We shall need also to carry out the convolution of uα with
itself. If A ≡ 0 and G(x) satisfies (3.7), or if A,G satisfy (3.7) and
t ≤ h, then plainly∫

Rd

uα(t− τ, x− η;G(η), A(η))uα(τ, η − x0;G(x0), A(x0)) dη

≤ buα(t, x− x0;G(x0), A(x0)) (3.19)

with some constant b, because of (3.13) and the semigroup identity∫
Rd

uα(t− τ, x− η;G(x0), A(x0))uα(τ, η − x0;G(x0), A(x0)) dη

= uα(t, x− x0;G(x0), A(x0))
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for the Green function (3.5) of equation (3.1),(3.4) with constant
coefficients. It can be shown also directly, in the same way as
above (see e.g. Lemma 5.1 below). We shall show now that this
estimate can be expanded beyond the restriction t ≤ h even for
non-vanishing A. This result can be used for the corresponding
generalisations of the main Theorem 3.1 below.

Proposition 3.4. Let A(x) and G(x) satisfy the assumptions
(3.7) for all x and let A(x) have a uniformly bounded derivative. If
α > 1, then (3.19) holds for all x, x0 and small t ≤ h(α−1)/(2α−1).

Proof. Due to the assumptions, one has

(t− τ)2 ≤ ((t− τ)hα−1)1/α

for all τ ∈ (0, t]. To prove (3.19) we decompose the integral in the
l.h.s. of (3.19) in the sum I1 + I2 of the integrals corresponding to
the decomposition of the domain of integration into two sets

M1 = {η : |η − x| ≤ 2B(t− τ)}, M2 = {η : |η − x| ≥ 2B(t− τ)},

where the constant B is from estimate (3.7). In M1

η −A(η)(t− τ)− x = η −A(x)(t− τ)− x+O(t− τ)2.

Therefore, making the shift of the variable of integration η 7→ ξ =
η+A(x0)τ in the integral I1 and using the semigroup identity yields
the estimate

I1 ≤ uα(t, x− x0 +A(x0)t+ (A(x)−A(x0))(t− τ) +O(t− τ)2).

If |x−x0| ≥ K(t−τ) with large enough K, then (A(x)−A(x0))(t−
τ)+O(t−τ)2 < |x−x0|/2 and the last expression can be estimated
by O(uα(t, x − x0) due to Proposition 3.1. On the other hand, if
|x− x0| = O(t− τ), then the last expression is of the form

uα(t, x+O(t− τ)2, x0;G(x0), A(x0))

= uα(t, x+O((t− τ)hα−1)1/α, x0;G(x0), A(x0)),

which again can be estimated by uα(t, x−x0) due to (3.8),(3.9). In
order to estimate I2, one notes that in M2 the magnitudes |η − x|,
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|η − A(η)(t − τ) − x|, and |η − A(x0)(t − τ) − x| are of the same
order, and therefore in M2

uα(t− τ, x− η;G(η), A(η), h) ≤ C2uα(t− τ, x− η;G(x0), A(x0), h),

which completes the proof of the Proposition.
Now we can state the main result of this section.

Theorem 3.1. Let G(x), A(x) be functions on Rd such that
G−1(x) is uniformly bounded and G, A(x) have uniformly bounded
derivatives up to and including the order q, q ≥ 2. Suppose also
that A(x) ≡ 0 if α ≤ 1. Then the Green function ustG(t, x, x0, h) for
equation (3.1),(3.4) exists, is continuous and differentiable in t for
t > 0. For arbitrary h0 > 0 and t0 > 0 the following representation
holds uniformly for t ≤ t0, t ≤ h ≤ h0:

ustG(t, x, x0, h) = uα(t, x− x0;G(x0), A(x0), h)

×(1 +O(1)min(1, |x− x0|) +O(t∆(t, h))), (3.20)

and
∂ustG
∂t

(t, x, x0, h) =
∂uα
∂t

(t, x− x0)

+O(t−1)uα(t, x− x0)(min(1, |x− x0|) +O(t∆(t, h)), (3.21)

where ∆(t, h) is given in (3.16) and uα is defined in (3.5),(3.6).
If α > 1 (respectively α ≤ 1, ustG has continuous derivatives of all
orders l ≤ q (respectively l ≤ q − 1), and for these derivatives the
following representations hold:

∂lustG
∂xl

(t, x, x0, h) =
∂luα
∂xl

(t, x− x0)

+O((thα−1)−l/α)uα(t, x− x0)(min(1, |x− x0|) + t∆(t, h)). (3.22)

At last, if α > 1 and A ≡ 0, then all this estimates holds for small
enough t without the restriction t ≤ h.

Remark 1. Notice that in case α ≥ 1 (resp. α < 1 and
A ≡ 0), a sufficient condition for the right hand side of (1.8) to
be well defined is the existence of the second (resp. only the first)
derivative of the function u. This is the reason for assuming q ≥ 2
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in Theorem 3.1. Under weaker assumptions, for example if A, µ
are only Hölder continuous, one can still prove the convergence
of series (3.20) below defining the Green function. But in that
case one faces a quite non-trivial problem to define rigourously,
in what (generalised) sense equation (1.8) is actually satisfied by
the corresponding function ustG . This can be done (see e.g. [Koch]
for the case α ≥ 1), but we are not going to discuss this problem
here. Notice also that since ∂uα/∂t = O(t−1)uα, it follows that the
second term in (3.21) is actually smaller than the principle term.
The same remark concerns formula (3.22).

Remark 2. If t/h is not small, then more rough estimates may
be available, which one can obtain using Proposition 3.4.

Proof. The method is based on the Du Hamel formula as
in Sect 3.4. The function uα given by (3.14), (3.5) satisfies the
equation (as a function of (t, x))

∂u

∂t
(t, x, x0, h) =

1

h
Φ(x,−ih∇)u− F (t, x, x0, h) (3.23)

with

F (t, x, x0, h) =
1

h
(Φ(x,−ih∇)−Φ(x0,−ih∇))uα(t, x, x0;G(x0), A(x0), h)

=
A(x)−A(x0)

(2πh)d

∫
Rd

ip

h
exp{−G(x0)∥p∥

αt+ ip(x+A(x0)t− x0)

h
} dp

−G(x)−G(x0)

(2πh)d

∫
Rd

∥p∥α

h
exp{−G(x0)∥p∥

αt+ ip(x+A(x0)t− x0)

h
} dp.

Equivalently,

F (t, x, x0, h) = (A(x)−A(x0))
∂uα
∂x

(t, x−x0)+
G(x)−G(x0)

G(x0)

∂uα
∂t

(t, x−x0),

(3.24)
where by the assumptions of the Theorem, the first term is not
vanishing only for α > 1. Therefore, due to the Du Hamel principle,
if ustG is the Green function for equation (3.1), (3.4), then

uα(t, x− x0) = (ustG −FustG)(t, x, x0, h),
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where the integral operator F is defined, as in Sect. 3.4, by the
formula

(Fϕ)(t, x, ξ) =
∫ t

0

∫
Rd

ϕ(t−τ, x, η)F (τ, η, ξ) dηdτ ≡ ϕ⊗F. (3.25)

We use, as in the proof of Theorem 3.4.1, the special symbol ϕ⊗F
for the (convolution-type) integral in (3.25). Therefore,

ustG = (1−F)−1uα = (1+F+F2+...)uα, Fkuα = uα⊗F⊗...⊗F.
(3.26)

Consequently, one needs to prove the convergence of this series and
the required estimate for its sum and its derivative in t. In fact,
though in previous arguments we presupposed the existence of the
Green function uG, one verifies directly that the sum (3.26) satisfies
equation (3.1) (whenever it converges together with its derivative).

From (3.10), (3.12) and the assumptions on G and A, it follows
from (3.24) that there exists a > 0 such that

|F (t, x, x0, h)| ≤ a(uα(t, x− x0) + (̃t, x− x0)), (3.27)

where

ũ(t, x− x0) = t−1 min(1, |x− x0|)]uα(t, x− x0).

To make the following formulas shorter it is convenient to intro-
duce an additional notation. Namely, for any functions u(t, x, x0),
v(t, x, x0) on R+ ×Rd ×Rd let

(u ◦ v)(t, τ, x, x0) =
∫
Rd

u(t− τ, x, η)v(τ, η, x0) dη

(if this integral exists, of course). Obviously, the operation ⊗ in-
troduced earlier is connected with the operation ◦ by the formula

(u⊗ v)(t, x, x0) =

∫ t

0

(u ◦ v)(t, τ, x, x0) dτ,

and moreover, formulas (3.15), (3.18), (3.19) can be rewritten now
in the following concise form:

(uα ◦ ũ)(t, τ, x, x0) ≤ c(∆(τ, h)uα(t, x, x0) + ũ(t, x, x0)), (3.15′)
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((tũ) ◦ ũ)(t, τ, x, x0) ≤ c∆(τ, h)uα(t, x, x0), (3.18′)

(uα ◦ uα)(t, τ, x, x0) ≤ cuα(t, x, x0) (3.19′)

with some constant c > 0 and all 0 < τ < t ≤ t0 with an arbitrary
fixed t0. For the function v = uα + ũ it follows directly that

(uα ◦ v)(t, τ, x, x0) ≤ c(∆(τ, h)uα(t, x, x0) + v(t, x, x0))

and therefore (taking into account that tũ ≤ uα) also that

((tv) ◦ v)(t, τ, x, x0) ≤ c(∆(τ, h)uα(t, x, x0) + tv(t, x, x0))

again with some constant c > 0 (perhaps different from the previ-
ous one). Using these inequalities we are going now to prove the
convergence of series (3.20). The case α ≤ 1 is simpler. Let us dis-
cuss it first. In that case ∆(t, h) = hα−1 and from above formulas
we obtain:

(uα ◦ v) ≤ c(hα−1uα + v), [t(hα−1 + v)] ◦ v ≤ chα−1uα.

with some c > 0. Therefore, since |F | ≤ av, one obtains

|uα ⊗ F | ≤ act(hα−1uα + v), |u⊗ F ⊗ F | ≤ a2c2thα−1uα,

and generally (by trivial induction)

|u⊗F⊗(2k)| ≤ (a2c2thα−1)k

(k!)2
uα, |u⊗F⊗(2k+1)| ≤ ac(a2c2thα−1)k

k!(k + 1)!
t(hα−1uα+v)

for all natural k. Therefore

u⊗ F⊗2 + u⊗ F⊗4 + ... ≤ ea
2c2tuα,

u⊗ F⊗3 + u⊗ F⊗5 + ... ≤ acea
2c2tt(hα−1uα + v).

Consequently, series (3.26) is convergent in the required domain
uniformly outside any neighbourhood of the set {t = 0, x = x0}
(Notice that if one divides each element of this series on uα, then the
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corresponding new series will converge uniformly for all x, x0 and
t ≤ min(t0, h).) Moreover, for its sum one gets the representation

ustG = uα(1 +O(t∆(t, h))) + (uα ⊗ F )(1 +O(t∆(t, h))), (3.28)

which clearly implies the required estimate.
The case α > 1 requires only a bit more elaborate calculations.

In that case one proves by induction that

|u⊗ F⊗(2k)| ≤ 1

(k!)2
(B2t∆(t, h))kuα,

|u⊗ F⊗(2k+1)| ≤ 1

(k!)2
tB(B2t∆(t, h))k(∆(t, h)uα + v)

for all natural k and some constant B. Thus, we obtain the con-
vergence of series (3.26) for α > 1 and again the representation of
its sum in form (3.28).

Remark. Using a slight modification of Proposition 3.2, one
can obtain the estimate |F ⊗ F | = O(tω−1)uα, which can be used
to simplify the above given proof of the convergence of (3.20).

It remains to prove (3.21), (3.22).
It remains to prove (3.16), (3.17). The difficulty that arises

here is due to the observation that if one differentiates directly
the terms of series (3.26) and uses the estimates (3.10), (3.11),
one obtaines the expressions which are not defined (because τ−1

is not an integrable function for small τ). To avoid this difficulty,
one needs to rearrange appropriately the variables of integration
in (3.25), before using the estimates for the derivatives. To begin
with, notice that due to (3.10), (3.11) and the assumption that
A ≡ 0 for α ≤ 1 one obtains that

∂F

∂t
(t, x, x0) = O(t−1)(uα(t, x− x0) + ũ(t, x− x0)),

∂F

∂x
(t, x, x0) = O(thα−1)−1/α)(uα(t, x−x0)+ ũ(t, x−x0)), (3.29)

if G and A have bounded derivatives.
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Noticing that the convolution (3.25) after the change of the
variable τ = st can be presented in the equivalent form

(ϕ⊗ F )(t, x, ξ) = t

∫ 1

0

ϕ(t(1− s), x, η)F (ts, η, ξ) dηds

one can now estimate the derivative of the second term in (3.26) in
the following way:

∂

∂t
(uα⊗ F )(t, x, x0) =

∫ 1

0

uα(t(1− s), x− η)F (ts, η, x0) dηds

+t

∫ 1

0

[
(1− s)

∂uα
∂t

(t(1− s), x− η)F (ts, η, x0)

+suα(t(1− s), x− η)
∂F

∂t
(ts, η, x0)

]
dηds,

and all three terms of this expression are of the order O(t−1)(uα ⋆
F )(t, x, x0). Similarly one estimates the derivatives of the other
terms in series (3.26), which gives (3.21).

Turning to (3.22) let us bound ourselves to the estimate of the
first derivative only, higher derivatives being estimated similarly.
The consideration of the case α > 1 is trivial, because in that
case τ−1/α is an integrable function for small τ , and consequently,
differentiating expansion (3.26) term by term and using estimate
(3.11) yields the required result straightforwardly. Suppose α ≤ 1
(and A ≡ 0). To estimate the derivative of the second term in
(3.26) let us rewrite it in the following form:

Fuα(t, x, x0) = (u⊗F )(t, x, x0) =
∫ t/2

0

uα(t−τ, x−η)F (τ, η, x0) dη dτ

+

∫ t

t/2

uα(t− τ, η)F (τ, x− η, x0) dη dτ.

Now, differentiating with respect to x and using (3.11) and (3.29)
to estimate the first and the second term respectively, yields for the
magnitude of the derivative of Fuα the same estimate as for Fuα
itself but with an additional multuplier of the order O(thα−1)−1/α).
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We are going to estimate similarly the derivative of the term Fkuα(t, x, x0)
in (3.26), which equals∫
σt

dτ1...dτk

∫
Rkd

dη1...dηkuα(t−τ1−...−τk, x−η1)F (τ1, η1, η2)...F (τk, ηk, x0),

where we denoted by σt the simplex

σt = {τ1 ≥ 0, ..., τk ≥ 0 : τ1 + ...τk ≤ t}.

To this end, we make the partition of this simplex in the union
of the k + 1 domains Dl, l = 0, ..., k, (which clearly have disjoint
interiors) with D0 = σt/2 and

Dl = {(τ1, ..., τk) ∈ σt\σt/2 : τl = max{τj , j = 1, ..., k}}, l = 1, ..., k.

and then make a shift in the variables η to obtain Fkuα = Fk
0 +

...+ Fk
k with Fk

0 (t, x, x0) being equal to∫
σt/2

dτ1...dτk

∫
Rkd

dη1...dηku(t−τ1−...−τk, x−η1)F (τ1, η1, η2)...F (τk, ηk, x0)

and with Fk
l (t, x, x0) being equal to∫

Dl

dτ1...dτk

∫
Rkd

dη1...dηku(t−τ1−...−τk, y1)F (τ1, x−y1, x−y2)...

×F (τl−1, x− yl−1, x− yl)F (τl, x− yl, ηl+1)...F (τk, ηk, x0)

for l = 1, ..., k. Now, differentiating Fk
0 with respect to x we use

estimate (3.11), and differentiating Fk
l , l = 1, ..., k, we use (3.29)

for the derivative of F (τl, x− yl, ηl+1) and the estimate

∂l

∂xl
F (t, x− η, x− ξ) = O(1)(uα(t, η− ξ) + ũ(t, η− ξ)), l ≤ q− 1,

(3.29′)
(actually we need only l = 1 now) for the derivatives of other
multipliers. The estimate (3.29’) follows easily from (3.24). In this
way, one obtains (noticing also that τl ≥ t/(2k) in Dl) for the
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derivative of the term Fku in (3.26) the same estimate as for Fku
itself, but with additional multiplier of the form

O(1)

[
(thα−1)−1/α + k

(
thα−1

k

)−1/α

+
k(k + 1)

2

]
= O(1)(thα−1)−1/αk1+1/α.

As it was proved above, the terms Fk are estimated by the ex-
pressions of the form O(1)(Cthα−1)k/(k!) with some constant C.
Multiplying these terms by kq with any fixed positive q does not
spoil the convergence of the series, which implies the required esti-
mate for the derivative of ustG . The proof of Theorem 3.1 is therefore
complete.

Remark. It follows from the theorem that if A(x) ≡ 0 and
α > 1, the asymptotics of the ustG for small h and small t are the
same. For the case of constant coefficients it follows directly from
(3.6). As also can be seen from (3.6), if α < 1, small h and small t
asymptotics are different already for constant coefficients.

Let us indicate shortly some consequences of this theorem re-
lated to the solutions of the Cauchy problem of equation (3.1).
As usual, we shall denote by C(Rd) the Banach space of con-
tinuous bounded functions on Rd with the sup-norm, by C0(Rd)
we shall denote its closed subspace consisting of functions van-
ishing at infinity, and by Ck(Rd), k being a positive integer, we
denote the Banach space of continuous functions having bounded
derivatives up to and including the order k with the norm ∥f∥ =
maxl≤k supx |f (l)(x)|.

For an arbitrary f ∈ C(Rd) and t > 0, let

(Rtf)(x) =

∫
Rd

ustG(t, x, ξ)f(ξ) dξ.

Proposition 3.5. Suppose the assumptions of Theorem 3.1 are
satisfied, and let T be an arbitrary positive number. Then

(i) (Rtf)(x) tends to f(x) as t → 0 for each x and any f ∈
C(Rd); moreover, if f ∈ C0(Rd), then Rtf tends to f uniformly,
as t→ 0;

(ii) if α > 1 (resp. α ≤ 1), then Rt is a continuous operator
C(Rd) 7→ Cl(Rd) with the norm of the order O(t−l/α) for all l ≤ q
(resp. l ≤ q − 1);



182

(iii) Rt, t ∈ (0, T ], is a uniformly bounded family of operators
Cl(Rd) 7→ Cl(Rd) for all l ≤ q − 1;

(iv) if f ∈ C(Rd) and t > 0, the function Rtf(x) satisfies
equation (3.1);

(v) the Cauchy problem for equation (3.1) can have at most one
solution in the class of continuous functions belonging to C0(Rd)
for each t; this solution is necessarily non-negative whenever the
initial function is non-negative.

Proof. (i) follows from representation (3.20) and the fact that
the same statement clearly holds, if one replaces ustG with uα in
the definition of Rt. (ii) follows again from (3.20) and estimate
(3.11) together with its trivial generaliations for higher derivatives.
To prove (iii), we rewrite the expression for Rt in the following
equivalent form:

Rtf(x) =

∫
Rd

ustG(t, x, x− y)f(x− y) dy,

and then use the estimates

∂l

∂xl
ustG(t, x, x− y) = O(1)uα(t, y), l = 1, ..., q − 1,

which follow from (3.20) and (3.29’). (iv) holds, because ustG satis-
fies equation (1.8). (v) follows from a general fact on the positivity
of the solutions to pseudo-differential equations with a generator
satisfying the positive maximum principle (see e.g. [K11]).

Corollary. The Green function ustG is everywhere non-negative,
satisfies the semigroup identity (the Chapman-Kolmogorov equa-
tion) and

∫
ustG(t, x, η) dη = 1 holds for all t, x ∈ Rd. In particu-

lar, the semigroup defined by equation (3.1) is a Feller semigroup,
which therefore corresponds to a certain Feller process.

The first two statements on ustG follow directly from Propo-
sition 3.5 (actually from statements (iv),(v)). The last statement
can be deduced from it by means of a rather standard trick, see
[Koch], where it is proved in the case α ≥ 1 (in general case it is
proved exactly in the same way, whenever the existence result of
Proposition 3.5 is established).
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Before formulating the next result, let us prove a simple Lemma.

Lemma 3.2. Let G(x) and A(x) satisfy the assumptions of
Theorem 3.1. Then∫
{|x−η|≤(thα−1)1/(1+α)}

uα(t, x−η;µ(η), A(η)) dη = 1−O((thα−1)1/(1+α)),

∫
{|x−η|≥(thα−1)1/(1+α)}

uα(t, x−η;µ(η), A(η)) dη = O((thα−1)1/(1+α)).

Proof. The second estimate follows directly from (3.9),(3.13).
To prove the first inequality, notice that due to the mean-value
theorem and Proposition 2.6, one has

|uα(t, x− η;G(η), A(η))− uα(t, x− η;G(x), A(x))|

= (O(t) +O(|x− η|)uα(t, x− η;G(x), A(x))

= O((thα−1)1/(1+α))uα(t, x− η;G(x), A(x))

for |x−η| ≤ (thα−1)1/(1+α). Since
∫
uα(t, x−η;µ(x), A(x)) dx = 1

(because uα is a probability density), it implies the first inequality
stated in the Lemma.

Theorem 3.2. Under the assumptions of Theorem 3.1, for
any h0 there exists a constant K such that for all t ≤ h ≤ h0 and
all x, x0, y

K−1uα(t, x−x0, G(y), A(y), h) ≤ ustG(t, x−x0, h) ≤ Kuα(t, x−x0, G(y), A(y), h).

Proof. Obviously it is enough to prove the statement for small
enough t, because then one can automatically expand this result to
all (finite) t using the semigroup identities for uasG and ustG . More-
over, due to (3.13), it is enough to get the result for y = x0. Next,
the upper bound for uasG follows directly from (3.20). Due to (3.28),
in order to get the lower bound, it is enough to prove that

uα + uα ⊗ F ≥ ϵuα (3.30)

with some positive ϵ. Notice first of all that due to the estimates
of uα⊗F given above, (3.24) holds trivially for small |x−x0| (and
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small t). Thus one needs to consider only the case of |x− x0| > δ
with any positive fixed δ. Next, the contribution in uα ⊗ F of the
first term in (3.24) is of the form O(tω)uα, and consequently in
proving (3.30)) only the second term of (3.24) must be taken into
account. Clearly, for any δ > 0, the second term of (3.24) can be
presented in the form

O(1)min(δ, |x− x0|)t−1uα(t, x− x0)

+
G(x)−G(x0)

G(x0)
(1−Θδ(|x− x0|))

∂uα
∂t

(t, x− x0),

where O(1) is uniform with respect to δ ∈ (0, 1). Due to Proposi-
tion 3.2, the contribution in uα⊗F of the first term in this expres-
sion has the order (O(δ)+O(tω))uα and can be made smaller that
ϵuα by choosing small enough δ and t. Thus only the contribution
of the second term of the above expression is of interest (and only
for |x − x0| > δ). It follows from Propositions 2.2, 2.5 that for
|x− x0| > δ with a given δ and t→ 0

∂uα
∂t

(t, x−x0) =
1

t
uα(t, x−x0)(1+O(thα−1)) =

γhα−1G(x0)

|x− x0|d+α
(1+O(thα−1))

with a positive γ (which equals actually to the coefficient of the
first term in expansion (2.10). Consequently, up to nonessential
terms,

uα ⊗ F =

∫ t

0

dτ

∫
dη

×uα(t−τ, x−η)(1−Θδ(|η−x0|)
γhα−1(G(η)−G(x0))

|η − x0|d+α
(1+O(τhα−1)).

Now we decompose this integral into the sum I1 + I2 by decom-
posing the domain of integration with respect to η into the union
D1 ∪D2 with

D1 = {η : |η−x| ≥ (thα−1)1/(1+α)}, D2 = {η : |η−x| ≤ (thα−1)1/(1+α)}.

Clearly

I1 =

∫ t

0

dτ

∫
D1

dη
O(thα−1)

|x− η|d+α
1

|η − x0|d+α
.
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Representing D1 = D′
1∪D′′

1 with D′
1 = {η ∈ D1 : |x−η| ≥ |x0−η|}

and D′′
1 = D1\D′

1 one has |x−η| ≥ |x−x0|/2 in D′
1, and |η−x0| ≥

|x− x0|/2 in D′′
1 . Therefore,

I1 = O(thα−1)uα(t, x− x0)

∫
|y|≥(thα−1)1/(1+α)

dy

|y|d+α

= O((thα−1)1/(1+α))uα(t, x− x0).

Consequently, the integral I1 is small as compared with the first
term on the l.h.s. of (3.30). Turning to the estimate of I2 notice
that due to the first estimate of Lemma 3.2 one can write

I2 = tf(x)(1 +O((thα−1)1/(1+α)))

+

∫ t

0

dτ

∫
uα(t− τ, x− η;G(η), A(η))(f(η)− f(x)) dη

with

f(η) = γhα−1(1−Θδ(|x− x0|))
G(x)−G(x0)

|x− x0|d+α

The second term in I2 we estimate using the mean-value theorem
for function f , which gives for this term an estimate of the same
order as I1. It remains only the first term in the expression for I2.
It follows that up to nonessential terms

uα ⊗ F = (1−Θδ(|x− x0|))
tγhα−1(G(x)−G(x0))

|x− x0|
(1 +O(t))

= (1−Θδ(|x− x0|))(1 +O(t))

×[uα(t, x− x0, G(x), A(x), h)− uα(t, x− x0, G(x0), A(x0), h)].

Clearly, this expression when added to uα(t, x−x0, G(x0), A(x0), h)
is not less than ϵuα(t, x − x0) with some ϵ ∈ (0, 1) if t is small
enough. The proof is therefore completed.

It is often useful to know that the solution to a Cauchy problem
preserves a certain rate of decay at infinity. We present now a result
of this kind for equation (3.1), (3.4), which we shall use also in the



186

next Section. Let for β > 0, ϵ > 0 the functions fdβ be defined on

Rd by the formulas

fdβ (x) = (1 + |x|β+d)−1, fdβ,ϵ(x) = fdβ (x/ϵ) (3.31)

Proposition 3.6. Under the assumptions of Theorem 3.1
there exists a constant B such that∫

Rd

ustG(t, x, η, h)f
d
α,ϵ(η − x0) dη ≤ Bfdα,ϵ(x− x0). (3.32)

whenever t ≤ h ≤ ϵ.

Proof. Obviously it is enough to prove the statement for x0 =
0, and due to (3.20), with uα instead of ustG . Furthermore, for
|η| > 1

2 |x| one can estimate

fdα,ϵ(η) ≤ (1 + (|x|/2)α+d)−1 ≤ 2α+dfdα,ϵ(x),

and therefore for x0 = 0, the integral in (3.31) over the set {|η| >
1
2 |x|} does not exceed∫

Rd

uα(t, x− η;G,A)2α+dfdα,ϵ(x) dη ≤ 2α+dfdα,ϵ(x).

Hence, it remains to show that∫
{|η|≤ 1

2 |x|}
uα(t, x− η;G,A)fdα,ϵ(η) dη ≤ Bfdα,ϵ(x). (3.33)

Notice now that
1

2
≤ fdα,ϵ(x) ≤ 1, (3.34)

1

2
(ϵ/|x|)d+α ≤ fdα,ϵ(x) ≤ (ϵ/|x|)d+α, (3.35)

if |x| ≤ ϵ or |x| ≥ ϵ respectively. Consider now separately two
cases.

(i) If |x| ≤ (thα−1)1/α, then in particular |x| ≤ ϵ and moreover,
one can estimate uα under the integral on the r.h.s. of (3.33) by
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C(thα−1)−d/α, due to (3.8), and thus one gets to this integral the
estimate

O(1)

(thα−1)−d/α

∫
{|η|≤|x|}

|η|d−1fdα,ϵ(η) d|η| =
O(1)ϵd

(thα−1)d/α

∫ (|x|/ϵ)d

0

dr

1 + r1+α/d
,

(3.36)
where we have changed the variable of integration by the formula
r = (|η|/ϵ)d. Since the integral in (3.36) has the form O(1)(|x|/ϵ)d,
the whole expression (3.36) has the form

O(1)|x|d

(thα−1)1/α
= O(1) = O(1)fdα,ϵ(x),

where we have used (3.34).
(ii) If |x| ≥ (thα−1)1/α, one estimates uα using formula (3.9)

and thus one estimates the integral in (3.33) by

O(1)ϵdthα−1

|x|d+α

∫ (|x|/ϵ)d

0

dr

1 + r1+α/d
. (3.37)

If |x| ≤ ϵ, we estimate the integral in (3.37) by O(1)(|x|/ϵ)d as in
case (i) and thus get to (3.37) the representationO(1) = O(1)fdα,ϵ(x).
If |x| ≥ ϵ, we estimate the integral in (3.37) by O(1) and then using
(3.35) present (3.37) in the form

O(1)thα−1ϵ−dfdα,ϵ(x),

which is again O(1)fdα,ϵ(x) due to the assumption t ≤ h ≤ ϵ.
The same arguments prove the following generalisation, which

we shall use considering the stable-like processes in Sect. 5.

Proposition 3.7. Under the assumptions of Proposition 3.5,
for any β > 0 there exists a constant B such that for t ≤ h ≤ ϵ∫

Rd

ustG(t, x, η, h)f
d
β,ϵ(η − x0) dη ≤ Bfdmin(α,β),ϵ(x− x0).

Let us note for conclusion that certain estimates for the tran-
sition probability densities of stable processes on compact Rieman-
nian manifolds can be found in [Mol].
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4. Stable jump-diffusions
combined with compound Poisson processes

Because of the well-known ”long-tail” property of the stable
densities one can’t expect the large deviation principle to hold for
stable processes, say, with small scale (or large distances). How-
ever, as will be shown in the next chapter, if one combines a stable
process with an appropriate compound Poisson process that ”kills
the tails”, in other words, if one considers the so called truncated
stable processes, the large deviation principle can be obtained, as
well as more precise asymptotic expansions with respect to the
varying small scale. Having this in mind, we present here the nec-
essary generalisation of the result of the previous section. For the
process considered in this Section, not only the estimates but even
the existence of the transition probability density seems to be a
new result.

Theorem 4.1 Let in the pseudo-differential equation

h
∂u

∂t
= Φ(x,−ih∇)u ≡ Φs(x,−ih∇)u+Φp(x,−ih∇)u (4.1)

the function Φs be given by (3.4) or

Φs(x, p) = ipA(x)− 1

2
(G(x)p, p) (4.2)

with positive matrix G(x) and uniformly bounded G,G−1, A, and

Φp(x, p) =

∫
Rd

(eiξp − 1)f(x, ξ) dξ (4.3)

with an integrable function f such that

|f(x, ξ)| ≤ afdβ (ξ), (4.4)

where β ∈ (0.2), fdα is defined in (3.31), and a is a constant. Then
the Green function uG for for the equation (4.1) exists, is contin-
uous and for small t, t/h, h has the representation

uG(t, x;x0, h) = ustG(t, x;x0, h)(1+O(t/h))+O(t)h−d−1fdmin(α,β)((x−x0)/h),
(4.5)
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where ustG is the Green function (3.20) of equation (3.1) with Φ =
Φs.

Remark 1. Function (4.3) can be presented as the difference
of the two functions of the same form but with positive ”densities”
f , each of these functions presenting therefore the characteristic
function of a compound Poisson process, see e.g. Appendix C.
Thus in notations Φs,Φp the indices s and p stand respectively for
the stable and Poissonian parts of the ΨDO Φ.

Remark 2. Notice that equation (4.1), (4.2) with a suitable
function f describes the truncated stable diffusions, i.e. such pro-
cesses, whose Lévy measure coincides with a stable measure in a
neighborhood of the origin and vanishes outside some ball. In the
case of permanent coefficients, the corresponding probability den-
sity was investigated in [Is]. Our Theorems 4.1, 4.2 generalise some
results from [Is] to the case of varying coefficients.

Proof. As the first approximation to the solution of (4.1),
(3.2) we take the Green function of the corresponding problem
with Φp = 0. Proceeding as in the proof of Theorem 3.1 we present
the exact Green function uG by series (3.30) with ustG instead of uα
and with

F (t, x, x0, h) = − 1

h
Φp(x,−ih∇)uG(t, x, x0, h)

=
1

h

∫
[ustG(t, x+ hξ, x0, h)− ustG(t, x, x0, h)]f(x, ξ) dξ. (4.6)

Due to Proposition 3.7, F = F1 − F2 with

|F1(t, x, x0, h)| ≤
aB

hd+1
fdmin(α,β),h(x−x0), |F2(t, x, x0)| ≤

aC

h
ustG(t, x, x0)

with some constant C. Consequently, using Proposition 3.7 one
gets

|FustG | = |ustG⊗(F1−F2)| ≤ atB2h−d−1fdmin(α,β),h+atCh
−1ustG(t, x, x0).

for α < 2. In the case of Φs of form (4.2) (i.e. in the case of α = 2)
to get the same estimate for FustG one needs the estimate

udifG ⊗ fdβ ≤ Bfdβ
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with some constant B, where uGdif is the Green function of the
corresponding diffusion equation (equation (4.1) with Φp = 0).

This estimate is trivial, if udifG is replaced by the Green function
ufree of the corresponding equation with permanent coefficients,
and in general is then obtained using the well known fact that
udiffG can be estimate by ufree (see e.g. [Da1], [Da2]).

Using induction and the trivial estimate∫
fdα,ϵ(x− η)fdα,ϵ(η) dη ≤ ϵdfdα,ϵ(x), (4.7)

one estimates the other terms in series (3.26), which gives its con-
vergence and the required representation.

In order to get rid of fdα,h in (4.5) we present the following
estimate.

Lemma 4.1. One has

th−(1+d)fdα,h(x− x0) = O(1)min(1, (|x− x0|/h)d+α)uα(t, x− x0).
(4.8)

Proof. Due to (3.8) and (3.34), if |x+A(x0)t−x0| < (thα−1)1/α,
the l.h.s. in (4.8) has the form

O(t)h−1−d(thα−1)d/αuα = O(t/h)1+d/αuα.

Let (thα−1)1/α ≤ |x + A(x0)t − x0|. Consider two cases. If |x −
A(x0)t− x0| = O(h), the l.h.s. in (4.8) has the form

O

(
t

h1+d

)
= O

(
t

h1+d
|x− x0|d+α

thα−1

)
uα = O

(
|x− x0|

h

)d+α
uα.eqno(4.9)

due to (3.9),(3.34). If |x− x0| ≥ h, the l.h.s. in (4.8) has the form

O

(
t

h1+d

)
hd+α

|x− x0|d+α
= O

(
t

h1+d
hd+α

thα−1

)
uα = O(uα),

due to (3.9), (3.35). The Lemma is proved.

Proposition 4.1. If Φs is of form (3.4), the function uG(t, x, x0, h)
from (4.5) can be rewritten in the form

[1+O(t/h)+Ω(t, h)+O(1)min(1, (|x−x0|/h)d+α, |x−x0|)]uα(t, x−x0).
(4.10)
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Proof. Follows directly from Lemma 4.1 and Theorem 4.1.
The following result gives an alternative representation for the

Green function of equation (4.1). Let 0 < c1 < c2 and let χ(t, y) be
a smooth function on R+×R+ 7→ [0, 1] that vanishes (resp. equals
to one) for y ≥ c2 (resp. for y ≤ c1).

Theorem 4.2. Under the assumptions of Proposition 4.1 the
Green function for equation (4.1) can be alternatively written in
forms (4.5), (4.10) but with

u0(t, x, x0, h) =
1

(2πh)d

∫
Rd

exp{Φ(x0, p)t+ ip(x− x0)

h
} dp.

(4.11)
or with ũ0(t, x, x0, h) = χ(t, |x − x0|)u0(t, x, x0, h) instead of ustG .
Moreover, the localised function ũ0 satisfies the Dirac initial con-
dition (3.2).

Proof. Let us show that

u0(t, x, x0, h) = (1+O(t/h))uα(t, x− x0) +O(th−1−d)fdα,h(x− x0)
(4.12)

with uα given by (3.5). To this end, we use the presentation of Φ
in the sum Φs+Φp and expand the function exp{Φp(x0, p)t} in the
power series. The first term in thus obtained series in (4.10) will
be just uα. Let us estimate the second term

(2π)−d
∫
Rd

t

h
Φp(x0, ph) exp{Φs(x0, p)thα−1 + ip(x− x0)} dp.

(4.13)

Due to (4.3), Φp(x0, hp) is the sum of the Fourier transform h−df̂h(x0, p)
of the function h−df(x0,−ξ/h) and a constant. Substituting a con-
stant instead of Φp(x0, hp) in (4.13) gives O(t/h)uα. Substituting

h−df̂h(x0, p) gives in (4.13) the inverse Fourier transform of the
product of the two functions, which is equal therefore to the convo-
lution of their inverse Fourier transforms: uα and h−df(x0,−ξ/h)
(notice that f and f̂ belong to the space L2 due to (4.4)). But this
convolution, due to (4.4), was estimated in Proposition 3.5, which
implies that this term of the sum in (4.13) can be estimated by
the second term in (4.12). Other terms of the expansion in (4.13)
are estimated in the same way, using also (4.7), which proves the
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convergence of the series and estimate (4.12). Due to Theorem
4.1 and formula (4.10), formula (4.12) implies the statement of the
Theorem for the function u0. Furthermore, since for |x − x0| ≥ c,
uα is of the same order as th−1−dfdα,h, one can use ũ0 instead of u0
without changing the estimates of the remainder in (4.5). At last,
function ũ0 satisfies (3.2), because on the one hand, uα satisfies
(3.2), and on the other hand

lim
t→0

∫
|x−x0|≥t−δ+1/α

uα(t, x− x0) = 0

for any δ > 0, due to (3.9).
We are going now to get rid of the assumption of smallness of

time.

Proposition 4.2. Under the assumptions of Theorem 4.1, for
any h0 there exists K such that for t ≤ h ≤ h0

uG ≤ Kuα, uα ≤ K(uG + fdα,h), u0 ≤ Kuα.

Proof. Since we have these inequalities for small t/h we readily
obtain them for any finite t/h using the semigroup identity for uG
and the solutions of the equations with constant coefficients, and
Proposition 3.4.

One sees in particular that though the function (4.11) gives
an approximation for the Green function of equation (4.1) for any
fixed h > 0, it seems to be not a good candidate for the small h
asymptotics. As will be shown in the next chapter, in order to get
the uniform small t and small h asymptotics one should modify
essentially the phase in integral (4.11).

5. Stable-like processes

Here we are going to generalise the results of Section 3 to the
case of the stable processes with the varying index of stability, i.e.
to the so called stable-like processes. For brevity we shall consider
A from (3.4) to be zeros. Thus we shall study the Green function
for equation (3.1) with the symbol Φ(x, p) = −G(x)|p|α(x), i.e the
equation

h
∂u

∂t
= −G(x)∥ − ih∇∥α(x)u, x ∈ Rd, t ≥ 0. (5.1)
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Throughout this section we suppose that α take values in some
fixed compact subinterval [αd, αu] of the open interval (0, 2) and
the scales G satisfy (3.7) with some fixed constant B.

Remark. Literally the same argument and results hold also in
the case when a smooth drift A(x) is present but αd > 1.

For brevity, we shall consider h = 1 in this section, noting
that the presence of h presents no new difficulties and can be dealt
with as in Section 3. It was proven in [KN] (see also some par-
ticular cases of this result in [Neg]) that if α and µ are infinitely
smooth functions of x, the transition probability measures of stable-
like processes are absolutely continuous with respect to Lebesgue
measure, which implies the existence of a measurable densities for
these transition probabilities. The arguments of [Neg] and [KN]
are based on the far developed theory of ΨDO with symbols hav-
ing a varying order. Here we obtain this result generalising the
arguments of our Section 3 under weaker assumptions of only first
order differentiability of µ and α. In fact, one can easily generalise
the arguments to cover the case of only Hölder continuous µ and α.
Moreover, this approach which allows us to obtain local multiplica-
tive asymptotics and global estimates for these densities. Before
formulating the main result, let us prepare some estimates of the
convolution of the functions uα with varying indices α generalising
the corresponding estimates from Section 3.

Lemma 5.1. (i) Uniformly for all x and small enough t, one
has ∫

uα(η)(t, x− η,G(η)) dη = O(1)t−d(αu−αd)/(αuαd). (5.2)

(ii) if additionally the function α(η) is Hölder continuous, i.e.
|α(x) − α(y)| = O(|x − y|β) uniformly with some positive β, then
uniformly for all x and all t ≤ t0 with any fixed t0 one has∫

uα(η)(t, x− η,G(η)) dη = O(1). (5.3)

Proof. Let |x − η| ≥ c with some fixed c ∈ (0, 1]. Then
|x − η| ≥ t1/α(η) for all η, if t ≤ t0 with a small enough t0. It
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follows from (3.6), (3.10) that for such η

uα(η)(t, x− η,G(η)) =
O(t)

|x− η|d+α(η)
=

O(t)

|x− η|d+αd
.

Since this function is integrable outside any neighbourhood of the
origin, it follows that the integral from the l.h.s. of (5.2) over the
set |x−η| ≥ c is bounded. Next, let t1/αu ≤ |x−η| ≤ c ≤ 1. Again
|x− η| ≥ t1/α(η) in this set, and therefore

uα(η)(t, x− η,G(η)) =
O(t)

|x− η|d+α(η)
=

O(t)

|x− η|d+αu
.

Consequently, the integral over this set can be estimate in magni-
tude by the expression

O(t)

∫ ∞

t1/αu

dy

y1+αu
= O(t)t−1 = O(1).

At last one has∫
{|x−η|≤t1/αu}

uα(η)(t, x−η,G(η)) dη = O(1)t−d/αd

∫
{|x−η|≤t1/αu}

dη,

which clearly has the form of the r.h.s. of (5.2), and therefore (5.2)
is proved. To prove (5.3) under assumption (ii) we need now to
consider only the integral over the set {|x− η| ≤ t1/αu}. Denote

αu(x, b) = max{α(y) : |y−x| ≤ b}, αd(x, b) = min{α(y) : |y−x| ≤ b}
(5.4)

Now, let us take b = b(t) = t1/αu and let

M(x) = {η : t1/α(x,b) ≤ |η − x| ≤ t1/αu}. (5.5)

Then the integral on the l.h.s. of (5.3) over the set M(x) can be
estimated by

O(t)

∫
M(x)

dη

|x− η|d+αu(x,b)
= O(t)

∫ ∞

t1/αu(x,b)

dy

y1+αu(x,b)
= O(t)t−1 = O(1).
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At last, the integral on the l.h.s. of (5.3) over the set {|η − x| ≤
t1/αu(x,b) can be estimated by

O(t−d/αd(x,b))td/αu(x,b) = O(1) exp{−d(αu(x, b)− αd(x, b))

αu(x, b)αd(x, b)
log t}

= O(1) exp{O(tβ/αu log t} = O(1),

which completes the proof of Lemma 5.1.

Lemma 5.2. Under the assumptions of Lemma 5.1 (ii) one
has ∫

uα(η)(t− τ, x− η,G(η))uα(x0)(τ, η − x0, G(x0)) dη

= O(1)uα(x0)(t, x− x0, G(x0)) +O(t)fdαd
(x− x0). (5.6)

Proof. 1) If |x− x0| ≥ c with some fixed c ∈ (0, 1], either |x−
η| ≥ |x−x0|/2 ≥ c/2 and then the first multiplier under the integral
in (5.6) is estimated by O(t)|x − x0|−d−αd = O(t)fdαd

(x − x0), or
|η − x0| ≥ |x − x0|/2 ≥ c/2 and then the second multiplier under
the integral in (5.6) is estimated by O(t)fdαd

(x−x0). Therefore, in
that case, due to Lemma 5.1, the integral on the l.h.s. of (5.6) has
the form O(t)fdαd

(x− x0).

2) Suppose now that t1/αu ≤ |x − x0| ≤ c. Let us decompose
the integral from the l.h.s. of (5.6) in the sum I1+ I2 decomposing
the domain of integration into the union D1 ∪D2 with D1 = {η :
|η − x0| ≥ |x− x0|/2} and D2 being its complement. In D1

uα(x0)(τ, η − x0, G(x0)) =
O(τ)

|η − x0|d+α(x0)

=
O(t)

|x− x0|d+α(x0)
= O(1)uα(x0)(t, x− x0, G(x0)),

and therefore, due to Lemma 5.1, I1 = O(1)uα(x0)(t, x−x0, G(x0)).
Next, in D2

uα(η)(t− τ, x− η,G(η)) =
O(t− τ)

|x− η|d+α(η)
=

O(t)

|x− x0|d+αu(x0,|x−x0|)
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=
O(t)

|x− x0|d+α(x0)
|x− x0|α(x0)−αu(x0,|x−x0|)

= O(1)uα(x0)(t, x− x0, G(x0)) exp{O(|x− x0|β) log |x− x0|} =

O(1)uα(x0)(t, x− x0, G(x0)).

Therefore, I1 = O(1)uα(x0)(t, x− x0, G(x0)) as well.
3) Analogously one considers now the case x ∈ M(x0) with

M(x) defined in (5.5) and b = b(t) being the same as in the proof
of Lemma 5.1. One obtains for the integral in this case the same
estimate O((1)uα(x0)(t, x− x0, G(x0)).

4) Let |x− x0| ≤ t1/αu(x0,b). Decompose our integral into the
sum I1 + I2 decomposing the domain of integration into the union
D1 ∪D2 with D1 = {η : |η − x0| ≥ 2t1/αu(x0,b)} and D2 being its
complement. In D1 one has

uα(x0)(τ, η−x0, G(x0)) =
O(τ)

|η − x0|d+α(x0)
= O(t)t−(d+α(x0))/αu(x0,b)

= O(t−d/α(x0)) exp{
[

d

α(x0)
− d

αu(x0, b)
+ 1− α(x0)

αu(x0, b)

]
log t},

which is clearly of the order O(1)uα(x0)(t, x − x0, G(x0)). Conse-
quently, one obtains for I1 the same estimate as in the case 2),
again using Lemma 5.1. Turning to I2 we distinguish two cases. If
τ ≥ t/2 we estimate the second multiplier under the integral by

O(1)τ−d/α(x0) = O(1)t−d/α(x0) = O(1)uα(x0)(t, x− x0, G(x0)),

and if t−τ ≥ t/2 we estimate the first multiplier under the integral
by

O(1)(t−τ)−d/αd(x0,b) = O(1)t−d/α(x0) = O(1)uα(x0)(t, x−x0, G(x0)).

In both cases one obtains therefore the same estimate for the inte-
gral as in cases 2) and 3). The proof of the Lemma is completed.

Similarly one generalises the other estimates of Section 3 and
obtains the following results

Lemma 5.3. If the family α(x) satisfies the assumptions of
Lemma 5.1 (ii), the results of Lemma 3.1 and of Proposition 3.2,
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3.3 are still valid, if in all formulas one puts α(η) instead of the
constant α.

We can give now the main result of this section.

Theorem 5.1. Let the functions α(x) and G(x) have uni-
formly bounded continuous derivatives. Then the Green function
ustlG for equation (5.1) exists, is continuous and differentiable in t
for t > 0. For t ≤ t0 with small enough t0

ustlG (t, x, x0) = uα(x0)(t, x− x0, G(x0))

×[1 +O(1)min(1, (1 + | log t|)|x− x0|) +O(tω)] +O(t)fdαd
(x− x0)

(5.7)
with some ω ∈ (0, 1).

Proof. We shall follow the arguments of the proof of Theorem
3.1. One finds readily that

∂uα(x0)

∂t
= Φ(x,−i∇)uα(x0)(t, x−x0, G(x0))−F (t, x, x0)−F̃ (t, x, x0),

(5.8)
where F is the same as in Theorem 3.1, i.e. it is given by formula
(3.18) with α = α(x0), and

F̃ = ϕα(x0),G(x)(x−x0;α(x0), tG(x0))−ϕα(x),G(x)(x−x0;α(x0), tG(x0)),
(5.9)

where the functions ϕ were defined in (2.23). Consider first the
case when |x − x0| ≤ c with some c > 0. In that case, due to the
mean-value theorem, one has

F̃ = O(|x− x0|)max
b

∣∣∣∣∂ϕb,µ(x0)

∂b
(x− x0, α(x0), G(x0)t)

∣∣∣∣ ,
where b takes values between α(x0) and α(x). If |x−x0| ≤ t1/α(x0),
one finds using (2.32) that

F̃ = O(|x− x0|)t−1(1 + | log t|)t−|α(x)−α(x0)|/α(x0)uα(x0)

= O(|x− x0|)t−1(1 + | log t|)uα(x0).
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If tα(x0) ≤ |x− x0| ≤ c with any c > 0, one finds using (2.33) that

F̃ = O(|x− x0|)t−1(1 + | log t|)|x− x0|α(x0)−α(x)uα(x0)

= O(|x− x0|)t−1(1 + | log t|)uα(x0). (5.10)

If |x− x0| > c, let us estimate each term in (5.6) separately using
(2.30) to obtain the estimate

|F̃ (t, x, x0)| = O(t−1)uα(x)(t, x−x0, G(x))+O(t−1)uα(x0)(t, x−x0, G(x)),
(5.11)

which is clearly of the order O(1)fdαd
(x− x0). Therefore one has

|F̃ (t, x, x0)| ≤ t−1 min(a1, a2|x−x0|| log t|)uα(x0)(t, x−x0;µ(x0))+a3f
d
αd
(x−x0)

with some constants a1, a2, a3. By Lemma 5.3 |(uα ⊗ F̃ )(t, x, x0)|
does not exceed

≤ a(min(1, |x−x0|| log t|)+tω)uα(x0)(t, x−x0, G(x0))+atf
d
αd
(x−x0).

Afterwards one finishes the proof in the same way as that of The-
orem 3.1 proving that formula (3.22) is still valid for ustlG .

Let us present a more rough version of formula (5.7). Namely,
estimating the first term on the r.h.s. of (5.7) separately for |x −
x0| ≤ tβ and for |x− x0| ≥ tβ , one gets the following result.

Corollary 5.1. Under the assumptions of Theorem 5.1

ustlG (t, x, x0) = uα(t, x− x0;µ(x0))(1 +O(tβ)) +O(tω)fdα(x− x0),
(5.12)

with any β < 1/(d+ α) and ω < 1− β(d+ α).
At last, we generalise the upper bound estimate from Theorem

3.2.

Theorem 5.2. Under the assumptions of Theorem 5.1 and
for any fixed t0, the Green function ustlG (t, x, x0) does not exceed
the expression

K[Θtγ (|x−x0|)uα(x0)(t, x−x0, µ(x0))+(1−Θtγ )(|x−x0|)uαd
(t, x−x0, µ(x0))]
(5.13)
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uniformly for all t ≤ t0, and x, x0, where γ and K are some positive
constants.

Proof. It follows from the proof of Theorem 5.1. In fact, due
to (3.22), one only needs to obtain the required estimate for u⊗ F̃ .
To this end one estimates F̃ by (5.10) for |x− x0| ≤ c = tγ and by
(5.11) for |x− x0| ≥ c = tγ .

Notice for conclusion that the generalisations of Theorem 3.1
presented in Section 4 can be extended also to the case of the
processes with varying index α, e.g. to the case of a stable-like
jump-diffusion disturbed by a compound Poisson process. Finally,
the statement of the Corollary to Proposition 3.5 holds also for the
Green function ustlG , which one proves in the same way as in section
3.

6. Applications to the sample path properties
of stable jump-diffusions

Let X(t) (resp. X(t, x0)) be the Feller process starting at the
origin (resp. at x0) and corresponding to the Feller semigroup de-
fined by equation (3.1), (3.4) with h = 1. The existence of the Feller
process corresponding to equations (3.1), (3.4), or more generally
to equations (4.1)-(4.3) is well known, the probabilistic proof being
first obtained in [Kom2]. Some particular cases and generalisaton
can be found e.g. in [Kom1], [Ho], [Por], [PP]. Of course, the exis-
tence of such Feller process follows as well from the well-posedness
of the Cauchy problem for equation (3.1), (3.4), which follows in its
turn from the existence of the Green function constructed in previ-
ous sections (see Corollary to Proposition 3.5). In this section we
are going to show how the analytic results of the previous sections
can be used in studying the sample path properties of the Feller
process X, i.e. of a stable diffusion. We obtain first some estimates
for the distribution of maximal magnitude of stable jump-diffusion
X generalising partially the corresponding well known estimates
for stable processes (see e.g. [Bi]). Then we obtain the principle
of approximate scaling and the principle of approximate indepen-
dence of increments, and finally apply these results to the study of
the lim sup behaviour of |X(t)| as t → 0. For simplicity we have
reduced here the discussion to the study of the stable diffusions
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only (studied analytically in Section 3), and will not go into the
details of modifications needed to cover more general process of
Sections 4, 5. The investigations of the sample path properties of
the Feller-Courrége processes with pseudodifferential generators of
type (0.3) are becoming popular now, see e.g. [Schi] and references
therein for some recent results in this direction.

For any event B, by P (B) we shall denote the probability of B
with respect to the probability space on which X is defined. From
the general theory of Feller processes it follows (see e.g. [RY]) that
(i) one can choose a modification of X(t, x0) with the cadlag prop-
erty, i.e. such that almost surely the trajectories X(t, x0) are right
continuous and have left-hand limits, (ii) the natural filtration of
σ-algebras corresponding toX(t) is right-continuous. We shall sup-
pose from now on that these conditions are satisfied. Let α ∈ (0, 2)
(the case α = 2 is, on the one hand, well studied, and on the other
hand, it displays essentially different properties to α ̸= 2). We sup-
pose throughout this section that the assumptions of Theorem 3.1
are satisfied. Consequently, the Green function ustG(t, x, x0) con-
structed in Theorem 3.1 defines the transition probability density
(from x to x0 in time t) for the process X. The connection between
the analytic language and the probabilistic language that we shall
use in this section can be expressed essentially by the formula∫

A

P (X(t, y)− y ∈ dξ)f(ξ) =

∫
A

ustG(t, y, ξ)f(ξ) dξ

for A ⊂ Rd. Let

X⋆(t, x0) = sup{|X(s, x0)− x0| : s ∈ [0, t]}, X⋆(t) = X⋆(t, 0).

Theorem 6.1. For any t0 there exist positive constants C,K
such that for all t ≤ t0, x0, and λ > Kt1/α

C−1tλ−α ≤ P (X⋆(t, x0) > λ) ≤ Ctλ−α. (6.1)

Proof. Since we shall use the uniform estimates from The-
orem 3.2, it will be enough to consider only x0 = 0 in (6.1).
Plainly P (X⋆(t) > λ) ≥ P (|X(t)| > λ), and thus the left hand
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side inequality in (6.1) follows directly from Theorem 3.2. Turn-
ing to the proof of the right hand side inequality, denote by Ta
the first time when the process X(t) leaves the ball B(a), i.e.
Ta = inf{t ≥ 0 : |X(t)| > a}. Notice now that due to Theorem 3.2,

P (|X(s)− x0| ≥ λ/2) = O(s)λ−α = O(K−α)

uniformly for all x0 and s ≤ t. Therefore, due to the homogeneity
and the strong Markov property, one has that

P (|X(t)| > λ/2) ≥ P ((X⋆(t) > λ) ∩ (|X(t)| > λ/2))

≥
∫ t

0

P (Tλ ∈ ds)P (|X(t− Tλ, X(Tλ))−X(Tλ)| ≤ λ/2)

≥ (1−O(K−α))

∫ t

0

P (Tλ ∈ ds) ≥ (1−O(K−α)P ((X⋆(t) > λ).

It follows that

P ((X⋆(t) > λ) ≤ (1−O(K−α))P (|X(t)| > λ/2),

which implies the r.h.s. inequality in (6.1), again due to Theorem
3.2.

Let us formulate now explicitly the main tools in the investiga-
tion of the sample path properties of stable diffusions that can be
used as substitutes to the scaling property and the independence of
increments, which constitute the main tools in studying the stable
Lévy motions (i.e. stable diffusions with constant coefficients).

Proposition 6.1. Local principle of approximate scaling.
There exists C such that for t ≤ 1 and all x, x0

C−1ustG(1, xt
1/α, x0t

1/α) ≤ ustG(t, x, x0) ≤ CustG(1, xt
1/α, x0t

1/α).
(6.2)

Proof. It follows directly from Proposition 3.1, its corollary
and Theorem 3.2.

Remark. Practically it is more convenient to use the following
equivalent form of (6.2):

C−1uα(1, (x− x0)t
1/α, G(η), A(η)) ≤ ustG(t, x, x0)
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≤ Cuα(1, (x− x0)t
1/α, G(η), A(η)). (6.3)

which holds for all x, x0, η and t ≤ t0.

Proposition 6.2. Local principle of approximate indepen-
dence of increments. For any t0 there exists a constant C such that
if 0 ≤ s1 < t1 ≤ s2 < t2 ≤ t0, M1,M2 are any measurable sets in
Rd and x0 is any point in Rd, then

C−1P (X(t1, x0)−X(s1, x0) ∈M1)P (X(t2, x0)−X(s2, x0) ∈M2)

≤ P ((X(t1, x0)−X(s1, x0) ∈M1) ∩ (X(t2, x0)−X(s2, x0) ∈M2))

≤ CP (X(t1, x0)−X(s1, x0) ∈M1)P (X(t2, x0)−X(s2, x0) ∈M2).
(6.4)

Proof. Consider for brevity only the case s2 = t1, the case
s2 > t1 being similar. Also by homogeneity one can set s1 = 0
without the loss of generality. Then, due to Theorem 3.2 and the
Markov property, one has∫

M1

P (X(t1, x0) ∈ dy)P (X(t2, x0)−X(t1, x0) ∈M2)

≤ CP (X(t2 − t1) ∈M2)×
∫
M1

P (X(t1, x0) ∈ dy),

which implies the r.h.s. inequality in (6.4), again due to Theorem
3.2. Similarly one obtains the l.h.s. inequality in (6.4).

As an example of the application of these general results, let
us prove now that the well known integral test (discovered first in
[Kh]) on the limsup behaviour of the stable processes is valid also
for stable diffusions.

Theorem 6.2. Let f : (0,∞) → (0,∞) be an increasing func-
tion. Then lim supt→0 of the function (|X(t)|/f(t)) is equal to 0 or

∞ almost surely according as the integral
∫ 1

0
f(t)−α dt converges or

diverges.

Proof. The proof generalises the arguments given in [Ber] for
the proof of the corresponding result for one-dimensional stable
Lévy motions. Suppose first that the integral converges. This
implies in particular that t1/α = o(f(t)) as t → 0, which means
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that f(t/2)t−1/α > K for t ≤ t0 with small enough t0, where K is
the constant from Theorem 6.1. Consequently, for every positive
integer n,

P (X⋆(2−n) > f(2−n−1)) ≤ C2−n(f(2−n−1))−α.

Since the series
∑

2−n(f(2−n−1))−α converges, the Borel-Cantelli
lemma yields X⋆(2−n) ≤ f(2−n−1) for all n large enough, almost
surely. It follows that X⋆(t) ≤ f(t) for all t > 0 small enough,
almost surely (because, if n = n(t) denotes the maximal natural
number such that t ≤ 2−n, then X⋆(t) ≤ X⋆(2−n) ≤ f(2−n−1) ≤
f(t)). Using the function ϵf instead of f in the above arguments
yieldsX⋆(t)/f(t) ≤ ϵ for any ϵ and all small enough t almost surely.
Consequently, limt→0(X

⋆(t)/f(t)) = 0, almost surely.
Now let the integral diverge. Let a > 0. For any integer n > 0

consider the event An = A′
n ∩Bn with

Bn = {|X(2−n)| ≤ a2−n/α},

A′
n = {|X(2−n−1)−X(2−n)| ≥ f(2−n+1) + a2−n/α}.

Due to the local principle of approximate scaling,

C−1P (|X(1)| ≤ a) ≤ P (Bn) ≤ CP (|X(1)| ≤ a)

for all n uniformly. Consequently, by the Markov property, homo-
geneity and again approximate scaling, one has

P (An) ≥ C−1P (|X(1)| ≤ a) min
|ξ|≤a2−n

P (|X(2−n, ξ)−ξ| ≥ f(2−n+1)+a2−n/α)

≥ C−2P (|X(1)| ≤ a)P (|X(1)| ≥ 2n/αf(2−n+1) + a)

≥ C̃P (|X(1)| ≤ a)(2n/αf(2−n+1) + a)−α.

with some positive C̃. The sum
∑

2−n(f(2−n+1) + a2−n/α)−α

diverges, because it represents a Riemann sum for the integral of
the function

(f(t) + a(t/2)1/α)−α ≥ 2max(a2−1/αt−1, f(t)−α)
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and consequently the sum
∑
P (An) is divergent. Notice now that

though the events An are not independent, the events A′
n and A′

m

are ”approximately independent” in the sense of Proposition 6.2,
if n ̸= m. The same remark concerns the events Bn and An.
Therefore, if n ̸= m,

P (An ∩Am) ≤ P (A′
n ∩A′

m) = O(1)P (A′
n)P (A

′
m)

= O(1)P (An)P (Am)P (Bn)
−1P (Bm)−1 = O(1)P (An)P (Am)P (|X(1)| ≤ a)−2,

and one can use the well known generalisation of the second Borel-
Cantelli lemma for dependent event (see e.g. [Sp]) to conclude that
lim supt→0(X(t)/f(t)) ≥ 1 with positive probability, and therefore
almost surely, due to the Blumenthal zero-one law (see e.g. [RY]).
Repeating the same arguments for the function ϵ−1f instead of
f one gets that lim supt→0(X(t)/f(t)) = ∞ almost surely, which
completes the proof of the theorem.



Chapter 6. SEMICLASSICAL ASYMPTOTICS
FOR THE LOCALISED FELLER-COURRÈGE PROCESSES

1. Maslov’s tunnel equations and the Feller-Courrège processes

In Chapter 3 we have constructed the asymptotics sa h → 0
of the Green function for diffusion equation in form (3.1.9) for
almost all t, x. Real function (3.1.9) is exponentially small as h→ 0
for almost all t, x (where S(t, x) ̸= 0) and it satisfies ”the large
deviation principle”:

lim
h→0

h log u(t, x, x0) = S(t, x, x0)

is almost everywhere a positive finite function (one can consider
also S to be infinite in some points to include for instance degen-
erate non-regular diffusions, see e.g. Sect. 3.6). Natural question
arises, what is the class of differential or pseudo-differential equa-
tions of type (3.1.2) (see Appendix D for main notations of the
theory of ΨDE) with real H, for which the Green function has the
small h asymptotics of form (3.1.9). Looking for the answer to this
question, V.P. Maslov gave in [M3] the following definition.

Definition. Continuous function H(x, p) on Rd×Cd is called
a Hamiltonian of tunnel type, if it has the following properties

(i) H is smooth in x and holomorphic in p for p ∈ Cd\{Rep =
0},

(ii) for real p the Hamiltonian H(x, p) is real, the Lagrangian

p∂H∂p (x, p)−H(x, p) is non-negative, and det ∂
2H
∂p2 (x, p) ̸= 0,

(iii) for real p the function H(x, ip) and all its derivatives in
x and p increase at most polynomially as x, p→ ∞,

(iv) main tunnel condition is satisfied:

max
η∈Rd

ReH(x, p+ iη) = H(x, p), p ∈ Rd, p ̸= 0.

This definition was generalised to the case of systems of ΨDO
in [M3], where also many examples of important equations from
physics and probability theory satisfying these conditions were given.
Maslov conjectured that the asymptotic Green function of tunnel
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equations can be given by (3.1.9) and gave some heuristic argu-
ments in support of this hypothesis. In fact, one naturally comes
to the definition of tunnel equations if one considers first the equa-
tions with constant coefficients and tries to ensure the possibility
to come to formula (3.1.6) by carrying out the Fourier transform
method of obtaining the Green function for diffusion equation. Rig-
orously, the problem of describing the class of equation (3.1.2) with
asymptotic Green function of form (3.1.9) is open. In order to give
at least partial answer to this problem we are going first to re-
strict the class of tunnel equations approaching the question from
another point of view.

Notice that due to the construction of asymptotic formula
(3.1.9) for diffusion, the amplitude ϕ(t, x, x0) there is everywhere
positive (whenever it is finite), because the Jacobian J(t, x, x0) con-
sidered along an extremal can change his sign only at a focal point
and there are no such points on a minimising extremal (see Chap-
ter 2). Therefore, the generalisation of the construction of Chapter
3 leads necessarily to positive asymptotics of the Green functions.
Therefore, natural candidates to the equations with an asymptotic
Green function of form (3.1.9) are the equations preserving positiv-
ity. But the equations with this property are well known. Essen-
tially they describe the evolutions of the Feller-Courrège processes
(or general jump-diffusions), see e.g. Appendix D. We conclude
that it is reasonable to look for the generators of Maslov’s tunnel
equations in the class of Lévy-Khintchine ΨDO with symbols of
type (D3). However, since for carrying out the WKB construction
for equation (D6),(D7), one needs the values of H(x, p) for real p
(or, equivalently, the values of the symbol Ψ(x, p) = H(x,−ip) for
imaginary p), it is necessarily to restrict the class of symbols (D3) to
the case of the Lévy-Khintchine measures decreasing fast at infin-
ity. We shall consider here the simplest case of the Lévy-Khintchine
measures with a bounded support inRd. The class of symbols (D3)
(and corresponding PDO, evolutionary PDE (D1) and Hamilto-
nians (D6)) with the Lévy measures having a bounded support
will be called the localised Lévy-Khintchine symbols (ΨDO, ΨDE,
Hamiltonians). The corresponding semigroups and stochastic pro-
cesses will be called the localised Feller-Courrège semigroups and
processes.
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It turns out that the two approaches in the search of equa-
tions with the asymptotic Green functions of form (3.1.9) (tun-
nel condition that comes from the Fourier transform method and
the arguments concerning the conservation of positivity) lead to
close results, because as one readily verifies, the localised Lévy-
Kchinchine Hamiltonians of form (D6) are entire analytic func-
tions with respect to p and belong to the class of Maslov’s tunnel
Hamiltonians as defined above. On the other hand, under some ad-
ditional assumptions on the regularity of the boundary of the sup-
port of ν(x, dξ) (see Propositions 2.5.1, 2.5.2) the Lévy-Khintchine
Hamiltonians H(x, p) belong to the class of the Hamiltonians of
the exponential (or even uniform exponential) growth as defined
in Section 2.5 and one can use the theory from this Section to
construct the solutions of the boundary-value problem for such
Hamiltonians and thus to be able to carry out the construction
of the semi-classical approximation for the Green function of the
localised Lévy-Khintchine ΨDE following the steps described in
Section 3.1.

It turns out however that the procedure of Chapter 3 can not
be successfully applied directly to such ΨDE. Let us indicate,
where the problem lies. Substituting a function of form (3.1.6) in
equation (D6),(D7) and using the formulas of the commutation of
a ΨDO with an exponential function (see e.g. (D11), (D12)) one
finds similarly to the case of quadratic Hamiltonians that

h
∂u

∂t
−H(x,−h∇)u = h2F (t, x;x0, h)

with some F , whenever S and ϕ satisfy the Hamilton-Jacobi and
the transport equations (3.1.11), (3.1.13) respectively. The results
of Section 2.5 ensure that the two-point function S(t, x, x0) and
the amplitude (3.1.18) are smooth and well-defined in a sufficiently
large neighbourhood of x0. However, using the estimates for the
Jacobian from Section 2.5 one sees that the remainder F is fast
increasing as t→ 0 in such a way that already the first term in the
series (3.4.9) giving the representation of the exact Green function
may not exist. On the other hand, it follows directly from Theorem
5.4.2 that the WKB asymptotics of form (3.1.9) is not uniform for
small h and small t, simply because the behaviour of uG is different
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from (3.1.9) for small times t. By the way, the same thing happens
for non-regular degenerate diffusion from Section 3.6.

The aim of this chapter is to present a method of the justi-
fication of the asymptotics of form (3.1.9) for the Green function
of the localised Lévy-Khintchine ΨDE for finite, ”not very small”
times, more precisely, for t ∈ [δ, t0] with some t0 and any fixed
positive δ < t0. It will imply the global large deviation principle
for these Green function and the validity of representation (3.1.9)
almost everywhere. The main ingredient in this method is the con-
struction of the uniform small time and small h asymptotics that
differs from (3.1.9). This asymptotic formula is obtained by sewing
the formulas of type (5.4.11) and (3.1.9) and it turns to (3.1.9) for
any fixed t. We shall not try here to describe the most general class
of the localised Lévy measures in (D6) that allow to carry out this
construction but will give the full proof for the class of ν(x, dξ) cor-
responding to the localised stable processes (see e.g. Appendix C)
with the uniform spectral measure disturbed by a compound Pois-
son process, i.e. for the equations of form (5.4.1). More precisely,
we shall consider the equation

∂u

∂t
= (A(x),

∂u

∂x
)+

1

h

∫
Rd

(
u(x+ hξ)− u(x)− h

1 + ξ2
(ξ,

∂u

∂x
)

)
ν(x, dξ)

(1.1)
with

ν(x, dξ) = (G(x)Θa(x)(|ξ|)|ξ|−(d+α) + g(x, ξ)) dξ, (1.2)

where the following assumptions are made:
(A1) A(x), G(x), a(x) are smooth functions such that G and a

are positive and |A(x)|, G(x), a(x), G−1(x), a−1(x) are uniformly
bounded;

(A2) the nonnegative function g(x, ξ) depends smoothly on x,
is uniformly bounded and vanishes for |ξ| ≥ a(x);

(A3) A(x) ≡ 0 whenever α ≤ 1.
Similarly to equation (1.1) one can treat the case of the stable

process of the index α = 2 (i.e. diffusion) disturbed by a compound
Poisson process, namely the equation of the form

∂u

∂t
= (A(x),

∂u

∂x
)+
h

2
tr (G(x)

∂2u

∂x2
)+

1

h

∫
Rd

(u(x+hξ)−u(x))g(x, ξ) dξ

(1.3)
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with a bounded nonnegative integrable function g having a finite
support with respect to the second argument.

The main result of this Chapter is the following.

Theorem 1.1. If h0 and t0 are small enough, then in the
domain h ≤ h0, t ∈ [δ, t0] with any δ > 0, the Green function
uG = uG(t, x, x0, h) of equation (1.1), (1.2) has the form

(2πh)−d/2Θ0,c(|x−x0|)ϕ(t, x, x0) exp{−
S(t, x, x0)

h
}(1+O(hω))+O(exp{−Ω

h
})

with some c > 0, Ω > 0, ω ∈ (0, 1), where S(t, x, x0) is the two-
point function corresponding to the Hamiltonian of equation (1.1)
and ϕ is the solution (1.18) of the corresponding transport equation,
and the last term in (1.4) is an integrable function of x.

This fact follows from more general result proven in Section
6.3. As a consequence, one obtains all global formulas of Section 3.5
for the stable jump-diffusion defined by equation (1.1), (1.2). Since
the whole construction is rather complicated, we devote a special
Section 6.2 to present first a rough small t and small h asymptotics
of the Green function, which does not give the correct amplitude
for small h but captures only the correct logarithmic limit.

The idea to represent the uniform small time and small h
asymptotics for the Green functions of general tunnel equations
in the integral form of type (3.1) from Section 6.3 belongs to
V.P.Maslov, see his heuristic arguments in [M2]. Notice for conclu-
sion that one can try also to justify the asymptoics for a fundamen-
tal solution not in the pointwise sense, as above, but in the sense
of distribution. An approach to the construction and justification
of such ”weak” semiclassical asymptotics for tunnel equation was
proposed in [Dan], where the case of diffusion process perturbed
by a compound Poisson process was considered (under additional,
rather restrictive, assumptions).

2. Rough local asymptotics and local large deviations

This section is devoted to the construction of a rough local
asymptotics (but uniform in small t and h) to the Green function
of equation (1.1) under assumptions (A1)-(A3) that are supposed
to be satisfied throughout the Section.
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Equation (1.1) is of form (D6) with the Hamiltonian

H(x, p) = −(A(x), p)+

∫
Rd

(
e−(p,ξ) − 1 +

(p, ξ)

1 + ξ2

)
ν(x, dξ). (2.1)

Moreover, it is of form (5.4.1) and therefore it has a continuous
Green function due to theorem 5.4.1.

On the other hand, Hamiltonian (2.1) belongs to the class of
the Hamiltonians of the uniform exponential growth described in
Theorem 2.5.3 with the function a(x, p̄) from (2.5.19) not depend-
ing on p̄ and being equal to a(x) from (1.2). Therefore, Theorems
2.5.1, 2.5.2 and Propositions 2.5.5-2.5.7 hold for H. We shall use
further the notations of Section 2.5. In particular, let c be chosen
in such a way that the boundary value problem for the Hamiltonian
system with the Hamiltonian H is uniquely (in the sense of Theo-
rem 2.1 or Proposition 5.6) solvable for |x − x0| ≤ 2c and t ≤ t0.
Let z(t, v, x0) be the function defined in Theorem 2.5.2 and let

y(t, x, x0) = tz(t,
x− x0
t

, x0). (2.2)

This function is well defined and smooth for |x − x0| < 2c. Let
χ(t, y) be the smooth molyfier (as the function of the second vari-
able) of the form χc2c1 from Lemma E1 with 0 < c1, c2 < c. Then
the function

urough(t, x, x0, h) =
χ(t, |x− x0|)

(2πh)d

∫
Rd

exp{− ipy(t, x, x0)−H(x0, ip)t

h
} dp

(2.3)
or equivalently

urough(t, x, x0, h) =
χ(t, |x− x0|)

(2πh)d

∫
Rd

exp{Φ(x0, p)t+ ipy(t, x, x0)

h
} dp

(2.4)
with Φ(x, p) = H(x,−ip) is a well defined smooth function for all
x and small enough t. The aim of this Section is to prove that
this function presents a uniform small t and small h asymptotics to
the Green function uG of equation (1.1), (1.2). First of all, in the
next two propositions, we shall show that for small t this function
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turns to the function uasG from Section 5.3 that presents a small
time asymptotics for uG, and for small h it has the form (3.1.9)
with S being the two-point function of the variational problem
corresponding to the Hamiltonian (2.1).

We start with a simple lemma. Recall that the function uα(t, x−
x0;G,A, h) was defined in (5.3.5), (5.3.6). As in Chapter 3 we shall
often omit the last arguments in this function writing uα(t, x−x0)
for uα(t, x− x0;G(x0), A(x0), h).

Lemma 2.1. Under the assumptions of Proposition 5.3.1
there exists a constant C such that

(i) for any y and |x+A(x0)t− x0| ≤ (thα−1)1/α

uα(t, x+ y − x0) ≤ Cuα(t, x− x0)

(ii) for any y and |x+A(x0)t− x0| ≥ (thα−1)1/α

uα(t, x+ y − x0)

uα(t, x− x0)
≤ Cmin

(
|x+A(x0)t− x0|d+α

|x+A(x0)t− x0 + y|d+α
,
|x+A(x0)t− x0|d+α

(thα−1)1+d/α

)
,

(iii) if y/|x− x0| is bounded, then for any x

uα(t, x+ y − x0) = uα(t, x− x0)(1 +O

(
y

|x− x0|

)
). (2.5)

Proof. Statements (i) and (ii) follow directly from Proposition
5.3.1. To get (2.5) one writes

uα(t, x+ y − x0) = uα(t, x− x0) +
∂uα
∂x

(t, x+ θy − x0)y

with some θ ∈ (0, 1), then one uses (5.3.11),(5.3.12) to estimate
∂uα

∂x (t, x+θy−x0) by means of uα(t, x+θy−x0), and then uses the
cases (i),(ii) to estimate uα(t, x+θy−x0) by means of uα(t, x−x0),
which yields (2.5).

Proposition 2.1. For any h0 > 0 there exists t0 > 0 such
that uniformly in the domain t ≤ t0, h ≤ h0, t/h ≤ t0/h0

urough(t, x, x0, h) = χ(t, |x− x0|)
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×(1+O(t/h)+O(1)min(1, |x−x0|, (|x−x0|/h)d+α))uasG (t, x−x0, h).
(2.6)

In particular, urough = O(uα), and the function urough gives a lo-
cal multiplicative asymptotics to the Green function uG for small
t and t/h in the sense that urough satisfies Dirac’s initial condi-
tions (5.3.2) and uG can be presented in form (5.4.10) with urough
instead of uα.

Proof. If y(t, x, x0) = (x − x0) in (2.5), then all statements
were proved in Theorem 5.4.2. But due to (2.5.16),

y(t, x, x0) = (x− x0)(1 +O(|x− x0|)).

Consequently, using y(t, x, x0) instead of x − x0 in (2.3) means
the shift in the argument of the function uasG , which, due to (2.5),
amounts to the additional multiplier of form 1 + O(|x − x0|) =
1 +O(c), which completes the proof of the Proposition.

For any real g, we shall denote max(0, g) by g+.

Proposition 2.2. Let either h/t be bounded or h(1+log+ |x−x0|
t )3/|x−

x0| and t/h be bounded. Let h̃ = h/t or h̃ = h(1+log+ |x−x0|
t )/|x−

x0| in the first or in the second case respectively. Then for small
enough t in the first case and for small enough t and h̃ in the second
one

urough(t, x, x0, h) = χ(t, |x−x0|)uexprough(t, x, x0, h)(1+O(h̃)) (2.7)

with

uexprough(t, x, x0, h) = (2πht)−d/2
(
det

∂2H

∂p2
(x0, p̂)

)−1/2

exp{−S(t, x, x0)
h

},

(2.8)
where p̂ = p̂(t, x, x0) is the (obviously unique) solution of the equa-
tion

∂H

∂p
(x0, p̂(t, x, x0)) =

1

t
y(t, x, x0).

Moreover,

p̂(t, x, x0) = p0(t, x, x0) +O(|x− x0|), (2.9)
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where p0(t, x, x0) denotes, as in Section 2.1, the initial momentum
on the trajectory of the Hamiltonian flow joining x0 and x in time
t.

Proof. To calculate the integral in (2.3) we shall use the
method of the saddle-point. Namely, one readily sees that the
phase

Σ(p, t, x, x0) = ipy(t, x, x0)−H(x0, ip)t (2.10)

in (2.3) is an entire analytic function in p that has a unique imag-
inary saddle-point −ip̂(t, x, x0). Formula (2.9) for p̂ follows from
(2.5.31). Let us shift the contour of integration in (2.3) by p̂, which
is possible due to the Cauchy theorem and Proposition C1 from
Appendix C. This amounts to writing p̂+ ip instead of ip in (2.3).
Hence

urough(t, x, x0, h) =
χ(t, |x− x0|)

(2πh)d
exp{−S(t, x, x0)

h
}

×
∫
Rd

exp

{
− (H(x0, p̂)−H(x0, p̂+ ip))t+ ipy(t, x, x0)

h

}
dp,

(2.11)
where we have used also the formula

S(t, x, x0) = p̂y(t, x, x0)−H(x0, p̂)t, (2.12)

which is equivalent to (2.5.17).
To calculate the integral in (2.11) we apply Proposition B2

considering h̃ as a small parameter. We omit the details concerning
a simpler case h ≤ t and consider only the situation with t ≤ h ≤
|x− x0|/(1 + log+ |x−x0|

t ). The assumptions (1)-(5) of Proposition
B2 are satisfied for the phase

Σ̂(p) =
(H(x0, p̂)−H(x0, p̂+ ip))t+ ipy(t, x, x0)

|x− x0|/(1 + log+ |x−x0|
t )3

(2.13)

of the Laplace integral (2.11), because on the one hand

Re Σ̂(p) =

∫
Rd

e−(p̂,ξ)(1−cos(pξ))ν(x0, dξ)
t(1 + log+(|x− x0|/t))3

|x− x0|
,
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and thus Re Σ̂ is positive everywhere except the origin where it
vanishes, and on the other hand ReΣ̂(p) → ∞ as |p| → ∞, due
to Proposition C1. Moreover, from (1.2) it follows that for the
phase Σ̂ one can takes the constant r from assumptions (6)-(7) of
Proposition B2 to be independent from p̂ and x0 (for instance, one
can take r = π/3max a(x)) and such that

Re
∂2Σ̂

∂p2
≥ C1(1 + log

|x− x0|
t

)2 (2.14)

with some positive constant C1, because for |p| < r one has

∂2

∂p2

∫
e−(p̂,ξ)(1−cos(p, ξ))ν(x, dξ) ≥ 1

2

∂2

∂p2

∫
(e−(p̂,ξ)−1+

(p̂, ξ)

1 + ξ2
)ν(x, dξ),

and the r.h.s. of this inequality was estimated in Theorem 2.5.3.
Since the amplitude of our Laplace integral is a constant, only the
first two terms in (B12) are relevant. Since the derivatives of Σ̂
with respect to p are given in terms of the derivatives of H that
satisfy the assumption (i) of Definition 2.5.1 and due to (2.14) one
readily sees that the constant A from Proposition B1 is bounded in
our situation.. Therefore, δ2(h̃) is also bounded. Similarly one gets
that δ1(h̃) is also bounded for small t. It remains to compare δ3(h̃)
with the principle term in (B13). Due to (2.14) and Proposition
C1, δ3(h̃) does not exceed

exp

{
−r

2C1(1 + log+(|x− x0|/t))2

h̃

}

×
∫

exp

{
−σ(x0)|p|

αt(1 + log+(|x− x0|/t))3

h̃0|x− x0|

}
dp.

Suppose log(|x − x0|/t) ≥ 1 (the case of bounded |x − x0|/t is
simpler and is omitted). Carrying out the integration yields

δ3(h̃) = O(1)

(
t

|x− x0|

)r2C1/h̃
(

|x− x0|h̃0
t(1 + log+(|x− x0|/t))3

)d/α
.
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To complete the proof of the Proposition, we need to show that

(2πh)−dδ3(h̃) = O(h̃)(2πht)−d/2
(
det

∂2H

∂p2
(x0, p̂)

)−1/2

. (2.15)

Due to (2.9) and Theorem 2.5.3,

∂2H

∂p2
(x0, p̂) = O(|x− x0|)t−1. (2.16)

Hence, due the expression for δ3, in order to prove (2.15) it is
enough to show that

(
t

|x− x0|

)r2C1/2h̃( |x− x0|
t(1 + log+(|x− x0|/t))3

)d/α

≤
(
2πh

t

)d/2( |x− x0|
t

)−d/2

=

(
2πh

|x− x0|

)d/2
,

which holds obviously for small enough h̃0, because t/h is bounded.
Hence, formula (2.7) follows from Proposition B2 and the above
obtained estimates for δ1, δ2, δ3.

Since uα presents a multiplicative asymptotics for urough in
the domains {t < h, |x−x0| < h}, one sees that, roughly speaking,
the domain {max(t, |x − x0|/| log t|) < h < |x − x0| is the bound-
ary layer between the asymptotic representations uα and uexprough.
In this domain we know that urough is bounded by uα, but this
estimate is too rough and will be improved later on. We turn now
to the estimate of the result of the substitution of function (2.4) in
equation (1.1), i.e. of the function

F (t, x, x0, h) =

[
∂

∂t
− 1

h
H(x,−h∇)

]
urough. (2.17)

Again we consider separately the cases of small h and small t.
Recall that Θb,c denotes the characteristic function of the closed

interval [b, c], i.e. Θb,c(y) is equal to one (resp. to zero) for y ∈ [b, c]
(resp. otherwise)
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Proposition 2.3. Under the assumptions of Proposition 2.2
for small t and h̃

F = O(uexprough)

[
1 +

(
|x− x0|

t

)1+O(|x−x0|)
]
. (2.18)

Proof. Using the formula of the commutation of a Lévy-
Khintchine ΨDO with an exponential function, see Proposition
D2, yields

F = − 1

(2πh)dh

∫
Rd

(f1+hf2+hf3+hf4) exp{−
ipy(t, x, x0)−H(x0, ip)t

h
} dp

(2.19)
with

f1 = f1(t, x, p) = χ(t, |x− x0|)
(
∂Σ

∂t
+H(x,

∂Σ

∂x
)

)

= χ(t, |x− x0|)
(
ip
∂y

∂t
−H(x0, ip) +H(x, ip

∂y

∂x
(t, x, x0))

)
,

f2 =
1

h
χ(t, |x− x0|)

∫
ν(x, dξ)

×
(
exp{−hi

∫ 1

0

(1− s)(pj
∂2yj
∂x2

(x+ shξ)ξ, ξ) ds} − 1

)
exp{−i(p, ∂y

∂x
ξ)},

f3 = −∂χ
∂t

−
(
∂χ

∂x
,
∂H

∂p
(x, ip

∂y

∂x
(t, x, x0))

)
+

∫
ν(x, dξ)

×
(
∂χ

∂x
, ξ

)(
exp{h

i

∫ 1

0

(1− s)(pj
∂2yj
∂x2

(x+ shξ)ξ, ξ) ds} − 1

)
exp{−i(p, ∂y

∂x
ξ)},

f4 = h

∫
Rd

(∫ 1

0

(1− s)ds
∂2χ

∂x2
(x+ shξ)ξ, ξ

)

× exp{−hi
∫ 1

0

(1−s)(pj
∂2yj
∂x2

(x+shξ)ξ, ξ) ds} exp{−i(p, ∂y
∂x
ξ)}ν(x, dξ).



203

We make now the same shift of the contour of integration as in the
proof of Proposition 2.2 to find that (2.19) can be rewritten as

− 1

(2πh)dh
exp{−S(t, x, x0)

h
}
∫
Rd

(f1+hf2+hf3+hf4) exp{−
Σ̂(p)

h̃
} dp

(2.20)
with f1, f2, f3, f4 being the same as above but with the argument
−ip̂+ p instead of p and with Σ̂(p) given by (2.13).

To estimate this integral we shall use Propositions B1, B2.
As in the proof of Proposition 2.2 let us consider only the case
t ≤ h ≤ |x−x0|/| log t|, where h̃ = h| log t|/|x−x0|. Notice first that
since all fj , j = 1, ..., 4, increase as p → ∞ at most polynomially,

the estimate of the exponentially small remainder δ2(h̃) of form
(B13) is carried out exactly in the same way as in the proof of
Proposition 2.2. Hence we shall deal only with the remainder δ1(h̃)
of form (B12) and shall consider r to be chosen as in the proof of
Proposition 2.2.

Let us begin with the contribution of f1 in (2.20). The first
observation is that

f1(t, x,−ip̂(t, x, x0)) = 0. (2.21)

In fact, from (2.2) and (2.5.32) it follows that

tL(x0,
1

t
y(t, x, x0)) = S(t, x, x0).

Differentiating in t yields

∂S

∂t
= L(x0,

1

t
y(t, x, x0)) + p̂

(
∂y

∂t
(t, x, x0)−

1

t
y(t, x, x0)

)
.

Since the two-point function S satisfies the Hamilton-Jacobi equa-
tion, and moreover,

∂S

∂x
=
∂Σ̂

∂x
= p̂

∂y

∂x
,

it follows that

L(x0,
1

t
y(t, x, x0)) + p̂

∂y

∂t
− 1

t
p̂y(t, x, x0) +H(x, p̂

∂y

∂x
) = 0,
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which is equivalent to (2.21). Therefore, the main term in the
asymptotic formula (B11) for the Laplace integral (2.20) with the
amplitude f1 vanishes. To estimate δ1(h̃) we need the estimates of
f1(−ip̂+ p) and its first two derivatives for small p. One has

∂f1
∂p

(−ip̂+ p) = i
∂y

∂t
− i

∂H

∂p
(x0, p̂+ ip) + i

∂y

∂x

∂H

∂p
(x, (p̂+ ip)

∂y

∂x
),

∂2f1
∂p2

=
∂2H

∂p2
(x0, p̂+ ip)− (

∂y

∂x
)
∂2H

∂p2
(x, (p̂+ ip)

∂y

∂x
)

(
∂y

∂x

)′

.

Due to (2.5.36), (2.5.37),

∂y

∂t
= O(|x−x0|2)t−1,

∂y

∂x
= 1+O(|x−x0|),

∂2y

∂x2
= O(1+log+

|x− x0|
t

).

(2.22)
It follows that the last term in the above expressions for the deriva-
tives of f1 give the principle contribution, which is of the or-
der O(|x − x0|/t)1+O(|x−x0|) (up to an additive constant). Con-
sequently, all three coefficients F0, F1, F2 from formula (B12) have
the same order, and therefore, δ1(h̃) as well. Hence, using also
Proposition 2.2, one concludes that the term in (2.20) containing
f1 contributes to the first term in (2.18).

To estimate the contributions of other terms it is convenient
to take into consideration only the real part (2.16) of the phase,
to estimate the magnitude of f2, f3, f4 at −ip̂+ p for small p, and
then apply Proposition B1. Due to (2.22), one has

| exp{−((p̂+ ip),
∂y

∂x
ξ)}| = O(exp{a(x)|p̂|(1 +O(|x− x0|))})

= O(1)

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣1+O(|x−x0|)
)
. (2.23)

Next,

hp̂j

∣∣∣∣∂2yj∂x2
(x+ shξ)

∣∣∣∣ = O(h)

(
1 + log+

∣∣∣∣x− x0
t

∣∣∣∣)2

= O(|x−x0|) log
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is bounded. Writing down

exp{hi
(
pj

∫ 1

0

(1− s)
∂2yj
∂x2

(x+ shξ) ds ξ, ξ

)
} − 1

= hi

(
pj

∫ 1

0

(1− s)
∂2yj
∂x2

(x+ shξ) ds ξ, ξ

)

exp{θhi
(
pj

∫ 1

0

(1− s)
∂2yj
∂x2

(x+ shξ) ds ξ, ξ

)
}. (2.24)

one has

|f2(t, x,−ip̂+p)| = O(1)

(
1 + log+

∣∣∣∣x− x0
t

∣∣∣∣)2(
1 +

|x− x0|
t

)1+O(|x−x0|)

,

which again contributes to the first term in (2.18). The terms with
f3, f4 do not give anything new.

Proposition 2.4. Let t/h be bounded. If α > 1, then

F = O(uα)
[
1 +

|x− x0|
t

+

(
t

h

)α−1−1

| log t|

+Θ(thα−1)1/α,c(|x− x0|)
|x− x0|2

ht

(
t

h

)−1/α

| log t|
]
. (2.25)

If α ≤ 1, let δ1 = (1−α)2α−1(2−α)−1 and δ2 be any number such
that

1− α

α(2− α)
< δ2 <

1

α(2− α)
.

Then

F = O(uα)
[
1 + | log t| |x− x0|

t

+Θ(thα−1)1/α,tδ2h−δ1 (|x−x0|)
|x− x0|2

ht

(
t

h

)−1/α

| log t|+Θtδ2h−δ1 (|x−x0|)t−1
]
.

(2.25′)

Proof. We use again formula (2.19). Let H = Hs + Hp be
the decomposition of H in the stable and Poissonian parts as in
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Theorem 4.1, i.e. Hs(x,−ip) = Φs(x, p) is given by (5.3.4) and
Hp(x,−ip) = Φp(x, p) is given by (5.4.3). It is enough to consider
the phase in integral (2.19) to be simply ip(x − x0) −Hs(x0, ip)t,
because the use of the exact phase (2.12) will give the result that
differs by a bounded multiplier (that one shows as in the proof
of Proposition 2.1), which is not essential. Thus, rewriting also
everything in terms of the symbol Φ(x, p) = H(x,−ip) we present
the r.h.s. of (2.19) in the form

O(1)

(2πh)d

∫
Rd

(
f1
h
+f2+f3+f4)(t, x,−p) exp{

Φs(x0, p)t+ ip(x− x0)

h
} dp.

(2.26)
Consider first the contribution of the term with the amplitude f1.
Let us rewrite this function in the form

f1(t, x,−p) = −ip∂y
∂t

+(Φs(x, p)−Φs(x0, p))+(Φs(x, p
∂y

∂x
)−Φs(x, p))

+(Φp(x, p)− Φp(x0, p)) + (Φp(x, p
∂y

∂x
)− Φp(x, p)). (2.27)

We claim that the contribution of this term can be estimated by
the expression on the r.h.s. of (5.3.27). Due to (2.22) one sees
directly that it is the case for the contribution of the first term in
(2.27). The contribution of the second term in (2.27) has the form

O(|x− x0|)
[
∂uα
∂x

(t, x− x0) +
∂uα
∂t

(t, x− x0, h)

]
, (2.28)

which is estimated exactly as (5.3.24) and is of form (5.3.27). Next,
due to (2.23) and (5.3.4), the third term in (2.27) can be presented
as O(|(x− x0)|)Φs(x, p), which again has form (2.28). To estimate
the contribution of the fourth term in (2.27) we write

Φp(x, p)− Φp(x0, p) =
∂Φp
∂x

(x0 + θ(x− x0), p)(x− x0).

Since
∂Φp

∂x has the same form as Φp, i.e.

∂Φp
∂x

(x, p) =

∫
(eipξ − 1)

∂f

∂x
(x, ξ) dξ
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with |∂f∂x | = O(fdα(ξ)) (actually
∂f
∂x (x, ξ) vanishes for |ξ| ≥ a(x)), we

deal with the contribution of this term as in the proof of Theorem
5.4.2 to get the estimate for it of the form

O(|x− x0|)(h−1 + t−1)uα(t, x, x0) = O(|x− x0|/t)uα(t, x, x0),

which again gives nothing new sa compared with (2.28).
Consider the last term in (2.27). It is convenient to decompose

the integral (5.4.3) defining Φp into two integrals over |ξ| ≤ a(x)
and |ξ| ≥ a(x). The first integral is differentiable in p and the
corresponding difference is estimated as the fourth term in (2.27).
In the second integral f(x, ξ) = |ξ|−(d+α) and the corresponding
term is estimated readily.

Consider now the contribution of the term with f2 in (2.26).
To begin with, consider the case when h ≤ ϵ| log t|−1 with small
positive ϵ. Introducing the function

w(x, ξ)j =

[
ξ
∂y

∂x

]
j

+ h

∫ 1

0

(1− s)

(
∂2yj
∂x2

(x+ shξ)ξ, ξ

)
ds

and using (2.24) we can present the contribution of the term with
f2 in the form

O(h)| log t|
∫ ∣∣∣∣∂uα∂x (t, x− x0 + hw(x, ξ))

∣∣∣∣ |ξ|2 ν(x, dξ).
Due to our assumption on h, w(x, ξ) = ξ(1+O(|x−x0|)+O(h|ξ|2),
which means that for small enough ϵ, one can make the change of
the variable of integration in the previous integral ξ → η = w(x, ξ)
to write the contribution of the term with f2 in the form

O(h)| log t|
∫ ∣∣∣∣∂uα∂x (t, x− x0 + hξ)

∣∣∣∣ |ξ|2ν(x, dξ). (2.29)

First let |x − x0| ≤ 2(thα−1)1/α. Present expression (2.29) as the
sum of two terms I1 + I2 corresponding to the decomposition of
the domain of integration over ξ in the union of the sets

M1 = {ξ : |x−x0+hξ| ≤ 4(thα−1)1/α}, M2 = {ξ : |x−x0+hξ| ≥ 4(thα−1)1/α}.
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In the first integral we estimate∣∣∣∣∂uα∂x (t, x− x0 + hξ)

∣∣∣∣ = O(1)

(thα−1)1/α
uα(t, x−x0+hξ) =

O(1)

(thα−1)1/α
uα(t, x−x0).

Therefore

I1 =
O(h)| log t|
(thα−1)1/α

uα(t, x− x0)

∫
{h|ξ|≤6(thα−1)1/α}

|ξ|1−α d|ξ|

and consequently

I1 =

(
t

h

)(α−1−1)

| log t|O(uasG ), I1 = | log t|O(uα) (2.30)

respectively for α ≥ 1 or α ≤ 1. In the second integral I2 we
estimate |x− x0 + hξ| > h|ξ|/2 and thus∣∣∣∣∂uα∂x (x− x0 + hξ)

∣∣∣∣ = O(1)

|x+ hξ|
uα(x− x0 + hξ) =

O(1)

h|ξ|
uα(x).

Consequently

I2 = O(uasG )| log t|
∫ O(h−1)

(t/h)1/α
|ξ|−α d|ξ|.

Hence, I2 is the same as (2.30).
Let 2(thα−1)1/α ≤ |x− x0| = O(h). Let us decompose expres-

sion (2.29) into the sum I1 + I2 of two terms corresponding to the
decomposition of the domain of integration over ξ in the union of
the sets M1 = {h|ξ| ≤ |x − x0|/2} and M2 = {h|ξ| ≥ |x − x0|/2}.
The first term is

O(h)| log t|
|x− x0|

uα(t, x− x0)

∫ |x−x0|/2h

0

|ξ|1−α d|ξ|

=

(
|x− x0|

h

)1−α

| log t|O(uα(t, x− x0)),
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which is easily seen to be again of form (2.30), due to the as-
sumptions on x. To estimate the second term one notes that for
h|ξ| ≥ |x− x0|/2

|ξ|2ν(x, dξ) ≤
(

h

|x− x0|

)d+α−2

dξ =

∣∣∣∣x− x0
h

∣∣∣∣2 hαd(hξ)

|x− x0|d+α
,

(2.31)
and therefore one can estimate this second term by

I2 = O(| log t|)
(
t

h

)−1/α ∣∣∣∣x− x0
h

∣∣∣∣2 hα

|x− x0|d+α

∫
uα(x−x0+η) dη

= O(| log t|)
(
t

h

)−1/α ∣∣∣∣x− x0
h

∣∣∣∣2 hα

|x− x0|d+α

=

(
t

h

)−1/α |x− x0|2

th
| log t|O(uα(t, x− x0)). (2.32)

Now let |x− x0| ≥ 2a(x)h. Then for all |ξ| ≤ a(x)

|∂uα
∂x

(t, x− x0 + hξ)| ≤ uα(t, x− x0 + hξ)

|x− x0 + hξ|

= O(1)
uα(t, x− x0)

|x− x0|
= O(h−1)uα(t, x− x0).

Therefore, one can estimate expression (2.29) by | log t|O(uasG ),
which does not give anything new.

Let us suppose now that h ≥ ϵ| log t|−1, i.e. t is exponen-
tially small with respect to h. Integral over the range of ξ (in
the expression for the contribution of the term with f2) such that
h|ξ| ≤ ϵ| log t|−1 with small enough ϵ can be obviously estimated
in the same way as in the previous case. So, one needs to consider
the integral only over the domain

D = { ϵ

h| log t|
≤ |ξ| ≤ a(x)}
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with a sufficiently small ϵ. To estimate this integral consider both
terms in formula for f2 from (2.19) separately. The contribution of
the first term can be written sa

h−1

∫
D

urough(t, x+ hξ, x0, h) ν(x, dξ),

and is the same to estimate

h−1

∫
D

uasG (t, x+ hξ − x0, h) ν(x, dξ), (2.33)

The estimate of the contribution of the second term is reduced
plainly to the estimate of the same integral. In D

ν(x, dξ) =
O(1) dξ

|ξ|d+α
= O(h| log t|)d+αdξ = O(hα| log t|d+αd(hξ).

Hence, integral (2.33) can be estimated by

O(hα−1)| log t|d+α
∫
uasG (t, x+ η − x0, h) dη = O(hα−1)| log t|d+α.

If |x − x0| ≤ (thα−1)1/α, this is estimated by uasG (because t is
exponentially small with respect to h). If |x − x0| ≥ (thα−1)1/α,
the last expression can be written as

|x− x0|d+αt−1| log t|d+αO(usaG ).

If α ≥ 1, this is obviously bounded by (2.31), which completes the
consideration of the case α > 1.

If α ≤ 1, we shall use estimate (2.31) only for

(thα−1)1/α ≤ |x− x0| ≤ tδ2h−δ1 ,

which gives the second term in (2.25’). (Notice that due to our
assumptions, (thα−1)1/α ≤ tδ2h−δ1 .) If |x−x0| ≥ tδ2h−δ1 , we shall
use estimate (2.29) only when integrating over |ξh| ≤ (thα−1)1/α,
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and integrating over the remaining set of ξ we shall use formula
(2.33). Thus, for |ξh| ≤ (thα−1)1/α, estimating

|ξ|2ν(x, dξ) ≤
(
t

h

)1/α ∣∣∣∣x− x0
h

∣∣∣∣ hαd|hξ|
|x− x0|d+α

instead (2.31) yields for I2 the estimate

I2 = O(| log t|) |x− x0|
t

uasG ,

instead of (2.32), which contributes to the first term in (2.25’). As
we have mentioned, for |ξh| ≥ (thα−1)1/α, we shall use formula
(2.33) for the contribution of the term with f2. To estimate this
integral we estimate

1

h
ν(x, dξ) =

1

h

dξ

|ξ|d+α
=

1

t

thα−1d(hξ)

|hξ|d+α
,

and therefore the integral (2.33) is estimated by∫
uα(t, x−x0+η)t−1uα(t, η) = O(t−1)uα(2t, x−x0) = O(t−1)uα(t, x−x0),

which contributes to the last term in (2.25’).
Turning to the contributions of f3 and f4 in (2.17) one sees

readily that they give nothing new as compared to the terms con-
sidered above, which completes the proof of the Proposition. Notice
only that considering the contribution of the second term in the ex-
pression for f3 one presents ∂H

∂p = ∂Hs

∂p +
∂Hp

∂p . Due to Proposition

5.2.4, the contribution of the first term is O(|x−x0|/t)uαΘc1,c2(|x−
x0|), and the second is considered as in the proof of theorem 5.4.2
to obtain for its contribution the estimate O(1/t)uαΘc1,c2(|x−x0|),
which is actually the same as the first one.

We shall give now an estimate for urough in the boundary layer
{h ≤ |x− x0| ≤ h| log t|k}.

Proposition 2.5. For any K > 0 and k > 0 there exists
κ > 0 such that

urough(t, x, x0, h) = O(1)

(
1 + log+

|x− x0|
t

)κ
χ(t, |x−x0|)uexprough(t, x, x0, h)
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uniformly in the domain

{ 1

K
≤ |x− x0|

h
≤ K

(
1 + log+

|x− x0|
t

)k
, t ≤ Kh}.

Proof. As in the proof of Proposition 2.2 we shall use repre-
sentation (2.11), but shall estimate it in a different way. Using for-
mulas (C20)-(C22) and making the change of the variable p 7→ ph
we rewrite (2.11) in the form

urough(t, x, x0, h) = O(1)χ(t, |x−x0|) exp{−
S(t, x, x0)

h
} exp{− t

h
H(x0, p̂)}I,

(2.34)
where I equals

1

(2π)d

∫
exp{−σ|p|αthα−1+

t

h

∫
e−ipξ(f1+f2)(x, ξ/h) d(ξ/h)+ip(x−x0)} dp

(2.35)
or

I =
1

(2π)d

∫
exp{−σ|p|αthα−1}

× exp{−i(p̃, p)σα|p|α−2thα−2+
t

h

∫
e−ipξ(f1+f2)(x, ξ/h) d(ξ/h)+ip(x−x0)} dp

(2.36)
respectively for α < 1 or α ≥ 1. Here

|f1(η)| ≤ exp{(p̂, η)}fdα(η) (2.37)

(the function fdα being defined in (5.3.31)), and

|f2(η)| ≤ Θb(|η|)|p̂| exp{p̂η}|η|−(d+α−1),

|f2(η)| ≤ Θb(|η|)|p̂|2 exp{p̂η}|η|−(d+α−2) (2.38)

resp. for α < 1 or α ≥ 1 with b being any constant less than a(x).
Consider first the case α < 1. We shall estimate (2.35) as in the

proof of Theorem 5.4.2 by expanding the exponent exp{ th
∫
e−ipξ(f1+

f2)(x, ξ/h) d(ξ/h)} in (2.35) in the power series. The first term in
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thus obtained series in (2.35) is just uα, and it is readily seen that
in the range of parameters we are dealing with

thα−1

|x− x0|d+α
=

O(1)

(ht)d/2

∣∣∣∣x− x0
t

∣∣∣∣−d/2 =
O(1)

(ht)d/2

(
det

∂2H

∂p2
(x0, p̂)

)−1/2

,

and the corresponding term in (2.34) can be estimated by the r.h.s.
of (2.33). The second term

1

(2π)d

∫
exp{−σ|p|αthα−1+ip(x−x0)}

(
t

h

∫
e−ipξ(f1 + f2)(x,

ξ

h
) d
ξ

h

)
dp

is the inverse Fourier transform of the product of two functions,
which equals therefore to the convolution of their inverse Fourier
transforms∫

uα(t, x− x0 − ξ)
t

h
(f1 + f2)(x0,

ξ

h
)h−d dξ. (2.39)

Recall that t ≤ h = O(|x − x0|). Due to (2.37), Proposition 5.3.5
and Theorem 2.5.3, the first term in (2.39) can be estimated by

O(t/h)e|p̂|a(x0)

∫
uα(t, x−x0−ξ)h−dfdα,h(ξ) dξ = O(t/h)e|p̂|a(x0)h−dfdα,h

=
O(|x− x0|)

h
(1 + log+

|x− x0|
t

)h−dfdα,h,

which when inserted in (2.34) will satisfy the required estimate,
because

h−dfdα,h =
O(1)

(ht)d/2

∣∣∣∣x− x0
t

∣∣∣∣−d/2 =
O(1)

(ht)d/2

(
det

∂2H

∂p2
(x0, p̂)

)−1/2

.

The term with f2 in (2.39) can be written in the form

O(t/h)

∫
uα(t, x− x0 − ξ)Θb

(
|ξ|
h

)
|p̂|e|p̂|b h

α−1 dξ

|ξ|d+α−1
.
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Since h = O(|x− x0|), we can choose a small b in such a way that
|ξ| < |x− x0|/2 whenever |ξ| < hb. For these ξ

uα(t, x− x0 − ξ) = O(uα(t, x− x0)),

and therefore the last integral can be estimated by

O(t/h)uα(t, x−x0)|p̂|e|p̂|bhα−1

∫ hb

0

d|ξ|
|ξ|α

= O(t/h)uα(t, x−x0)|p̂|e|p̂|b,

which is again estimated as the first term in (2.39) and which when
inserted in (2.34) gives the term that is readily estimated by the
r.h.s. of (2.33).

The whole series obtained in (2.35) can be presented in the
form

uasG + uasG ⋆ F1 + uasG ⋆ F2 + uasG ⋆ (F1 ⋆ F2), (2.40)

where

Fj =
t

h
h−dfj,h +

1

2!

t

h
h−dfj,h ⋆

t

h
h−dfj,h + ..., j = 1, 2,

⋆ means the standard convolution of the integrable functions (in
other words, Fj is the exponent of fj,h in the sense of convolution),
and fj,h(x) = fj(x/h). Using (5.4.8) one finds that the second
term in the expression for F1(ξ) can be estimated by

1

2

(
t

h

)2

h−2d

∫
fdα,h(ξ−η)ep̂(ξ−η)/hfdα,h(η)ep̂η/h dη ≤ 1

2

(
t

h

)2

h−dfdα,h(ξ)e
p̂ξ/h.

By trivial induction one finds further that

F1 ≤ (e
t
h − 1)e|p̂|a(x0)h−dfdα,h = O(t/h)e|p̂|a(x0)h−dfdα,h,

which gives nothing new as compared with the first term in (2.39).
To estimate F2 we need the following fact, whose elementary proof
is omitted.

Lemma 2.2. Let α ∈ (0, 1), a > 0, and let the function g(x)
in Rd be defined by the formula ga(x) = Θa(|x|)|x|−(d+α−1). Then

(ga ⋆ ga) ≤ C1a
1−αga + C2a

2−2α−dΘa,2a, (2.41)
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ga ⋆ f
d
α ≤ C3a

1−α(1 + ad+α)fdα, (2.42)

where positive constants C1, C2, C3 depends only on d and α.
Since

(ghδ ⋆ f
d
α,h)(x) = (gδ ⋆ f

d
α)(x/h)h

1−α,

it follows from the Lemma that uniformly in δ ≤ 1

ghδ⋆ghδ ≤ Ch1−α(ghδ+h
−dfdα,h), ghδ⋆f

d
α,h ≤ Ch1−αfdα,h. (2.43)

Due to (2.39)

h−df2(ξ/h) ≤ hα−1ghb(ξ)e
|p̂|(b+δ)

with any δ > 0. Hence, by induction, the result of k convolutions
of the function (t/h)h−df2(ξ/h) with itself does not exceed the
function

hα−1Ck−1

(
t

h

)k
e|p̂|(b+δ)(gbh + (k − 1)h−dfdα,h).

Consequently,

F2 ≤ O(hα−1)
t

h
e|p̂|(b+δ)(gbh + h−dfdα,h),

which gives nothing new as compared with the second term in
(2.39). The contribution of the term F1⋆F2 from (2.40) is estimated
in the same way which completes the consideration of the case
α < 1.

The case α ≥ 1 differs by the additional term under the expo-
nent in (2.36) which is increasing in p. To deal with this term we
need the following simple statement from the calculus.

Lemma 2.3. For any α ∈ [1, 2), s0 > 0, v0 > 0, there exists a
constant K such that if s ∈ (0, s0], w, v ∈ Rd, |v| > v0, then∣∣∣∣∫

Rd

exp{−s|p|α − i(p, v) + i(p, w)|p|α−2} dp
∣∣∣∣ ≤ K|w|d/(2−α).

(2.45)
Proof. Obviously (by changing the variable of integration p to

p|v|) it is enough to prove (2.53) only for unit vectors v. Consider
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first a rather trivial one-dimensional situation. In that case one
needs to prove the estimate∣∣∣∣Re ∫ ∞

0

exp{−s|p|α − ip(1− wpα−2)} dp
∣∣∣∣ ≤ Kw1/(2−α)

for any w. Let us consider only positive w (the case of negative w
being even simpler). Let a number p0 be defined by the equation
wpα−2

0 = 1, and let us decompose the domain of integration into
the union of two subintervals: [0, p0] and [p0,∞). Obviously the
first integral does not exceed in magnitude the p0 = w1/(2−α).
Hence, it is suffice to estimate the integral over [p0,∞). Making
in this integral the change of the variable of integration p → y =
p− wpα−1, one rewrites it in the form∫ ∞

0

exp{−s(p(y))α}p′(y) cos y dy.

This integral has the form
∫∞
0
g(y) cos y dy with a positive decreas-

ing function g(y) such that g(0) = 2−α and limy→∞ g(y) = 0. For
such a function this integral is bounded by∫ π/2

−π/2
g(y) cos y dy ≤ (2− α)

∫ π/2

−π/2
cos y dy = 2(2− α),

because it is equal to the convergent sum of an alternating series
with monotonicaly decreasing terms.

Let us sketch the proof for d > 1. For brevity, let d = 2.
Introducing the circular coordinates r, θ for p in such a way that
the vector v has vanishing θ we can write the integral on the l.h.s.
of (2.45) in the form

I =

∫ ∞

0

∫ π

−π
exp{−srα−ir cos θ+irα−1 cosϕw1+ir

α−1 sin θw2}r dr dθ,

where w = w1 cosϕ+ w2 sinϕ. Writing

(r − rα−1w1) cos θ − rα−1w2 sin θ = R(r) cos(θ − ψ)
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with appropriate R and ψ one can present I in the form

I =

∫ ∞

0

∫ π

−π
exp{−srα} cos(R(r) cos(θ − ψ))r dr dθ,

and by periodicity changing θ to ϕ = θ − ψ yields

I =

∫ ∞

0

∫ π

−π
exp{−srα} cos(R(r) cosϕ)r dr dθ.

Due to the definition of Bessel functions (it is given before the
formulation of Proposition 5.2.1), it can be written as

I = 2π

∫ ∞

0

exp{−srα}rJ0(R(r)) dr.

As in one-dimensional case it is actually enough to estimate the
integral

Ĩ = 2π

∫ ∞

r0

exp{−srα}rJ0(R(r)) dr,

with r0 = rα−1
0 w1 so that for r > r0 the function R(r) is increasing

in r and positive. To estimate this integral one can use the known
properties of the Bessel function J0. The simplest way to do it is
using the methods of the proof of Propositions 5.2.2 or 5.2.6. For
example, using (5.2.10) one can rewrite Ĩ in the form

Ĩ = 2
√
2πRe

∫ ∞

r0

exp{−srα} r√
R(r)

exp{πi
4
}W0,0(2iR(r)) dr.

Rotating here the contour of integration on any small angle trans-
forms W0,0 into an exponentially decreasing function, which gives
the required estimate.

End of the proof of Proposition 2.5. Putting s = t/h, v =
(x− x0)/h, w = p̂t/h in (2.45) yields

1

(2πh)

∫ d

R
−σ|p|

αt+ ip(x− x0)− i(p̂, p)σα|p|α−2t

h
dp

= O(h−d)(1 + log+
|x− x0|

t
)d/(α−2)
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in the considered range of |x− x0|. Therefore, arguing for the case
α ≥ 1 in the same way as for α < 1 one estimates (2.36) by the
expression

O

(
1 + log+

|x− x0|
t

)d/(α−2)

(1 + 1 ⋆ F1 + 1 ⋆ F2 + 1 ⋆ (F1 ⋆ F2)),

which is estimated in the same way as (2.40). The proof of the
Proposition is thus completed.

In order to be able to justify the asymptotics urough we should
be able to estimate the convolutions of the remainder F of form
(2.17) with itself and with urough.

Proposition 2.6. Let τ ∈ (0, t), h = O(t) and ω1, ω2 ∈ [0, 2).
Then ∫

χ(t− τ, |x− η|)uexprough(t− τ, x, η)

∣∣∣∣x− η

t− τ

∣∣∣∣ω1

×χ(τ, |η − x0|)uexprough(τ, η, x0)

∣∣∣∣η − x0
τ

∣∣∣∣ω2

dη

= O(1)

(
1 + log+

|x− x0|
t

)(d−1)/2 ∣∣∣∣x− x0
t

∣∣∣∣ω1+ω2

uexprough(t, x, x0).

(2.46)

Proof. It follows from Section 2.5 (see proof of Theorem 2.5.3
and Proposition 2.5.5) that

C−1

(
1 +

|x− x0|
t

)d(
1 + log+

∣∣∣∣x− x0
t

∣∣∣∣)−(d−1)

≤ det
∂2H

∂p2
(x0, p̂(x0))

≤ C

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)d(1 + log+
∣∣∣∣x− x0

t

∣∣∣∣)−(d−1)

(2.47)

(Ct)−1

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−1

≤ ∂2S

∂x2
(x0, p̂(x0))

≤ C

t

(
1 +

|x− x0|
t

)−1(
1 + log+

∣∣∣∣x− x0|
t

∣∣∣∣) (2.48)
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with some constant C. The same estimate (2.48) holds for ∂2S
∂x2

0
.

The integral on the l.h.s. of (2.46) can be estimated then by

O(1)

∫
(2πhτ)−d/2(2πh(t−τ))−d/2

(
1 +

∣∣∣∣x− η

t− τ

∣∣∣∣)−d/2(
1 +

∣∣∣∣η − x0
τ

∣∣∣∣)−d/2

×
(
1 + log+

∣∣∣∣x− η

t− τ

∣∣∣∣)(d−1)/2(
1 + log+

∣∣∣∣η − x0
τ

∣∣∣∣)(d−1)/2 ∣∣∣∣x− η

t− τ

∣∣∣∣ω1
∣∣∣∣η − x0

τ

∣∣∣∣ω1

× exp{−S(t− τ, x, η) + S(τ, η, x0)

h
} dη,

where the integral is taken over all η such that |η − x0| ≤ c, |x −
η| ≤ c. To estimate this integral of the Laplace type one can
use the Laplace method with estimates given in Propositions B1,
B2. To estimate the major term notice that due to the calculus
of variations, the minimum of the phase f(η) = S(t − τ, x, η) +
S(τ, η, x0) over all possible η is equal to S(t, x, x0) and is attained
at the point η(τ), which lies on the solution of the Hamiltonian
system (2.1.2) with Hamiltonian (2.1) joining x0 and x in time t.
Due to the result of Section 2.5, the point η(τ) exists and is unique,
and moreover (see (2.5.8) and the proof of Theorem 2.5.1),

η(τ) = x0 + τ
x− x0
t

(1 +O(|x− x0|)),

or (changing the roles of x0 and x)

η(τ) = x− (t− τ)
x− x0
t

(1 +O(|x− x0|)).

It follows that

η(τ)− x0
τ

=
x− x0
t

(1+O(|x−x0|)),
x− η(τ)

t− τ
=
x− x0
t

(1+O(|x−x0|)).
(2.49)

From (2.48) it follows that

∂2f

∂η2
≥ C

t− τ

(
1 +

∣∣∣∣x− η

t− τ

∣∣∣∣)−1

+
C

τ

(
1 +

∣∣∣∣η − x0
τ

∣∣∣∣)−1

.
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Suppose now that |x − x0|/t does not approach zero (the case of
bounded |x − x0|/t is simpler and we omit it). Therefore, the
principle term of the asymptotics of the integral on the l.h.s. of
(2.46), due to (2.49) and Proposition B2, can be estimated by

(2πh)−d/2 exp{−S(t, x, x0)
h

}
(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−d(
1 + log+

∣∣∣∣x− x0
t

∣∣∣∣)(d−1)

×
∣∣∣∣x− x0

t

∣∣∣∣ω1+ω2
[
τ

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−1

+ (t− τ)

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−1
]−d/2

,

which has the form

O(1)(2πht)−d/2 exp{−S(t, x, x0)
h

}

×
∣∣∣∣x− x0

t

∣∣∣∣ω1+ω2−d/2(
1 + log+

∣∣∣∣x− x0
t

∣∣∣∣)(d−1)

,

which can be estimated by the r.h.s. of (2.46), due to (2.47). To
prove the proposition it remains to estimate the remainder in for-
mula (B5) of Proposition B1. One makes it by taking the constant
r of Proposition B1 in form r = min(τ, t− τ). We omit the details.

Proposition 2.7. Let h ≤ t ≤ t0 with small enough t0. Then
for all τ ∈ (0, t)∫

urough(t− τ, x, η, h)urough(τ, η, x0, h) dη

= O(1)

[
t−δ +

(
1 + log+

|x− x0|
t

)κ]
uexprough(t, x, x0, h) (2.50)

with an arbitrary small δ.

Proof. If both τ and t − τ are of the order t, the required
estimate was proved in Proposition 2.6. Suppose that τ ≤ h ≤ t/2.
Then urough(t − τ, x, η, h) can be estimated by uexprough. Due to
Propositions 2.2, 2.5, if h = O(|η − x0|), urough(τ, η, x0, h) can
be also estimated by the corresponding uexprough with perhaps an

additional multiplier of form O(1 + log+(|η − x0|/τ)κ, and for this
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range of η the integral on the l.h.s. of (2.50) was again estimated
as in the Proposition 2.6. Therefore, it remains to estimate this
integral over the range of η such that |x0−η| ≤ ϵh with an arbitrary
small ϵ. In that case, urough is estimated by uα and thus it remains
to prove that∫
{|η−x0|<ϵh}

uexprough(t−τ, x, η, h)u
as
G (τ, η, x0, h) dη = O(t−δ)uexprough(t, x, x0, h).

(2.51)
The l.h.s. of this equation can be presented in the form∫

{|x0−η|<ϵh}

O(1)

(2πh(t− τ))d/2

(
1 +

∣∣∣∣x− η

t− τ

∣∣∣∣)−d/2

exp{−S(t− τ, x, η)

h
}uα(τ, η, x0, h) dη. (2.52)

One has

S(t−τ, x, η) = S(t, x, x0)−
∂S

∂t
(t−θ1τ, x, x0)τ+

∂S

∂x0
(t, x, x0+θ2(η−x0))(η−x0)

with some θ1, θ2 ∈ (0, 1). Since

∂S

∂x0
(t, x, x0 + θ2(η − x0)) = O(| log t|),

∂S

∂t
(t− θ1τ, x, x0) = −H(x0, p0(t− θ1τ, x, x0)),

and H is bounded from below, one finds that

S(t− τ, x, η) > S(t, x, x0) +O(τ) +O(| log t|)|η − x0|.

Since |η − x0| ≤ ϵh and τ < h, it follows that

exp{−S(t− τ, x, η)

h
} = O(t−δ) exp{−S(t, x, x0)

h
}.

Furthermore, since

|x− x0| ≤ |x− η|+ |η − x0| ≤ ϵh+ |x− η| ≤ ϵ(t− τ) + |x− η|,
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one has (
1 +

∣∣∣∣x− η

t− τ

∣∣∣∣)−d/2

= O(1)

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−d/2

,

and therefore (2.52) can be estimated by

O(t−δ)

∫
{|x−η|<ϵh}

uasG (τ, η, x0, h)(2πht)
−d/2

(
1 +

∣∣∣∣x− x0
t

∣∣∣∣)−d/2

× exp{−S(t, x, x0)
h

} dη = O(t−δ)uexprough(t, x, x0, h),

which completes the proof.

Proposition 2.8. Let h ≤ t/3. Then∫ t

0

dτ

∫
Rd

dη urough(t− τ, x, η, h)F (τ, η, x0, h)

= O(urough(t, x, x0, h))

(
tω + |x− x0|

(
|x− x0|

t

)b)

+O(| log t|) exp{−Ω

h
}Θc1,2c2(|x− x0|) (2.53)

with some Ω > 0, ω ∈ (0, 1) and b > 0, where b can be chosen
arbitrary small by taking a sufficiently small c.

Proof. Let us present the integral on the l.h.s. of (2.53) as the
sum of the three integrals over the domains τ ≤ h, h ≤ min(τ, t−τ),
t − τ ≤ h. In the second integral both terms can be estimated by
the corresponding uexprough and we get for this integral the required
estimate using Propositions 2.3, 2.6. Notice that the last term in
(2.53) appears when we estimate uexprough outside the domain |x −
x0| ≤ c. Next, the third integral is estimated similarly to the first
one, so we need only to consider the first integral over the domain
0 ≤ τ ≤ h. In the range of η, where h = O(|η − x0|), this integral
can again be estimated as before due to Proposition 2.5 (and the
Remark after it). Therefore, we only need to estimate this integral
over the range {|η − x0| ≤ ϵh} with some ϵ. In this domain we
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estimate F (τ, η, x0, h) by formulas (2.25), (2.25’) and urough(t −
τ, x, η, h) by uexprough(t − τ, x, η, h). Following the lines of the proof

of Proposition 2.7 we can estimate further uexprough(t− τ, x, η, h) by

O(t−δ)uexprough(t, x, x0, h). Thus, we need to estimate

O(t−δ)uexprough(t, x, x0, h)

∫ t

0

dτ

∫
{|η−x0|≤ϵ}

dη F (τ, η, x0, h) (2.54)

with F given in (2.25), (2.25’).
Let α > 1. The contributions of the first three terms in (2.25)

are estimated using Proposition 2.7. The contribution of the last
term is

O(t−δ)uexprough(t, x, x0, h)

∫ t

0

dτ

∫
{|η−x0|≤ϵ}

dη
( τ
h

)−1/α hα−2| log τ |
|η − x0|d+α−2

= O(t−δ)uexprough(t, x, x0, h)

∫ t

0

( τ
h

)−1/α

| log τ | dτ

= O(t−δ)uexprough(t, x, x0, h)| log t|t
1−1/αh1/α,

which obviously contributes to the first term in (2.53).
Now let α ≤ 1. Estimating the contribution of the third term

of (2.25’) in (2.54) as above, but taking into account the upper
bound |x0− η| and the assumptions on δ2, δ1 from Proposition 2.4,
yields for this contribution the estimate

O(t−δ)uexprough(t, x, x0, h)

∫ t

0

τ δ2(2−α)h−δ1(2−α)hα−2+1/ατ−1/α| log τ | dτ

= O(t−δ)uexprough(t, x, x0, h)

∫ t

0

τ δ2(2−α)−1/α| log τ | dτ = tωO(uexprough(t, x, x0, h))

with some ω ∈ (0, 1), as required. At last, estimating the contribu-
tion of the last term of (2.25’) in (2.54) gives for this contribution
the estimate

O(t−δ)uexprough(t, x, x0, h)

∫ t

0

dτ

∫
{|η−x0|≥tδ2h−δ1}

hα−1 dη

|x0 − η|d+α
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= O(t−δ)uexprough(t, x, x0, h)

∫ t

0

hα−1(tδ2h−δ1)−α dτ

= O(t−δ)uexprough(t, x, x0, h)

∫ t

0

h(α−1)/(2−α)τ−δ2α dτ

= O(uexprough(t, x, x0, h))t
1−δα−(1−α)/(2−α)−δ,

which again contributes to the first term in (2.53) due to the as-
sumptions on δ2 and because δ can be made arbitrary small.

Corollary. Let h ≤ t/3. Then for some ω ∈ (0, 1)∫ t

0

dτ

∫
Rd

dη urough(t− τ, x, η, h)F (τ, η, x0, h)

= O(tω)urough(t, x, x0, h) +O(exp{−h−ω})Θ0,2c(|x− x0|) (2.55)

Proof. Due to the assumptions, t−1 = O(h−1). Therefore, for
|x − x0| ≤ tϵ+b/(1+b), the second term of the r.h.s. of (2.53) can
be obviously included in the first term on the r.h.s. of (2.55). The
third term of the r.h.s. of (2.53) and for |x − x0| ≥ tϵ+b/(1+b) the
second term can be included in the last term in (2.55).

Now we can state the main result of this section. We know
already from Proposition 2.1 that urough gives a multiplicative
asymptotics for the Green function uG of equation (1.1), (1.2) for
small t and small x−x0. We can prove now that it presents a local
asymptotics for small h and small x− x0.

Theorem 2.1. If t and h/t are small enough, then

uG(t, x, x0, h) = urough(t, x, x0, h)(1 +O(tω)) +O(1) exp{−h−ω},
(2.56)

where ω ∈ (0, 1) is a constants and the last term in (2.56) is an
integrable function of x.

Proof. We need to estimate the series of type (5.3.26) with
urough instead of uα and F defined in (2.17) and estimated in
(2.18), (2.25), (2.25’). The second term in this series (i.e. the
first non-trivial term) is already estimated in (2.55). Other terms
are estimated using the same arguments as in the proof of Propo-
sition 2.8, and the general term can be estimated by induction,
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which proves the theorem (see e.g. the proof of Theorem 4.1 for
similar arguments).

The following statement is a direct corollary of the Theorem.

Proposition 2.9. Local principle of large deviations. For any
small enough t and x− x0

lim
h→0

h log uG(t, x, x0, h) = −S(t, x, x0),

where S(t, x, x0) is the two-point function corresponding to the Hamil-
tonian (2.1).

3. Refinement and globalisation

In this section we improve the results of the previous one ob-
taining first more exact local asymptotics of the Green function uG
and then globalising them.

As in the previous section, let z(t, v, x0) be the function defined
in Theorem 2.5.2 and let y(t, x, x0) be given by (2.2) in the ball
|x − x0| ≤ 2c, let χ(t, y) be a smooth molyfier (as the function of
the second variable) of the form χc2c1 from Lemma E1 with 0 < c1 <
c2 < c. Define

uasG (t, x, x0, h) =
χ(t, |x− x0|)

(2πh)d
B(t, x, x0)

×
∫
Rd

exp{− ipy(t, x, x0)−H(x0, ip)t

h
} dp (3.1)

with

B(t, x, x0) =

(
det

∂2H

∂p2
(x0, p̂)

)1/2

ϕ(t, x, x0)t
d/2, (3.2)

where

ϕ(t, x, x0) = J−1/2(t, x, x0) exp{
∫ t

0

∂2H

∂p∂x
(X(s), P (s)) ds}, (3.3)
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is a solution to the transport equation (3.1.13) corresponding to
Hamiltonian (2.1) (see (3.1.18)), and p̂ was defined in the formula-
tion of Proposition 2.2. Consequently,

uasG (t, x, x0, h) = B(t, x, x0)urough(t, x, x0, h), (3.4)

where urough is defined in (2.3),(2.4). Due to (2.9) and the results
of Section 2.5 it follows that

J(t, x, x0) = det
∂X

∂p0
(t, x, x0) = td det

∂2H

∂p2
(x0, p0(t, x, x0))(1+O(|x−x0|))

= td det
∂2H

∂p2
(x0, p̂)(1 +O(|x− x0|)),

and ∂2H
∂p∂x (X(s), P (s)) = O(|x − x0|)/t. Therefore B(t, x, x0) =

1 + O(|x − x0|). It follows that uasG (t, x, x0, h) = (1 + O(|x −
x0|)urough(t, x, x0, h) and therefore Proposition 2.1 and Theorem
2.1 are valid also with uasG instead of urough. It turns out however
that actually uasG presents a more exact asymptotics of the Green
function with respect to h → 0, which is stated in the following
main result of this Chapter.

Theorem 3.1. For small enough c, h0, and t0 and any δ ∈
(0, t0)

uG(t, x, x0, h) = (1 +O(hω))uasG (t, x, x0, h) +O(exp{−Ω

h
)} (3.5)

uniformly in the domain δ ≤ t ≤ t0, h ≤ h0, where the second term
is an integrable function in x.

Proof. It follows the line of the proof of Theorem 2.1 with
some technical complications. Multiplying (2.7) by B(t, x, x0) one
obtains for small h̃ (see Proposition 2.2) that

uasG (t, x, x0, h) = χ(t, |x− x0|)uexp(t, x, x0, h)(1 +O(h̃)) (3.6)

with

uexp = B(t, x, x0)u
exp
rough(t, x, x0, h) = (2πh)−d/2ϕ(t, x, x0) exp{−

S(t, x, x0)

h
}.

(3.7)
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Consequently, for small h̃ the multiplicative asymptotics of the
function uasG can be given by function (3.7) which is constructed
according to the general method of Section 3.1. This fact actually
constitutes the reason for definition (3.3). To go further, we need
to have an appropriate modification of Propositions 2.3, 2.4, i.e.
the estimates for the function

Fas(t, x, x0, h) =

[
∂

∂t
− 1

h
H(x,−h∇)

]
uasG . (3.8)

Using the formula of the commutation of a Lévy-Khintchine PDO
with an exponential function from Proposition D1, yields for uasG
the formula of type (2.19), but with χB instead of χ in all expres-
sions. Using instead Proposition D1 a more precise formula from
Proposition D2 gives

Fas = − 1

(2πh)dh

∫
Rd

(f̃1+hf̃2+hf̃3+hf̃4) exp{−
ipy(t, x, x0)−H(x0, ip)t

h
} dp

(3.9)
with

f̃1 = B(t, x, x0)f1 − hχ(t, |x− x0|)g,

g(t, x, p) =
∂B

∂t
+

(
∂B

∂x
,
∂H

∂p
(x, ip

∂y

∂x
)

)
+
1

2
tr

(
∂2H

∂p2
(x, ip

∂y

∂x
)ipj

∂2yj
∂x2

)
,

f̃2 = χ(t, |x− x0|)
1

h

∫
exp{−i(p, ∂y

∂x
ξ)}ν(x, dξ)

×
(
exp{−hi

∫ 1

0

(1− s)(pj
∂2yj
∂x2

(x+ shξ)ξ, ξ) ds} − 1 +
h

2
ipj(

∂2yj
∂x2

(x)ξ, ξ)

)
,

f̃3 = −∂χ
∂t
B −B

(
∂χ

∂x
,
∂H

∂p
(x, ip

∂y

∂x
(t, x, x0))

)
+

∫ (
∂(χB)

∂x
, ξ

)

×

(
exp{h

i

∫ 1

0

(1− s)(pj
∂y2j
∂x2

(x+ shξ)ξ, ξ) ds} − 1

)
exp{−i(p, ∂y

∂x
ξ)}ν(x, dξ),

f̃4 = h

∫
Rd

(∫ 1

0

(1− s)ds
∂2(χB)

∂x2
(x+ shξ)ξ, ξ

)
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× exp{−hi
∫ 1

0

(1−s)(pj
∂2yj
∂x2

(x+shξ)ξ, ξ) ds} exp{−i(p, ∂y
∂x
ξ)}ν(x, dξ).

Making the same change of the variable in (3.9) as in the proof
of Proposition 2.3 will amount to the change of the argument p
to −ip̂ + p in all expressions and to the change of the phase to
Σ̂(p) given by (2.13). The first term in f̃1 is proportional to f1
from (2.19) and it was proved that f1 vanishes at the saddle-point.
Therefore, the first term of the expansion in small h of integral
(3.9) vanishes. The key moment is to prove that unlike (2.19), the
second term in this expansion vanishes as well. (except for the
boundary layer reflected in f̃3). Namely, we claim that for small t
and h̃

Fas = O(h)uasG

(
1 +

(
|x− x0|

t

)1+b
)
+O(t−1−b)Θc1,c2(|x−x0|) exp{−

Ω

h
}.

(3.10)
To prove this, let us simplify the expression for g. Since ϕ

satisfies transport equation (3.13), and due to the formula

∂2S

∂x2
= p̂j

∂2yj
∂x2

+
∂p̂

∂x

∂y

∂x

one can write denoting D = ∂2H
∂p2 (x0, p̂):

∂B

∂t
= −1

2
B tr

(
∂2H

∂p2
(x, p̂

∂y

∂x
)(p̂j

∂2yj
∂x2

+
∂p̂j
∂x

∂yj
∂x

)

)

−td/2(detD)1/2
(
∂ϕ

∂x
,
∂H

∂p
(x, p̂

∂y

∂x
)

)
+
1

2
B tr

(
∂3H

∂p3
(x0, p̂)

∂p̂

∂t
×D−1

)
+
d

2
t−1B,

and

∂B

∂xj
= td/2(detD)1/2

∂ϕ

∂xj
+

1

2
B tr

(
∂3H

∂p3
(x0, p̂)

∂p̂

∂xj
×D−1

)
.

Consequently,

g(−ip̂) = −1

2
B tr

(
∂2H

∂p2
(x, p̂

∂y

∂x
)× ∂p̂j

∂x

∂yj
∂x

)
+
1

2
B tr

(
∂3H

∂p3
(x0, p̂)

∂p̂

∂t
×D−1

)
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+
1

2
B tr

(
∂3H

∂p3
(x0, p̂)

∂p̂

∂xj
×D−1

)
∂H

∂pj
(x, p̂

∂y

∂x
) +

dB

2t
.

Differentiating the defining equation for p̂ one obtains

∂p̂

∂t
= D−1(− 1

t2
y+

1

t

∂y

∂t
) =

1

tD

(
∂y

∂t
− ∂H

∂p
(x0, p̂)

)
,

∂p̂

∂x
=

1

t
D−1 ∂y

∂x
,

which implies that

g(−ip̂) = B

2t

∂3H

∂pi∂pj∂pk
(x0, p̂)D

−1
kl

(
∂y

∂t
+
∂y

∂x

∂H

∂p
(x, p̂

∂y

∂x
)− ∂H

∂p
(x0, p̂)

)
l

D−1
ji

−B
2t

(
∂2H

∂p2
(x, p̂

∂y

∂x
)

)
kl

D−1
ij

∂yj
∂xk

∂yi
∂xl

+
dB

2t
.

Due to Proposition B4 and to the expression (2.13) for the phase
Σ̃, in order to prove that the second term in the expansion of (3.9.)
in h vanishes, one must show that

1

2
tr
∂2f1
∂p2

(−ip̂)D−1−1

2

∂f1
∂pi

(−ip̂) ∂3H

∂pj∂pk∂pl
(x0, p̂)D

−1
ij D

−1
kl −g(−ip̂) = 0,

which readily follows from the above expression for g(−ip̂) and the
formulas for the derivatives of f1 given in the proof of Proposition
2.3. Other arguments for obtaining (3.10) are the same as that
used in the proof of Proposition 2.3. Notice only that now, unlike
the case of formula (2.18), we must write the contribution of f3
separately, it has the formO(uasG )(|x−x0|/t)1+b and does not vanish
only for |x − x0| ∈ [c1, c2], and consequently, it can be written in
the form of the last term in (3.10).

Turning to the estimate of Fas for small t we claim that the
same estimates (2.25), (2.25’) of Proposition 2.4 hold for Fas as
well. To see this, notice that everything is estimated in the same
way as in Proposition 2.4 except of the new terms presented by the
function g in the expression for f̃1. We must show that the contri-
bution of g gives nothing new sa compared with other terms. Let
us estimate only the contribution of the first term in the expression
for g, namely of ∂B∂t , other terms being estimated similarly.
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From the definition of B and using again the notation D =
∂2H
∂p2 (x0, p̂) one gets

1

B

∂B

∂t
=

1

2
tr

(
∂D

∂t
D−1

)

−1

2
tr

(
∂

∂t

∂X

∂p0

(
∂X

∂p0

)−1
)

+
∂2H

∂p∂x
(x, P (t, x0, p0)) +

d

2t
,

where X = X(t, x0, p0(t, x, x0)) and therefore

∂

∂t

(
∂X

∂p0

)
=

∂

∂p0
Ẋ(t, x0, p0) +

∂2X

∂p20

∂p0
∂t

=
∂2H

∂p∂x
(x, P (t, x0, p0))

∂X

∂p0
+
∂2H

∂p2
(x, P (t, x0, p0))

∂P

∂p0

−∂
2X

∂p20

(
∂X

∂p0

)−1
∂H

∂p
(x, P (t, x0, p0)).

Due to the estimates of the derivatives of H from Theorem 5.3.2,
one can write

∂

∂t

∂X

∂p0

(
∂X

∂p0

)−1

= O

(
|x− x0|

t

)

+
∂2H

∂p2
(x, P (t, x0, p0))

1 +O(|x− x0|)
t

(
∂2H

∂p2
(x0, p0)

)−1

−∂
2X

∂p20

(
∂2H

∂p2
(x0, p0)

)−1
∂H

∂p
(x, P (t, x0, p0))

×1 +O(|x− x0|)
t

(
∂2H

∂p2
(x0, p0)

)−1

.

Since

∂2H

∂p2
(x, P (t, x0, p0)) =

∂2H

∂p2
(x0, p0)+

O(|x− x0|2)
t

= D+
O(|x− x0|2)

t
,
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and similarly estimates hold for ∂H∂p , and again due to the estimates
of Theorem 5.3.2 and the expression for the second derivatives of
X from Proposition 2.5.1, it follows that

∂

∂t

∂X

∂p0

(
∂X

∂p0

)−1

= 1−∂
3H

∂p3
(x0, p0)D

−1 ∂H

∂p
(x0, p0)D

−1+O

(
|x− x0|

t

)(
1 + log+

|x− x0|
t

)
.

Similarly, and due to (2.22),

∂D

∂t
D−1 =

∂3H

∂p3
(x0, p̂)

∂p̂

∂t
D−1 =

1

t

∂3H

∂p3
(x0, p̂)D

−1

(
∂y

∂t
− ∂H

∂p
(x0, p̂)

)
D−1

= −1

t

∂3H

∂p3
(x0, p0)D

−1 ∂H

∂p
(x0, p0)D

−1+O

(
|x− x0|

t

)(
1 + log+

|x− x0|
t

)2

.

Consequently, one obtains

∂B

∂t
= O

(
|x− x0|

t

)(
1 + log+

|x− x0|
t

)2

B,

This implies that the contribution of ∂B
∂t does not give anything

new as compared with other terms of (2.25), (2.25’). We conclude
that the estimates of Proposition 2.4 remain the same for Fas.

Following further all the steps of the proof of Theorem 2.1,
one obtains instead of (2.53) or (2.55) the estimate∫ t

0

dτ

∫
Rd

dη urough(t− τ, x, η, h)F (τ, η, x0, h)

= O(tω)

[
hωurough(t, x, x0, h) + exp{−Ω

h
}Θ0,2c(|x− x0|)

]
(3.11)

with some Ω > 0 and ω ∈ (0, 1), because, on the one hand, the
estimate tω in (2.53) appears from integrating over τ ≤ h and can
be thus presented in the form tωhω with some (different) ω ∈ (0, 1),
and on the other hand, we have now additional multiplier h at the
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second term in (2.53). Therefore, Theorem 3.1 is obtained in the
same way as Theorem 2.1.

Clearly, formulas (3.5)-(3.7) implies the statement of Theorem
1.1. Moreover, when the local asymptotics of uG is obtained, one
constructs global small h asymptotics of uG in the same way as it
was done for the standard diffusion in section 3.5.5. Consequently
one obtains the following result.

Theorem 3.2. The formulas of Theorem 3.5.1 and of Propo-
sitions 3.5.2-3.5.7 are valid for the equation (1.1), (1.2).

Let us note for conclusion that the results of this chapter can
be generalised to cover some other classes of jump-diffusions, for
instance, the localised versions of the stable-like jump-diffusions
described in section 5.5.
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Chapter 7. COMPLEX STOCHASTIC DIFFUSION
OR STOCHASTIC SCHRÖDINGER EQUATION

1. Semiclassical approximation: formal asymptotics

In this chapter we develop the method of semiclassical asymp-
totics for stochastic complex diffusion equations. Actually we shall
consider the equations which appeared recently in the stochastic
models of open systems, in the theory of stochastic and quan-
tum stochastic filtering and continuous quantum measurements.
Namely, we shall consider the equation

du =

(
h

2
tr (G

∂2u

∂x2
)− 1

h
V (x)u− |α|2

2
x2u

)
dt+ αxu dW, (1.1)

where x ∈ Rm, dW = (dW 1, ..., dWm) is the stochastic differential
of the standard Brownian motion in Rm, G is a symmetric complex
matrix, α is a complex constants, |G| > 0, ReG ≥ 0, and V (x) is
an analytic function in the strip Stb = {x : |Imx| ≤ b} with some
b > 0. Main results presented here can be extended to cover the
case of more general equations (1.1) with G and α depending on
x. The deduction of this equation in the framework of the theory
of continuous quantum measurement is given in Appendix A and
the discussion of the simplest examples - in Section 1.4. Clearly,
equation (1.1) can be written formally in form (0.9) with the formal
random non-homogeneous Hamiltonian

1

2
(Gp, p)− V (x)− h

(
|α|2

2
x2 − αxḂ(t)

)
,

where Ḃ is a formal (or generalised) derivative of the Brownian
motion. Therefore, one can expect that some generalisation of
the procedure of Chapter 3 will lead to the small h or small t
asymptotics of the solutions of equation (1.1). This is the subject
of the present chapter.

Let us indicate first two simplest particular cases of (1.1),
where the semiclassical approximations have been studied in [K1]
and [TZ1], [TZ2] (by different approaches). These are the cases
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when either (i) all coefficients are real (stochastic heat equation),
or (ii) α,G, V are purely imaginary (unitary stochastic Schrödinger
equation). Both these cases lead to the real Hamilton-Jacobi equa-
tions, which can be solved using the theory developed in Section
2.7. At the end of the second section, we shall present for com-
pletenes an asymptotic expansion for the Green function of stochas-
tic heat equation, see also [LR] and [So] for small time asymptotics
of the heat kernel of stochastic heat equations. Now we shall draw
our attention to a more difficult, essentially complex, situation.
Namely, we shall suppose that

αR = Reα > 0, GI = ImG > 0, GR = ReG ≥ 0. (1.2)

In this section we construct formal asymptotics for the Green
function of equation (1.1) (actually, two types of these asymp-
totics), i.e. to its solution uG(t, x, x0) with the Dirac initial con-
dition δ(x − x0). Further on we shall justufy these asymptotics.
In the last section we consider another approach to the construc-
tion of the solutions of equation (1.1), namely, the method of path
integration. A new moment in the semiclassical expansion of the
path integral formula for the solutions to equation (1.1), (1.2) is the
nessecity to move the (infinite dimensional) contour of integration
to the complex domain and to use the infinite-dimensional method
of saddle-point (and not just Laplace or stationary phase methods
needed for this procedure in the case of the (classical or stochastic)
heat or unitary Schrödinger equations respectively).

To construct semiclassical asymptotics for equation (1.1) we
shall develop first the approach from [K1](applied there for the
above indicated real cases) using the results of Section 1.6 on the
complex Hamilton-Jacobi equation. To see the main idea, let us
look for the solution of equation (1.1) in the form

u = φ(t, x, [W ]) exp{− 1

h
S(t, x, h, [W ])}. (1.3)

Note, that this form differs from the standard WKB substitution by
more complicated dependence of the phase on h. This dependence
will be made more explicit further. By the Ito formula we have

du =

(
dφ+ φ(− 1

h
dS +

1

2h2
(dS)2)− 1

h
dφdS

)
exp{− 1

h
S}.
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Consequently, substituting (1.3) in (1.2) yields

dφ+

[
− 1

h
H(x,

∂S

∂x
)φ+ (

∂H

∂p
(x,

∂S

∂x
),
∂φ

∂x
) +

1

2
tr
∂2H

∂p2
∂2S

∂x2
φ+

|α|2

2
x2φ

]
dt

−h
2
tr(G

∂2ϕ

∂x2
) dt+ φ(− 1

h
dS +

1

2h2
(dS)2)− 1

h
dφdS = αxφdW,

(1.4)
where we denoted by H the classical Hamiltonian

H(x, p) =
1

2
(Gp, p)− V (x) (1.5)

of the complex stochastic equation (1.2). The main idea of the
approach proposed here is to add additional (linearly dependent
on h) terms in the Hamilton - Jacobi equation in such a way that
the corresponding transport equation would take the standard de-
terministic form. To this end, let us write the Hamilton-Jacobi
equation in the form:

dS +H(x,
∂S

∂x
) dt− h

2
(α2 + |α|2)x2 dt+ hαx dW = 0, (1.6)

or more explicitly

dS+

(
1

2
(G
∂S

∂x
,
∂S

∂x
)− V (x)

)
dt− h

2
(α2+ |α|2)x2 dt+hαx dW = 0.

(1.7)
One sees readily that equation (1.4) is satisfied up to a term of the
order O(h), if (1.6) is fulfilled and the following transport equation
holds:

dφ− αxdφdS + (
∂H

∂p
,
∂φ

∂x
) dt+

1

2
tr
∂2H

∂p2
∂2S

∂x2
φdt = 0.

It follows that the differential dφ has no stochastic terms, and
therefore dφdS = 0 and the transport equation takes, in fact, the
standard form (see Chapter 3):

dφ+ (
∂H

∂p
,
∂φ

∂x
) dt+

1

2
tr

(
∂2H

∂p2
∂2S

∂x2

)
φdt = 0. (1.8)
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To solve equation (1.6) by the method of Sections 1.6, 1.7, we
need to consider the corresponding Hamiltonian system{

dx = Gpdt,
dp = (∂V∂x + h(α2 + |α|2)x) dt− hα dW.

(1.9)

Along the trajectories of this system equation (1.7) can be written
in the form

dφ

dt
+

1

2
tr
∂2H

∂p2
∂2S

∂x2
= 0, (1.10)

which is again the same as in the deterministic case.
Before formulating a general result, let us show how the pro-

posed method works on the simplest example, where the solutions
of the Hamilton-Jacobi and transport equations can be written
explicitly, and therefore one does not need the general theory.
Namely, consider the case of vanishing potential V and the ma-
trix G being a complex constant (i.e. it is proportional to the unit
matrix). We obtained the exact Green function for this equation in
Section 1.4 using Gaussian solutions. Let us recover this solution
using the complex stochastic WKB method described above. The
Hamilton-Jacobi equation and the Hamiltonian system in that case
have the form (1.7), (1.9) with vanishing V . Obviously, one can
write down the solution to (1.9) with vanishing V and G being a
constant explicitly:{
x = x0 coshβt+ p0Gβ

−1 sinhβt− hαGβ−1
∫ t
0
sinhβ(t− τ) dW (τ),

p = x0βG
−1 sinhβt+ p0 coshβt− hα

∫ t
0
coshβ(t− τ) dW (τ).

,

(1.11)
where the complex number β is uniquely define by the conditions

β2 = hG(α2 + |α|2), −π/4 < arg β < π/2.

Therefore, for all x, x0 and each t > 0 there exists a unique

p0 =
β

G sinhβt

(
x− x0 coshβt+

hαG

β

∫ t

0

sinhβ(t− τ) dW (τ)

)
(1.12)
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such that the solution (1.11) with initial values x0, p0 joins the
points x0 and x in time t. And consequently, the two-point function
SW (t, x, x0) (see Sections 2.6, 2.7) can be calculated explicitly using
the formula

SW (t, x, x0, h) =
1

2

∫ t

0

(Gp2(τ)+h(α2+|α|2)x2(τ)) dτ−hα
∫ t

0

x(τ) dW (τ),

(1.13)
where the integral is taken along this solution. Furthermore, it
follows from (1.11) that the Jacobian J = det(∂x/∂p0) is equal to
(G sinhβt/β)m and thus does not depend on x. Therefore, the re-
mainder h∆ϕ in (1.4) vanishes, and the asymptotic Green function
of form (1.3) coincides actually with the exact one and is equal to

uWG (t, x, x0, h) = (2πh)−m/2
(

β

G sinhβt

)m/2
exp{− i

h
SW (t, x, x0, h)}.

(1.14)
Simple but tedious calculations of SW from (1.11)-(1.13) show that
formula (1.14) coincides with the formula 1.4.13 from Theorem
1.4.1. One can use this example to give a well posedness theorem for
the Cauchy problem of equation (1.2) with rather general potential
(see [K1]).

Turning to the general case of nonvanishing V suppose that
V is analytic and its second derivative is bounded in the strip
Stb = {x = y + iz ∈ Cm : |y| ≤ b} with some b > 0. In that case it
follows from the theory of Sections 2.6, 2.7 that the boundary value
problem for the corresponding Hamiltonian system is solvable for
|x − x0| ≤ r, t ∈ (0, t0], x, x0 ∈ Stb/2 with some c and t, the solu-
tion giving the saddle-point for the corresponding problem of the
complex calculus of variations is unique, the (random) two-point
function SW (t, x, x0, h) is analytic in x and x0 under these assump-
tions and satisfies the Hamilton-Jacobi equation. Furthermore, the
function ϕ = J−1/2(t, x, x0), where J is the Jacobian det ∂X∂p0 along
this solution is well defined under these assumptions and satisfies
the corresponding transport equation. Consequently the function

uas = (2πh)−m/2χ(|x− x0|)ϕW (t, x, x0) exp{−SW (t, x, x0, h)/h},
(1.15)
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where χ is a smooth molyfier (which equals one for |x−x0| ≤ r− ϵ
with some positive ϵ and vanishes for |x − x0 ≥ r), is smooth,
satisfies the Dirac initial conditions (3.1.4), and satisfies equation
(1.1) up to the remainder

hF (t, x, x0) = (2πh)−m/2h

×
[
1

2
(G
∂2ϕ

∂x2
χ(|x− x0|) +O(ϕ)(th)−1Θr−ϵ,r(|x− x0|)

]
exp{−SW (t, x, x0, h)

h
}.

(1.16)
Thus we proved the following result.

Theorem 1.1. Function (1.15) is well defined and is a formal
asymptotic solution to the problem (1.1), (1.2), (3.1.4) in the sense
that it satisfies equation (1.1) up to a smaller (in h) term of form
(1.16) and satisfies the Dirac initial condition (3.1.4).

Next section will be devoted to the justification of this asymp-
totics. Now we construct another version of semiclassical asymp-
totics of the Green function of equation (1.1), which was first con-
structed in [K3], [BK] for a particular case of this equation. For
this construction, it is convenient to consider separately two cases.

First let ReG = 0 and ReV = 0 on the real plane. Then
equation (1.1) can be written in the form

du = (
h

2
i tr (G

∂2u

∂x2
)− i

h
V (x)u− |α|2

2
x2u) dt+ αxu dW, (1.17)

with positive constant G (which equals to GI in previous notations)
and a smooth real V (x). One readily sees then that the two-point
function SW can be presented in the form −iS1 + hS2, where S1

is real for real x, x0 and does not depend on W and h. Thus the
formal asymptotic solution uas can be rewritten in the form

uas = (2πh)−m/2χ(|x− x0|)ψW (t, x, x0, h) exp{iS1(t, x, x0)/h},
(1.18)

with

ψW (t, x, x0, h) = ϕW (t, x, x0)(1 + S2(t, x, x0, h) +O(h)).

It turns out moreover that assuming additionally that V (x) is
bounded together with its second derivatives in a neightborhood
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of the real subspace Imx = 0, one can get get rid of the molyfier
χ in the asymptotical formula (1.18). To see this, let us substitute
the function of form

uas = (2πh)−m/2ψW (t, x, x0) exp{iS1(t, x, x0)} (1.19)

with a real deterministic S1 in equation (1.17). Equalising the
coefficients at h−1 and h0, one obtains for S1 the standard (deter-
ministic and real) Hamilton-Jacobi equation of the form

∂S

∂t
+

1

2
G

(
∂S

∂x

)2

+ V (x) = 0 (1.20)

and for ψ a stochastic version of the transport equation

dψ +

(
G
∂ψ

∂x

∂S

∂x
+

1

2
G∆Sψ +

|α|2

2
x2ψ

)
dt = αxψ dW. (1.21)

As usual in WKB constructions of the Green functions, one takes as
the solution of the Hamilton-Jacobi equation (1.20) the two-point
function S1(t, x, x0) of the corresponding problem of the calculus
of variations with the Hamiltonian

H(x, p) =
1

2
(Gp, p) + V (x) (1.22)

and the Lagrangian L(x, v) = 1
2 (Gv, v) − V (x). Notice the differ-

ence of the signs at V in expressions (1.5), (1.22) (which is due
to the difference of (1.3) and (1.19)), and also the fact that H
of form (1.22) is real. The two-point function S1 is expressed in
terms of the solutions of the real Hamiltonian system ẋ = Gp,
ṗ = −∂V

∂x . Since V is bounded together with its second derivative,
the boundary value problem for this system is uniquely solvable for
all (real) x, x0 and t ≤ t0 with some t0 > 0 (see Proposition 2.2.9).
Therefore, S1 is well defined and smooth for all such x, x0, t. Fur-
thermore, to solve (1.21), put ψW = ϕ1µW with the deterministic

ϕ1 = J
−1/2
1 (t, x, x0), where J1 is the Jacobian (corresponding to

the solutions of the Hamiltonian system with Hamiltonian (1.22)).
One obtains then for µW the following equation

dµ+

(
(G
∂µ

∂x
,
∂S

∂x
) +

|α|2

2
x2µ

)
dt = αxµdW. (1.23)
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Since
∂µ

∂t
+

(
G
∂µ

∂x
,
∂S

∂x

)
=
dµ

dt

is the full derivative along the solutions of the Hamiltonian system,
one can write the solutions to (1.23) similarly to (3.1.18), but using
also Ito’s formula, to obtain for ψW the expression

ψW (t, x, x0) = J
−1/2
1 (t, x, x0) exp{

∫ t

0

(
−|α|2x2(τ) dτ + αx(τ) dB(τ)

)
.

(1.24)
Therefore, we have proved the following result.

Proposition 1.2 [K5], [BK]. If the second derivative of the
function V is uniformly bounded, then the function (1.19), where S1

is the two-point function corresponding to the Hamiltonian (1.22)
and ψW is given by (1.24), is well defined for all t ∈ (0, t0), x, x0
and is a formal asymptotic solution to the problem (1.17), (3.1.4)
in the sense that it satisfies equation (1.17) up to terms of order
O(h), and satisfies the initial condition (3.1.4).

Therefore, in the case GR = 0 in (1.1), (1.2), one can avoid
dealing with complex characteristics. It will not be so in the case
with GR > 0 in (1.1), which we consider now. Looking for the
Green function of (1.1) in the form

uas = (2πh)−m/2χ(|x− x0|)φ1(t, x, x0, [W ]) exp{− 1

h
S1(t, x, x0)}.

(1.25)
with a deterministic not depending on h phase S1 (it is not conve-
nient now to write the exponential in form iS), one comes (using
(1.4) and the assumption that S1 is not stochastic) to the deter-
ministic Hamilton-Jacobi equation with the Hamiltonian of form
(1.5), namely to the equation

∂S

∂t
+

1

2

(
G
∂S

∂x
,
∂S

∂x

)2

− V (x) = 0, (1.26)

for the function S1, and to the stochastic transport equation (1.21).
Unlike (1.20), equation (1.26) is still complex (though not stochas-
tic as (1.6)). From the results of Section 2.2 it follows that function
(1.25) is well defined. Therefore we obtain the following result.
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Proposition 1.2. If GR > 0, the function (1.25), where S1

is the two-point function corresponding to the Hamiltonian (1.5)
and ψW is given by (1.24), with x(τ) being the characteristic cor-
responding to Hamiltonian (1.5), is well defined for all t ∈ (0, t0),
x, x0 ∈ Rd and is a formal asymptotic solution to the problem (3.1),
(3.1.4) in the sense that it satisfies equation (1.1) up to terms of
order O(h), and satisfies the initial condition (3.1.4).

Thus, we obtained two asymptotic formulas for the Green func-
tion of equation (1.1), given in Theorem 3.1 and in Propositions
1.1, 1.2 respectively, exploiting two approaches to the construction
of the WKB type asymptotics of stochastic equations of type (1.1):
in the first one, one uses a stochastic Hamilton-Jacobi equation and
deterministic transport equation, and in the second one, one uses
a deterministic Hamilton-Jacobi equation and the stochastic trans-
port equation. Each of these (in a sense equivalent) approaches has
its advantages. Namely, it seems that the formula from Theorem
1.1 gives more adequate asymptotics in a number of situation, for
example this formula (and not the one from Propositions 1.1 or
1.2) gives the exact Green function in the case of quadratic poten-
tials. On the other hand, formulas (1.19), (1.25) seem to be easier
to justify, as we shall see in the next section.

2. Semiclassical approximation: justification and globalisation

We shall deal with the problem of justification of the asymp-
totics constructed above following the same line of arguments as
for the case of standard diffusions in Chapter 3 paying special at-
tention to the new difficulties which naturally arise in the present
context of complex diffusion. Consider first shortly the case of
vanishing GR. The advantage of formula (1.19), as compared with
(1.15), is due to the fact that the exponential term exp{iS1/h} has
the same form as for the standard WKB asymptotics of the stan-
dard Schrödinger equation, because S1 is real and deterministic.
Stochastic term appears only in the amplitude ψ. Therefore, for-
mal asymptotics (1.19) can be justified in the same way as for the
standard Schrödinger equation (see e.g. [M6], [MF1]), which leads
directly to the following result.

Theorem 2.1. The Green function of equation (1.17) exists
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and has the form uas(1+hg), with uas from Proposition 1.1, where
the function g has a bounded L2-norm.

Notice that we obtained here an asymptotic representation for
the Green function with the L2- estimate of the remainder, which
is usual in the study of the Schrödinger equation, and not a point-
wise estimate, which one obtains usually in the study of the heat
kernel. Notice also that the theorem implies automatically also
the justification of the asymptotics of Theorem 1.1 for the case
of equation (1.17). Moreover, when the asymptotics of the Green
function in form (1.18) is justified for t ≤ t0, the construction of
the global small h asymptotics for all finite times t can be ob-
tained automatically [BK] by taking the convolution of uas with
itself N = t/t0 times. The result and calculations are the same
as for the deterministic case (see [MF1]), only the amplitude will
be now stochastic. In particular, if there exists a finite number of
characteristics (of the real Hamiltonian (1.22)), joining x0 and x in
time t, the asymptotics will be equal to the sum of the contribu-
tions of each characteristics, and in general, it can be expressed by
means of the Maslov canonical operator. Moreover, we wrote the
asymptotics only up to the term of the order O(h), but one can
easily write the whole expansion in h in the same way as it is done
for the deterministic case.

As we already noted, in the case GR > 0 in (1.1), one can not
avoid dealing with complex characteristics.

Remark. However, if one is interested only in small time
asymptotics (for a fixed h), formula (1.25) can be again simplified in
such a way that one can get rid of complex characteristics. Namely,
since the parts of S1 depending on V are of the order O(t), one can
move these terms from the phase to the amplitude. In other words,
instead of (1.25), one can consider the asymptotic Green function
in the form

uas = (2πht)−m/2φ2(t, x, x0, [W ]) exp{− (x− x0)
2

2thG
},

where φ2 also depends on h (in a non-regular way), but it is not
essential, because we fixed it. Considering here φ to be a positive
power series in t, x−x0, and substituting this in equation (1.1), one
obtains the recurrent formulas for the coefficients in the same way
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as one does it for the standard non-degenerate real diffusion equa-
tion. The justification presents no special difficulties as compared
with the case of standard diffusion, because the phase, though be-
ing complex, depends quadratically on x − x0. In particular, one
easily obtains in this way two-sided estimates for the Green func-
tion for finite times (see next Section), generalising some recent
results from [LR] obtained there for the case of (real) stochastic
heat equation. We are not going into details of these arguments
noting that the global small h asymptotics can not be obtained in
this way.

Before discussing the justification of asymptotics (1.25) (or,
equivalently, (1.15)), let us give a simple lemma from linear algebra
(which must have been known, but the author does not know the
reference) that we shall need.

Lemma 2.1. Let Em denote the unit matrix in Rm, let
s0, s1, ..., sn+1 be a set of positive real numbers, and let As0,s1,...,sn+1

be the (n+1)m× (n+1)m block three-diagonal matrix of the form
c0Em −a1Em 0 ... 0
−a1Em c1Em −a2Em ... 0

0 −a2Em c2Em ... 0
. . . ... .
. . . ... cnEm


with cj = s−1

j + s−1
j+1, aj = −s−1

j . In particular, let Amn+1 denote
the matrix As0,s1,...,sn+1 with all sj, j = 0, ..., n+ 1, being equal to
one, i.e.

Amn+1 =


2Em −Em 0 ... 0
−Em 2Em −Em ... 0
0 −Em 2Em ... 0
. . . ... .
. . . ... 2Em

 .

Then

detAs0,s1,...,sn+1 =

(
s0 + s1 + ...+ sn+1

s0s1...sn+1

)m
.

Moreover,

min
j
s−1
j Amn+1 ≤ As0,s1,...,sn+1

≤ max
j
s−1
j Amn+1. (2.1)
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Proof. Changing the order of rows and columns one easily
reduces the case of an arbitrary m to the case of m = 1. In this
case one obtains (by decomposing the determinant in the last row)
that

detAs0,s1,...,sn+2
= (s−1

n+1+s
−1
n+1) detAs0,s1,...,sn+1

−s−2
n+1 detAs0,s1,...,sn ,

and then one finishes the proof by a trivial induction. Inequality
(2.1) follows directly from the obvious formula

(As0,s1,...,sn+1
v, v) =

1

s0
v20+

1

s1
(v1−v2)2+...+

1

sn
(vn−vn−1)

2+
1

sn+1
v2n,

where v = (v0, ..., vn).
Let us turn to the justification of the semiclassical asymptotics

in the case GR > 0. Consider function (1.25) as the first approxi-
mation to the exact Green function uWG for equation (1.1). Arguing
as in Chapter 3 one presents uWG in the form of the series

uWG = uas + huas ⊗ F + h2uas ⊗ F ⊗ F + ..., (2.2)

where F is given by (1.16) and the convolution-type operation ⊗
is defined by the formula

(v ⊗ w)(t, x, x0) =

∫ t

0

∫
Rm

v(t− τ, x, ξ)w(τ, ξ, x0) dτdξ.

For |x− x0| ≥ r− ϵ (see formula (1.15)) one estimate this series in
exactly the same way as in the real situation considered in detail
in Chapter 3 Theorem 4.1, if one previously estimate the phase
S in all integrals by its real quadratic part. Let us consider the
case |x− x0| ≤ r − ϵ, which is slightly more subtle. Here the main
difference with the real case appear: to get exact asymptotics one
can not estimate the terms of series (2.2) recursively using the
Laplace method with complex phase (see Appendix B), because
each such estimate will destroy analyticity, which is essential for
the estimate of the next integral. Therefore, to estimate the k -th
term of this series we shall consider it as a Laplace integral over
Rmk. The phase of this integral is

f(η;x, x0, t) = S(t− tk, x, ηk)+ ...+S(t2− t1, η2, η1)+S(t1, η1, x0),
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which due to the (1.29), (1.30), can be written in the form

f(η;x, x0, t) =
(x− ηk)

2

2(t− tk)G
+ ...+

(η2 − η1)
2

2(t2 − t1)G
+

(η1 − x0)
2

2t1G
+O(t).

The key moment is to prove that fR = Re f is convex and to
estimate its matrix of second derivatives f ′′R from below. Clearly

f ′′R ≥ Λ = (G−1)RAs0,...,sk − ctEmk (2.3)

with some constant c > 0, where sj = tj+1 − tj with t0 = 0,
tk+1 = t. The spectrum of the matrix Amk is well known (and is
easy to be calculated explicitly). In particular the lowest eigenvalue
of this matrix can be estimated by a/k2 with a positive constant
a. Since GR is supposed to be positive, the same estmate holds
(with possibly different constant a) for the lowest eigenvalue of the
matrix (G−1)RA

m
k . Let k ≤ t−1

√
2a/c. Then, due to (2.1), the

lowest eigenvalue of the matrix (G−1)RAs0,...,sk is not less than
2ct. Consequantly, if λj , j = 1, ...mk, denote the eigenvalues of
the matrix (G−1)RAs0,...,sk , then the eigenvalues of the matrix Λ
on the r.h.s. of (2.3) are not less than λj/2 (this is a very rough
estimate but it is sufficient for our purposes). Therefore (also due
to Lemma 2.1), inequality (2.3) gives the lower estimate for f ′′R by
a convex matrix Λ with

detΛ ≥ 2−km(det(G−1)R)
k

(
t

t1(t2 − t1)...(t− tk)

)m
. (2.4)

Next, by the results of Section 2.6 (and due to the assumption
|x− x0| < r − ϵ), there exists a unique trajectory x(τ), p(τ) of the
Hamiltonian flow corresponding to Hamiltonian (1.5) and joining
x0 and x in time t. By (1.22), (1.25) the point η(t1, ..., tk) =
(x(t1), ..., x(tk)) is a (unique) saddle point to the phase f and

f(η(t1, ..., tk);x, x0, t) = S(t, x, x0).

Moreover, since Re f is convex, one can choose the contour of inte-
gration in the complex space (using the Cauchy theorem) in such a
way that it contains η(t1, ..., tk), and this point is the unique saddle
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point on this contour and the real part of the phase takes its min-
imum in this point. Now we can use formula (B3) from Appendix
B.

By Proposition 6.3, the amplitude ψW of the asymptotic Green
function uas is of the order (2πht)

−m/2. To estimate the amplitude
in the expression for F from (3.16), one needs to estimate the
second derivative of the Jacobian J = J(t, x, x0), which is done as
in the real case. One has

∂

∂xi
J = tr

(
∂

∂xi

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
)
J,

and

∂2J

∂xi∂xj
= tr

(
∂

∂xi

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
)
tr

(
∂

∂xj

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
)
J

+tr

(
∂2

∂xi∂xj

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
)
J

+tr

(
∂

∂xi

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
∂

∂xj

∂X

∂p0
(t, x, x0)

(
∂X

∂p0

)−1
)
J.

From these formulas and Proposition 6.3 it follows that

∂J

∂x
= O(t)J,

∂2J

∂x2
= O(t2)J.

Therefore, by (2.3), (2.4) and using (B3) (noticing also that though
the integral is taken along a complex surface, and not along the
plane domain as in (B3), the deformation to the real domain can
add an additional multiplier of the order 1 + O(t)) we obtain for
the k-th term of series (2.2), k ≤ t−1

√
2a/c, the estimate

O(th)k(2πh)−m/2ϕ1(t, x, x0, [W ])(det |G|/ detReG)k exp{−ReS(t, x, x0)
h

}.

And the estimate for the sum of k ≤ t−1
√

2a/c terms follows easily.

If k > t−1
√

2a/c, we can go on as in the case |x − x0| > r −
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ϵ, namely estimating the phase by its quadratic approximation.
Because of the coefficient tk = O(exp{log t/t}), these terms will
turn out to be exponentially small as compared with the main
term. Consequently, one obtains the following result, which gives
the justification to the formal asymptotics obtained in Theorem 1.1
and Proposition 1.2.

Theorem 2.2. If GR > 0, the Green function uWG of problem
(1.1), (1.2) exists for small enough t and is given by series (2.2),
which converges absolutely. In particular,

uWG (t, x, x0, h) = O(exp{− Ω

th
})

+(2πh)−m/2χ(|x−x0|)ϕ1(t, x, x0, [W ]) exp{− 1

h
S(t, x, x0)}(1+O(th))

(2.5)
with some Ω > 0, where the term O(exp{− Ω

th}) is a bounded inte-
grable function in x− x0.

The Green function of (1.1) for any finite t can be as usually
obtained by iteration from the Green function (1.29) for small times
(see also the end of the next section). The resulting asymptotic for-
mula will be given by the sum of the contributions of all extremals,
which are the saddle points of the action. However, the question of
the existence of the complex characteristics joining any two points
x, x0 in time t and giving the saddle-point for the corresponding
problem of the calculus of variations, seems to be rather nontrivial
in general.

To conclude this section, consider the case of real stochastic
heat equation, where everything becomes much simpler. The fol-
lowing result was obtained in [K1] and by different method in [TZ1],
[TZ2]. The proof of [K1] is obtained by simplifying the arguments
used above for complex situation. Notice only that due to the re-
sults of Section 2.7, under the assumptions of Theorem 2.3, the
boundary-value problem for corresponding stochastic Hamiltonian
system is uniquely globally solvable (for small times), and therefore
one do not need to make a cutoff around x0, which simplifies the
situaton essentially.

Theorem 2.3. Let V (x) be a smooth real function with uni-
formly bounded derivatives of the second and third order, and let
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G = α = 1. Then the Green function uG of problem (1.1) exists
and for small enough t has the form

uG(t, x, x0, h) = (2πh)−m/2J
−1/2
W (t, x, x0, h) exp{−

1

h
SW (t, x, x0, h)}(1+O(ht)),

(2.6)
where SW , JW are the two-point function and the Jacobian cor-
responding to the real stochastic Hamiltonian system (1.9) with
G = α = 1. Moreover, uG can be given by the absolutely con-
vergent series of type (4.2).

Furthermore, in this real situation (unlike the complex case),
there appear no additional problems with the globalisation of this
result. Namely, on the basis of the results of Section 2.7 and by
direct generalisation of the argument of Theorem 3.5.1, one gets
the following statement.

Theorem 2.4. For any t, x and τ < t

uG(t, x, x0, h) = (2πh)−m(1+O(h))

∫
Rm

JW (t−τ, x, η, h)JW (τ, η, x0, h)

× exp

{
−SW (t− τ, x, η, h) + S(τ, η, x0, h)

h

}
dη.

In particular, for any (t, x) ∈ Reg(x0), the asymptotics of uG is
still given by (2.6).
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3. Applications: two-sided estimates for complex heat kernels,
large deviation principle, well-posedness of the Cauchy problem

Here we formulate some direct but important consequences
from Theorem 2.2. The following results on the local large devia-
tion principle with respect to small t or small h and on the local
two-sided estimates for complex heat kernel follow directly from
Theorem 2.2

Proposition 3.1. Under the assumptions of Theorem 2.2

lim
h→0

uWG (t, x, x0, h) = −S(t, x, x0), lim
t→0

uWG (t, x, x0, h) = (G−1)R(x−x0)2/2h

for small enough x− x0 and

(2πht)−m/2K−1 exp{−C1(x− x0)
2

th
} ≤ |uWG (t, x, x0, h)|

≤ (2πht)−m/2K exp{−C2(x− x0)
2

th
}

for some constants C1, C2,K and for small enough x− x0 and t.
At last, we obtain a result on the well-posedness of the Cauchy

problem for equation (1.1).

Proposition 3.2 Under the assumptions of Theorem 2.2, for
any smooth function u0 ∈ L2(Rd), there exists a unique solution
to the Cauchy problem of equation 1.1, which is dissipative in the
sense that

d

dt
E∥u(t, x)∥2 ≤ 0 (3.1)

everywhere, where E means the expectation with respect to the
Wiener measure of the process W .

Proof. The existence of the solution follows directly from The-
orem 2.2. Next, let u(t, x, h, [W ]) be any solution to (1.1), i.e. u is
an adaptive process on the Wiener process, which is almost surely
smooth in t and x, and satisfies equation (1.1). Applying vector-
valued Ito’s formula (see e.g. [Met]) to the square norm (u, u) of
the solution yields

d(u, u) = −h(GR
∂u

∂x
,
∂u

∂x
) dt− 2

h
(VRu, u) dt+ 2αR(xu, u) dW,
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which implies the dissipativity condition (3.1). In its turn, con-
dition (3.1) implies the uniqueness of the solution to the Cauchy
problem of equation (1.1).

The statement of Proposition 3.2 implies that the Green func-
tion uWG of equation (1.1) constructed above satisfies the semigroup
identity for t ≤ t0 and therefore it can be extended for all positive
t as a smooth function by means of convolutions.
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4. Path integration and inifinite-dimensional saddle-point method

After the original papers of Dirac and Feynmann, where it
was argued that the solutions to the Shcrödinger equation can be
expressed in terms of a heuristically defined path integral, many
mathematicians contributed to the development of a well-defined
notion of path integration and its connection to the Schrödinger
equation. Various approaches were proposed covering different
classes of potentials, reviews and references in Appendices G,H.
In Chapter 9 we develop an approach to Feyman’s integral, which
allows to present the solutions to a rather general Schrödinger and
stochastic Schrödinger equation (including equation (1.1)) in terms
of a genuine integral over a bona fide measure over a path space.
Here we only show that various known approaches (which define
the integral as a certain generalised functional, and not as a gen-
uine integral in the sense of Riemann or Lebesgue) to the definition
of path integral and its applications to Schrödinger equation can be
more ot less directly generalised to the case of SSE. An interesting
new moment appears in connection with semiclasical asymptotics,
which, in the case of SSE, can be obtained (at least formally) from
path integral representation by means of an infinite-dimensional
version of the complex saddle-point method. We shall use here the
theory of normalised Fresnel integrals (NFI) explained in Appendix
H. Our integral will be a particular case of the situation described
in Proposition H2. Suppose for simplicity that the matrix G in
(1.1) is proportional to the unit matrix. As usual for aplications
to the Schrödinger equations, we use as a Hilbert space in H7 the
Cameron-Martin spaceHt of continuous curves γ : [0, t] 7→ Rn such
that γ(t) = 0 and the derivative γ̇ of γ (in the sense of distribution)
belongs to L2([0, t]). The scalar product in Ht is defined as

(γ1, γ2) =

∫ t

0

γ̇1(s)γ̇2(s) ds.

If V, η are Fourier transforms of finite complex measures in Rn,
then the function

g(γ) = exp{
∫ t

0

V (γ(s) + x) ds}η(γ(t) + x)
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is also the Fourier transform of a finite Borel measure on Ht (for
any x), because the set of such Fourier transforms forms the Ba-
nach algebra (see Appendix G). Furthermore, if B(t) denotes the

trajectory of the Wiener process, then the curve lB(τ) =
∫ t
τ
B(s) ds

belongs to Ht with probability one, and for γ ∈ Ht

(l, γ) =

∫ t

0

B(s)γ̇(s) ds =

∫ t

0

γ(s) dB(s),

where the latter integral is understood in the Ito (or Wiener) sense.
Finally, if we define the operator L by the formula (γ1, Lγ2) =∫ t
0
γ1(s)γ2(s) ds, then L is of trace class inHt, and under conditions

(1.2) the operator 1 + 2|α|2hGL is invertible with a positive real
part. The following fact is a direct generalisation of a theorem from
[AKS1], [AKS2], where G was supposed to be purely imaginary and
there were no parameter h.

Proposition 4.1. If V and η are Fourier transforms of finite
complex measures on Rm, then there exists a (strong) solution of
the Cauchy problem for equation (1.1), (1.2) with initial data ψ0 =
η, which can be represented in the form

ψ(t, x) =

∫ ∗

Ht

exp{
∫ t

0

(
− 1

2hG
|γ̇(τ)|2 − |α|2(γ(τ) + x)2 − 1

h
V (γ(τ) + x)

)
dτ}

× exp{
∫ t

0

α(γ(τ) + x) dW (τ)} η(γ(0) + x)Dγ, (4.1)

where the integral is well defined in the sense of Proposition 2.1.
Sketch of the proof. The simplest way is to use the Stratonovich

form (see e.g. Appendix A)

dψ = (
h

2
G∆ψ − 1

h
V (x)ψ − |α|2x2ψ) dt+ αxψ dSB (4.2)

(notice the difference in the coefficient at x2ψ dt in this equation
and in (1.1), which is due to the Ito formula) of equation (1.1)
and to approximate the trajectories W of the Wiener process by
a sequence of smooth curves Wn tending to W as n → ∞. For
smooth curves the proof of the theorem can be given in a quite
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similar way as in the case of the usual Schrödinger equation (see
e.g. [AH1], [SS]). We can finish the proof exploiting the fact that
the sequence of solutions of the Stratonovoch equation with Wn

placed instead of W tends to the solution of (1.1).
As shown in [AKS2], another method of definig the path in-

tegral based on the rotation of the potential in the complex space
(see Appendix H) leads to a similar formula but with different as-
sumptions on the potential V .

Let us stress now that though the results of this section present
only a slight generalisation of that from [AKS2], the introduction
of complex coefficients in SSE (1.1) leads to a principally new effect
concerning the ”Feynman measure” of the corresponding Feynman
integral. Namely, though the integral in (4.1) is taken apparently
over the path space of real paths, the main contribution in its
small h asymptotics comes from a complex path. In other words,
the ”Feynman measure” is actually concentrated around a com-
plex path, which can be included in the domain of integration by
a certain complex shift of the Cameron-Martin space Ht. Speak-
ing more concretely, to get the Green function from (4.1), let us
take (at least formally) the Dirac function δ(x − x0) instead of η.
(Clearly δ(x − x0) does not satisfies the assumptions on η consid-
ered above. Nevertheless, the corresponding path integral repre-
sentation can be justified, see e.g. [ABB] for the case of standard
Schrödinger equation.) Then the integral in (4.1) will be taken
over an appropriate space of curves joining x0 and x in time t.
For h → 0, the corresponding integral is of Laplace type with the
complex analytic phase

∫
(|γ̇|2/2G + V (γ)) dτ . According to the

saddle-point method, the main term of the small h asymptotics of
such an integral depends on the behaviour of the amplitude around
the saddle-point of this phase. According to the results of Section
2, these saddle-points are the solution to the Hamiltonian system
with Hamiltonian (1.5). Therefore, the theory of the previous sec-
tions gives a rigorous meaning to the formal application of the
infinite-dimensional saddle-point method to the path integral (4.1)
with a complex phase. As we already noted, in the case of the oscil-
latory integrals, the corresponding infinite-dimensional method of
stationary phase is discussed in many papers, see e.g. [AH2],[M4],
and references therein.



Chapter 8. SOME TOPICS
IN SEMICLASSICAL SPECTRAL ANALYSIS

1. Double-well splitting

In this chapter, we are going to introduce briefly (referring for
the proofs and developments to the original papers) three topics
in asymptotic spectral analysis closely connected with probability
and/or with the methods developed for the corresponding evolu-
tionary equations.

This section is devoted to the asymptotics of the low lying
eigenvalues of the Schrödinger equation, whose potential has sev-
eral symmetric wells. We give here a short introduction to the re-
sults of the series of papers [M3], [DK1], [DK2], [DKM1], [DKM2],
[K3], where the effective formulas for the calculation of the ex-
ponentially small differences between these low lying eigenvalues
(splitting) were found and applied to different examples such as
the discrete ϕ4-model on tori or a hydrogen ion in magnetic field.
As we shall see in the next section, this theory is closely connected
to the problem of the calculation of the low lying eigenvalues of
the diffusion operators, and of the life times of the correspond-
ing diffusions. On the other hand, the method of the proof of the
main results in [DKM1], [DKM2] is based on the asymptotic theory
of the Cauchy problem for the second order parabolic equations,
which was the main subject in this monograph.

We recall first two basic facts on the low lying eigenvalues
of the Schrödinger equation with a potential having several wells.
Consider the Schrödinger operator H = H(h) of the form

H = −h2∆+ V (x) + hf(x) (1.1)

defined in L2(M), where M is an d-dimensional smooth Rieman-
nian manifold, V and f are smooth function on M , V being non-
negative, h is a positive small parameter, ∆ is the Laplace-Beltrami
operator on M. The manifold M is considered to be either closed
or M = R⌈ ( in this case we suppose that lim inf V (x) > 0 as
x → ∞ and |f(x)| ≤ aV (x) + b for some a, b > 0), or M is a
bounded domain in a smooth manifold ( in this case H being the
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Dirichlet realization of the operator (1.1) ). Let the function V
have only finite number of zeros ξ1, ..., ξk in M ( and all ξj /∈ ∂M
) all of them being non-degenerate, i.e the eigenvalues of the Hesse
matrix 1

2V
′′(ξj) have the form (ωj1)

2, ..., (ωjk)
2, in each ξj with some

ωjl > 0. Let Spas(H) denote the spectrum of the direct sum of the
oscillator approximations of the operator H in the neighbourhoods
of all points ξj , i.e.

Spas(H) = {
d∑
i=1

ωmi (2ni+1)+f(ξm) : m = 1, ..., k, ni ∈ N}. (1.2)

Let En(h) ( resp. en(h) ) be the n-th ( taking into account the
multiplicity ) eigenvalue of the operator H ( resp. n-th number in
Spas(H)).

Proposition 1.1. For each fixed n and an h small enough,
the operator H(h) has at least n eigenvalues and

lim
h→0

En(h)

h
= en.

This fact is known already a long time in the physical litera-
ture, and it is intuitively rather clear. The rigorous proof for finite-
dimensional case seems to appear first in [Si1], see also [CFKS,
HS1].

Now let us recall the notion of the distance d(E,F ) for the
closed subspaces E,F of the Hilbert space:

d(E,F ) = ||PE − PFPE || = ||PE − PEPF ||. (1.3)

Here PE , PF are the orthonormal projectors on E and F respec-
tively. It is clear that d(E,F ) = 0 iff E ⊂ F . If E,F are finite
dimensional subspaces of equal dimensions, then d(E,F ) = d(F,E)
and is equal to the sine of the angle between the orthogonal com-
plements of the subspace E ∩ F in E and in F respectively.

Proposition 1.2 [HS1,Pa]. Let A be a self-adjoint operator
in the Hilbert space H. Let [a, b] be a compact interval, ψ1, ..., ψN
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be linear independent elements of H and let µ1, .., µN ∈ [a, b] such
that

Aψj = µjψj + rj , ||rj || ≤ ϵ.

Let for some δ > 0 we have Sp(A) ∩ ([a − δ, a] ∪ ([b, b + δ]) = ∅.
Let E be linear space with the basis ψi, i = 1, ..., N , and F be the
spectral subspace of A associated with Sp(A) ∩ [a, b]. Then

d(E,F ) ≤
√
Nϵ

δ
√
λmin

,

where λmin is the minimal eigenvalue of the matrix (ψi, ψj).
The problem of the calculation of the splitting between the

low lying energy levels of the Schrödinger operator with symmetric
potential wells can be already considered as a classical in quantum
mechanics. We shall discuss here only the case of the double-well
potential with non-degenerate wells, the corresponding results for
more general situations can be found e.g. in [K3], [KM2]. We recall
first the exact formulation of the problem. Let

H = −h
2

2µ
∆+ V (x) (1.4)

be a Schrödinger operator in L2(Rd), where ∆ is the Laplace op-
erator, h > 0 is a small parameter, and the potential V has the
following properties:

(i) V is a smooth nonnegative function,
(ii) there exist two points ξ1, ξ2 ∈ Rn such that V (x) = 0 if

and only if x coincides with one of ξj ,
(iii) V is symmetric, namely, there exists an orthogonal oper-

ator R in Rn with the square R2 being equal to identity such that
V (Rx) = V (x) for all x and ξ1 = Rξ2,

(iv) V is strictly positive at infinity, namely lim infx→∞ V (x) >
0,

(v) V has non-degenerate minima, i.e. the matrices V ′′(ξj), j =
1, 2, (they are similar, due to the symmetry) have positive eigen-
values, which will be denoted by ω2

1 , ..., ω
2
d with all ωj > 0.

Let E = µ−1
∑n
j=1 ωj/2 and F be the set of the fixed points

of R.
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It is obvious from the physical point of view that when po-
tential barrier between the wells is high, then there should be two
quasi-stable states at the bottoms ξ1, ξ2 with energy levels E1, E2

having equal asymptotic expansions in h:

Ej = Eh+ e2h
2 + e3h

3 + ... (1.5)

One can easily obtain this expansion using first the oscillator ap-
proximation in a neighbourhood of each well (that gives the first
term in (1.5)) and then the standard perturbation theory. Rig-
orously speaking, it follows from Proposition 1.2 that for h small
enough the Schrödinger operator (1.4) has exactly two eigenval-
ues E1, E2 with (equal) asymptotic expansion (1.5) and moreover,
there exists a constant C > 0 such that E/h− E > C for all other
points E in the spectrum of operator (1.4).

Since the asymptotic expansions for E1, E2 coincide, the prob-
lem of asymptotic calculation of its difference is very subtle. This
is the problem we are going to discuss here.

Let us start with some physical motivations. The difference
E2 − E1 is called the splitting of the low lying eigenvalues of the
Schrödinger operator (1.1) with a double well potential V (x). This
terminology comes from the following ”dynamical ” interpretation.
Imagine for a moment that the potential barrier between the wells
is infinity high. Then the low energy level of the Schrödinger oper-
ator will be degenerate, the corresponding eigenspace will be two-
dimensional and the basis ψ1, ψ2 for this space can be chosen in
such a way that ψ1 vanish in a neighbourhood of ξ2 and conversely.
So, each ψj stands for the case, when a quantum particle is situated
only in a one well. The situation changes crucially when the barrier
becomes finite. Although the classical lowest energy level will be
still degenerate (the classical particle lying at the bottom of a well
can not spring into another one), the quantum mechanical lowest
energy level will now split in two non-degenerate ones. Its small
difference E2 −E1 will estimate the inverse time T of the (tunnel)
transition of a quantum particle from one well to another. In fact,
due to the symmetry, the eigenfunctions corresponding to E1, E2

have now the form ψ1+ψ2 and ψ1−ψ2, where ψj , as above, stands
for the position of the particle in one well (the asymptotics of this
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ψj in a neighbourhood of a well can be calculated using the oscilla-
tor approximation similar to the calculation of series (1.5)). These
ψj are connected by the symmetry transform: ψ1(Rx) = ψ2(x).
Thus the time T of transition is the minimal number satisfying
the equation eiTHψ1 = ψ2. It follows immediately from equations
H(ψ1 ± ψ2) = E1,2(ψ1 ± ψ2) that T = π|E2 − E1|−1. Another
physical interpretation of the problem is due to the fact that the
probability of the spontaneous transition (with photon emission)
from the (slightly) excited state E2 to the real ground state E1

depends on E2−E1. Therefore, this difference stands for the ”fate
of false vacuum” [CC].

Now we introduce the notations and recall some standard facts
concerning the calculation of the difference E2 − E1. Let

Sj(x) = inf
t≥0

inf

∫ t

0

(
µ

2
q̇2(τ) + V (q(τ))) dτ,

where the second inf is taken over all continuous piecewise smooth
curves q(τ) such that q(0) = ξj , q(t) = x. Let

D1 = {x ∈ Rn : S1 ≤ S2}, D2 = {x ∈ Rn : S2 ≤ S1},

and Dϵ
j denote the ϵ-neighbourhoods of these sets. It is not difficult

to show (see e.g. [DKM2]) that
(i) for each x ∈ Dϵ

j , where ϵ is small enough, there exists a
solution (q, p) of the Hamiltonian system

µq̇ = p, ṗ =
∂V

∂x
(q) (1.6)

such that q(−∞) = 0, q(0) = x and

Sj(x) =

∫ 0

−∞
(
µ

2
q̇2(τ) + V (q(τ))) dτ ;

(ii) for almost all x such a solution is unique, Sj is smooth and
satisfies the stationary Hamilton-Jacobi equation

1

µ

(
∂S

∂x

)2

− V (x) = 0;
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(iii) the equation p = ∂Sj/∂x defines locally the unstable man-
ifoldW out

j for system (1.6) that corresponds to its hyperbolic singu-
lar point (ξj , 0) (recall that the unstable manifold W out

j is defined

as the set of points (q0, p0) in R2n such that the solution of (1.6)
with initial data (q0, p0) tends to (ξj , 0), as t→ −∞);

(iv) there exists a trajectory (q, p) of system (1.6) such that

q(−∞) = ξ1, q(+∞) = ξ2

and

S12 ≡ S1(ξ2) =

∫ +∞

−∞
(
µ

2
q̇2(τ) + V (q(τ))) dτ, (1.7)

this trajectory being called an instanton and S12 being called the
instanton action.

It turns out that

S12 = − lim
h→0

h log(E2 − E1), (1.8)

i.e. the instanton action describes the logarithmic limit of the split-
ting value. It follows, in particular, that E2 − E1 is exponentially
small in h. Taking into account formula (1.8), it is natural to seek
for the formula for the splitting in the form

E2 − E1 = A(h) exp{−S12/h}. (1.9)

In order to be able to describe the dependence on h of the amplitude
A(h) of the splitting, one should make new additional assumptions.
For example, let us consider the simplest case, when the instanton
q(t) is unique up to a shift in time. It is obvious that q(t) intersects
the set F of the fixed points of the symmetry operator R only at
one point. We denote this point by ξ0 and shall fix from now on
the parameterisation of the instanton by the condition q(0) = ξ0.
It is clear from the symmetry that F belongs to the hyper-surface
Γ = D1 ∩ D2 and that the instanton q is orthogonal to Γ at ξ0.
Let M(x), x ∈ Γ, be the (n − 1) × (n − 1) matrix of the second
derivatives of the function S1(x) restricted to Γ. The instanton
q(t) is called non-degenerate, if M(ξ0) is non-degenerate. Now if
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there exists only one instanton and it is non-degenerate, then it is
possible to prove that the amplitude A(h) in (1.9) has the form

A(h) =
√
ha(1 + a1h+ ...+ akh

k +O(hk+1)). (1.10)

The described results were obtained at the beginning of 80
th. Before going further let us give a short historical review. The
splitting formula (1.9), (1.10) for one-dimensional case was known
in physical literature already for a long time, see for instance [LL].
Heuristically, the logarithmic limit (1.8) of the splitting for finite
and simultaneously for infinite dimensions seemed to appear first in
[M5] and [Po]. The paper [Po] contained, in particular, a developed
program for the application of instantons in gauge theories and thus
inspired a lot of new papers on the theory of instantons for quantum
field theory as well as for quantum mechanics. Further physical
discussions of the corresponding problems in quantum mechanics
(including different methods as well as different models) can be
found, for instance, in [CC,WH], and many others, see also the
book [Gu]. Turning to the mathematical literature we mention
first the work of Harrell [Ha], where appeared the first rigorous
deduction of the splitting formula (including the calculation of the
major term of amplitude (1.10)) for one-dimensional system with
the general double well potential. Afterwards, there appeared many
works dealing with more general one-dimensional models, (see for
instance, [Pa] for one-dimensional systems with several wells) The
program of the mathematical study of n-dimensional problem was
proposed in the Maslov lecture on the Mathematical Congress in
Warsaw [M8]. Then in 1984, three basic papers for the considered
subject were published, namely

1) the work of B.Simon [Si2], where the rigorous proof were
given of formula (1.7) for the logarithmic limit of the splitting (1.8)
in general n-dimensional situation; the proofs in this paper were
based on the method of the path integration,

2) the work of B.Helffer and J.Söstrand [HS1], where this result
was also obtained together with the theorem of the existence of the
asymptotic expansion (1.10) for the amplitude in the case of one
non-degenerate instanton (let us stress that the important progress
of [HS1] in comparison with [Si2] was the statement that the major
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term of the asymptotic expansion for the amplitude has the order√
h); the method of this paper (see also [He] and references therein)

was based on the construction of the WKB asymptotics of the low
eigenfunctions for the Dirichlet realization of the corresponding
Schrödinger operator restricted to a neighbourhood of a well, then
these asymptotics were carefully matched together,

3) the work of V.Maslov [M3], where not only the existence of
the expansion (1.10) was given, but also the formula for the calcu-
lation of the coefficients was presented (see Proposition 1.1 below).
The proofs were based on the investigation of the WKB asymp-
totics of the corresponding heat equation, in order to obtain after-
wards the asymptotics of the low lying eigenfunctions and eigen-
values of the Schrödinger operator by a subtle limit procedure with
two small parameters h and t−1. One should note however, that
the assumptions on the Schrödinger operator in [M3] were more
restrictive (namely, the results in [Si2, HS1] were given directly for
the Schrödinger operator corresponding to an arbitrary Riemanian
manifold and in [M3] only to the plane Euclidian spaces) and that
the Maslov arguments were very schematic. Complete version of
his proof appeared only in [DKM1, DKM2]. Moreover, the formula
for the splitting in [M3] was a geometric one, and was not very con-
venient for concrete calculations. In [DKM2] an analytic version of
this formula was given, which we we are going to present now.

Let us suppose first that the eigenvalues ωj are non-resonant.
Namely, each ωj can not be represented in the form

∑
k≠j νkωk

with some integer nonnegative numbers νk such that
∑
νk ≥ 2.

Applying the general theory of the normal form of ordinary dif-
ferential equation in a neighbourhood of a singular point to the
restriction of the Hamiltonian flow (1.6) on the unstable manifold
W out
j one proves the existence of local coordinate y(x) such that

the equation of this restriction in the coordinate y have the form
ẏ = µ−1/2Ωy with the diagonal matrix Ω = diag(ω1, ..., ωn). We
fix such coordinate system by the additional normalising condi-
tion det(∂y/∂x)(ξj) = 1. These coordinate can be extended to the
whole W out

j defining a measure on it such that

dy(zt) = exp{2µ−1/2Et} dy(z0),

where zt is the image of a point z0 ∈W out
j under the action of the
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Hamiltonian flow. Let us define now the Jacobian

Jj(x) = det
∂x

∂y

in non-focal points of W out
j , i.e. in such points that have a neigh-

bourhood in W out
j with a regular projection on the coordinate Eu-

cleadian space Rn.
Theorem 1.1 [M3,DKM1]. The formula for the amplitude

A(h) of the splitting (1.9) has the form

A(h) = 2J−1
1 (ξ0)(detM)−1/2(ξ0)|q̇(0)|

√
h/π

√
ω1...ωnµ

n/4(1+O(h)),
(1.11)

where the matrixM(ξ0) was introduced above, before formula (1.10).
This formula is not satisfactory from the practical point of

view, because to calculate its element one should find special co-
ordinate system and to solve the Hamiltonian system (1.6) in the
whole W out

j . In the next statement the calculations are reduced to
the solution of the system in variation

µZ̈ = V ′′(q(t))Z, Z|t=−∞ = 0, Z|t=0 = I (1.12)

along the instanton q(t), where I is the unit matrix. Let O be
a matrix of the orthogonal transformation that takes the first co-
ordinate vector of Rn in the unit vector, which is parallel to the
velocity q̇(0) of the instanton at zero time.

Theorem 1.2 [DKM2]. Formula (1.11) holds with

J1 = lim
t→−∞

(
exp{2tEµ−1/2}/ detZ(t)

)
(1.13)

and M(ξ0) is the minor of the matrix

B = µOŻ(0)Ot (1.14)

obtained from it by deleting the first column and the first row.
Remark. This formula holds also without the supposition on

non-resonant ωj . Moreover, instead of the real orthogonal matrix
O in (1.14) one can take as well a complex unitary matrix U such
that its first vector-column is parallel to q̇(0). Some generalisation
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of this formula for the case, when the instanton is not unique and
the wells are not simply points are given in [K3].

In [DK1], Theorem 1.2 was applied to the calculation of the
splitting E2 − E1 in the case of the potential

V =
α

2

n∑
k=1

(xk − xk−1)
2 +

β

4

n∑
k=1

(x2k − ξ2)2, (1.15)

where α > 0, β > 0 are constants and x0 = xn. This potential
stands for a chain of pairwise interacting particles on a circle in the
common potential field.

With a special choice of parameters α and β this model tends,
as n→ ∞, to the field model with the Lagrangian density

c2
(
∂ϕ

∂y

)2

− γ2
(
ϕ2 − ξ2

)2
.

That is so called ϕ4-model on the circle . Therefore, the chain with
potential (1.15) can be called naturally the discrete ϕ4-model on a
circle. The calculation of the instanton as well as its limit as the
number of particle n tends to infinity is quite simple. This problem
is reduced to the one-dimensional problem for the potential β(x2−
ξ2)2/4. But in order to calculate the amplitude A one needs to
solve some linear multidimensional system of ordinary differential
equations with time depending coefficients. Unexpected fact is the
possibility to integrate this system in elementary functions and
thus to get the explicit formulas for the determinants J(ξ0) and
detM(ξ0). In [DK2], these considerations were generalised to the
finite-dimensional case, i.e. to the discrete ϕ4-model on tori. Let
us formulate the corresponding exact result.

Consider the Schrödinger equation(
−h

2∆

2µ
+ V (x)

)
ψ = Eψ, ψ ∈ L2, (1.16)

in Eucleadian space of dimension |K| = n1 × ...× nN with coordi-
nates xk, where

k = (k1, ..., kN ) ∈ K = (Z/n1Z)× ...× (Z/nNZ),
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i.e. kj ∈ Z and two indexes kj are considered to be identical,
if their difference is proportional to nj . Here ∆ is the Laplace
operator and

V (x) =
∑
k∈K

1

2

N∑
j=1

αj
(
xk − xk−1j

)2
+
β

4

∑
k∈K

(
x2k − ξ2

)2
, (1.17)

where 1j is the multi-index with elements (1j)m = δmj and αj , β, µ
are positive constants.

For instance, in the one-dimensional case the potential has
form (1.15). The potential V is an even function, i.e. it is invariant
V (Rx) = V (x) with respect to the reflection Rx = −x (the set of
the fixed point for R consists of only one point ξ0 = 0), and has
obviously two minimum points ξ1,2 with coordinates xk = ±ξ for
all k ∈ K. One can prove that these minima are not degenerate
and all conditions of Propositions 1 and 2 are satisfied. Therefore,
one can calculate the splitting between two low levels E2 and E1

by formulas (1.11), (1.13), (1.14). We give now the result of these
calculations and discuss the deduction in the next section.

Let us denote

bk =

√√√√1 + 2(βξ2)−1

N∑
j=1

αj sin
2

(
πkj
nj

)
.

Theorem 1.3 [DK2]. For any fixed (n1, ..., nN ) the following
formula holds

E2 − E1 = ∆0E(1 +O(h)),

∆0E = 4

√
hn1...nN
π
√
µ

(2β)3/4ξ5/2
∏
k ̸=0

√(
2bk + 1

2bk − 1

)(
bk + 1

bk − 1

)

× exp(−2n1...nN
√

2µβξ3/3h). (2.3)

Remark. The periodic conditions for the chain is essential.
Due to these conditions, the virial theorem (see, [Ra]), which for-
bids the existence of instantons, is not true.
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The quantum field and the thermodynamic limit of this for-
mula are investigated in [DK2]. Other examples of the application
of Theorems 1.1, 1.2 can be found in [DKM2, KM2].

We discussed here only the splitting between the low lying lev-
els. The consideration of the splitting between exited levels leads
to new effects, (see e.g. [LL], and a modern review in [DS]), be-
cause on the classical level it corresponds to the splitting between
invariant tori (and not between stable points as in the case of low
lying eigenvalues). Another interesting development is the theory
of ”momentum splitting”, where the corresponding invariant clas-
sical objects have the same projection on the coordinate space, but
different projections on the momentum space. In particular, such
situation appears in the case of Laplace-Beltrami operators on Li-
ouville surfaces, see e.g. [KMS] for the main facts of the spectral
analysis of these operators, and [K12] for a complete classifications
of these operators on two-dimensional compact surfaces. Some re-
sults on the splitting in this case can be found in [DS] (see also
[Fed3]).

2. Low lying eigenvalues of diffusion operators
and the life times of the corresponding diffusions

This section is devoted to the problem of the asymptotic cal-
culations of the low-lying eigenvalues of the diffusion operator D
on a smooth Riemannian manifold M, defined on smooth functions
by the formula

D = −h∆+ (∇φ,∇), (2.1)

where ∆ is the Laplace-Beltrami operator on M, h is a small pos-
itive parameter, the brackets denote the natural inner product on
forms defined by the Riemannian metric. The function φ is a Morse
function on M, i.e. it is a smooth function with finite number of
singular points, all of them being non-degenerate. We will consider
two special cases.

A) M is a compact domain in Rd with a smooth boundary
∂M, the local minimums of φ are supposed not to belong to the
boundary. The operator D is the Friedrichs closure of the operator
defined by (1.1) on smooth functions vanishing in a neighbourhood
of ∂M ( the Dirichlet realization of the operator D).
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B) The manifold M is closed or M = Rd, D is the closure of
the operator defined by (1.1) on smooth functions with compact
support. In the case M = R⌈, we suppose also the function φ to
increase at infinity faster than some positive power of its argument.

Let Ωi denote the regions of the attraction of the dynamical
system

ẋ = −∇φ(x). (2.2)

We shall call Ωi the fundamental domains. The geometry of their
dispositions proves to play an important role in the study of the
diffusion process.

The relation with the theory of the previous section is given
by the following (well known) observation. The diffusion operator
D is a non-negative self-adjoint operator in the weighted space
L2(M, dµ), where

dµ = exp{−φ
ϵ
}dx,

and dx is the measure on M associated to its Riemannian metric.
Moreover, the operator D is similar to a Schrödinger operator of
form (1.1):

e−
φ
2h ϵDe

φ
2h = H =

(
−h2∆+

(1
4
(∇φ)2 − h

2
∆φ
))
.

Note that each critical point ξj of the function φ corresponds to a
non-degenerate zero point of the function V = 1

4∇φ
2 and V ′′(ξj) =

1
2 (φ

′′(ξj))
2. However, only in the minimal points of the function φ

the matrix φ′′(ξj) is positive definite and in these points we have

tr[V ′′(ξj)]
1
2 = 1

2∆φ(ξj). Therefore, the set (1.2) in this situation
has the same number of zeros as the number of minimums of the
function φ. Hence the following statement is a direct consequence
of Proposition 1.2.

Proposition 2.1. Let the function φ have N local mini-
mum points on the manifold M. Then the operator D has a series
λ1(h), λ2(h), ..., λN (h) of N eigenvalues of order O(h) (in case A),
λ1(h) = 0), and the next eigenvalue is bounded from below by a
positive constant ( not depending on h).

Using the variational principle and Proposition 1.2 one read-
ily gets a more precise information about the first N eigenvalues,
namely the following result.
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Proposition 2.2. The eigenvalues λ1(h), λ2(h), ..., λN (h) are
exponentially small in h. Moreover, the eigenfunctions correspond-
ing to these eigenvalues are closed to the constant functions in each
fundamental region. More precisely, let F be the spectral subspace
of the operator D which stands for the first N eigenfunctions and
E be the subspace generated by the indicators χi of the domains Ωi
(χi equals to one or zero respectively in Ωi or outside it). Then the
distance between the subspaces E and F is exponentially small

dist(F,E) = O(exp{−α
h
}), α > 0, (2.3)

as h tends to zero.
We shall give a proof of this fact after the formulation of The-

orem 2.1, noting now that the first rigorous result on the exis-
tence of the exponentially small series was obtained by probabilistic
methods (and not necessarily for a potential drift) in the works of
Wentzell [Wen1],[Wen2], see also [FW]. Now we are going to present
a theorem which connects analytical and probabilistic approaches
to the problem of the calculation of the eigenvalues λ1(h), ..., λN (h).
This theorem generalises the well known result (see e.g. [FW]) that
in case A) the asymptotics of the first eigenvalue of the diffusion
operator can be expressed as the inverse value of the mean exit
time of the process from the manifold M.

It turns out that in case A) the leading role in the spectral
analysis of the low lying eigenvalues of the operator D is played
by the matrix Gij of the mean times that live the process in the
fundamental region Ωi when starting in the region Ωj . The analo-
gous result holds for case B). This connection allows one to reduce
the above mentioned asymptotic problems of the spectral analysis
of D to the study of the asymptotics of the mean life times of the
diffusion process and vice versa. From the analytical point of view,
this connection reduces the solution of the spectral problem to the
solution of some non-homogeneous problems for the operator D.

In case A), let function τj on M be the solution to the problem

Dτj = χj , τj |∂M = 0. (2.4)

In other words, τj = D−1χj , which is well defined, because zero
does not belong to the spectrum of D. In case B), let function τj
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be the solution to the problem

Dτj = χj − rj , rj =
µ(Ωj)

µ(M)
. (2.5)

The constants rj here equal to the measures of Ωj with respect to
the normalised stationary distribution of the diffusion process. Let
us denote Gij the mean value ( with respect to dµ) of the function
τj in Ωi:

Gij =

∫
Ωi
τj(x)dµ(x)

µ(Ωi)
. (2.6)

Theorem 2.1 [KMac]. In the case A) the eigenvalues of the
matrix G have the form

µi = λ−1
i (h)(1 +O(h∞)), i = 1, 2, ..., N. (2.7)

In the case B) the matrix G has one zero eigenvalue µ1 = 0 and
the other eigenvalues have the similar form

µi = λ−1
i (h)(1 +O(h∞)), i = 2, ...., N. (2.8)

Remark 1. One can see from the proof of this theorem that a
series of the eigenvectors of G is closed to the series of vectors com-
posed of the projections of the first eigenfunctions on the indicators
χj .

Remark 2. Due to the Ito formula, the function τj(x) satisfying
(2.4) gives the mean life time in Ωj of the diffusion process with
the starting point x. Therefore Gij is the mean life time in Ωj of
the process starting in the domain Ωi.

Proof of Proposition 2.2. It would be more convenient to con-
sider instead of χj the smooth molyfiers, on which D is well de-
fined. Namely, let Uj be neighbourhoods of the points ξj in the
fundamental domains Ωj such that their closures U j(η) of its η-
neighborhoods are compact and belong to Ωj for some η > 0. Let
θj , j = 1, ..., N , be a smooth function M → [0, 1] with the support
in U j(η) that is equal to one in Uj . We claim that the distance
d(E,F ) between the space E generated by θj , j = 1, ..., N and the
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subspace F of the first N eigenfunctions of the operator D is expo-
nentially small in h in the norm of L2(M, dµ). To be more precise,
for any δ > 0

d(E,F ) = O(exp{−∆− δ

h
}),

where
∆ = min

i
∆i, ∆i = min

x∈∂Ωi

(φ(x)− φ(xi)).

To see this, notice first that the functions θj(x) have non inter-
secting supports and satisfy the equation Dθj = αj(x), where

suppαj ⊂ Uj(η)\Uj .
On the other hand, by the Laplace method (see e.g. Appendix

B) one sees that

∥θj∥2 = (2πh)−d/2 exp{−ϕ(xj)/h}(detϕ′′(xj))−1/2(1 +O(h)).

Therefore,

||Dθj ||2

||θj ||2
≤ C(η)exp{−φ(yj)− φ(xj) + δ

h
} = O(exp{−∆j − δ

2h
}),

where
φ(yj) = min

x∈suppαj

φ(x).

Thus we display N orthogonal trial functions θj for which the
variational estimates are exponentially small. Consequently the
variational principle (see e.g. [RS]) implies the existence of N ex-
ponentially small eigenvalues, and Proposition 1.2 (in its simplest
form when all ψj are orthogonal) implies that the corresponding
subspaces are exponentially close. To finish the proof of the Propo-
sition it remains to notice that since the functions θj are closed to
the indicators χj , the distance between F and the space generated
by χj is also exponentially small.

Corollary. Each of the first N eigenfunctions of the operator
D can be represented in the form

ψi =

N∑
j=1

Cijχj + ri,
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where all rj are orthogonal to all χi and are exponentially small
with respect to the norm of L2(M, dµ). Moreover, the matrix
C = {Cij} and its inverse matrix C−1 are uniformly bounded with
respect to small parameter h.

Proof of Theorem 2.1. We start with case A). Let us calculate
the bilinear form of the operator D−1 on the normalised indica-
tors χ̂i = χi∥χi∥−1 of the fundamental domains Ωi. Due to the
definition of the matrix G, we have

Gij =
(χi,D−1χj)

||χi||2
= (χ̂i,D−1χ̂j)

||χj ||
∥χi∥

,

and we conclude that the spectrum of the matrix G coincides with
the spectrum of the matrix D−1 whose elements are (χ̂i,D−1χ̂j).

Let C = {Cij} be the matrix of the projections of the function
χ̂i on the eigenfunction ψj of the operator D. Then

(χ̂i,D−1χ̂j) = (CΛ−1C+)ij + (χ̂⊥
i ,D−1χ̂⊥

j ),

where χ̂⊥
i = P⊥χ̂i and Λ = diag(λ1, ..., λN ) is the diagonal ma-

trix composed of the first eigenvalues of D. Note that (χ̂i, χ̂j) =
(CC+)ij+(χ̂⊥

i , χ̂
⊥
j ). Thus C

+ = C−1−C−1X⊥, where the matrix

X⊥ is defined by its matrix elements X⊥
ij = (χ̂⊥

i , χ̂
⊥
j ). Conse-

quently,

(D−1)ij = (CΛ−1C−1)ij − (CΛ−1C−1X⊥)ij + (χ̂⊥
i ,D−1χ̂⊥

j ).

The entries of the matrices X⊥ and (χ⊥
i ,D−1χ⊥

j ) are exponentially
small:

|X⊥
ij | = |(χ̂⊥

i , χ̂
⊥
j )| = O(exp{−∆− δ

h
}),

|χ⊥
i ,D−1χ⊥

j )| ≤ ||χ⊥
i || ||χ⊥

j || ||P⊥D−1|| = O(exp{−∆− δ

h
})

for any δ > 0. We have used here the fact that the norm of the
inverted operator D−1 on the subspace P⊥L2(M, dµ) is estimated
by the inverse to the (N+1)-st eigenvalue of the operator D which is
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bounded by some constant, due to Proposition 2.1. Consequently,
we have the representation

C−1D−1C = Λ−1 + Λ−1A+B = Λ−1(I +O(exp{−∆− δ

h
})),

where (due to the Corollary above)

A,B = O(exp{−∆− δ

h
}).

This implies the assertion of Theorem 1.2 in case A).
Let us point out the modifications that one needs for the proof

of the case B). Let Q⊥ be the projector in L2(M, dµ) on the sub-
space of functions orthogonal to the constant functions. ( Note
that in the case of a closed manifold a constant function is the
eigenvector of the operator D corresponding to zero eigenvalue.)
We have

Gij =
(χi,D−1Q⊥χj)

∥χi∥
= (χ̂i,D−1Q⊥χ̂j)

∥χj∥2

∥χi∥
,

and thus, as previously, the matrix G and (χ̂i,D−1Q⊥χ̂j) have the
same spectrum. The existence of zero eigenvalue for the matrix G
follows from the degeneracy of the matrix (χi,D−1Q⊥χj):∑

i

(χi,D−1Q⊥χj) = (1,DQ⊥χj) = (Q⊥1,D−1Q⊥χj) = 0.

The remaining part of the proof repeats that of the case A).
A combinatorial method for the calculation of the exponen-

tial orders of the exponentially small eigenvalues was proposed in
[Wen1], [Wen2].

The main and still open question of the theory is to give a rig-
orous construction of the precise asymptotics (taking into account
the pre-exponential terms) of these first N eigenvalues. Some par-
tial results in the case of different symmetries can be obtained
using the method of the previous section, see also [HS2]. A series
of papers, see [MS, BM] and references therein, was devoted to the
formal calculations of these asymptotics.
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Rigorous results in one -dimensional case was obtained in [KMak]
on the base of the Theorem 2.1, where we developed the Wentzel
technique in a way to allow one to calculate not only the expo-
nential orders of the exponentially small eigenvalues, but also the
pre-exponential terms. This method reduces the calculation to a
problem of combinatorial analysis that can be easily solved by com-
puter.

3. Quasimodes of diffusion operators around a closed orbit
of the corresponding classical system

The correspondence principle of quantum mechanics states
that to some ”good” sets, invariant with respect to the equations
of classical mechanics, one can assign sequences (spectral series) of
asymptotic eigenfunctions and eigenvalues (quasimodes) of the cor-
responding quantum mechanical operators containing a small pa-
rameter. The case in which these sets are d-dimensional invariant
Lagrangian tori in the 2d-dimensional is well studied; the answer
(the semi-classical quantisation of these tori) is given by the Maslov
canonical operator [M1]. Spectral series can be assigned also to
such classical objects as critical points, closed invariant curves (see
e.g. [BB], [M5], [M9], [Laz]), and k-dimensional isotropic invari-
ant tori (see e.g. [BD]). In probability theory, an analogy of the
correspondence principle has been applied for a long time as often
and as successfully as in quantum mechanics (see e.g. [M1], [FW],
[Var1]). In particular, for the diffusion equation

ut +Du = 0, D = V (x)∇u− h∆u, x ∈ Rd, (3.1)

this principle states, in a sense, that some asymptotic solutions as
h→ 0 to this equation can be constructed via the solutions to the
dynamical system

ẋ = V (x), (3.2)

which the system of characteristics of the first order partial dif-
ferential equation obtained from (3.1) by putting h = 0. Unlike
the case of quantum mechanics, system (3.2) has no non-trivial
d-dimensional objects without boundary, but one can expect a re-
lationship between invariant k-dimensional tori of this (3.2) and
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asymptotic eigenfunctions of the operator D. The simplest case of
critical points was discussed in the previous section (in the case of
potential field V ). We are going to formulae here the results from
[DKO1], where it was shown that to each limit cycle Γ of equation
(3.2) corresponds complex numbers λν and smooth functions uν
(quasimodes) ”localised ” around Γ and such that

V (x)∇uν − hδuν = λνuν + h1/2. (3.3)

Here ν is a multi-index that will be defined later.
The difference with the Schrödinger operator consists in the

fact that the HamiltonianH of the classical problem - the symbol of
the diffusion operator D - is complex. In fact, multiplying equation
(3.1) on ih we get

ihut = V (x)(−ih∇)u− i(−iϵ∇)2u

The attempt to present this equation in the pseudo-differential form
iht = H(x,−i ∂∂x )u leads inevitably to the complex Hamiltonian
H = V (x)p − ip2 (symbol of the operator D). Surely, it can be
made real by the complex rotation p → −ip, but this procedure
takes us away from the standard approaches to the problems of
quantum mechanics. Thus the corresponding Hamiltonian system

ẋ = V (x)− 2ip, ṗ = −(Vx)
′p (3.4)

is also complex (here ′ denotes the transpose matrix). That is why
the general theory developed in [M5] can not be directly applied in
this situation. However it turns out that some modification of this
theory gives the solution.

Let the vector field V be smooth, and let X(t) be the solution
of (3.2), defining an orbitally asymptotically stable cycle Γ of the
vector field V , i.e. X(t) is a solution to (3.2), periodic with period
T , the equation of Γ is x = X(t), and all Floquet multipliers of the
system in variations

Ẏ =
∂V

∂x
(X(t))Y (3.5)

have the form e−µjT , j = 1, ..., d, where one of the numbers µj
(let it be µd) is equal to zero and the real parts of the others are
positive. function, periodic with period
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It turns out that the asymptotic eigenvalues of D are given by
formula

λν =
1

T

∫ T

0

divV (ξ) dξ +
2πiνn
T

+
n∑
j=1

µjνj +O(ϵ), (3.6)

whereν = (ν1, ..., νd) is an integer vector (”number of the eigen-
value”), independent of h and νj ≥ 0 for j = 1, ..., d − 1. The
formulas for the eigenfunctions contain complex solutions to the
system

Ẇ = −
(
∂V

∂x

)′

(X(t))W, Ż =
∂V

∂x
(X(t))Z + 2W. (3.7)

This system is equivalent to the Hamiltonian system with the
complex Hamiltonian (v, p) − ip2, linearised on the solution x =
X(t), p = 0. The fundamental matrix of (3.7) can be written in the
form (

Z1...Zn−1 Ẋ Y1...Yn−1 Z ′
n

W1...Wn−1 0 0...0 W ′
n

)
,

where Yj are the Floquet solutions of (3.5), and where the solutions

aj =

(
Zj
Wj

)
, j = 1, ....d− 1,

(
Zn
Wn

)
=

(
Ẋ
0

)
satisfy the conditions

aj(t+ T ) = aje
µjT .

Now let us chose the matrices B and C in the form

B = (W1(τ), ...Wn(τ)), C = (Z1(τ), ...Zn(τ)).

The asymptotic eigenfunctions of D have the form

uν = exp{T
d−1∑
j=1

νjµj−2πiνd)
τ(x)

T
}
d−1∏
j=1

(√
h

(
Yj(τ(x)),

∂

∂x

))νj
u0,

(3.8)
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where

u0 = (detC(τ(x)))−1/2 exp{1
2

∫ τ(x)

0

divV (x(ξ)) dξ−τ(x)
2T

∫ T

0

divV (X(ξ)) dξ}

× exp

{
− 1

2h

(
xX(τ(x)), BC−1(τ(x))(x−X(τ(x)))

)}
and τ(x) is a smooth function satisfying in some (independent of
h) neighbourhood of Γ the equation

(Ẋ(τ), x−X(τ)) = 0.

Outside this neighbourhood uν = O(h∞). The function τ(x) is
defined modulo T , but the expression for uν does not depend on
this choice. The main result is the following.

Theorem 3.1 [DKO1]. The functions uν and the complex
numbers λν defined by (3.6), (3.8) satisfy (3.3).

The proof of this result and its generalisations to k-dimensional
invariant tori (see [DKO1,DKO2]) is derived from the asymptotic
solutions to the Cauchy problem for the diffusion equation with
specially chosen initial data.
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Chapter 9. PATH INTEGRATION FOR THE SCHRÖDINGER,
HEAT AND COMPLEX DIFFUSION EQUATIONS

1. Introduction.

There exist several approaches to the rigorous mathematical
construction of the path integral, the most important of them (as
well as an extensive literature on this subject) are reviewed briefly
in Appendices G and H. Unfortunately, all these methods cover
still only a very restrictive class of potentials, which is clearly not
sufficient for physical applications, where path integration is widely
used without rigorous justification. On the other hand, most of the
known approaches define the path integral not as a genuine integral
(in the sense of Lebesgue or Riemann), but as a certain generalised
functional. In this chapter we give a rigorous construction of the
path integral which, on the one hand, covers a wide class of poten-
tials and can be applied in a uniform way to the Schrödinger, heat
and complex diffusion equations, and on the other hand, is defined
as a genuine integral over a bona fide σ- additive (or even finite)
measure on path space. Moreover, in the original papers of Feyn-
man the path integral was defined (heuristically) in such a way
that the solutions to the Schrödinger equation was expressed as
the integral of the function exp{iS}, where S is the classical action
along the paths. It seems that the corresponding measure was not
constructed rigorously even for the case of the heat equation with
sources (notice that in the famous Feynman-Kac formula that gives
a rigorous path integral representation for the solutions to the heat
equation, a part of the action is actually ”hidden” inside the Wiener
measure). Here we construct a measure on a path space (actually
on the so called Cameron-Martin space of trajectories with L2 first
derivative) such that the solutions to the Schrödinger, heat and
complex diffusion equations can be represented as the integrals of
the exponential of the action with respect to this measure, which is
essentially the same for all these cases (to within certain bounded
densities). However, for the case of the Schrödinger equation the
integral is usually not absolutely convergent and needs a certain
regularisation. This regularisation is of precisely the same kind as
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is used to define the finite- dimensional integral

(U0f)(x) = (2πti)−d/2
∫
Rd

exp{−|x− ξ|2

2ti
}f(ξ) dξ (1.1)

giving the free propagator eit∆/2f . Namely, this integral is not well
defined for general f ∈ L2(Rd). The most natural way to define it
is based on the observation that, according to the spectral theorem,
for all t > 0

eit∆/2f = lim
ϵ→0+

eit(1−iϵ)∆/2f (1.2)

in L2(Rd) (the operator eit(1−iϵ)∆/2 defines the free Schrödinger
evolution in complex time t(1− iϵ)). Since

(eit(1−iϵ)∆/2f)(x) = (2πt(i+ ϵ))−d/2
∫
Rd

exp{− |x− ξ|2

2t(i+ ϵ)
}f(ξ) dξ

(
√
i+ ϵ is defined as the one which tends to eπi/4 as ϵ → 0) and

the integral on the r.h.s. of this equation is already absolutely
convergent for all f ⊂ L2(Rd), one can define the integral (1.1) by
the formula

(U0f)(x) = lim
ϵ→0+

(2πt(i+ ϵ))−d/2
∫
Rd

exp{− |x− ξ|2

2t(i+ ϵ)
}f(ξ) dξ.

(1.3)
The same regularisation will be used to define the infinite-dimensional
integral giving the solutions to the Schrödinger equation with a
general potential.

At the end of the Chapter we show that the path integral con-
structed here has a natural representation in a cetain Fock space,
which gives a connection with the Wiener measure and also with
non-commutative probability and quantum stochastic calculus.

1.1. The case of potentials which are Fourier transforms of
finite measures. The starting point for our construction is a rep-
resentation of the solutions of the Schrödinger equation whose po-
tential is the Fourier transform of a finite measure, in terms of
the expectation of a certain functional over the path space of a
certain compound Poisson process. A detailed exposition of this



263

representation, which is due essentially to Chebotarev and Maslov,
together with some references on further developments, are given
in Appendix G. We begin here with a simple proof of this repre-
sentation, which clearly indicates the route for the generalisations
that are the subject of this chapter.

Let the function V = Vµ be the Fourier transform

V (x) = Vµ(x) =

∫
Rd

eipxµ(dp) (1.4)

of a finite complex Borel measure µ onRd. Now (see e.g. Appendix
G) for any σ-finite complex Borel measure µ there exists a positive
σ-finite measure M and a complex-valued measurable function f
on Rd such that

µ(dy) = f(y)M(dy). (1.5)

If µ is a finite measure, then M can be chosen to be finite as
well. In order to represent Feynman’s integral probabilisticly, it
is convenient to assume that M has no atom at the origin, i.e.
M({0}) = 0. This assumption is by no means restrictive, because
one can ensure its validity by shifting V by an appropriate constant.
Under this assumption, if

W (x) =

∫
Rd

eipxM(dp), (1.6)

then the equation

∂u

∂t
= (W (

1

i

∂

∂y
)− λM )u, (1.7)

where λM =M(Rd), or equivalently

∂u

∂t
=

∫
(u(y + ξ)− u(y))M(dξ), (1.8)

defines a Feller semigroup, which is the semigroup associated with
the compound Poisson process having Lévy measure M , see e.g.
[Br] or [Pr] for the necessary background in the theory of Lévy
processes (notice only that the condition M({0}) = 0 ensures that
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M is actually a measure on Rd \ {0}, i.e. it is a finite Lévy mea-
sure). As is well known, such a process has almost surely piecewise
constant paths. More precisely, a sample path Y of this process
on the time interval [0, t] starting at a point y is defined by a fi-
nite number, say n, of jump-times 0 < s1 < ... < sn ≤ t, which
are distributed according to the Poisson process N with intensity
λM =M(Rd), and by independent jumps δ1, ..., δn at these times,
each of which is a random variable with values in Rd\{0} and with
distribution defined by the probability measure M/λM . This path
has the form

Yy(s) = y+Y s1...snδ1...δn
(s) =


Y0 = y, s < s1,
Y1 = y + δ1, s1 ≤ s < s2,
...
Yn = y + δ1 + δ2 + ....+ δn, sn ≤ s ≤ t

(1.9)

We shall denote by E
[0,t]
y the expectation with respect to this pro-

cess.
Consider the Schrödinger equation

∂ψ

∂t
=
i

2
∆ψ − iV (x)ψ, (1.10)

where V is a function (possibly complex-valued) of form (1.4). The
equation for the inverse Fourier transform

u(y) = ψ̃(y) = (2π)−d
∫
Rd

e−iyxψ(x) dx

of ψ (or equation (1.10) in momentum representation) has the form

∂u

∂t
= − i

2
y2u− iV (

1

i

∂

∂y
)u. (1.11)

Proposition 1.1. Let u0 be a bounded continuous function.
Then the solution to the Cauchy problem of equation (1.11) with
initial function u0 has the form

u(t, y) = exp{tλM}E[0,t]
y [F (Y (.))u0(Y (t))] , (1.12)
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where, if Y is given by (1.9),

F (Y (.)) = exp{− i

2

n∑
j=0

(Yj , Yj)(sj+1 − sj)}
n∏
j=1

(−if(δj)) (1.13)

(here sn+1 = t, s0 = 0, and the function f is as in (1.5)).
In particular, choosing u0 to be the exponential function eiyx0 ,

one obtains a path integral representation for the Green function
of equation (1.10) in momentum representation.

Remark. In Appendix G some generalisation of (1.10) is dealt
with. We restrict ourselves here to (1.10) for simplicity.

We shall now give an equivalent representation for the integral
in (1.12), which we shall prove later on.

1.2. Path integral as a sum of finite-dimensional integrals.
One way to visualize the integral (1.12) is by rewriting it as a
sum of finite dimensional integrals. To this end, let us introduce
some notations. Let PCp(s, t) (abbreviated to PCp(t), if s = 0)
denote the set of all right continuous and piecewise-constant paths
[s, t] 7→ Rd starting from the point p, and let PCnp (s, t) denote the
subset of paths with exactly n discontinuities. Topologically, PC0

p

is a point and PCnp = Simn
t × (Rd \ {0})n, n = 1, 2, ..., where

Simn
t = {s1, ..., sn : 0 < s1 < s2 < ... < sn ≤ t} (1.14)

denotes the standard n-dimensional simplex. In fact, the numbers
sj are the jump-times, and the n copies of Rd \ {0} represent the
magnitudes of these jumps (see (1.9)). To each σ-finite measureM
onRd\{0} (or onRd, but without an atom at the origin), there cor-
responds a σ-finite measure MPC = MPC(t, p) on PCp(t), which
is defined as the sum of measures MPC

n , n = 0, 1, ..., where each
MPC
n is the product-measure on PCnp (t) of the Lebesgue measure

on Simn
t and of n copies of the measure M on Rd. Thus if Y is

parametrised as in (1.9), then

MPC
n (dY (.)) = ds1....dsnM(dδ1)...M(dδn).

From properties of the Poisson process it follows that (1.12) can be
rewritten in the form

u(t, y) =

∫
PCy(t)

MPC(dY (.))F (Y (.))u0(Y (t)), (1.15)
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or, equivalently, as the sum

u(t, y) =

∞∑
n=0

un(t, y) =

∞∑
n=0

∫
PCn

y (t)

MPC
n (dY (.))F (Y (.))u0(Y (t)).

(1.16)
The integrals in this series can be written more explicitly (in terms
of the parametrisation (1.9) of the paths Y ) as

un(t, y) =

∫
PCn

y (t)

MPC
n (dY (.))F (Y (.))u0(Y (t))

=

∫
Simn

t

ds1...dsn

∫
Rd

...

∫
Rd

M(dδ1)...M(dδn)F (y+Y
s1...sn
δ1...δn

)u0(y+δ1+...+δn).

(1.17)
Notice that the multiplier exp{tλM} in (1.12) arises because the
integral in (1.12) is not over the measureMPC , but over a probabil-
ity measure obtained from MPC by an appropriate normalisation
(namely, MPC(PC1

p(t)) = t+O(t2) for small t, and the normalised
measure of the corresponding Poisson process is such that the prob-
ability of PC1

p(t) is λM (t + O(t2)) exp{−tλM} and the jumps are
distributed according to the normalised measure M/λM ).

1.3. Connection with perturbation theory and a proof of Propo-
sition 1.1. A simple proof of formula (1.16) can be obtained from
non-stationary perturbation theory, which we recall now for use
in what follows. First, one can rewrite equation (1.10) in an in-
tegral form using the so called interaction representation for the
Schrödinger equation, where the evolution of a quantum system is
described by the wave function ϕ = e−i∆t/2ψ rather than the orig-
inal wave function ψ. From (1.10) one gets that if ψ satisfies the
Cauchy problem for equation (1.10) with the initial data ψ0, then
ϕ satisfies the equation

∂ϕ

∂t
= −ie−i∆t/2V ei∆t/2ϕ (1.18)

(here the symbol V is used to denote the operator of multiplication
by the function V ), with the same initial data ϕ0 = ψ0. Integrat-
ing this equation (which is called the Schrödinger equation in the
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interaction representation) over t and substituting ϕ = e−i∆t/2ψ
one obtains the equation for ψ

ψ(t) = ei∆t/2ψ0 − i

∫ t

0

ei∆(t−s)/2V ψ(s) ds, (1.19)

which contains not only the information comprised by (1.10), but
also the information comprised by the initial data ψ0. Though,
strictly speaking, equation (1.19) is not quite equivalent to (1.10)
(because, for example, a solution of (1.19) may not belong to the
domain of the operator ∆) under reasonable assumptions on V (for
example, if V is bounded, or V ∈ Lp + L∞ with p ≥ max(2, d/2),
which is quite enough for our purposes) the solutions to (1.19)
defines the Schrödinger evolution eit(∆/2−V ) (see e.g. [Yaj] or the
earlier paper [How], where (1.19) is used to prove the existence
of the Schrödinger propagator in the more general case of time-
dependent potentials).

Substituting expression (1.19) for ψ in the r.h.s. of (1.19)
and iterating this procedure one obtains the standard perturbation
theory expansion for ψ

ψ(t) =
[
ei∆t/2 − i

∫ t

0

ei∆(t−s)/2V ei∆s/2 ds

+(−i)2
∫ t

0

ds

∫ s

0

dτ ei∆(t−s)/2V ei∆(s−τ)/2V ei∆τ/2+ ...
]
ψ0. (1.20)

More precisely, from this procedure one obtains the following: if
series (1.20) is convergent, say in L2-sense, then its sum defines a
solution to equation (1.19), and this solution is unique. Clearly,
this is the case for bounded functions V , but actually holds also
for more general V , see [Yaj].

Clearly in momentum representation (1.19) has the form

u(t, y) = e−ity
2/2u0(y)− i

∫ t

0

e−i(t−s)y
2/2

(
V (−i ∂

∂y
)u0

)
(y) ds.

(1.21)
Since the operator V (−i(∂/∂y)) is that of convolution with the
measure µ, in momentum representation the series (1.20) takes the
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form

u(t, y) =

∞∑
j=0

Ij(t, y) = I0(t, y) + (FI0)(t, y) + (F2I0)(t, y) + ...,

(1.22)
where F is the integral operator given by

(Fϕ)(t, y) = −i
∫ t

0

ds

∫
Rd

M(dv − y)g(t− s, y)f(v − y)ϕ(s, v)

(1.23)
and

g(t, y) = exp{−it(y, y)/2}, I0 = g(t, y)u(y).

It is convenient to consider this series in the Banach space C0(Rd)
of continuous functions vanishing at infinity. The terms of the
series (1.22) can now be obtained from the corresponding terms of
the series (1.16), (1.17) by linear change of integration variables.
Consequently, if either the series (1.22) or the series (1.16)-(1.17)
is absolutely convergent and all its terms are absolutely convergent
integrals, as is clearly the case under the assumptions of Proposition
1.1, one obtains the representation (1.15) (and hence also (1.12))
for the solution u(t, x) of the Cauchy problem for equation (1.11).

1.4. Regularization by introducing complex times or continu-
ous non-demolition measurement. In this chapter we are going to
generalise the representations (1.12) or (1.16) to a wide class of po-
tentials. In Section 2 we begin with a class of potentials that have
form (1.4) with measure µ having support in a convex cone and
being of polynomial growth. In this case (1.15) still holds without
any change, even though the measure µ is not finite. However, this
case is rather artificial from the physical point of view, because it
does not include real potentials. In general, the terms of the series
(1.22) would not be absolutely convergent integrals, or, even worse,
(1.22) would not be convergent at all. To deal with this situation,
one has to use some regularisations of the Schrödinger equation.
As we mentioned, this regularisation will be of the same kind as is
used to define the standard finite-dimensional (but not absolutely
convergent) integral (1.1). Namely, if the operator −∆/2+V (x) is
self-adjoint and bounded from below, by the spectral theorem,

exp{it(∆/2−V (x))}f = lim
ϵ→0+

exp{it(1−iϵ)(∆/2−V (x))}f. (1.24)
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In other words, solutions to equation (1.10) can be approximated
by the solutions to the equation

∂ψ

∂t
=

1

2
(i+ ϵ)∆ψ − (i+ ϵ)V (x)ψ, (1.25)

which describes the Schrödinger evolution in complex time. The
corresponding integral equation (the analogue of (1.19)) can be
obtained from (1.19) by replacing i by i+ ϵ everywhere. It has the
form

ψ(t) = e(i+ϵ)∆t/2ψ0 − (i+ ϵ)

∫ t

0

e(i+ϵ)∆(t−s)/2V ψ(s) ds. (1.26)

If ψ satisfies (1.25), its Fourier transform u satisfies the equation

∂u

∂t
= −1

2
(i+ ϵ)y2u− (i+ ϵ)V (

1

i

∂

∂y
)u. (1.27)

We shall define a measure on a path space such that for arbitrary
ϵ > 0 and for a rather general class of potentials V , the solution
exp{it(1− iϵ)(∆/2− V (x))}u0 to the Cauchy problem of equation
(1.25) can be expressed as the Lebesgue (or even Riemann) integral
of some functional Fϵ with respect to this measure, which gives a
rigorous definition (analogous to (1.3)) of an improper Riemann
integral corresponding to the case ϵ = 0, i.e. to equation (1.10).
Thus, unlike the usual method of analytical continuation often used
for defining Feynman integrals, where the rigorous integral is de-
fined only for purely imaginary Planck’s constant h, and for real
h the integral is defined as the analytical continuation by rotating
h through a right angle, in our approach, the measure is defined
rigorously and is the same for all complex h with non-negative real
part. Only on the boundary Imh = 0 does the corresponding
integral usually become an improper Riemann integral.

Of course, the idea of using equation (1.25) as an appropriate
regularisation for defining Feynman integrals is not new and goes
back at least to the paper [GY]. However, this was not carried out
there, because, as was noted in [Ca], there exists no direct gener-
alisation of Wiener measure that could be used to define Feynman
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integral for equation (1.25) for any real ϵ. Here we shall carry out
this regularization using a measure which differs essentially from
Wiener measure. The connection with Wiener measure will be dis-
cussed in the last section of this chapter.

Equation (1.25) is certainly only one of many different ways
to regularise the Feynman integral. However, this method is one of
the simplest method, because the limit (1.24) follows directly from
the spectral theorem, and other methods may require additional
work to obtain the corresponding convergence result. As another
regularisation to equation (1.10), one can take, for example, the
equation

∂ψ

∂t
=

1

2
(i+ ϵ)∆ψ − iV (x)ψ. (1.28)

A more physically motivated regularisation can be obtained
from the quantum theory of continuous measurement. Though the
work with this regularisation is technically more difficult than with
the regularisation based on equation (1.25), we shall describe it,
because, firstly, Feynman’s integral representation for continuously
obserbed quantum system is a matter of independent interest, and
secondly, the idea to use the theory of continuous observation for
regularisation of Feynman’s integral was already discussed in phys-
ical literature (see e.g. [Me2]) and it is interesting to give to this
idea a rigorous mathematical justification. The idea behind this
approach lies in the observation that in the process of continuous
non-demolition quantum measurement a spontaneous collapse of
quantum states occurs (see e.g. [Di2], [Be2], or Section 1.4), which
gives a sort of regularisation for large x (or large momenta p) di-
vergences of Feynman’s integral.

As is well known, the standard Schrödinger equation describes
an isolated quantum system. In quantum theory of open systems
one considers a quantum system under observation in a quan-
tum environment (reservoir). This leads to a generalisation of
the Schrödinger equation, which is called stochastic Schrödinger
equation (SSE), or quantum state diffusion model, or Belavkin’s
quantum filtering equation (see Appendix A and Chapter 7). In
the case of a non-demolition measurement of diffusion type, the
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SSE has the form

du+ (iH +
1

2
λ2R⋆R)u dt = λRudW, (1.29)

where u is the unknown a posterior (non-normalised) wave function
of the given continuously observed quantum system in a Hilbert
space H, the selfadjoint operator H = H⋆ in H is the Hamiltonian
of a free (unobserved) quantum system, the vector-valued operator
R = (R1, ..., Rd) in H represents the observed physical values, W
is the standard d-dimensional Brownian motion, and the positive
constant λ represents the precision of measurement. The simplest
natural examples of (1.29) concern the case when H is the standard
quantum mechanical Hamiltonian and the observed physical value
R is either the position or momentum of the particle. The first
case was considered in detail in Chapter 7. Here we are going to
use mostly the second case when R represents the momentum of
the particle (and therefore one models a continuous non-demolition
observation of the momentum of a quantum particle). In this case
the SSE (1.29) takes the form

dψ =

(
1

2
(i+

λ

2
)∆ψ − iV (x)ψ

)
dt+

1

i

√
λ

2

∂

∂x
ψ dW. (1.30)

As λ → 0, equation (1.30) approaches the standard Schrödinger
equation (1.10). If ψ satisfies the SSE (1.30), the equation on the
Fourier transform u(y) of ψ clearly has the form

du =

(
−1

2
(i+

λ

2
)y2u− iV (

1

i

∂

∂y
)u

)
dt+

√
λ

2
yu dW. (1.31)

By Ito’s formula, the solution to this equation with initial function
u0 and with vanishing potential V equals gWλ (t, y)u0(t, y) with

gWλ (t, y) = g
W (t)
λ (t, y) = exp{−1

2
(i+ λ)y2t+

√
λ

2
yW (t)}, (1.32)

and therefore the analog of equation (1.21) corresponding to (1.31)
has the form

u(t, y) = g
W (t)
λ (t, y)u0−i

∫ t

0

g
W (t)−W (s)
λ (t−s, .)V (−1

i

∂

∂y
)g
W (s)
λ (t, .)u(s, .) ds.

(1.33)
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As we shall see, equation (1.31) can be used to regularise Feynman’s
integral for equation (1.10) as an alternative to equation (1.25).

For conclusion, let us sketch the content of this chapter. In
Section 2 we will obtain the path integral representation for the
solutions of equations (1.11), (1.27), (1.31) for rather general scat-
tering potentials V , including the Coulomb potential.

The momentum representation for wave functions is known to
be usually convenient for the study of interacting quantum fields
(see e.g. [BSch]). In quantum mechanics, however, one usually
deals with the Schrödinger equation in x-representation. There-
fore, it is desirable to write down Feynman’s integral representation
directly for equation (1.10). Since in p-representation our measure
is concentrated on the space PC of piecewise constant paths, and
since classically trajectories x(t) and momenta p(t) are connected
by the equation ẋ = p, one can expect that in x-representation the
correspondonding measure is concentrated on the set of continu-
ous piecewise linear paths. In Sections 3 and 4 we shall construct
this measure and the corresponding Feynman integral for equa-
tion (1.10) with bounded potentials and also for a class of singular
potentials. In Section 5 we discuss the connection with the semi-
classical asymptotics giving a different path integral representation
for the solutions of the Schrödinger or heat equation, which is an
integral of the exponential of the classical action. In the last sec-
tion, we give a repersentation of our measures in Fock space and
make some other remarks.

2. Momentum representation and occupation number representation

If a is a unit vector in Rd, b ∈ R, θ ∈ (0, π/2), denote

Conθa = {y : (y, a) ≥ |y| cos θ}, Πa(b) = {y : (y, a) ≤ b}.

Let M be a (positive) measure with support in Conθa. Suppose
also that M is of polynomial growth, i.e. M(Πa(b)) ≤ CbN for
some positive constants C,N and all positive b. Let V be given by
(1.4), (1.5) in the sense of distributions, so that V is the Fourier
transform of the measure fM considered as a distribution over the
Schwarz space S(Rd).
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Proposition 2.1. For any continuous function u0 such that
supp u0 ⊂ Πa(b) for some real b, all terms of the series (1.16)
are absolutely convergent integrals representing continuous func-
tions, and this series is absolutely convergent uniformly on compact
sets. In particular, there exists a solution to the Cauchy problem
of equation (1.11) that has support in Πa(b), has at most polyno-
mial growth, and is represented by means of the Feynman integral
(1.15).

Proof. Clearly, if y does not belong to Πa(b), then all un given
by (1.17) vanish. Hence, supp un ⊂ Πa(b) for all n. If y ∈ Πa(b),
then

|un(t, y)| ≤
tn

n!

∫
Conθ

a

...

∫
Conθ

a

M(dδ1)...M(dδn)u0(y+ δ1+ ...+ δn).

Since supp u0 ⊂ Πa(b), the integrand in this formula vanishes when-
ever (δ1 + ... + δn, a) > b − (y, a), and, in particular, if (δj , a) >
b − (y, a) for at least one j = 1, ..., n. Hence, denoting K =
sup{|u0(x)|}, one has

|un(t, y)| ≤
tn

n!
K

∫
Πa(b−(y,a))

...

∫
Πa(b−(y,a))

M(dδ1)...M(dδn)

≤ tn

n!
KCn(b− (y, a))Nn,

which for fixed b and large y does not exceed tnKCn2Nn(y, a))Nn/n!.
Consequently, the series (1.16) consists of absolutely convergent
integrals, is convergent, and is bounded by K exp{2N (y, a)NCt},
which implies the statement of the Proposition.

As we mentioned in the introduction, the potentials of the
form occurring in Proposition 2.1 seem to have no physical rel-
evance. As an example of a physically meaningful situation, we
consider now the case of scattering potentials using the regulari-
sation (1.27) or (1.31). Let V have form (1.4), (1.5) (again in the
sense of distributions) with M being the Lebesgue measure MLeb

and f ∈ L1 + Lq, i.e. f = f1 + f2 with f1 ∈ L1, f2 ∈ Lq, with
q in the interval (1, d/(d − 2)), d > 2. Notice that this class of
potentials includes the Coulomb case V (x) = |x|−1 in R3, because
for this case f(y) = |y|−2.
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Proposition 2.2. Under the given assumptions on V there
exists a (strong) solution u(t, y) to the Cauchy problem of equations
(1.27) and (1.31) with initial data u0, which is given in terms of
the Feynman integral of type (1.15). More precisely

u(t, y) =

∫
PCy(t)

MPC
Leb (dY (.))F (Y (.))u0(Y (t)), (2.1)

where, if Y is parametrised as in (1.9),

F (Y (.)) = Fϵ(Y (.)) = exp{−1

2
(i+ϵ)

n∑
j=0

Y 2
j (sj+1−sj)}

n∏
j=1

(−i(1−iϵ)f(δj))

(2.2)
for the case of equation (1.27), and F (Y (.)) equals

FWλ (Y (.)) =
n∏
j=1

(−if(δj))

× exp{−
n∑
j=0

[
i+ λ

2
Y 2
j (sj+1 − sj)−

√
λ

2
Yj(W (sj+1)−W (sj))

]
}

(2.3)
for the case of equation (1.31).

Proof. Since the proofs for equations (1.27) and (1.31) are
quite similar, let us consider only the case of equation (1.31). As is
explained in the introduction, it is sufficient to prove that for any
bounded continuous function ϕ the integral (1.23), with g = gWλ
as in (1.32), is absolutely convergent (almost surely), and that fur-
thermore, the corresponding series (1.22) is absolutely convergent.
To this end, consider the integral

J =

∫
Rd

|f(v − y)|gWλ (t, y) dy.

Clearly, the function gWλ is bounded (for a.a. W ) for times in an
arbitrary finite closed subinterval of the positive halfline, and for
small t

sup
y
{|g(t, y)|} = exp{W 2(t)/4t} ≤ exp{log | log t|/2} =

√
| log t|,

(2.4)
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due to the well known law of the iterated logarithm for the Brow-
nian motion W . Hence, by the assumptions on f and the Hölder
inequality

J = O(
√

| log t|) +O(1)∥gWλ (t, .)∥Lp ,

where p−1 + q−1 = 1. Since

∥gWλ (t, .)∥pLp =

(
2π

pλt

)d/2
exp{pW

2(t)

4t
},

it follows that J is bounded for t in any finite interval of the positive
halfline, and J = O(λt)−d/2p

√
| log t| for small t. Since the con-

dition q < d/(d − 2) is equivalent to the condition p > d/2, there
exists ϵ ∈ (0, 1) such that J ≤ C((λt)−(1−ϵ)). Moreover, clearly
I0(t, y) = g(t, y)u0(y) does not exceed Kt

−ϵ for some constant K.
We can now easily estimate the terms of the series (1.22). Namely,
we have

|FI0(t, y)| ≤ KCλ−(1−ϵ)
∫ t

0

(t−s)−(1−ϵ)s−ϵ ds = KCλ−(1−ϵ)B(ϵ, 1−ϵ),

where B denotes the Euler β-function. Similarly,

|F2I0(t, y)| ≤ λ−2(1−ϵ)B(ϵ, 1− ϵ)KC2

∫ t

0

(t− s)−(1−ϵ)ds

= B(ϵ, 1− ϵ)B(ϵ, 1)KC2tϵ.

By induction, we obtain the estimate

|FkI0(t, y)| ≤ KCkλ−k(1−ϵ)t(k−1)ϵB(ϵ, 1−ϵ)B(ϵ, 1)...B(ϵ, 1+(k−2)ϵ).

Using the representation of the β-function in terms of the Γ-function,
one obtainss that the terms of series (1.22) are of order tkϵ/Γ(1+kϵ),
which implies the convergence of this series for all t. Since we have
estimated all functions by their magnitude, we have proved also
that all terms of series (1.22) are absolutely convergent integrals,
and that this series converges absolutely.

The following is a direct consequence of (1.24) and Proposition
2.2.
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Proposition 2.3. Assume the assumptions of Proposition 2.2
hold. If the operator −∆/2+V (x) is self-adjoint and bounded from
below, then for any u0 ∈ L∞ ∩ L2, the solution to equation (1.10)
is given by the improper Feynman integral (1.15), which should be
understood as

u(t, y) = lim
ϵ→0

∫
PCy(t)

MPC
Leb (dY (.))Fϵ(Y (.))u0(Y (t)). (2.5)

Since the convergence of solutions of equation (1.31) to solu-
tions of the ordinary Schrödinger equation seems to be unknown,
the use of equation (1.31) to obtain a regularisation for the Feyn-
man integral for the Schrödinger equation similar to (2.5) requires
some additional work. It seems that this can be done under the
assumptions of Proposition 2.2 using the technique from [Yaj]. But
we shall restrict ourselves here to the case of a bounded potential,
which will be used also in the next Section. Notice that we prove
now this result using p-representation, but it automatically implies
the same fact for the Schrödinger equation in x-representation.

Proosition 2.4. Let V be a bounded measurable function.
Then for any u0 ∈ L2(Rd) the solution uWλ of equation (1.33)
(which exists and is unique, see details in Section 3) tends (almost
surely) as λ→ 0 to the solution of this equation with λ = 0.

Proof. Using the boundedness of all operators on the r.h.s. of
(1.33), and (2.4) one obtains that

∥uWλ −u∥ ≤ ∥gWλ (t, y)u0−gW0 (t, y)u0∥+O(t)| log t|∥uWλ −u∥+o(λ)

= O(t)| log t|∥uWλ − u∥+ o(λ), (2.6)

where o(λ) depends on u0 but is uniform with respect to finite
times t. It follows that ∥uWλ − u∥ = o(λ) for small t, which proves
the Proposition.

Corollary. If V is a bounded function, and the assumptions of
Proposition 2.2 holds, then the solution to (1.11) can be presented
in the form

u(t, y) = lim
λ→0

∫
PCy(t)

MPC
Leb (dY (.))FWλ (Y (.))u0(Y (t)). (2.7)
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To conclude, let us point out that different kind of interactions
can be treated similarly if one changes p- repersentation into occu-
pation number representation. Namely, consider the Schrödinger
equation for the anharmonic oscillator

i
∂ψ

∂t
=

(
−∆

2
+
x2

2
+ V (x)

)
ψ.

If V is a smooth function, a path integral representation for its
solutions can be obtained as in Section 5. If V is a bounded func-
tion, one can also proceed as in Section 3 using the explicit Green
function for the quantum harmonic oscillator instead of the ”free”
Green function. Alternatively, one can use the spectral represen-
tation for the harmonic oscillator, i.e. for the operator ∆ + x2.
In that approach the corresponding measure on path space will
be concentrated on the right continuous piecewise-constant trajec-
tories q : [0, t] 7→ {0, 1, ...} with values in the countable number
of eigenstates ψj of the harmonic oscillator, and the analog of
formula (1.16) will hold, where the integrand will have the form

exp{−i
∫ t
0
E(q(s) ds}, where E(n) denotes the energy of the state

ψn. If the infinite dimensional matrix (V ψj , ψk) defines finite tran-
sition probabilities, we find ourselves in the situation, where the
corresponding path integral is expressed as an expectation with
respect to a generalised Poisson process in the sense of Combe et
al [Com1] (see e.g. [BGR] where this is done in a more general
infinite-dimensional model describing a particle interacting with a
boson reservoir). If not, we can as usual use the regularisation
based on (1.24).

3. Path integral for the Schrödinger equation in x-representation

As we mentioned in introduction, we are going to deal here
with measures on paths that are concentrated on the set of con-
tinuous piecewise linear paths. Denote this set by CPL. Let
CPLx,y(0, t) denote the class of paths q : [0, t] 7→ Rd from CPL
joining x and y in time t, i.e. such that q(0) = x, q(t) = y. By
CPLx,yn (0, t) we denote the subclass consisting of all paths from
CPLx,y(0, t) that have exactly n jumps of their derivative. Obvi-
ously,

CPLx,y(0, t) = ∪∞
n=0CPL

x,y
n (0, t).
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Notice also that the set CPLx,y(0, t) belongs to the Cameron-
Martin space of curves that have derivatives in L2([0, t]).

To any σ-finite measure M on Rd there corresponds a unique
σ-finite measure MCPL on CPLx,y(0, t), which is the sum of the
measures MCPL

n on CPLx,yn (0, t), where MCPL
0 is just the unit

measure on the one-point set CPLx,y0 (0, t) and each MCPL
n , n > 0,

is the direct product of the Lebesgue measure on the simplex (1.14)
of the jump times 0 < s1 < ... < sn < t of the derivatives of the
paths q(.) and of n copies of the measure M on the values q(sj) of
the paths at these times. In other words, if

q(s) = qs1...snη1...ηn(s) = ηj + (s− sj)
ηj+1 − ηj
sj+1 − sj

, s ∈ [sj , sj+1] (3.1)

(where s0 = 0, sn+1 = t, η0 = x, ηn+1 = y) is a typical path in
CPLx,yn (0, t) and Φ is a functional on CPLx,y(0, t), then∫
CPLx,y(0,t)

Φ(q(.))MCPL(dq(.)) =
∞∑
n=0

∫
CPLx,y

n (0,t)

Φ(q(.))MCPL
n (dq(.))

=

∞∑
n=0

∫
Simn

t

ds1...dsn

∫
Rd

...

∫
Rd

M(dη1)...M(dηn)Φ(q(.)). (3.2)

Remark. Nothing is changed if CPLx,yn (0, t) is defined as the
set of paths with at most n jumps in their derivative. In fact,
the MCPL

n -measure of the subset CPLx,yn−1(0, t) ⊂ CPLx,yn (0, t)
vanishes, because if the jump, say, at the time sj vanishes then
(ηj − ηj−1)(sj+1 − sj−1) = (ηj+1 − ηj−1)(sj − sj−1), therefore sj
can be only one point, and the Lebesgue measure has no atoms.

To express the solutions to the Schrödinger equation in terms
of a path integral we shall use the following functionals on CPLx,y(0, t),
depending on a given measurable function V on Rd:

Φϵ(q(.)) =
n+1∏
j=1

(2π(sj − sj−1)(i+ ϵ))−d/2

× exp{−
n+1∑
j=1

|ηj − ηj−1|2

2(i+ ϵ)(sj − sj−1)
}

n∏
j=1

(−(i+ ϵ)V (ηj))
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=
n+1∏
j=1

(2π(sj−sj−1)(i+ϵ))
−d/2

n∏
j=1

(−(i+ϵ)V (ηj)) exp{−
1

2(i+ ϵ)

∫ t

0

q̇2(s) ds},

(3.3)
and

ΦWλ (q(.)) =
n+1∏
j=1

(2π(sj − sj−1)(i+ λ))−d/2

× exp{−
n+1∑
j=1

(ηj − ηj−1 − i
√

λ
2 (W (sj)−W (sj−1))

2

2(i+ λ)(sj − sj−1)
}

n∏
j=1

(−iV (ηj)).

(3.4)
As in Section 2, we shall denote Lebesgue measure on Rd byMLeb.

Theorem 3.1. Let V be a bounded measurable function on
Rd. Then for arbitrary ϵ > 0 or λ > 0 and a.a. Wiener trajecto-
ries W , there exists a unique solution Gϵ(t, x, x0) or GWλ (t, x, x0)
to the Cauchy problem of equations (1.25) or (1.30) respectively
with Dirac initial data δ(x − x0). These solutions (i.e. the Green
functions for these equations) are uniformly bounded for all (x, x0)
and t in any compact interval of the open half-line, and they are
expressed in terms of path integrals as follows:

Gϵ(t, x, x0) =

∫
CPLx,y(0,t)

Φϵ(q(.))M
CPL
Leb (dq(.)), (3.5)

GWλ (t, x, x0) =

∫
CPLx,y(0,t)

ΦWλ (q(.))MCPL
Leb (dq(.)), (3.6)

with Φϵ and ΦWλ given by (3.3), (3.4). For arbitrary ψ0 ∈ L2(Rd)
the solution ψ0(t, s) of the Cauchy problem for equation (1.10) with
the initial data ψ0 has the form of an improper (not absolutely
convergent) path integral that can be understood rigorously as either

ψ(t, x) = lim
ϵ→0+

∫
CPLx,y(0,t)

∫
Rd

ψ0(y)Φϵ(q(.))M
CPL
Leb (dq(.))dy,

(3.7)
or (almost surely) as

ψ(t, x) = lim
λ→0+

∫
CPLx,y(0,t)

∫
Rd

ψ0(y)Φ
W
λ (q(.))MCPL

Leb (dq(.))dy.

(3.8)
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Proof. Formulas (3.7), (3.8) follow from (3.5), (3.6), (1.24)
and Proposition 2.4. The proofs of (3.5), (3.6) are similar and we
shall prove only (3.5). To this end, notice that the analogue of
series (1.20) for the case of equation (1.25) has form (1.20) with i
replaced by (i+ϵ) everywhere. In particular, for the Green function
one has the representation

Gϵ(t, x, x0) = Gfreeϵ (t, x, x0)

−(i+ ϵ)

∫ t

0

∫
Rd

Gfreeϵ (t− s, x− η)V (η)Gfreeϵ (s, η − x0) dηds+ ...,

(3.9)
where Gfreeϵ is the Green function of the ”free” equation (1.25) (i.e.
with V = 0):

Gfreeϵ (t, x− x0) = (2πt(i+ ϵ))−d/2 exp{− (x− x0)
2

2(i+ ϵ)t
}.

To prove (3.5) one needs to prove that the terms of this series are
absolutely convergent integrals and the series is absolutely con-
vergent with a bounded sum. This is more or less straightforward.
Namely, to prove that the second integral in this series is absolutely
convergent, we must estimate the integral∫ t

0

∫
Rd

|2π(i+ϵ)|−d((t−s)s)−d/2| exp{− (x− η)2

2(t− s)(i+ ϵ)
− (η − x0)

2

2s(i+ ϵ)
}| dsdη

=

∫ t

0

∫
Rd

(2π
√

1 + ϵ2)−d((t− s)s)−d/2

× exp{− ϵ

2(1 + ϵ2)

[
(x− η)2

t− s
+

(η − x0)
2

s

]
} dsdη.

This is a Gaussian integral in η which can be explicitly evaluated
using standard integrals to be

t(2πϵt)−d/2 exp{−ϵ(x− x0)
2

2(1 + ϵ2)t
}.
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By induction and similar calculations we obtain the estimate for
the n-th term of the series (3.9)

C(2πt)−d/2(tϵ−d/2)k/k!

for some real number C. This completes the proof of the Theorem.
The measureMCPl in (3.2) may well be not finite, for example

MCPL
Leb is not finite. But every Hilbert space can be represented as

an L2 over a probability space. For example, the obvious isomor-
phism of L2(R, dx) with L2(R, e−x2/2dx) is very useful in many
situation. In the same way, an integral over MCPL

Leb can be rewrit-
ten as an integtral over the probability space (up to a normali-

sation) (e−x
2/2dx)CPL. Thus one can always rewrite the integral

from (3.2) as an expectation of a ceratin stochastic process, which
can be taken to be an integral of the compound Poisson process
that stands for the path integral formula for the solutions to the
Schrödinger equation in momentum representation. More system-
atic way of obtaining probabilistic interpertations of path integral
constructed is discussed later in Section 6.

4. Singular potentials

There exists an extensive literature devoted to the study of the
Schrödinger equations with singular potentials, and more precisely
with potentials being Radon measures supported by null sets. As
most important examples of such null sets one should mention dis-
crete sets (point interaction), smooth surfaces (surface delta inter-
actions), Brownian paths and more general fractals, see e.g. [BF],
[ABD], [AFHL], [AHKS], [AntGS], [DaSh], [Kosh], [Metz], [DeO],
[Pav] and references therein for different mathematical techniques
used for the study of these models and for physical motivations.
We are going to show now that the path integral constructed above
can be successfully applied to the construction of solutions to these
models.

The one-dimensional situation turns out to be particularly sim-
ple in our approach, because in this case no regularisation is needed
to express the solutions to the corresponding Schrödinger equation
and its propagator in terms of path integral.
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Proposition 4.1. Let V be a bounded (complex) measure
on R. Then the solution ψG to equation (1.25)), where ϵ is any
complex number with ϵ ̸= i and non-negative real part, with ini-
tial function ψ0(x) = δ(x − x0) (i.e. the propagator or the Green
function of (1.25)) exists and is a continuous function of the form

ψG(t, x) = (2π(i+ ϵ)t)−1/2 exp{−|x− x0|2

2t(i+ ϵ)
}+O(1) (4.1)

uniformly for finite times. Moreover, one has the path integral
representation for ψG of the form

ψG(t, x) =

∫
CPLx,y(0,t)

Φ(q(.))V CPL(dq(.)), (4.2)

where V CPL is related to V as MCPL is to M in Section 2, and

Φ(q(.)) =
n+1∏
j=1

(2π(sj−sj−1)(i+ϵ))
−1/2 exp{− 1

2(i+ ϵ)

∫ t

0

q̇2(s) ds}.

Remark. The cases ϵ = 0 , i.e. the Schrödinger equation, and
ϵ = 1−i, i.e. the heat equation, are particular cases of the situation
considered in the proposition.

Proof. Since V is a finite measure, in order to prove that the
terms of series (3.9) with ϵ = 0 (which expresses the Green func-
tion) are absolutely convergent, one needs to estimate the integrals∫ t

0

ds1 (2π(t−s1))−1/2

∫ s1

0

ds2 (2π(s1−s2))−1/2...

∫ sn−1

0

dsn(2πsn)
−1/2,

which clearly exist (one-dimensional effect!) and can be expressed
explicitly in terms of the Euler β-function. One sees directly that
the corresponding series is convergent, which completes the proof.

For the Schrödinger equation in finite-dimensional case one
needs a regularisation, say (1.25) with ϵ > 0 or (1.27) with λ > 0.
For simplicity we consider here only the regularisation given by
(1.25).
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Following essentially [AFHK] (see also [Pus], [KZPS]) we shall
say that a number α ≥ 0 is admissible for a finite Borel measure V
on Rd, if there exists a constant C = C(α) such that

V (Br(x)) ≤ Crα (4.3)

for all x ∈ Rd and all r > 0. The least upper bound of all admissible
numbers for V is called dimensionality of V . It will be denoted by
dim(V ).

Proposition 4.2. Let V be a finite Borel measure on Rd with
dim(V ) > d − 2. Then for any ϵ > 0 and any bounded initial
function ψ0 ∈ L2(Rd) there exists a unique solution ψϵ(t, x) to the
Cauchy problem of equation (1.26) with the initial data ψ0(x). This
solution has the form

ψϵ(t, x) =

∫
CPLx,y(0,t)

∫
Rd

ψ0(y)Φϵ(q(.))V
CPL(dq(.))dy, (4.4)

where

Φϵ =

n+1∏
j=1

(2π(sj−sj−1)(i+ϵ))
−d/2(−(ϵ+i))n exp{− 1

2(i+ ϵ)

∫ t

0

q̇2(s) ds}.

Proof. One needs to prove that the terms of the series (1.20),
in which i has been replaced by (i + ϵ), are absolutely convergent
integrals and then to estimate the corresponding series. Starting
with the first non-trivial term one needs to estimate the integral

J = K

∫ t

0

∫
R2d

|2π(i+ ϵ)|−d((t− s)s)−d/2

×| exp{− (x− ξ)2

2(t− s)(i+ ϵ)
− (ξ − η)2

2s(i+ ϵ)
}| dsdη|V |(dξ).

= K

∫ t

0

∫
R2d

(2π
√
1 + ϵ2)−d((t− s)s)−d/2 exp{−ϵ (x− ξ)2

2(t− s)(1 + ϵ)2
}

× exp{−ϵ (ξ − η)2

2s(1 + ϵ)2
} ds |V |(dξ)dη,
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where K = sup{|ψ0(η)|}. Integrating over η yields

J ≤ K

∫ t

0

(2π
√

1 + ϵ2)−d/2(t−s)−d/2 exp{−ϵ (x− ξ)2

2(t− s)(1 + ϵ)2
}ϵ−d/2 ds |V |(dξ).

Due to the assumptions of the theorem, there exists α > d− 2
such that (4.3) holds. Let us decompose this integral into the sum
J1 + J2 of the integrals over the domains D1 and D2 with

D1 = {ξ : |x− ξ| ≤ (t− s)−δ+1/2}

and D2 its complement. Choosing δ > 0 in such a way that α(−δ+
1/2) − d/2 > −1 (which is possible due to the assumption on α)
we get from (4.3) that

J1 ≤ KC

∫ t

0

(2π
√
1 + ϵ2)−d/2(t− s)α(−δ+1/2)−d/2 ds =

= KC(1+α(−δ+1/2)−d/2)−1(2π
√

(1+ϵ2))−d/2t1+α(−δ+1/2)−d/2.

In D2 the integrand is uniformly exponentially small, and therefore
using the boundedness of the measure |V | we obtain for J2 an even
better estimate than for J1. Higher order terms are again estimated
by induction giving the required result.

Proposition 4.3. Assume the assumptions of Proposition
4.2 holds. If the operator −∆/2+V is selfadjoin and bounded from
below, then one can take the limit as ϵ → 0 in (4.4) to obtain the
solutions to equation (1.10).

It was proved in [AFHK] that under the assumptions of Propo-
sition 4.2 there exists a constant ω0 such that the operator −∆/2+
ω|V | is selfadjoin and bounded below for all ω < ω0. Therefore,
for these operators the statement of Proposition 4.3 holds. A con-
crete example of interest is given by measures on R3 concentrated
on a Brownian path, because their dimensionality equals 2 almost
surely. As shown e.g. in [AFHK], potentials being the finite sums
of the Dirac measures of closed hypersurfaces in Rd satisfy the as-
sumptions of the above corollary (without an assumption of a small
coupling constant), see also [Koch2]. For the particular case of
mesaures on spheres of codimension 1, see [AntGS], [DaSh], where
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one can find the references on physical papers dealing with these
models.

Less exotic examples of potentials satisfying the asumptions of
Proposition 4.3 are given by measures with a density V (x) having
a bounded support and such that V ∈ Lp(Rd) with p > d/2 (which
one checks by the Hölder inequality). Moreover, it is not difficult
to check that one can combine the potentials from Proposition 4.3
and Theorem 3.1, for example, one can take V ∈ L∞(Rd)+Lp(Rd)
with p > d/2, which includes, in particular, the Coulomb potential
in d = 3.

Notice for conclusion that solutions to the Schrödinger equa-
tion with a certain class of singular potentials can be obtained in
terms of the Feynman integral defined as a generalised functional
in Hida’s white noise space [HKPS].

5. Semiclassical asymptotics

In this section we answer the following question: how to define
a measure on a path space in such a way that the solutions to the
Schrödinger or heat equation (deterministic or stochastic) can be
expressed as integrals with respect to this measure of the exponen-
tial of the classical action. We start with the heat equation, where
no regularisation is needed.

Consider the equation (3.1.1). We are going to interprete the
formula for its Green function given in Proposition 3.4.1 of Chapter
3, under the assumptions of regularity of the corresponding diffu-
sion (see Chapter 3), in terms of a path integral of type (1.15).
Namely, as in Section 3, let us introduce the set CPC of continu-
ous piecewise classical paths, i.e. continuous paths that are smooth
and satisfy the classical equations of motion

ẋ = p, ṗ =
∂V

∂x
, (5.1)

where H is the Hamiltonian corresponding to equation (3.1.1) (see
Chapter 3), except at a finite number of points, where their deriva-
tives may have discontinuities of the first kind. Let CPCx,y(0, t)
denote the class of paths q : [0, t] 7→ Rd from CPC joining y
and x in time t, i.e. such that q(0) = y, q(t) = x. We denote by
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CPCx,yn (0, t) the subclass consisting of all paths from CPCx,y(0, t)
that have exactly n jumps in their derivative. Obviously, to any
σ-finite measureM on Rd there corresponds a unique σ-finite mea-
sure MCPC on CPCx,y(0, t), which is the sum of the measures
MCPC
n on CPCx,yn (0, t), where MCPC

0 is just the unit measure on
the one-point set CPCx,y0 (0, t) and for n > 0 MCPC

n is the direct
product of the Lebesgue measure on the simplex (1.14) of the jump
times 0 < s1 < ... < sn < t of the derivatives of the paths q(.) and
of n copies of the measure M on the values q(sj) of the paths at
these times. In other words, if

qsη = qs1...snη1...ηn(s) ∈ CPCx,yn (0, t) (5.2)

denotes the path that takes values ηj at the times sj , is smooth
and classical between these time-points, and Φ is a functional on
CPLx,y(0, t), then∫
CPCx,y(0,t)

Φ(q(.))MCPC(dq(.)) =
∞∑
n=0

∫
CPCx,y

n (0,t)

Φ(q(.))MCPC
n (dq(.))

=
∞∑
n=0

∫
Simn

t

ds1...dsn

∫
Rd

...

∫
Rd

M(dη1)...M(dηn)Φ(q(.)). (5.3)

We will use this construction only for the case when the measureM
is the standard Lebesgue measure MLeb. Clearly, from Proposition
3.4.3 one obtains directly the following result.

Proposition 5.1. Under the assumptions of Proposition 3.4.3

uG(t, x, y) =

∫
CPCx,y(0,t)

exp{− 1

h
I(q(.))}Φsem(q(.))MCPC

Leb (dq(.)),

(5.4)

where I(y(.)) =
∫ t
0
L(y(s), ẏ(s) ds denote the classical action on a

path y(.). The explicit formula for the ”semiclassical density” Φsem
follows from Proposition 3.4.3. For example, in the simplest case
of equation

h
∂u

∂t
=
h2

2
∆u− V (x)u, x ∈ Rd, t > 0, (5.5)
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one has

Φsem(qsη) = (2πh)−dn/2J(t−sn, x, ηn)−1/2
n∏
k=1

∆(J(sk−sk−1, ηk, ηk−1)
−1/2)hn

(5.6)
on a typical path (5.2), where J(t, x, x0) is the Jacobian, given by

J(t, x, ξ) = det
∂X

∂p
(t, ξ, p0(t, x, ξ)),

on the classical path joining x0 and x in time t and where s0 = 0,
η0 = y.

Hence the Green function is expressed as the integral of the
exponential of the classical action functional − 1

hI(q(.))} over the
measure ΦsemM

CPC
Leb , which is actually a measure on the Cameron-

Martin space of paths that are absolutely continuous and have their
derivatives in L2.

A similar result can be obtained for the stochastic heat equa-
tion and for the stochastic Schrödinger equations of Theorems 7.2.2,
7.2.3.

Remark. One sees directly from the path integral (5.4) that
the main contribution to the asymptotics as h → 0 of (5.4) comes
from a small neighborhood of the classical path joining x and x0
in time t, since a stationary point of the classical action defined
on piecewise classical paths is clearly given by a strictly smooth
classical path.

As usual, the case of the Schrödinger equation requires some
regularisation. We shall use here the regularisation given by the
Schrödinger equation in complex time (1.25), exploiting the semi-
classical asymptotics for this equation constructed in Chapter 7.
This will give us the required result more or less straightforwardly.
However, to use this regularisation one needs rather strong assump-
tion on the potential, namely local analyticity.

Notice that equation (1.25) can be considered as a particular
case of equation (7.1.1.) with α = 0. Therefore, Theorem 7.2.2
implies straightforwardly the following result.

Proposition 5.2. Let V be analytic in the strip Stb = {x =
y + iz : |z| < b} and suppose that all its second and higher order
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derivatives are uniformly bounded in this strip. Let Sϵ(t, x, x0) be
the two-point function for the complex Hamiltoian equation

∂S

∂t
+ (1− iϵ)

[
1

2
(
∂S

∂x
)2 + V (x)

]
= 0 (5.6)

with the Hamiltonian Hϵ = (1 − ϵi)(p2/2 + V (x)). Let χR be a
smooth bounded function on the positive halfline such that χ(s)
vanishes for s > R and χR(s) = 1 for s ≤ R − δ for some δ > 0.
Then there exists t0 such that for any R there exists ϵ0 and c > 0
such that for all t ≤ t0, ϵ ≤ ϵ0 and x, x0 ∈ Stb/2 with |x − x0| ≤
R, there exists a unique trajectory of the Hamiltonian system with
Hamiltonian Hϵ which joins x0 and x in time t, lies completely in
Stb, and has the initial momentum p0 : |p0| ≤ c/t. Moreover, the
Green function for equation (1.25) exists, and for t ≤ t0, ϵ ≤ ϵ0 it
can be represented as the absolutely convergent series

uϵG = uϵas + huϵas ⊗ F + h2uϵas ⊗ F ⊗ F + ..., (5.7)

with

uϵas = (2πhi)−m/2χR(|x− x0|)J−1/2
ϵ (t, x, x0) exp{

i

h
Sϵ(t, x, x0)}.

(5.8)
and F = F̃ exp{ ihSϵ(t, x, x0)}, where F̃ (t, x, x0) equals

[O(t2)+O((th)−1)ΘR−ϵ,R(|x−x0|)](2πhi)−d/2χR(|x−x0|)J−1/2
ϵ (t, x, x0)

(the exact form of F can be found in Chapter 7).
The series (5.7) can again be interpreted as a path integral.

Namely, as in the case of a real diffusion considered above we obtain
the following.

Proposition 5.3. The Green function (5.7) can be written in
the form

uϵG(t, x, y) =

∫
CPCx,y(0,t)

exp{ i
h
Iϵ(q(.))}Φϵsem(q(.))MCPC

Leb (dq(.))

(5.9)
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where the path space CPC is defined by the real Hamiltonian sys-
tem with the Hamiltonian H0, but the action and the Jacobian are
defined with respect to the complex trajectoties (solutions to the
Hamiltonian system with the Hamiltonian Hϵ) with the same end
points as the corresponding real trajectories, and where

Φϵsem(qsη) = (2πhi)−dn/2J−1/2
ϵ (t− sn, x, ηn)

×χR(|x− ηn|)hn
n∏
k=1

F̃ϵ(sk − sk−1, ηk, ηk−1). (5.10)

Remark. The path space in (5.9) can also be defined as the set
CPCx,yϵ (0, t) of paths that are piecewise classical for the Hamil-
tonian Hϵ. This seems to be more appropriate when considering
equation (1.25) on its own, but we have defined this measure dif-
ferently in order to have the same measure for all ϵ > 0.

For ϵ = 0 the integral in (5.9) is no longer absolutely con-
vergent. However, under the assumptions of Proposition 5.2 the
operator −∆+ V is selfadjoint (if V is real for real x). Therefore
from (1.24) we obtain the following result.

Proposition 5.4. Under the assumptions of Proposition 5.2,
if V is real for real x, one has the following path integral represen-
tation for the solutions ψ(t, x) of the Cauchy problem for equation
(1.10) with the initial data ψ0 ∈ L2(Rd):

ψ(t, x) = lim
ϵ→0

∫
CPCx,y(0,t)

exp{ i
h
Iϵ(q(.))}Φϵsem(q(.))ψ0(y)M

CPC
Leb (dq(.))dy.

6. Fock space representation

The paths of the spaces CRC and CPL used above are parametrised
by finite sequences (s1, x1), ..., (sn, xn) with s1 < ... < sn and xj ∈
Rd, j = 1, ..., d. Denote by Pd the set of all these sequences and by
Pdn its subset consisting of sequences of the length n. Thus, func-
tionals on the path spaces CPC or CPL can be considered as func-
tions on Pd. To each measure ν on Rd there corresponds a measure
νP on Pd which is the sum of the measures νn on Pdn, where νn
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are the product measures ds1...dsndν(x1)...dν(xn). The Hilbert
space L2(Pd, νP) is known to be isomorphic to the Fock space Γdν
over the Hilbert space L2(R+ × Rd, dx × ν) (which is isomorphic
to the space of square integrable functions on R+ with values in
L2(Rd, ν)). Therefore, square integrable functionals on CPL can
be considered as vectors in the Fock space ΓdV (dx). It is well known
that the Wiener, Poisson, general Lévy and many other interesting
processes can be naturally realised in a Fock space: the corre-
sponding probability space is defined as the spectrum of a com-
mutative von Neumann algebra of bounded linear operators in this
space. For example, the isomorphism between Γ0 = Γ(L2(R+))
and L2(W ), where W is the Wiener space of continuous real func-
tions on halfline is given by the Wiener chaos decomposition, and
a construction of a Lévy process with the Lévy measure ν in the
Fock space Γν can be found in [Par] or [Mey]. Therefore, using
Fock space representation, one can give different stochastic repre-
sentations for path integrals over CPL or CPC rewriting them as
expectations with respect to different stochastic processes.

For example, let us express the solution to the Cauchy prob-
lem of equation (1.26) in terms of an expectation with respect to
a compound Poisson process. The following statement is a direct
consequence of Proposition 4.2 and the standard properties of Pois-
son processes.

Proposition 6.1 Suppose a measure V satisfies the assump-
tions of Proposition 4.2. Let λV = V (Rd). Let paths of CPL are
parametrised by (3.1) and let E denote the expectation with respect
to the process of jumps ηj which are identicaly independently dis-
tributed according to the probability measure V/λV and which occur
at times sj from [0, t] that are distributed according to Poisson pro-
cess of intensity λV . Then the function (4.4) can be written in the
form

ψϵ(t, x) = etλV

∫
Rd

ψ0(y)E(Φϵ(q(.))) dy. (6.1)

As an example of the repersentation of path integral in terms
of the Wiener measure, let us consider the Green function (3.5). Let
us first rewrite it as the integral of an element of the Fock space
Γ0 = L2(Simt) with Simt = ∪∞

n=0Sim
n
t (which was denoted P0
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above), where Simn
t is as usual the simplex (1.14). Let gV0 = Gfreeϵ

(see (3.9)) and let

gVn (s1, ..., sn) =

∫
Rnd

Φϵ(q
s1...sn
η1...ηn) dη1...dηn

for n = 1, 2, ..., where Φϵ and q
s1...sn
η1...ηn are given by (3.3) and (3.1).

Considering the series of functions {gVn } as a single function gV on
Simt we shall rewrite the r.h.s. of (3.5) in the following concise
notation:∫

Simt

gV (s) ds =
∞∑
n=0

∫
Simn

t

gVn (s1, ..., sn) ds1...dsn. (6.2)

Now, the Wiener chaos decomposition theorem states (see e.g.
[Mey]) that, if dWs1 ...dWsn denotes the n-dimensional stochastic
Wiener differential, then to each f = {fn} ∈ L2(Simt) there cor-
responds an element ϕf ∈ L2(Ωt), where Ωt is the Wiener space of
continuous real functions on [0, t], given by the formula

ϕf (W ) =

∞∑
n=0

∫
Simn

t

fn(s1, ..., sn) dWs1 ...dWsn , (6.3)

or in concise notations

ϕf (W ) =

∫
Simt

f(s) dWs.

Moreover the mapping f 7→ ϕf is an isometric isomorphism, i.e.

EW (ϕf (W )ϕ̄g(W )) =

∫
Simt

f(s)ḡ(s) ds, (6.4)

where EW denotes the expectation with respect to the standard
Wiener process. One easily sees that under the assumptions of
Theorem 3.1 the function gV belongs not only to L1(Simt) (as
shown in the proof of Theorem 3.1) but also to L2(Simt). There-
fore, the function ϕgV is well defined. Since (see e.g. again [Mey])∫

Simt

dWs = eW (t)−t/2,
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formula (6.4) implies the following result.

Proposition 6.2. Under the assumptions of Theorem 3.1 the
Green function (3.5) can be written in the form

Gϵ(t, x, x0) = EW (ϕgV exp{W (t)− t/2}), (6.5)

where EW denotes the expectation with respect to the standard
Wiener process.

It is not difficult to see that in order to similarly rewrite for-
mula (4.4) in terms of the Wiener integral one needs a stronger
assumption on the measure V than in Proposition 4.2: namely,
one needs to assume that dim(V ) > d − 1. For general V from
Propositions 4.1 or 4.2, the corresponding function gV may well
belong to L1(Simt), but not to L2(Simt). In that case, formula
(6.5) should be modified. Consider, for example the case of one-
dimensional heat or Schrödinger equation with point interactions.
Namely, consider the (formal) complex diffusion equation

∂ψ

∂t
= G(∆/2−

m∑
j=1

ajδxj (x))ψ, x ∈ R, (6.6)

where a1, ..., am are positive real numbers, x1, ..., xm are some points
on the real line, and G is a complex number with a non-negative
real part. This is an equation of the type considered in Section 9.4.
The path integral representation for its heat kernel from Proposi-
tion 4.1 can be written in the form

ψδG(t, x, x0) =

∞∑
n=0

∫
Simn

t

gδn(s1, ..., sn) ds1...dsn =

∫
Simt

gδ(s) ds,

(6.7)
where

gδ0 =
1√
2πt

exp{− (x− x0)
2

2t
} (6.8)

and

gδn(s1, ..., sn) =

n+1∏
k=1

1√
2π(sk − sk−1)

m∑
j1=1

...

m∑
jn=1



exp{− (x− xjn)
2

2G(t− sn)
−

(xjn − xjn−1
)2

2G(sn − sn−1)
− ...− (xj1 − x0)

2

2Gs1
}

n∏
k=1

ajk

(6.9)
for n ≥ 1, where it is assumed that s0 = 0 and sn+1 = t.

Formula (6.7) has a clear probabilistic interpretation in the
spirit of Proposition 6.1: it is an expectation with respect to the
measure of the standard Poisson process of jump-times s1, ..., sn, of
the sum of the exponentials of the classical actions (2G)−1

∫
q̇2(s) ds

of all (essential) paths joining x0 and x in time t each taken with a
weight which corresponds to the weights of singularities xj of the
potential. On the other hand, since the function gδ from (6.7) is
not an element of L2(Simt), but only of L1(Simt), formula (6.5)
does not hold.

One way to rewrite (6.7) in terms of an integral over the
Wiener measure is by factorising gδ in a product of two functions
from L2(Simt). For example, in the case of the heat equation, i.e.
when G = 1 in (6.6), the function gδ is positive, which implies the
following statement.

Proposition 6.3. The Green function of equation (6.6) with
G = 1 can be written in the form

ψδG(t, x, x0) = EW

(∫
Simt

√
gδ(s) dWs

)2

.

It is also possible to write a regularised version of (6.5). Namely,
let gδ,α with α < 2 is defined by (6.8),(6.9) where instead of the
multipliers

√
t and

√
sj − sj−1 one plugs in the multipliers tα and

(sj − sj−1)
α respectively. If α ∈ (0, 1/2), the corresponding gδ,α

belongs to L2(Simt) and therefore ϕgδ,α is well defined and belongs
to L2(W ). This implies the following result.

Proposition 6.4. The Green function ψδ of equation (6.6)
has the form:

ψδG(t, x, x0) = lim
α→1/2

EW

(
exp{W (t)− t/2}

∫
Simt

gδ,α(s) dWs

)
.

Similar representations in terms of Poisson or Wiener processes
can be given for the path integral over the path space CPL from
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Section 9.5. Let us notice also that Theorem 3.1 and Propositions
6.1, 6.2 can be easily modified to include the case of the Schrödinger
equation for a quantum particle in a magnetic field with a bounded
vector-potential. APPENDICES

A. Main equation of the theory
of continuous quantum measurements

For the author, the main impetus to the development of the
complex stochastic method WKB as presented in Chapter 7 was
the recent appearance of the complex stochastic versions of the
Schrödinger equation in the theory of continuous quantum mea-
surements and, even more generally, in the theory of open quantum
systems.. In the general form, the aposterior Schrödinger equation
describing the evolution of the state of a quantum system subject
to non-direct (but non-demolition) continuous observation of diffu-
sion or counting type was obtained by V.P. Belavkin in [Be1], [Be2].
A simplest particular case corresponding to the continuous obser-
vation of a free quantum particle was obtained simultaneously by
L. Diosi [Di]. Different approaches and points of view on this equa-
tion can be found e.g. in [BHH]. Since this fundamental equation is
not till now presented in a monographic literature, we present here
a simple self-contained physical deduction of this equation for the
case of the continuous observations of diffusion type following [K9],
[AKS2]. Mathematical properties of the solutions of this equation
are discussed in Sect. 1.4, and Chapter 7.

Consider the continuous measurement of the position of a one-
dimensional quantum particle described by the standard Hamilto-
nian H = V (x)−∆/2. The Postulates 1,2 given below are largely
used in the literature on quantum continuous measurement (see
e.g. [Di] and references therein).

Let a measurement at a time t of the position of the particle
yields a certain value q.

Postulate 1. Non-ideal measurement principle. After such
a measurement, the wave function ψt(x) transforms into a new
function which up to normalisation has the form

ψt(x) exp{−α(x− q)2}, (A1)
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where the coefficient α characterises the accuracy of the measure-
ment.

This postulate can be deduced from a unitary evolution com-
bined with the standard von Neumann (ideal) measurement pos-
tulate. Namely, let us measure the position x of our particle X
indirectly by reading out (sharp and direct) the value of ”analo-
gous” physical variable y of a measuring apparatus Y (the position
of a quantum meter), which is directly connected with (or directly
influenced by) the considered quantum system X. More precisely,
we consider the state of the quantum meter to be described by
vectors in a Hilbert space L2(R), and the direct influence of X on
Y means that the unitary evolution of the compound system in
L2(R) ⊗ L2(R) = L2(R2) (the interaction between the quantum
particle and the quantum meter in the process of measurement)
reduces to the shift of y by the value of x, i.e. it is described by
the law f(x, y) 7→ f(x, y − x). Furthermore, we suppose that we
can always prepare a fixed initial state of the quantum meter, say
a Gaussian one, Φα(y) = (2α/π)1/4 exp{−αy2}. Thus the process
of measurement is described in the following way. We have a state
ϕ of our quantum particle and prepare an initial state Φα of the
quantum meter Y . Then we switch on the interaction and get as a
result the function ϕ(x)Φα(y − x) in L2(R2). At last we read out
(directly and sharp) the value of the second variable, say y = q,
which gives us (due to the standard von Neumann reduction pos-
tulate) the state (A1) of the considered system X.

Since the square of the magnitude of the state function ϕ(x)Φα(y−
x) defines the density of the joint distribution of x and y = q, the
probability density of the measured value q is equal to

P qα(z) =

√
2α

π

∫
ϕ2(x) exp{−2α(z − x)2} dx.

Now we fix a time t and make non-ideal measurements of the
position of the quantum particle at moments tk = kδ, where δ =
t/n, n ∈ N .

Postulate 2. Continuous limit of discrete observations. As
n→ ∞, the accuracy of each measurement will be proportional to
the time between successive measurements, i.e. α = δλ, where the
constant λ reflects the properties of the measuring apparatus.
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Supposing that between measurements the evolution of the
quantum system is described by the law of free Hamiltonian, one
concludes that after n measurements the resulting wave function
will have the form

ψnt =

n∏
j=1

(
exp{−δλ(x− qj)

2} exp{−iδH}
)
ψ0,

where ψ0 is the initial state. Applying (at least formally) the Trot-
ter formula
exp{A + B} = limn→∞(exp{A/n} exp{B/n})n for noncomuting
operators A,B (more precisely, its non-homogeneous version) one
sees that ψnt , n→ ∞, tends to the solution of the equation

ψ̇ = −(iH + λ(x− q(t))2)ψ, (A3)

where q(τ) is the function taking values qj at times tj . This is
the Schrödinger equation with the complex (and time depending)
potential V (x)− iλ(x−q(t))2. Therefore, one can write its solution
ψ(t, x) in terms of the heuristic path integral∫
ψ0(y) dy

∫
Dξ exp

{
i

∫ t

0

(
ξ̇2(τ)

2
− V (ξ(τ) + iλ|q(τ)− ξ(τ)|2

)
dτ

}
,

(A4)
where the integral being taken over the set of all continuous paths
ξ(τ) joining y and x in time t. This formula was proposed by
Menski [Me] in 1979 for the case of quantum oscillator. As we
shall see further, the ”curve” q(t) is very singular, and thus not
only formal measure but already the expression q(t)2 under the
integral in (A4) is not well defined.

To make everything correct, let us first modify equation (A3).
Observing that the term λq(t)2ψ on the r.h.s. can be dropped,
because the solutions of the equation with and without this term
are proportional and this difference is irrelevant for the purposes
of quantum mechanics (where we are interested only in normalised
states), one gets the equation

ψ̇ +
(
iH + λx2

)
ψ = 2λxq(t)ψ. (A5)
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Introducing the function Q(t) =
∫ t
0
q(τ) dτ , one can rewrite (A5)

in equivalent differential form

dψ +
(
iH + λx2

)
ψ dt = 2λxψ dSQ(t), (A6)

where dS stands for the Stratonovich differential, which for smooth
functions is just standard differential and for stochastic processes
that will appear now it gives the limit of the differentials of their
smooth approximations. Equation (A6) is formally the Belavkin
aposterior linear equation in the Stratonovich form. But Belavkin’s
result states more, namely, the statistical properties of the trajecto-
ries of Q, which imply, in particular, that the function q(t) in (A6)
is a rather singular object that almost surely makes sense only as
a distribution and not as a continuous curve. In order to see this
singularity, notice that due to (A2), if the state function of our
quantum particle X was ψ(τ, x) at the instant τ (in fact, τ = tk for
some k), then the expectation of the value q at the instant τ + δ is
given by the formula

Eqτ+δ =

∫
zP qλδ(z) dz =

√
2λδ

π

∫
zψ2(τ, x) exp{−2λt(x−z)2} dxdz

and is equal to the mean value ⟨x⟩τ of the position of the particle
in the state ψ(τ, x). By similar calculations, one proves the dis-
persion of this random variable E((qτ+δ − Eqτ+δ)

2) to be of the
form (4λδ)−1(1 +O(δ)) (at least for wave functions ϕ(τ, x) with a
finite second moment with respect to the corresponding probability
distribution). Thus the random variable qτ+δ − ⟨x⟩τ has vanish-
ing expectation and a dispersion (or the second moment) of the
order (4λδ)−1. Therefore, one can not consider q(t) as a contin-
uous curve. This object is very singular. The simplest model for
the process of errors in the continuous observation (and also the
most natural and commonly used in the classical stochastic theory
of measurement) is the white noise Ẇ , which can be defined as
a formal derivative of the standard Wiener process W (t). Taking
into account that (4λδ)−1 is the dispersion of the random value
(2
√
λδ)−1W (δ), one arrives at the following
Postulate 3. White noise model of errors. The difference

between qt+δ and ⟨x⟩t is approximately equal to (2
√
λδ)−1W (δ)
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for small δ, or more precisely, for the process Q(t) =
∫ t
0
q(τ) dτ ,

one has

dQ(t) = ⟨x⟩t dt+
1

2
√
λ
dW (t). (A7)

Rewriting (A6) in terms of the Ito differential of the pro-
cess B(t) = 2

√
λQ(t) (Ito’s differential dB is connected with the

Stratonovich differential dSB by the formula ψ dSB = ψ dB +
dψ dB/2) one gets the Belavkin aposterior linear equation [Be2]:

dψ +

(
1

2i
∆+ iV (x) +

λ

2
x2
)
ψ dt =

√
λxψ dB(t). (A8)

Application of Ito’s formula yields for the normalised state ϕ =
ψ/∥ψ∥ a nonlinear aposterior Schrödinger equation, which written
in terms of the white noise W has the form

dϕ+

(
1

2i
∆+ iV (x) +

λ

2
(x− ⟨x⟩ϕ)2

)
ϕdt =

√
λ(x− ⟨x⟩ϕ)ϕdB(t),

(A9)
where ⟨x⟩ϕ denotes the mean position in the state ϕ. This equation
was written first in 1988 by Belavkin [Be1] in an essentially more
general form and by Diosi [Di] for the case of vanishing potential V .
The corresponding equations for the mean position and momentum
in the case of quantum oscillator had appeared in [Be3].

Notice that if the state vector evolves in time according to
equation (A9), then for the expectation (with respect to the Wiener
measure of the process W ) of the corresponding density matrix
ρ = E(ϕ⊗ ϕ̄), one gets directly (using Ito’s formula) the equation

ρ̇ = −i[H, ρ]− λ

2
[R, [R, ρ]], (A10)

which is the famous master equation.

B. Asymptotics of Laplace integrals with complex phase

Here we present the estimates of the remainder in the asymp-
totic formula for the Laplace integrals with complex phase, i.e. for
the integral

I(h) =

∫
Ω

f(x) exp{−S(x)/h} dx, (B1)
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where Ω is any closed subset of the Euclidean space Rd, the ampli-
tude f and the phase S are continuous complex-valued functions
on Ω and h ∈ (0, h0] with some positive h0.

To begin with, let us recall two trivial estimates. First, if
infΩ{S(x)} ≥M , then obviously

I(h) ≤ exp{−M/h} exp{M/h0}Ĩ(h0), (B2)

where

Ĩ(h) =

∫
Ω

|f(x)| exp{−ReS(x)/h} dx.

Next, let ReS(x) be a convex twice differentiable function with
ReS′′(x) ≥ λ for all x and some positive matrix Λ, and let M be
the global minimum of S in Rd, then

I(h) ≤ exp{−M/h}(2πh)d/2(detΛ)−1/2 sup{|f(x)|}. (B3)

This formula follows from the estimate ReS(x) ≥ M + (λx, x)/2
and the integration of a Gaussian function.

Let us make now the following assumptions:
(1) integral (B1) is absolutely convergent for h = h0 , i.e.

Ĩ(h0) <∞;
(2) S(x) is thrice continuously differentiable;
(3) Ω contains a neighbourhood of the origin, ReS(x) > 0 for

x ̸= 0 and S(0) = 0;
(4) S′(0) = 0 and ReS′′(0) is strictly positive;
(5) lim infx→∞, x∈ΩReS(x) > 0.
The existence of the asymptotic expansion as h→ 0 of integral

(B1) for infinitely smooth functions f and S under assumptions (1)-
(5) and the (very complicated) recurrent formulas for its coefficients
are well known (see e.g. [Fed1]). We are going to present here only
the principle term of this expansion but with an explicit estimate
for the remainder depending on the finite number of the derivatives
of f and S. For real f and S this estimate is an improved and
simplified version of the estimate given in [DKM1] and [K10].

Assumptions (3)-(5) imply the existence of a positive r such
that

(6) inf{ReS(x) : x ∈ Ω \Br} = min{ReS(x) : x ∈ ∂Br},
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(7) ReS′′(x) ≥ Λ for all x ∈ Br and some positive real Λ.
Let

U(h) = {x : (ReS′′(0)x, x) ≤ h2/3}.

Reducing if necessarily h0 one can ensure that
(8) U(h0) ⊂ Br,
which implies in particular, due to (6),(7), that

inf{ReS(x) : x ∈ Ω \ U(h)} = min{ReS(x) : x ∈ ∂U(h)}. (B4)

Remark. Assumption (8) (which is our only assumption of
”smallness” of h) will be used further only for brevity. Without this
assumption all formulas are essentially the same, which one proves
using the neighbourhood U(h)∩Br instead of U(h) everywhere in
the arguments.

By λ we denote the minimal eigenvalue of the matrix ReS′′(0).
Furthermore, Fj and Sj denote the maximum in Br of the norms
of the j-th order derivatives (whenever they exist) of f and S re-
spectively. At last, let

A =
1

6
S3λ

−3/2, DR = detReS′′(0), D = detS′′(0).

Proposition B1. Under assumptions (1)-(8)

|I(h)| ≤ F0e
A

[
(2πh)d/2D

−1/2
R + (2πh0/Λ)

d/2 exp{−1

2
(h−1/3 − h

−1/3
0 )}

]

+exp{−r
2Λ

2h
} exp{r

2Λ

2h0
}Ĩ(h0). (B5)

Proof. From (2)-(4) it follows that in U(h)

S(x) =
1

2
(S′′(0)x, x)− σ(x), (B6)

where

|σ(x)| ≤ 1

6
S3|x|3. (B7)
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Since obviously the ellipsoid U(h) belongs to the ball of the radius
λ−1/2h1/3 (centred at the origin), (B7) implies

|σ(x)| ≤ 1

6
S3λ

−3/2h = Ah. (B8)

Let us now split the integral I(h) in the sum I(h) = I ′(h)+I ′′(h)+
I ′′′(h) of the integrals over the domains U(h), Br\U(h), and Ω\Br,
respectively. Due to (B4),(B6),(B8), ReS(x) ≥ 1

2h
2/3−Ah outside

U(h), and using (B2),(B3) one gets the estimate

|I ′′(h)| ≤ exp{−1

2
h−1/3} exp{A+

1

2
h
−1/3
0 }F0(2πh0/Λ)

d/2. (B9)

Due to (6),(7), ReS(x) ≥ Λr2/2 outside Br, and again using (B2)
one gets

I ′′′(h) ≤ exp{−r
2Λ

2h
} exp{r

2Λ

2h0
}Ĩ(h0). (B10)

On the other hand,

|I ′(h)| ≤ F0e
A

∫
U(h)

exp{− 1

2h
(ReS′′(0)x, x)} dx ≤ F0e

A(2πh)d/2D
−1/2
R .

The last three inequalities complete the proof.

Proposition B2. Let the assumptions of Proposition B1 hold
and moreover, the function f (resp. S) is two times (respectively
four times) continuously differentiable. Then

I(h) = (2πh)d/2(f(0)D−1/2+h(D
−1/2
R δ1(h)+Λ−d/2δ2(h))+ δ3(h),

(B11)
where

|δ1(h)| ≤ C1(d)(F0A
2eA + F0S4λ

−2 + F2(1 +A)λ−1 + F1S3λ
−2),

(B12)

|δ2(h)| ≤ C2(d, h0)F0e
A, |δ3(h)| ≤ exp{−r

2Λ

2h
} exp{r

2Λ

2h0
}Ĩ(h0)
(B13)

with C1(d), C2(d, h0) being constants depending continuously on d
and on d, h0 respectively (and which can be written explicitly, see
the estimates in the proof below).
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Proof. We use the notations introduced in the proof of Propo-
sition B1. Let us present the integral I ′(h) as the sum I1(h)+I2(h)
with

I1(h) =

∫
U(h)

f(x) exp{− 1

2h
(S′′(0)x, x)}

(
eσ/h − 1− σ

h

)
dx,

(B14)

I2(h) =

∫
U(h)

f(x) exp{− 1

2h
(S′′(0)x, x)}

(
1 +

σ

h

)
dx. (B15)

Due to (B7),(B8),

|eσ/h−1−σ
h
| ≤ 1

2
(|σ|/h)2e|σ|/h ≤ 1

2h2
(S3/6)

2|x|6eA ≤ eAS2
3

72h2λ3
(ReS′′(0)x, x)3

in U(h). Hence

|I1(h)| ≤
eAS2

3

72h2λ3
F0

∫
Rd

(ReS′′(0)x, x)3 exp{− 1

2h
(ReS′′(0)x, x)} dx

=
eAS2

3

9λ3
F0(2πh)

d/2Γ(3 + d/2)

Γ(d/2)
hD

−1/2
R ,

since ∫
Rd

|y|ke−|y|2/2 dy = (2π)d/22k/2
Γ((k + d)/2)

Γ(d/2)
.

To evaluate I2(h) we first take the two terms of the Taylor expan-
sion of σ(x) presenting I2(h) as the sum J1 +∆1 with

J1 =

∫
U(h)

f(x) exp{− 1

2h
(S′′(0)x, x)}

(
1 +

1

6h
(S(3)(0))(x, x, x)

)
dx,

|∆1| ≤
F0S4

4!h

∫
U(h)

|x|4 exp{− 1

2h
(ReS′′(0)x, x)}

≤ F0S4

6λ2
Γ(2 + d/2)

Γ(d/2)
(2πh)d/2D

−1/2
R h.

Taking three terms of the Taylor expansion of f(x) we write further
J1 = J2 +∆2 with

J2 =

∫
U(h)

(f(0)+f ′(0)x)

(
1 +

1

6h
(S(3)(0))(x, x, x)

)
exp{− 1

2h
(S′′(0)x, x)},
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|∆2| ≤
1

2
F2(1 +A)

∫
U(h)

|x|2 exp{− 1

2h
(ReS′′(0)x, x)}

≤ F2(1 +A)

λ

Γ(1 + d/2)

Γ(d/2)
(2πh)d/2D

−1/2
R h.

It remains to calculate the integral J2. Since∫
U(h)

g(x) exp{− 1

2h
(S′′(0)x, x)} dx = 0

for any polylinear form g(x) of an odd order, one can write J2 =
J3 +∆3 with

J3 =

∫
U(h)

f(0) exp{− 1

2h
(S′′(0)x, x)} dx,

|∆3| ≤ I2(h) =
F1S3

6h

∫
U(h)

|x|4 exp{− 1

2h
(ReS′′(0)x, x)} dx

≤ 2F1S3

3λ2
Γ(2 + d/2)

Γ(d/2)
.

Now present the integral J3 as the difference J4−∆4 of the integrals
over the whole space Rd and over Rd \ U(h). The first integral J4
can be calculated explicitly and is equal to the principle term

J4 = (2πh)d/2f(0)D−1/2

of the asymptotic expansion (B11). The second integral can be
estimated in the same way as I ′′(h) above:

|∆4| ≤ |f(0)|
∫
Rd\U(h)

exp{− 1

2h
(ReS′′(0)x, x)} dx

≤ |f(x0)| exp{−
1

2
h−1/3} exp{1

2
h
−1/3
0 }(2πh0)d/2D−1/2

R . (B16)

Estimates for I1(h),∆1,∆2,∆3 contribute to δ1(h) in (B11); esti-
mates (B9), (B16) contribute to δ2(h), where C2(d, h) is chosen in
such a way that

2(2πh0)
d/2 exp{−1

2
(h−1/3 − h

−1/3
0 ) ≤ C2(d, h0)(2πh)

d/2h,
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and estimate (B10) contributes to δ3(h). The Proposition is proved.
Let us give also for completeness a more rough estimate of the

remainder, which can be useful when the values of F2 and S4 are
not available.

Proposition B3. Let the assumptions of Proposition B1 hold
and let f be continuously differentiable. Then

I(h) = (2πh)d/2
(
f(0)D−1/2 +

√
hD

−1/2
R δ1(h) + hΛ−d/2δ2(h)

)
+δ3(h),

where δ2(h), δ3(h) satisfy (B13) and

|δ1(h)| ≤ C(F0S3e
Aλ−3/2 + F1λ

−1/2).

Proof. It is the same as above but essentially simpler. One
also presents I ′(h) as the sum I1(h) + I2(h) but with

I1(h) =

∫
U(h)

f(x) exp{− 1

2h
(S′′(0)x, x)}(eσ/h − 1) dx,

I2(h) =

∫
U(h)

f(x) exp{− 1

2h
(S′′(0)x, x)} dx

instead of (B14), (B15), and then makes similar estimates.
As we mentioned, there exist recursive formulas for calculating

the coefficients of the whole asymptotic series in powers of h for
the integral I(h). However, these formulas are too complicated
(especially if the dimension is greater than one) to be of practical
use in the most of situations one encounters. Nevertheless, the
second term of the expansion begins to be vitally important, if
the major term vanishes. We present now a relevant result (with
the rough estimates to the remainder, similar to those given in
Proposition B3).

Proposition B4. Let the assumptions of Proposition B2 hold,
and moreover, let f be thrice continuously differentiable and f(0) =
0. Then

I(h) = (2πh)d/2
h

2

[
(T1 − T2)D

−1/2 +
√
h(D−1/2

r δ1(h) + Λ−d/2δ2(h))
]
+δ3(h),

(B17)
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where δ2(h), δ3(h) are the same as in Proposition B2 (only with
different constants),

|δ1(h)| ≤ C1(d, h0)
[
eAA(1 +A)λ−1/2F1

+S4F1λ
−5/2 + F3λ

−3/2 + (1 +A)F2λ
−1
]
, (B18)

and the coefficients of the main term are

T1 = tr (f ′′(0)(S′′(0))−1), (B19)

T2 =
(
f ′(0)⊗ S′′′(0), (S′′(0))−1 ⊗ (S′′(0))−1

)
≡ ∂f

∂xi
(0)

∂3S

∂xj∂xk∂xl
(0)(S′′(0))−1

ij (S′′(0))−1)kl. (B20)

Proof. Following the notations and the lines of the proof of
Proposition B2, we are lead to the necessity to estimate the inte-
grals I1(h) and I2(h) given by (B14), (B15). Noticing that under
the assumptions of the Proposition |f(x)| ≤ F1|x| and estimating
I1(h) by the same method as in Proposition B2 one obtains

|I1(h)| ≤
eAS2

3

72h2λ7/2
F1

∫
Rd

(ReS′′(0)x, x)7/2 exp{− 1

2h
(ReS′′(0)x, x)} dx

=
eAS2

3

9λ7/2
F1(2πh)

d/221/2
Γ((7 + d)/2)

Γ(d/2)
h3/2D

−1/2
R

= O(h3/2)eAA2λ−1/2F1D
−1/2
R (2πh)d/2,

which contributes to the first term in the expression for δ1(h).
Furthermore, similar to the proof of Proposition B2, we write
I2(h) = J1 + ∆1 with the same J1, but for for ∆1 one obtains
now the estimate

∆1(h) = O(h3/2)F1S4λ
−5/2(2πh)d/2D

−1/2
R ,

which contributes to the second term in (B18). Next, using for
f(x) the Taylor expansion till the third order, one presents J1 as
the sum J2 − J3 +∆2 with

J2 =

∫
U(h)

1

2
(f ′′(0)x, x) exp{− 1

2h
(S′′(0)x, x)} dx,
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J3 =

∫
U(h)

1

6h
(f ′(0), x)(S(3)(0))(x, x, x) exp{− 1

2h
(S′′(0)x, x)} dx,

and the remainder

∆2 =

∫
U(h)

(
1

6
F3|x|3 +

1

12h
F2S3|x|5

)
exp{− 1

2h
(ReS′′(0)x, x)} dx,

= O(h3/2)(F3λ
−3/2 + F2S3λ

−5/2)(2πh)d/2D
−1/2
R ,

which contributes to the third and fourth terms of (B18). No-
tice now that if in the expressions for J2 and J3 one integrates
over the whole space instead of over U(h), one will have the dif-
ferences which are exponentially small in h and proportional to

F2λ
−1D

−1/2
R and F1λ

−2S3D
−1/2
R respectively, and which can be

therefore included in the first and the last terms in (B18) (with an
appropriate C1(d, h0)). Hence, it remains to estimate the integral
of form J2, J3 over the whole space, which after the change of the
variable x to y = x/

√
h can be written in the form

J̃2 =

∫
d

hd/2h
1

2
(f ′′(0)y, y) exp{−1

2
(S′′(0)y, y)} dy,

J̃3 =

∫
Rd

hd/2h
1

6
(f ′(0), x)(S(3)(0))(y, y, y) exp{−1

2
(S′′(0)y, y)} dy.

The explicit calculation of these integrals, which can be carried
out by changing the variable y to z =

√
S′′(0)y (in the case of

complex S′′(0) one can justify this change by rotating the contour of
integration in the complex space Cd and using the Cauchy theorem)
yields the main terms in (B17).

Remark. Assuming the existence of five continuous derivatives
of f and six continuous derivatives of S in Proposition B4 one can
get the remainder of the order O(h) (and not O(

√
h)) in (B17), the

corresponding calculations however becoming much heavier.
In this book we encounter also the Laplace integrals in the case

when the phase has its minimum on the boundary of the domain
of integration. As before, the general recursive formulas for the
asymptotic expansions of such integrals are well known (see e.g.
[Fed1],[Mu]). But we are interested here only in a simple case which
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is enough for our purposes, namely in the case of linear phase. For
this case we are going to present now explicit formulas for the main
terms and the estimates of the remainder.

Let us start the discussion with the trivial case of one-dimensional
integral. If f(x) is a continuously differentiable function on the in-
terval [a, b], and c > 0, then for any δ ∈ (0, b− a)∫ b

a

e−cxf(x) dx =

∫ a+δ

a

e−cx(f(a)+f ′(a+θ(x)δ)(x−a)) dx+
∫ b

a+δ

e−cxf(x) dx

with some θ(x) ∈ [0, 1], and therefore∫ b

a

e−cxf(x) dx = c−1e−ca(f(a)+c−1δ1)+2δ0c
−1e−c(a+δ), (B21)

where |δ0| does not exceed the maximal magnitude of f on [a, b]
and |δ1| does not exceed the maximal magnitude of f ′ on [a, a+ δ].

Now let M be a convex compact set in Rd with a smooth
(thrice continuously differentiable) boundary ∂M having positive
Gaussian curvature Γ(x) at any point x ∈ ∂M . Notice that since
∂M is compact, it follows that all main curvatures do not approach
zero on ∂M . Consider the integral

I(p̄) =

∫
M

exp{− 1

h
(p̄, x)}f(x) dx, (B22)

where p̄ is a unit vector, h > 0. Let x0 be a point, where the phase
(p̄, x) takes its minimal value (p̄, x0). Clearly (for instance, from the
Lagrange principle) x0 is uniquely defined and p̄ is the unit vector
of the inner normal to ∂M at x0. As before we denote by Fj the
maximum of the norms of the derivative f (j) in a neighbourhood
of x0.

Proposition B5. (i) Generally one has

I(p̄) = (2π)(d−1)/2h(d+1)/2Γ(x0)
−1/2 exp{− 1

h
(p̄, x0)}[f(x0)+O(h)(F0+F1+F2)]

+O(max
M

|f(x)|) exp{− 1

h
[(p̄, x0) + δ]}, (B23)
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where δ is some positive number and O(h) is uniform with respect
to p̄.

(ii) If f(x0) = f ′(x0) = 0, then

I(p̄) = (2π)(d−1)/2h(d+1)/2Γ(x0)
−1/2h

2
exp{− 1

h
(p̄, x0)}[tr (f̃ ′′(x0)Φ−1(x0))

+O(
√
h)(F0+F1+F2+F3)]+O(max

M
|f(x)|) exp{− 1

h
[(p̄, x0)+ δ]},

(B24)
where Φ(x0) is the matrix of the second form of ∂M at x0 and f̃
is the function f restricted to the tangent space to ∂M at x0 (or
to the boundary ∂M itself, which gives the same result, since x0 is
suppose to be a critical point of f).

Proof. Consider an orthonormal system of coordinates y =
(y1, ..., yd−1, yd) in Rd such that x0 is the origin and p̄ has coor-
dinates (0, ..., 0, 1). Then ∂M around x0 can be described by the
equation yd = ϕ(y′), y′ = (y1, ..., yd−1) with some smooth function
ϕ. Consequently, for any δ > 0, one has that up to an exponentially
small term

I(p̄) = exp{− 1

h
(p̄, x0)}

∫
{|yd|)≤δ}

exp{−yd
h
}f(y) dy

= exp{− 1

h
(p̄, x0)}

∫
U

g(y′) dy,′

where

g(y′) =

∫ δ

ϕ(y′)

exp{−yd
h
}f(y′, yd) dyd,

and U is a neighbourhood of the origin in Rd such that δ > ϕ(y′)
for y′ ∈ U . Consequently, due to (B21), up to an exponentially
small term

I(p̄) = exp{− 1

h
(p̄, x0)} ∈U exp{−ϕ(y

′)

h
}(f(y′, ϕ(y′))+hO(F1)) dy

′.

(B25)
From the definition of ϕ(y′) it follows that the matrix of its second
derivatives ϕ′′(0) at the origin is just the matrix Φ(x0) of the second
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main form of the hypersurface ∂M at x0 (in coordinate y), the
eigenvalues of this matrix are the main curvatures of ∂M at x0,
and Γ(x0) = detϕ′′(0) is the Gaussian curvature. Consequently,
applying Proposition B2 to integral (B25) yields (B23). It remains
to notice that under condition of statement (ii), one can also write
O(|y′|)F2 instead of O(F1) in (B25), and consequently, applying
Proposition B4 to integral (B25) yields (B24).

Sometimes one encounters the integrals depending on a small
parameter h in a more complicated way than in (B1). Let us for-
mulate one result on such situation, where the asymptotics and its
justification can be obtained by direct generalisation of the argu-
ments of Propositions B1-B4. Let h ∈ (0, h0] as usual, and let

I(h) =

∫
Ω

exp{− 1

h
S(x, h)} dx. (B26)

Generalising the asssumptions of Propositions B1,B2 suppose that
(i) I(h) is absolutely convergent for h = h0;
(ii) the function S is four times differential in x and h;
(iii) for any h ∈ (0, h0] there exists a unique point x(h) ∈ Ω

such that S(x(h), h) = 0, S′(x(h), h) = 0, and ReS′′(x(h), h) > 0,
where by primes we denote the derivatives with respect to x;

(iv)ReS(x, h) > 0 whenever x ̸= x(h), lim infx→∞ReS(x, h) >
0, and the set of the internal points of Ω contains the closure of the
set of all x(h), h ≤ h0;

(v) there exists r such that inf{ReS(x, h) : x ∈ Ω \ Br} =
min{ReS(x, h) : x ∈ ∂Br};

(vi) there exists Λ > 0 such that ReS′′(x(h), h) > Λ for all
x ∈ Br and all h;

(vii) U(h0) ⊂ Br, where

U(h) = {x : (ReS′′(x(h), h)(x− x(h)), x− x(h)) ≤ h2/3}.

Let λ(h) denote the minimal eigenvalue of ReS′′(x(h), h), and let
Sj denote the maximum in x ∈ Br, h ≤ h0, of the norms of the
j-th order derivatives of S with respect to x. Let

A(h) =
1

6
S3(λ(h))

−3/2, DR(h) = detReS′′(x(h), h), D(h) = detS′′(x(h), h).



297

Proposition B6. Under these assumptions one has the esti-
mate

|I(h)| ≤ δ3(h)

+eA(h)

[
(2πh)d/2DR(h)

−1/2 + (2πh0Λ
−1)d/2 exp{−1

2
(h−1/3 − h

−1/3
0 )}

]
,

(B27)
where

|δ3(h)| ≤

∣∣∣∣∣
∫
Ω\Br

exp{−S(x, h)
h

} dx

∣∣∣∣∣
≤ exp{−r

2Λ

2h
} exp{r

2Λ

2h0
}
∫
Ω

| exp{−S(x, h0)
h0

}| dx,

and a more precise formula

I(h) = (2πh)d/2
(
(D(h))−1/2 + h((DR(h))

−1/2δ1(h) + Λ−D/2δ2(h))
)
+δ3(h),

(B28)
where

|δ1(h)| ≤ C1(d)(A
2(h)eA(h)+S4(λ(h))

−2), |δ2(h) ≤ C2(d, h0)e
A(h).

Notice for conclusion that the phase function S in Propositions
B2-B4 was not supposed to be analytic. However, in the case of
complex S one usually deals with the Laplace integrals over some
contour of integration in the complex space Cd with analytic f
and S and the major problem that one encounters is to find a
deformation (using the Cauchy theorem) of this contour in such a
way that the resulting integral satisfies the conditions of one of the
Propositions B1-B6.

C. Characteristic functions of stable laws

This Appendix is devoted mainly to a compact exposition of
the standard facts about the characteristic functions of the in-
finitely divisible distributions and the stable laws. At the end we
prove some simple statements on the asymptotic behaviour in the
complex domain of the characteristic functions of the localised sta-
ble laws disturbed by a compound Poisson process. These results
are used in Chapter 6.
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A probability distribution in Rd and its characteristic func-
tion ψ(x) are called infinitely divisible, if for any integer n the
function ψ1/n is again a characteristic function (of some other dis-
tribution). The famous Lévy-Khintchine theorem states (see e.g.
[Fel],[GK]) that the logarithm of the characteristic function of an
infinitely divisible distribution Φ(y) = logψ(y) can be presented in
the following canonical form:

Φ(y) = logψ(y) = iAy−1

2
(Gy, y)+

∫
Rd\{0}

(
ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

)
ν(dξ),

(C1)
where A and G are respectively a real vector and a nonnegative
real matrix, and ν is a so called Lévy measure on Rd \ {0}, which
means that ∫

Rd\{0}
min(1, |ξ|2) ν(dξ) <∞. (C2)

An important class of the infinitely divisible distributions is
given by the so called compound Poisson distributions. Their char-
acteristic functions are given by (C1) with vanishing G and a finite
Lévy measure. In particular, for these distributions

logψ(y) = iAy +

∫
Rd\{0}

(
ei(y,ξ) − 1

)
ν(dξ). (C3)

A different class of infinitely divisible distributions constitute
the so called stable laws. A probability distribution in Rd and its
characteristic function ψ(x) are called stable (resp. strictly stable),
if for any integer n there exist a positive constant cn and a real
constant γn (resp. if additionally γn = 0) such that

ψ(y) = [ψ(y/cn) exp{iγny}]n.

Obviously, it implies that ψ is infinitely divisible and therefore
logψ can be presented by (C1) with appropriate A,G, ν. It turns
out (see e.g. [Fel],[Lu],[ST]) that if ψ is stable, then there exists
an α ∈ (0, 2] which is called the index of stability such that: (i)
if α = 2, then ν = 0 in the representation (C1) of logψ, i.e. the
distribution is normal; (ii) if α ∈ (0, 2), then in the representation
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(C1) the matrix G vanishes and the radial part of the Lévy measure
ν has the form |ξ|−(1+α), i.e.

logψα(y) = i(A, y)+

∫ ∞

0

∫
Sd−1

(
ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

)
d|ξ|

|ξ|1+α
µ(ds),

(C4)
where ξ is presented by its magnitude |ξ| and the unit vector s =
ξ/|ξ| ∈ Sd−1 in the direction ξ, and µ is some (finite) measure in
Sd−1.

The integration in |ξ| in (C4) can be carried out explicitly. In
order to do it, notice that for α ∈ (0, 1) and p > 0∫ ∞

0

(eirp − 1)
dr

r1+α
= −Γ(1− α)

α
e−iπα/2pα. (C5)

In fact, one presents the integral on the r.h.s. of (C5) as the limit
as ϵ→ 0+ of∫ ∞

0

(e−(ϵ−ip)r−1)
dr

r1+α
=
ϵ− ip

α

∫ ∞

0

e−(ϵ−ip)rr−α dr = −Γ(1− α)

α
(ϵ−ip)α,

where
(ϵ− ip)α = (ϵ2 + p2)α/2eiθα

with tan θ = −p/ϵ. Since θ → −π/2 as ϵ → 0+, it follows that
(ϵ− ip)α tends to pαe−iαπ/2, which gives (C5). Next, for α ∈ (1, 2)
and p > 0 the integration by parts gives∫ ∞

0

eirp − 1− irp

r1+α
dr =

ip

α

∫ ∞

0

(eipr − 1)
dr

rα
,

and therefore, due to (C5), in that case∫ ∞

0

eirp − 1− irp

r1+α
dr =

Γ(α− 1)

α
e−iπα/2pα. (C6)

Note that the real part of both (C5) and (C6) is positive. From
(C5), (C6) it follows that for α ∈ (0, 2), α ̸= 1,∫ ∞

0

(
eirp − 1− irp

1 + r2

)
dr

r1+α
= iaαp− σαe

−iπα/2pα (C7)
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with

σα = α−1Γ(1− α), aα = −
∫ ∞

0

dr

(1 + r2)r
(C8)

for α ∈ (0, 1) and

σα = −α−1Γ(α− 1), aα =

∫ ∞

0

r2−αdr

1 + r2
(C9)

for α ∈ (1, 2). To calculate the l.h.s. of (C7) for α = 1 one notes
that ∫ ∞

0

eirp − 1− ip sin r

r2
dr

= −
∫ ∞

0

1− cos rp

r2
dr+ i

∫ ∞

0

sin rp− p sin r

r2
dr = −1

2
πp− ip log p.

In fact, the real part of this integral is evaluated using a standard
fact that f(r) = (1− cos r)/(πr2) is a probability density (with the
characteristic function ψ(z) that equals to 1 − |z| for |z| ≤ 1 and
vanishes for |z| ≥ 1), and the imaginary part can be presented in
the form

lim
ϵ→0

[∫ ∞

ϵ

sin pr

r2
dr − p

∫ ∞

ϵ

sin r

r2
dr

]
−p lim

ϵ→0

∫ pϵ

ϵ

sin r

r2
dr = −p lim

ϵ→0

∫ p

1

sin ϵy

ϵy2
dy = −p

∫ p

1

dy

y
,

which implies the required formula. Therefore, for α = 1∫ ∞

0

(
eirp − 1− irp

1 + r2

)
dr

r1+α
= ia1p−

1

2
πp− ip log p (C10)

with

a1 =

∫ ∞

0

sin r − r

(1 + r2)r2
dr. (C11)

Using (C7)-(C11) yields for function (C4) the following expres-
sion

logψα(y) = i(Ã, y)−
∫
Sd−1

|(y, s)|α
(
1− i sgn ((y, s)) tan

πα

2

)
µ̃(ds), α ̸= 1,

(C12)



301

logψα(y) = i(Ã, y)−
∫
Sd−1

|(y, s)|
(
1 + i

2

π
sgn ((y, s)) log |(y, s)|

)
µ̃(ds), α = 1,

(C12′)
where

Ã = A+ aα

∫
Sd−1

sµ(ds)

with aα given in (C8), (C9), (C11) and the measure µ̃ on Sd−1 is
proportional to µ, more exactly

µ̃ =

{
σα cos(πα/2)µ, α ̸= 1,
πµ/2, α = 1,

(C13)

and is called sometimes the spectral measure of a stable law.
For instance, if d = 1, S0 consists of two points. Denoting

their µ̃-measures by µ1, µ−1 one obtains for α ̸= 1 that

logψα(y) = iÃy − |y|α[(µ1 + µ−1)− i sgn y(µ1 − µ−1) tan
πα

2
].

This can be written also in the form

logψα(y) = iÃy − σ|y|α exp{iπ
2
γ sgn y} (C14)

with some σ > 0 and a real γ such that |γ| ≤ α, if α ∈ (0, 1), and
|γ| ≤ 2− α, if α ∈ (1, 2).

If the spectral measure µ̃ is symmetric, i.e. µ̃(−Ω) = µ̃(Ω) for
any Ω ⊂ Sd−1, then Ã = A and formulas (C6),(C7) give both the
following simple expression:

logψα(y) = i(A, y)−
∫
Sd−1

|(y, s)|αµ̃(ds). (C15)

In particular, if the measure µ̃ is uniform, then logψα(y) is just
i(A, y)−σ|y|α with some σ called the scale of a stable distribution.

One sees readily that the characteristic function ψα(y) with
logψα(y) from (C12) or (C15) with vanishing A enjoy the property
that ψnα(y) = ψα(n

1/αy), and therefore all stable distributions with
the index α ̸= 1, and for α = 1 all symmetric distributions can be
made strictly stable, if centred appropriately.
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We want to consider now localised versions of the stable laws.
They present, on the one hand, a reasonable approximation to the
exact stable laws (see e.g [Neg]), and on the other hand, their
characteristic functions are analytic, which allows to use powerful
analytic tools, when investigating them. In chapter 6, these laws
are used as the models for the development of the theory of large
deviation. One obtains a localised stable law by cutting off the
support of the Lévy measure in the Lévy-Khintchin representation
(C4) of the characteristic function of a stable law. More precisely,
we shall call a distribution a localised stable distribution of the
index of stability α ∈ (0, 2), if for its characteristic function ψlocα
one has the representation

logψlocα (y) = i(A, y)+

∫ ∞

0

∫
Sd−1

(
ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

)
Θa(|ξ|)d|ξ|

|ξ|1+α
µ(ds).

(C16)
Remark. We have chosen here the simplest cutoff of the sta-

ble measure. Certainly one can choose it in many different ways
without changing the results presented further.

Notice that formula (C16) defines an entire analytic function
of y. Moreover, the difference between functions (C4) and (C16)
for real y is a bounded function (up to an imaginary shift of the
form i(b, y)). In fact, this difference is given (up to an imaginary
shift) by the Lévy-Khintchin formula (C3) for a compound Poisson
distribution, which obviously defines a bounded function. It turns
out that this property of localised stable laws is preserved after a
shift in the complex domain and also after a ”small” perturbation
in the class of the function of Lévy-Khintchine type, namely for
the function

Φ(y) = logψlocα (y) +

∫
Rd

(ei(y,ξ) − 1)g(ξ) dξ (C17)

with a bounded non-negative g with a support containing in the
open ball of the radius a. The corresponding simple results, which
we are going to present now, namely formulas (C21)-(C23) below,
are used in the proof of the main theorem of Chapter 6.

Further on it will be more convenient to use the ”rotated”
function

H(z) = Φ(iz) = logψlocα (iz) +

∫
Rd

(e−(z,ξ) − 1)g(ξ) dξ (C18)
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which is called sometimes the Laplace exponent (or cumulant) of
an infinitely divisible process. One has

H(z+ iy) = Φ(iz−y) = −(A, z)− i(A, y)+
∫

(e−zξ−iyξ−1)g(ξ) dξ

∫ (
e−iyξ−zξ − 1 +

zξ

1 + ξ2
+

iyξ

1 + ξ2

)
Θa(|ξ|)
|ξ|1+α

d|ξ|µ(ds)

= −Az + logψα(−y) +
∫

(e−zξ−iyξ − 1)g(ξ) dξ +

∫
d|ξ|µ(ds)

×
[(

(e−zξ − 1)e−iyξ +
zξ

1 + ξ2

)
Θa(|ξ|)
|ξ|1+α

−
(
e−iyξ − 1 +

iyξ

1 + ξ2

)
1−Θa(|ξ|)

|ξ|1+α

]
.

(C19)
It follows in particular that

H(z)−H(z + iy) + logψα(−y) =
∫
e−zξ(1− e−iyξ)g(ξ) dξ

+

∫
d|ξ|µ(ds)
|ξ|1+α

×
[(
e−iyξ − 1 +

iyξ

1 + ξ2

)
(1−Θa(|ξ|) + (e−zξ − 1)(1− e−iyξ)Θa(|ξ|)

]
.

(C20)
Notice now that for symmetric µ and α < 1 formula (C19) can be
rewritten in the form

H(z + iy) = logψα(y)−Az

+

∫
e−iyξ

[
((e−zξ − 1)Θa(|ξ|) + 1−Θa(|ξ|))

d|ξ|µ(ds)
|ξ|1+α

+ e−zξg(ξ) dξ

]
−K

(C21)
with

K =

∫
1−Θa(|ξ|)

|ξ|1+α
d|ξ|µ(ds) +

∫
g(ξ) dξ.

On the other hand, for symmetric µ and α ≥ 1

H(z + iy) = logψα(y)− i

(
z,

∂

∂y
logψα(y)

)
−Az
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+

∫
e−iyξ

[
((e−zξ − 1 + zξ)Θa(|ξ|) + 1−Θa(|ξ|))

d|ξ|µ(ds)
|ξ|1+α

+ e−zξg(ξ) dξ

]
−K

(C22)
with the same K sa above.

Proposition C1. For symmetric µ and H given in (C18),
the principle term of the asymptotics of Re (H(z)−H(z + iy)) as
y → ∞ is given by − logψα(y) with the estimate of the remainder
being uniform for z from any compact domain. Moreover,

Re (H(z)−H(z + iy)) + logψα(y) ≥ C (C23)

for all y, z and some constant C.

Proof. It follows from (C20) that

Re (H(z)−H(z + iy)) + logψα(y) =

∫
e−zξ(1− cos(yξ))g(ξ) dξ

+

∫ [
(e−zξ − 1 + zξ)(1− cos(yξ))Θa(|ξ|)

−(1− cos(yξ))(1−Θa(|ξ|)
]d|ξ|µ(ds)

|ξ|1+α
, (C24)

because
∫
(z, ξ)(1 − cos(y, ξ))ν(dξ) = 0 for any (centrally) sym-

metric measure ν. Formula (C24) implies the statement of the
Proposition, because, on the one hand, all unbounded in z terms
of the r.h.s. of (C24) are positive, and on the other hand, all terms
on the r.h.s. of (C24) are bounded in y.

Remark. Using results from Appendix B, one readily gets the
upper bound for the l.h.s. of of (C23), namely that

Re (H(z)−H(z + iy)) + logψα(y) ≤ C1H(z) + C2 (C25)

with some constants C1 > 0 and C2.

D. Lévy-Khintchine ΨDO and Feller-Courrège processes

Here we recall the main facts connecting the theory of pseudo-
differential operators (ΨDO) and pseudo-differential equation (ΨDE)
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with the theory of random processes and also give a simple version
of the general asymptotic formula of the commutation of a ΨDO
with an exponential function for the class of ΨDO arising in the
analytical description of random processes. This formula has two
special features as compared with the general one. On the one
hand, the symbols of ΨDO appearing in the theory of stochastic
processes may not belong to the standard classes of symbols, for
example, they may not be smooth (see a detailed discussion in
[Ja]); on the other hand, they have a special form which allows to
write down an explicit expression for the remainders in the stan-
dard asymptotic expansions.

Let us recall first the main notations of the theory of ΨDO.
For an appropriate function Ψ(x, p) (a symbol), x, p ∈ Rd, the
action of the ΨDO Ψ(x,−i∇) on a function f is defined by the
integral (which may exists, perhaps, in some generalised sense)

[Ψ(x,−i∇)f ](x) = (2π)−d/2
∫
Rd

eipxΨ(x, p)f̂(p) dp

with f̂ being the Fourier transform of f , or equivalently

[Ψ(x,−i∇)f ](x) = (2π)−d
∫
R2d

eip(x−ξ)Ψ(x, p)f(ξ) dξdp.

With each ΨDO one can associate the evolutionary equation

∂u

∂t
= Ψ(x,−i∆)u (D1)

The resolving operator of the Cauchy problem corresponding to this
equation is given by the semigroup of operators exp{tΨ(x,−i∆)}
(whenever it is well-defined).

In asymptotic theory of ΨDE one usually considers the asymp-
totic solutions with respect to a small positive parameter h being
the ”weight” of the derivative operators ∇ and ∂/∂t. More pre-
cisely, one associates with a symbol Ψ(x, p) the so called h-ΨDO
(see e.g [MF1]) defined by the formula

[Ψ(x,−ih∇)f ](x) = (2πh)−d/2
∫
Rd

eipx/hΨ(x, p)f̂h(p) dp
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with f̂h being the h-Fourier transform of f :

f̂h(p) = (2πh)−d/2
∫
Rd

e−ipx/hf(x) dx.

The resolving operator to the Cauchy problem for the correspond-
ing evolutionary equation

h
∂u

∂t
= Ψ(x,−ih∇)u (D2)

can be written formally as exp{ thΨ(x,−ih∆)}. Since in quantum
mechanics the limit of the solution of the Schrödinger equation
(which is of type (D2) with h being the so called Planck constant)
as h→ 0 describes the classical limit, in general theory of ΨDe the
asymptotics of the solutions of equation (D2) as h → 0 are called
semi-classical or quasi-classical.

Turning now to the connection of the theory of ΨDO with
probability, let us recall first the following famous characterisation
of the class of the Lévy-Khintchine functions (C1): it coincides
with the set of the generators of the translation invariant and pos-
itivity preserving semigroups. More precisely, if Φ is a complex
valued function on Rd with a bounded from below real part, then
the resolving operator exp{tΦ(−i∇)} of the Cauchy problem of the
ΨDE ∂u/∂t = Φ(−i∇)u preserves positivity, if and only if Φ(y)
has the form (C1) up to a real additive constant. A purely ana-
lytic proof of this fact can be found e.g. in [RS]. From the prob-
abilistic point of view, this fact is surely not surprising, because
due to the Lévy-Khintchine theorem the semigroups of operators
exp{tΦ(−i∇)} with Φ of form (C1) correspond to general random
processes with independent increments. The important generalisa-
tion of this fact is given by the fundamental theorem of Courége
[Cou], [BCP]. To formulate it, let us recall first that a Feller semi-
group is by definition a strongly continuous semigroup Tt, t ≥ 0,
of linear contractions on the Banach space of continuous functions
on Rd vanishing at infinity such that 0 ≤ u(x) ≤ 1 for all x implies
that 0 ≤ Ttu(x) ≤ 1 for all t and x. In particular, each operator Tt
preserves positivity. The Courrège theorem states that if the gen-
erator of essentially any Feller semigroup is a PDO with symbols
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of form (C1) ”with varying coefficients”, i.e. these semigroups are
defined by the equations of the form (D1) with

Ψ(x, p) = i(A(x), p)−1

2
(G(x)p, p)+

∫
Rd\{0}

(
ei(p,ξ) − 1− i(p, ξ)

1 + ξ2

)
ν(x, dξ),

(D3)
where ν(x, dξ) and G(x) are respectively a Lévy measure and a
nonnegative matrix for all x. Notice however that Courrège theo-
rem gives only a necessary condition on the generator and does not
state that any operator of form (D3) defines a Feller semigroup.
It is proven in the probability theory that to each Feller semi-
group corresponds a Markov stochastic process, which is called in
that case a Feller process. In particular, the transition probabil-
ity densities of this Markov process (whenever they exist) satisfy
the corresponding equation (D2),(D3). The ΨDO with symbols
of form (D3) can be naturally called the Lévy-Khintchine ΨDO
and the corresponding semigroups (and stochastic processes) can
be called the Courrège-Feller semigroups. If for all x function (D3)
corresponds to a stable process, we shall say that the correspond-
ing process is a stable Courrège-Feller process or a stable diffusion
(usual diffusions obviously correspond to stable generators of the
index α = 2). If G(x), A(x), ν(x, dξ) do not depend actually
on x, the corresponding Courrège-Feller process is a process with
independent equally distributed increments, called Lévy process.
In stable case such process is sometimes called Lévy stable motion.
There exists enormous literature on Lévy processes (see [ST], [Ber],
and references there).

Since ea∆f(x) = f(x+a), for symbols of form (D3) the action
of the corresponding ΨDO can be given by the formula

[Ψ(x,−ih∇)f ](x) = h

(
A(x),

∂f

∂x

)
+
h2

2
tr

(
G(x)

∂2f

∂x2

)
+(Lhintf)(x)

(D4)
with

(Lhintf)(x) =

∫
Rd\{0}

(
f(x+ hξ)− f(x)−

h(∂f∂x , ξ)

1 + ξ2

)
ν(x, dξ).

(D5)
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In the probabilistic framework, the parameter h has a clear mean-
ing: it controls the mean amplitude of jumps in the corresponding
random process. In the theory of diffusion processes, the asymp-
totics corresponding to h→ 0 are called the small diffusion approx-
imation.

Notice now that introducing a function

H(x, p) = Ψ(x, ip) =
1

2
(G(x)p, p)− (A(x), p)

+

∫
Rd\{0}

(
e−(p,ξ) − 1 +

(p, ξ)

1 + ξ2

)
ν(x, dξ), (D6)

one can rewrite equation (D2) in the ”real” form

h
∂u

∂t
= H(x,−h∇)u. (D7)

The use of the function H instead of the symbol Ψ turns out to
be more convenient for the construction of semiclasssical approxi-
mation for Courrège-Feller processes, because the function H, and
not Ψ appears in the corresponding Hamilton-Jacobi equation that
plays a central role in WKB-type asymptotics (see Chapter 6).

When solving ΨDO an important tool is the formula for the
commutation of a ΨDO with an exponential function (see, e.g.
[M4], [MF1]). We present now a version of this formula for ΨDO
of type (D4),(D5).

Proposition D1. Let

u(x) = ϕ(x) exp{−S(x)
h

}. (D8)

with some complex-valued smooth functions ϕ and S, and let Ψ be
a symbol of type (D3) of a Lévy-Khintchine ΨDO. Then

exp{S(x)
h

}[Ψ(x,−ih∇)u](x) = ϕ(x)H(x,
∂S

∂x
)−h

(
∂ϕ

∂x
,
∂H

∂p
(x,

∂S

∂x
)

)

−h
2
ϕ(x) tr (G(x)

∂2S

∂x2
) +

h2

2
tr (G(x)

∂2ϕ

∂x2
) +Rν(x), (D9)
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where

Rν(x) =

∫
Rd\{0}

exp{−(
∂S

∂x
, ξ)} ν(x, dξ)

×
[(
ϕ(x) + h(

∂ϕ

∂x
, ξ)

)(
exp{−h

∫ 1

0

(1− θ1)

(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1} − 1

)
+h2

∫ 1

0

(1− θ2)

(
∂2ϕ

∂x2
(x+ θ2hξ)ξ, ξ

)
dθ2

× exp{−h
∫ 1

0

(1− θ1)

(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1}

]
, (D10)

if all terms on the r.h.s. of (D8) are well defined. For instance,
they are well defined if the function ϕ and the Lévy measure ν have
both bounded supports.

Proof. It is straightforward, because from (D4),(D5) it follows
that

exp{S(x)
h

}[Ψ(x,−ih∇)u](x)

=
1

2

(
G(x)

∂S

∂x
,
∂S

∂x

)
− (A(x),

∂S

∂x
)− h

(
G(x)

∂S

∂x
,
∂ϕ

∂x

)
+h(A(x),

∂ϕ

∂x
)−h

2
ϕ(x) tr (G(x)

∂2S

∂x2
)+
h2

2
tr (G(x)

∂2ϕ

∂x2
)+exp{S(x)

h
}(Lhintu)(x)

with

exp{S(x)
h

}(Lhintu)(x) =
∫
Rd\{0}

[
ϕ(x+hξ) exp{− 1

h
(S(x+hξ)−S(x))}

−ϕ(x) +
ϕ(x)(∂S∂x , ξ)− h(∂ϕ∂x , ξ)

1 + ξ2
]
ν(x, dξ)

=

∫
Rd

ν(x, dξ)
[(
ϕ(x) + h(

∂ϕ

∂x
, ξ) + h2

∫ 1

0

(1− θ2)

(
∂2ϕ

∂x2
(x+ θ2hξ)ξ, ξ

)
dθ

)
exp{−(

∂S

∂x
, ξ)} exp{−h

∫ 1

0

(1−θ1)
(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1}−ϕ(x)

+
ϕ(x)(∂S∂x , ξ)− h(∂ϕ∂x , ξ)

1 + ξ2
]
.
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Sometimes it is useful to rewrite (D9), (D10) in a slightly dif-
ferent form.

Proposition D2. Under the assumptions of Proposition D1

exp{S(x)
h

}[Ψ(x,−ih∇)u](x) = ϕ(x)H(x,
∂S

∂x
)

−h
[(

∂ϕ

∂x
,
∂H

∂p
(x,

∂S

∂x
)

)
+

1

2
ϕ(x) tr

(
∂2H

∂p2
(x,

∂S

∂x
)
∂2S

∂x2

)]
+
h2

2
tr (G(x)

∂2ϕ

∂x2
) + R̃ν(x) (D11)

with

R̃ν(x) =

∫
Rd\{0}

exp{−(
∂S

∂x
, ξ)} ν(x, dξ)

×
[
ϕ(x)(exp{−h

∫ 1

0

(1−θ1)
(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1}−1+

h

2

(
∂2S

∂x2
(x)ξ, ξ

)
)

+h(
∂ϕ

∂x
, ξ)

(
exp{−h

∫ 1

0

(1− θ1)

(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1} − 1

)

+h2
∫ 1

0

(1− θ2)

(
∂2ϕ

∂x2
(x+ θ2hξ)ξ, ξ

)
dθ2

× exp{−h
∫ 1

0

(1− θ1)

(
∂2S

∂x2
(x+ θ1hξ)ξ, ξ

)
dθ1}

]
. (D12)

The proof is straightforward. The advantage of (D11) as com-
pared with (D9) consists in the fact that for small h the remainder
R̃ν is of the order O(h2), and therefore formulas (D11),(D12) give
the asymptotic representation of the result of the commutation of
a Lévy-Khintchine ΨDO with an exponential function up to a re-
mainder of the order O(h2).

E. Equivalence of convex functions

It is proved here that any two smooth convex functions on Eu-
cleadian space, each having a non-degenerate minimum are smoothly
equivalent. This result is simple and natural but I did not find it
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in the literature. It is used in the construction of the uniform small
time and small diffusion asymptotics for Feller semigroups given in
Chapter 6.

Proposition E1. Let f be an infinitely smooth (resp. of the
class Ck with k ≥ 2) convex function on Rd such that f(0) = 0 and
f(x) > 0 for all x ̸= 0. Suppose also that the matrix of the second
derivatives f ′′(0) of f at the origin is not degenerate (and therefore
it is positive). Then there exists an infinitely smooth (resp. of the
class Ck−2) diffeomorphism D : Rd 7→ Rd such that f(D−1y) =
(y, y)/2. Moreover, D can be presented as the composition D =
D3D2D1, where D1 is a linear operator in Rd, D2 differs from the
identity only in a neighbourhood of the origin and D3 is a dilation

D3(x) = (1 + ω(x))x (E1)

with some scalar function ω vanishing in a neighbourhood of the
origin.

We begin with two lemmas. The first is rather standard. We
present here the formula and the estimates for a smooth molyfier
in a form convenient for our purposes.

Lemma E1. There exists a constant C > 0 such that for any
a, b: 0 < b < a there exists an infinitely smooth non-increasing
function χab on R such that χab vanishes for x ≥ a, is equal to one
for x ≤ b and χab (x) ∈ (0, 1) for x ∈ (b, a). Moreover, this function
depends smoothly on a,b, and for all a, b,x

|(χab )′(x)| ≤
C

a− b
, |(χab )′′(x)| ≤

C

(a− b)2
, |∂χ

a
b

∂a
(x)| ≤ C

a− b
.

(E2)
Proof. Let

g(y) =

{
K exp{− 1

y(y−1)}, y ∈ (0, 1),

0, y ∈ (−∞, 0] ∪ [1,∞),

where the constant K is chosen in such a way that
∫ 1

0
g(y) dy = 1.

One readily sees that g is an infinitely differentiable function on R.
It follows that the function

χab (x) =
1

a− b

∫ ∞

x

g

(
z − b

a− b

)
dz ≡

∫ ∞

(x−b)/(a−b)
g(y) dy (E3)
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satisfies the requirements of the Lemma with

C = max
y∈[0,1]

max(g(y), g′(y)).

The following lemma is crucial.

Lemma E2. Let a function f satisfies the assumptions of
Theorem E1 and moreover, the matrix f ′′(0) is the unit matrix.
Then there exists a diffeomorphism D : Rd 7→ Rd such that D
differs from the identity only in a neighbourhood of the origin and
f(D−1y) is a convex function on Rd which equals (y, y)/2 in a
neighbourhood of the origin.

Proof. The idea is to sew the local diffeomorphisms used in
the standard proof of the Morse lemma with the identical diffeo-
morphism in such a way that the resulting function f(D−1y) will
be again convex. For brevity, let us give the proof for d = 2. The
general case is obtained by the similar modification of the proof of
the Morse lemma. If d = 2, it follows from the assumptions of the
Lemma that f(x) = f(x1, x2) can be presented in the form

f(x1, x2) =
1

2
A(x)x21 +B(x)x1x2 +

1

2
C(x)x22 (E4)

with some smooth functions A,B,C such that

A = 1 +O(|x|), B = O(|x|), C = 1 +O(|x|).

Let r > 0 be chosen in such a way that A(x) > 0 and (AC −
B2)(x) > 0 for |x| ≤ r. Clearly for |x| ≤ r the function f can be
presented in the equivalent form

f(x1, x2) =
1

2
A(x)

(
x1 +

B(x)

A(x)
x2

)2

+
1

2

(
C(x)− B2(x)

A(x)

)
x22.

For any positive ϵ < r/2 one can now define the mapping Dϵ : x 7→
y in R2 by the formula

y1 = χ2ϵ
ϵ (|x|)

√
A(x)

(
x1 +

B(x)

A(x)
x2

)
+ (1− χ2ϵ

ϵ (|x|))x1,
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y2 =

[
χ2ϵ
ϵ (|x|)

√
C(x)− B2(x)

A(x)
+ (1− χ2ϵ

ϵ (|x|))

]
x2.

ObviouslyDϵ is a smooth (infinitely smooth, if f is infinitely smooth,
or of the class Ck−2, if f is of the class Ck) mapping R2 7→ R2

that differs from the identity only inside the ball B2ϵ, and f(D
−1y)

equals (y, y)/2 in D(Bϵ) and equals f(y) outside D(B2ϵ). Let us
estimate the derivatives of Dϵ. First of all,

y1 = (1 +O(|x|))x1 +O(|x|)x2, y2 = (1 +O(|x|))x2.

Furthermore, due to (E2),

∂y

∂x
= E +O(|x|) +O(ϵ−1|x|2), ∂2y

∂x2
= O(1 + ϵ−1|x|+ ϵ−2|x|2).

Consequently, in B2ϵ one has

∂y

∂x
= E +O(ϵ),

∂2y

∂x2
= O(1),

∂2x

∂y2
= O(1)

uniformly for ϵ → 0. Hence, Dϵ is a global diffeomorphism for
small enough ϵ. At last, since

∂2f

∂y2
= (

∂x

∂y
)t
∂2f

∂x2
∂x

∂y
+
∂f

∂x

∂2x

∂y2
,

it follows that ∂2f
∂y2 = E + O(ϵ) and therefore f(D−1y) is a convex

function, if ϵ is small enough.

Proof of Proposition E1. It is now almost straightforward.
One takes first a linear mapping D1 in Rd such that the matrix
of the second derivatives of f(D−1

1 y) at the origin is the unit ma-
trix. Then one uses Lemma E2 to find a diffeomorphism D2 such
that f(D−1

1 D−1
2 y) is a convex function coinciding with (y, y)/2 in

a neighbourhood of the origin. At last, one easily verifies that any
two convex functions coinciding in a neighbourhood of their mini-
mum points can be transformed one to another by a diffeomorphism
of form (E1).
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Proposition E2. For any two functions f1, f2 satisfying the
assumptions of Proposition E1 there exists a diffeomorphism D :
Rd 7→ Rd such that f1(y) = f2(D

−1y) and moreover, outside a
neighbourhood of the origin, D can be presented as the composition
of a linear transform of Rd and of a dilation of form (E1).

Proof. It is a direct consequence of Proposition E1.

F. Unimodality of symmetric stable laws

Here we discuss the property of unimodality of stable laws,
which is used in Chapter 5. We present a short but essentially self-
contained exposition of the main facts of the theory of unimodality
of finite dimensional distributions, which is used in Chapter 5. A
full account on the main results discussed here can be found in
[DJ1]. Roughly speaking, the significance of the property of uni-
modality for the study of stable distributions and more generally
stable diffusions consists in the fact that when one gets the asymp-
totic expansions for the behaviour of stable densities for small and
large distances (see Sections 5.1, 5.2) one needs this property to fill
the gap, namely to describe the behaviour of stable densities for
the distances that lie between the regions of ”large” and ”small”
distances.

To begin with let us recall that a probability law (or a finite
measure) on the real line with the distribution function F is called
unimodal with the mode (or vertex) a ∈ R, if F (x) is convex (pos-
sibly not strictly) on (−∞, a) and concave on (a,∞). Clearly, if F
has a continuous density function f , the unimodality means that
f is non-decreasing on (−∞, a) and non-increasing on (a,∞). It
was proved in [Wi] that all symmetric one-dimensional stable laws
are unimodal (with the mode at the origin); there are now many
proofs of this well-known result (see e.g. [Lu], [Zo]). The case
of non-symmetric stable laws turned out to be essentially more
difficult, it was proved only in [Yam] (see also [Zo]) that all sta-
ble distributions are unimodal, some important preliminary results
being obtained in [IC].

One can imagine several extensions of the notion of unimodal-
ity from one dimensional case to several dimensions. We shall men-
tion here the two definitions which are mostly relevant to the study
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of symmetric stable distributions. We shall denote by Vk(M) the
Lebesgue volume of a measurable set M ⊂ Rk, or just V (M) if the
value of K is clear from the context. For any convex set A in Rd

let d(A) be its dimension (which is the dimension of the minimal
subspace containing A, d(A) ≤ d), and let µA be the measure in
Rd which is uniformly distributed in A, i.e. µA(B) = Vd(A)(A∩B)

for any measurable B ⊂ Rd.
Definition F1 [And]. A measure with a density f is called

convex unimodal, if the function f has convex sets of upper values,
i.e. the sets {x : f(x) ≥ c} are convex for all c.

One of the disadvantages of this definition is the fact that
the class of convex unimodal measures is not closed under convex
linear combinations. The following more general concept improves
the situation (at least for the symmetric case with which shall deal
here).

Definition F2 [She]. An elementary unimodal symmetric
measure in Rd is a measure µA with some compact convex A ⊂ Rd.
A centrally symmetric finite measure on Rd is called central con-
vex unimodal (CCU), if it is a weak limit of a sequence of the finite
linear combinations of elementary symmetric unimodal measures.

The class CCU measures is by definition closed with respect to
linear combinations (with positive coefficients) and the pass to the
weak limit. Moreover, if a convex unimodal measure (as defined
in Definition F1) is centrally symmetric, then it is CCU. Notice
also that since any convex set can be approximated by a sequence
of convex sets with nonempty interiors, the above definition will
not change, if one would consider there only the compact convex
sets with nonempty interiors. Such convex sets will be called here
convex bodies. The main nontrivial fact about CCU measures is
that the class of such measures is closed under convolution. The
proof of this fact is based on the Brunn-Minkowski theory of mixed
volume, which we shall recall now.

The famous Brunn-Minkowski inequality states that for any
non-empty compact sets A,B ⊂ Rd

V 1/d(A+B) ≥ V 1/d(A) + V 1/d(B), (F1)

where V denotes the standard volume inRd and the sum of two sets
is defined as usual by A+B = {a+b : a ∈ A, b ∈ B}. This classical
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result has a long history (it was first proven by Brunn for convex
sets, then Minkowski gave necessary and sufficient conditions when
the equality sign holds in (F1), and then it was generalised to all
compact sets by Lusternik) and can be proved by different methods,
see e.g. [Sch]. We sketch here for completeness a beautiful elemen-
tary proof taken from [BZ]. Namely, let us say that a compact set
A in Rd is elementary, if it is the union of the finite number l(A) of
non-degenerate cuboids with sides parallel to the coordinate axes
and such that their interiors do not intersect. Each compact set A
can be approximated by a sequence of elementary sets Ai so that
V (Ai) → V (A) (see [BZ]; at least, it is clear for convex compact
sets). Therefore , it is suffice to prove (F1) for elementary sets
only. Consider first the case, when each of A,B consists of only
one cuboid with edges ai > 0 and bi > 0 respectively. Then (F1)
takes the form

d∏
i=1

(ai + bi)
1/d ≥

d∏
i=1

a
1/d
i +

d∏
i=1

b
1/d
i ,

which follows from the inequality(
d∏
i=1

ai
ai + bi

)1/d

+

(
d∏
i=1

bi
ai + bi

)1/d

≤ 1

d

d∑
i=1

ai
ai + bi

+
1

d

d∑
i=1

bi
ai + bi

= 1.

For general non-empty elementary sets A,B the proof can be car-
ried out by induction over l(A) + l(B). Assume that (F1) is true
when l(A) + l(B) ≤ k − 1. Suppose that l(A) ≥ 2. Clearly there
exists a hyperplane P which is orthogonal to one of the coordi-
nate axes and which splits A into elementary sets A′, A′′ such that
l(A′) < l(A) and l(A′′) < l(A). Then V (A′) = λV (A) with some
λ ∈ (0, 1). Since parallel translations do not change the volumes,
one can choose the origin of coordinates on the plane P and then
shift the set B so that the same hyperplane P splits B into sets
B′, B′′ with V (B′) = λV (B). Plainly l(B′) ≤ l(B), l(B′′) ≤ L(B).
The pairs of sets A′, B′, and A′′, B′′ each lies in its own half-space
with respect to P and in each pair there are no more than k − 1
cuboids. Hence

V (A+B) ≥ V (A′ +B′) + V (A′′ +B′′)
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≥ [V 1/d(A′) + V 1/d(B′)]d + [V 1/d(A′′) + V 1/d(B′′)]d

= λ[V 1/d(A)+V 1/d(B)]d+(1−λ)[V 1/d(A)+V 1/d(B)]d = [V 1/d(A)+V 1/d(B)]d,

which completes the proof of (F1). From (F1) one easily obtains
a more general form of Brunn-Minkowski inequality, which states
that for any compact non-empty A,B and any non-negative t1, t2

V 1/d(t1A+ t2B) ≥ t1V
1/d(A) + t2V

1/d(B). (F2)

Consider now a convex body A in Rd. Recall the following
definition (see e.g. [Gar]). Let S be a k-dimensional subspace,
k < d. The k-dimensional X-ray of A (or, in other terminol-
ogy, the section function, or the k-plane Radon transform of A)
parallel to S is the function of x ∈ S⊥ defined by the formula
XSA(x) = Vk(A ∩ (S + x)), where Vk denotes the k-dimensional
volume This function can be defined also for any compact set A,
but then, generally speaking, it will be defined only for almost all x.
We shall need the following well known corollary (see, e.g. [Gar])
of the Brunn-Minkowski inequality: for any convex body A and
any k-dimensional subspace S the function (XSA)

1/k is concave on
its support. It follows directly from (F2) and a simple observation
that if A0, A1 are convex k-dimensional bodies sitting in the par-
allel k-dimensional hyperplanes x1 = 0 and x1 = 1, respectively, in
Rk+1, then

(1− t)A0 + tA1 = conv (A0 ∪A1) ∩ {x : x1 = t},

where conv denotes the convex hull of a set.
After this short introduction to the Brunn-Minkowski theory

(a complete survey see in [Sch]), let us return to the unimodal
measures.

Proposition F1. The class CCU is closed with respect to the
operation of convolution ⋆.

Proof. It is more or less straightforward corollary of the Brunn-
Minkowski inequality. In fact, obviously, it is enough to prove
that if f1 and f2 are the characteristic functions of the centrally
symmetric convex bodies B1 and B2, then f1 ⋆ f2 is a density of a
CCU measures. Notice that

(f1 ⋆ f2)(x) = Vd((x−B1) ∩B2) = Vd((x+B1) ∩B2). (F3)
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It turns out that this function has convex sets of upper values, i.e. it
is a density of a convex unimodal measure in the sense of Definition
F1, and consequently of a CCU mesaure. In fact, one obtains from
the Brunn-Minkowski inequality even a more stronger result, which
is called the Fary-Redei Lemma (obtained in [FR]), namely that the
(f1 ⋆ f2)

1/d is concave on its support. To see this, let us consider
two d-dimensional planes L1 and L2 in R2d intersecting only at the
origin and having the angle ϕ < π/2 between them. Let M1 and
M2 denote the bodies which are equal to B1 and B2 respectively,
but lie on the planes L1 and L2 respectively. Then the measure
with the density f1 ⋆ f2 can be considered as the limit as ϕ → 0
of the measures with the densities fϕ being the convolutions of the
characteristic functions of M1 and M2 in R2d. One sees that fϕ is
equal to the characteristic function of the set

Mϕ = {x+ y : x ∈M1, y ∈M2}

multiplied by (sinϕ)−d (in fact, the linear transformation of R2d

which is identical on L1 and which makes L2 perpendicular to L1,
has the determinant (sinϕ)d and leads to the situation, where M1

and M2 lie in perpendicular planes, and where the corresponding
statement is therefore obvious). Hence

(f1 ⋆ f2)(x)1/d = lim
ϕ→0

(sinϕ)−1V
1/d
d ((x+ L⊥

1 ) ∩Mϕ)

= lim
ϕ→0

(sinϕ)−1(XL⊥
1
Mϕ(x))

1/d,

and the concavity of (f1 ⋆ f2)
1/d follows from the property of the

X-ray stated above.
Definition F3. A measure µ on Rd is called monotone uni-

modal, if for any y ∈ Rd and any centrally symmetric convex body
M ⊂ Rd, the function µ(M + ty) is nonincreasing for t > 0.

The following important fact was proved in [And] for convex
unimodal measures (in the sense of Definition F1), and in [She] for
general case.

Proposition F2. All CCU measures are monotone unimodal.

Proof. Let us prove it here only for CCU measures with den-
sities. Notice first that if µ = µA with some compact convex A,
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and if M is compact, the required statement about the function
µ(M + ty) follows directly from the Fary-Redei Lemma (see the
proof of Proposition F1). For a non-compact set M , the statement
is obtained by a trivial limiting procedure. For a general absolutely
continuous µ it is again obtained by a limiting procedure, due to
the well known fact that if a sequence µn of measures on Rd con-
verges weakly to a measure µ, then µn(K) converges to µ(K) for
any compact set K such that µ(∂K) = 0.

Proposition F3. Let a CCU measure µ ∈ SU has a contin-
uous density f . Then for any unit vector v the function f(tv) is
non-increasing on {t ≥ 0}, and moreover, for any m < d and any
m-dimensional subspace S the integral of f over the plane tv+S is
a non-increasing function on {t ≥ 0}. (In other words, the Radon
transform of f is non-increasing as well as the Radon transforms
of the restrictions of f on any subspace.)

Proof. It is a direct consequence of the previous Proposition.
For instance, to prove that f(tv) is non-increasing one supposes
that f(t1v > f(t2v) with some t1 > t2 and then uses the statement
of Proposition F2 with a set M being the ball Bϵ of sufficiently
small radius ϵ to come to a contradiction. The result of Proposition
F2 arises a natural question, does all symmetric and monotone
unimodal measures are CCU. A positive answer to this question was
conjectured in [She]. On the level of convex bodies this conjecture
holds, as shows the following simple result.

Proposition F4. A centrally symmetric compact setM in Rd

is convex if and only if it is a starlike set (in the sense that together
with any point x it contains the whole closed interval [0, x]) and
its one-dimensional X-ray function is non-increasing when moving
away from the origin, i.e. for any unit vector v and any straight
line l from v⊥, the function V1((tv + l) ∩M) is a non-increasing
function on {t ≥ 0}.

Remark. The characterisation of convex bodies given in Propo-
sition F4 can be essentially improved, at least if one supposes some
regularity property of the boundary. Namely, it is possible to
show that a symmetric compact set with nonempty interior and
a piecewise-smooth boundary is convex if and only if its X-ray is
non-increasing when moving away from the origin (i.e. being star-
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like is in fact redundant in the characterisation of convex bodies
given in Proposition F4). We shall omit here a simple geometric
proof of Proposition F4 (which we shall not use further on). No-
tice only that this Proposition is apparently close (but is far from
being identical) to the well known theorem on the characterisation
of convex bodies given in [Fal], which states that a compact set M
with a nonempty interior is convex if and only if for any hyperspace
P in Rd its one-dimensional X-ray function V1((x + P⊥) ∩M) is
concave when restricted to the set of x ∈ P such that (x+P⊥)∩M
is not empty. However, this result of Falconer is of no use for the
study of distribution, because as one easily sees the property of
concavity of the X-ray is destroyed when considering the linear
combinations of the convex bodies.

Surprisingly enough, the conjecture of Sherman on general
CCU measures was disapproved in [Wel] following the previous in-
dications from [DJ2].

Now we are going to obtain the main result of this Appendix,
which was proved first in [Kan].

Proposition F5. All symmetric stable laws are unimodal.

Proof. It will be given in three steps.
Step 1. Reduction to the case of finite Lévy measure. Recall

that the density of a general symmetric stable law with the index of
stability α ∈ (0, 2) (we shall not consider the case of α = 2 which
is the well known Gaussian distribution) is given by the Fourier
transform

S(x, α, µ) =
1

(2π)d

∫
ψα(x)e

ipx dp (F4)

of the characteristic function ψα, which can be given either by
formula (C4) or by formula (C14) with symmetric measures µ and
µ̃ on Sd−1 connected by formula (C13) and with vanishing drift A.
For any ϵ > 0 consider the finite Lévy measure

νϵ(d|ξ|, ds) =
{
|ξ|−1−αd|ξ|µ(ds), |ξ| ≥ ϵ
ϵ−1−αd|ξ|µ(ds), |ξ| ≤ ϵ

(F5)

and the corresponding infinite divisible distribution with the char-
acteristic function ψϵα defined by the formula

logψϵα(y) =

∫ ∞

0

∫
Sd−1

(
ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

)
νϵ(d|ξ|, ds). (F6)
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Let Pϵ denote the corresponding probability distribution. One sees
that ψϵα → ψα as ϵ → 0 uniformly for y from any compact set,
because

| logψϵα(y)−logψα(y)| ≤
∫ ϵ

0

∫
Sd−1

∣∣∣∣ei(y,ξ) − 1− i(y, ξ)

1 + ξ2

∣∣∣∣ |ξ|−1−αd|ξ|µ(ds)

= O(1)|y|2
∫ ϵ

0

|ξ|1−αd|ξ| = O(1)|y|2|ϵ|2−α.

The convergence of characteristic functions (uniform on compacts)
implies the week convergence of the corresponding distributions.
Therefore, it is enough to prove the unimodality of the distribution
Pϵ for any ϵ.

Step 2. Reduction to the unimodality property of the Lévy
measure. We claim now that in order to prove the unimodality of
Pϵ it is suffice to prove the unimodality of the Lévy measure (F5).
In fact, since this measure is finite, formula (F6) can be rewritten
in the form

logψϵα(y) =

∫ ∞

0

∫
Sd−1

ei(y,ξ)νϵ(d|ξ|, ds)− Cϵ

with some constant Cϵ. Therefore ψϵα(y) is the exponent of the
Fourier transform of measure (F5) (up to a multiplier) and hence it
is a limit (uniform on compacts) of the finite linear combinations of
νϵ and its convolutions with itself. Therefore our assertion follows
from Proposition F1.

Step 3. It remains to prove that the Lévy measure (F5) is
unimodal. To this end, notice that any measure µ on Sd−1 can
be approximated weakly by a sequences of discrete measures (con-
centrated on a counted number of points). Hence, by linearity, it
is enough to prove the unimodality of measure (F5) in the case of
µ(ds) concentrated in one point only. But in this case measure (F5)
is one-dimensional and the statement is obvious, which completes
the proof of Proposition F5.

The same arguments prove the following fact.

Proposition F6. If the Lévy measure ν of an infinitely divis-
ible distribution F in Rd (with polar coordinates |ξ|, s = ξ/|ξ|) has
the form

ν(dξ) = f(|ξ|) d|ξ|µ(ds) (F7)
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with any finite (centrally) symmetric measure µ on Sd−1 and any
non-increasing function f , then F is symmetric unimodal.

The result of Proposition F5 was generalised in [Wol] to a
more general class of infinitely divisible distributions, namely to
the distributions of class L (see [Wol] or [DJ1]).

The following statement is a direct consequence of Proposi-
tions F5, F3.

Proposition F7. If the drift A in (C4) or (C14) vanishes,
then the corresponding density (F4) enjoys the property described
in Proposition F3, in particular, when restricted to any straight
line going through the origin, it is non-increasing when moving
away from the origin. For conclusion, let us notice that no general
results seem to be known now on the unimodality of nonsymmetric
stable laws in dimension more than one. Due to the following
statement, it is difficult to expect that the monotone unimodality
will be proved in general case.

Proposition F8. A compact convex body is (centrally) sym-
metric if and only if its one-dimensional X-ray function is non-
increasing when moving away from the origin.

A simple proof of this fact is based on the observations that,
on the one hand, it is enough to prove this fact for two-dimensional
convex bodies, and on the other hand, symmetricity for two-dimensional
bodies means that the tangents to the opposite points of the bound-
ary are parallel which is an obvious consequence of the non-increasing
of the X-ray when moving away from the origin.

G. Infinitely divisible complex distributions
and complex Markov processes

We present here a general approach to the construction of the
measures on the path space that can be used for the path integral
representation of evolutionary equations. In particular, we give
an exposition of the important results of Maslov and Chebotarev
(see [M7], [MC2], [Che], [CheKM], [HuM]) on the representation
of the solution to the Schrödinger equation as an expectation of a
certain functional on the trajectories of a ceratain Poisson prosess.
An interpretation of this result from the point of view of non-
commutative probability is given in [Par2]. Our exposition will
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be given in terms of more or less standard probabilistic concepts
generalised to the complex case. Various generalisations of the rep-
resentation from [MC2] to other classes of equations can be found
e.g. in [BGR],[Com1]-[Com3], [Ich], [Gav], [PQ]. For example, in
[Com1] one can find generalisations to some quantum field models
and to a case of the Schrödinger equation with a potential depend-
ing on momentum. For these cases Feynman’s integral is presented
as an expectation with respect to certain generalisations of Pois-
son processes, which were called generalised Poisson in [Com1] and
which can be met in literature on probability theory under different
names, see e.g. [Meti], where these processes are called pure jump
Markov processes.

The following general construction of the mesaures on path
space is especially close in spirit to the construction from [Ich],
which, in turn, adapts Nelson’s approach (see [Nel2]) to the con-
struction of the Wiener measure to the case of the measures corre-
sponding to the hyperbolic systems of the first order.

Let B(Ω) denote the class of all Borel sets of a topological
space (i.e. it is the σ-algebra of sets generated by all open sets).
If Ω is locally compact we denote (as usual) by C0(Ω) the space of
all continuous complex-valued functions on Ω vanishing at infinity.
Equipped with the uniform norm ∥f∥ = supx |f(x)| this space is
known to be a Banach space. It is also well known (Riesz-Markov
theorem) that if Ω is a locally compact space, then the set M(Ω)
of all finite complex regular Borel measures on Ω equipped with
the norm ∥µ∥ = sup |

∫
Ω
f(x)µ(dx)|, where sup is taken over all

functions f ∈ C0(Ω) with ∥f(x)∥ ≤ 1, is a Banach space, which
coincides with the set of all continuous linear functionals on C0(Ω).
Clearly, any complex σ-additive measure µ on Rd has the form

µ(dy) = f(y)M(dy) (G1)

with some positive measure M (which can be chosen to be finite
whenever µ is finite) and some bounded complex-valued function
f (in fact, a possible choice of M is |Reµ|+ |Imµ|, where |ν| for a
real signed measure ν denotes, as usual, its total variation measure,
i.e. |ν| = ν+ + ν−, where ν = ν+ − ν− is the Hahn decomposition
of ν on its positive and negative parts). Representation (G1) is
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surely not unique; however, the measure M in (G1) is uniquely
defined under additional assumption that |f(y)| = 1 for all y. If
this condition is fulfilled, the positive measureM is called the total
variation measure of the complex measure µ and is denoted by |µ|.
Clearly, if a complex measure µ is presented in form (G1) with
some positive measure M , then ∥µ∥ =

∫
|f(y)|M(dy).

We say that a map ν from Rd × B(Rd) into C is a complex
transition kernel, if for every x, the map A 7→ ν(x,A) is a (finite
complex) measure on Rd, and for every A ∈ B(Rd), the map x 7→
ν(x,A) is B-measurable. A (time homogeneous) complex transition
function (abbreviated CTF) on Rd is a family νt, t ≥ 0, of complex
transition kernels such that ν0(x, dy) = δ(y − x) for all x, where
δx(y) = δ(y−x) is the Dirac measure in x, and such that for every
non-negative s, t, the Chapman-Kolmogorov equation∫

νs(x, dy)νt(y,A) = νs+t(x,A)

is satisfied. (We consider only time homogeneous CTF for simplic-
ity, the generalisation to non-homogeneous case is straightforward).

A CTF is said to be (spatially) homogeneous, if νt(x,A) de-
pends on x,A only through the difference A − x. If a CTF is ho-
mogeneous it is natural to denote νt(0, A) by νt(A)) and to write
the Chapman-Kolmogorov equation in the form∫

νt(dy)νs(A− y) = νt+s(A).

A CTF will be called regular, if there exists a positive constant
K such that for all x and t > 0, the norm ∥νt(x, .)∥ of the measure
A 7→ νt(x,A) does not exceed exp{Kt}.

CTFs appear naturally in the theory of evolutionary equations:
if Tt is a strongly continuous semigroup of bounded linear operators
in C0(Rd), then there exists a time-homogeneous CTF ν such that

Ttf(x) =

∫
νt(x, dy)f(y). (G2)

In fact, the existence of a measure νt(x, .) such that (G2) is sat-
isfied follows from the Riesz- Markov theorem, and the semigroup
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identity TsTt = Ts+t is equivalent to the Chapman-Kolmogorov
equation. Since

∫
νt(x, dy)f(y) is continuous for all f ∈ C0(Rd),

it follows by the monotone convergence theorem (and the fact that
each complex measure is a linear combination of four positive mea-
sures) that νt(x,A) is a Borel function of x.

We say that the semigroup Tt is regular, if the corresponding
CTF is regular. Clearly, this is equivalent to the assumption that
∥Tt∥ ≤ eKt for all t > 0 and some constant K.

Now we construct a measure on the path space correspond-
ing to each regular CTF, introducing first some (rather standard)
notations. Let Ṙd denote the one point compactification of the
Euclidean space Rd (i.e. Ṙd = Rd ∪ {∞} and is homeomorphic

to the sphere Sd). Let Ṙ[s,t]
d denote the infinite product of [s, t]

copies of Ṙd, i.e. it is the set of all functions from [s, t] to Ṙd, the
path space. As usual, we equip this set with the product topology,
in which it is a compact space (Tikhonov’s theorem). Let Cylk[s,t]

denote the set of functions on Ṙ[s,t]
d having the form

ϕft0,t1,...tk+1
(y(.)) = f(y(t0), ..., y(tk+1))

for some bounded complex Borel function f on (Ṙd)k+2 and some
points tj , j = 0, ..., k + 1, such that s = t0 < t1 < t2 < ... < tk <
tk+1 = t. The union Cyl[s,t] = ∪k∈NCyl

k
[s,t] is called the set of

cylindrical functions (or functionals) on Ṙ[s,t]
d . It follows from the

Stone-Weierstrasse theorem that the linear span of all continuous

cylindrical functions is dense in the space C(Ṙ[s,t]
d ) of all complex

continuous functions on Ṙ[s,t]
d . Any CTF ν defines a family of linear

functionals νxs,t, x ∈ Rd, on Cyl[s,t] by the formula

νxs,t(ϕ
f
t0...tk+1

)

=

∫
f(x, y1, ..., yk+1)νt1−t0(x, dy1)νt2−t1(y1, dy2)...νtk+1−tk(yk, dyk+1).

(G3)
Due to the Chapman-Kolmogorov equation, this definition is cor-
rect, i.e. if one considers an element from Cylk[s,t] as an element
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from Cylk+1
[s,t] (any function of l variables y1, ..., yl can be considered

as a function of l+1 variables y1, ..., yl+1, which does not depend on
yl+1), then the two corresponding formulae (G3) will be consistent.

Proposition G1. If the semigroup Tt in C0(Rd) is regu-
lar and ν is its corresponding CTF, then the functional (G3) is
bounded. Hence, it can be extended by continuity to a unique

bounded linear functional νx on C(Ṙ[s,t]
d ), and consequently there

exists a (regular) complex Borel measure Ds,t
x on the path space

Ṙ[s,t]
d such that

νxs,t(F ) =

∫
F (y(.))Ds,t

x y(.) (G4)

for all F ∈ C(Ṙ[s,t]
d ). In particular,

(Ttf)(x) =

∫
f(y(t))Ds,t

x y(.).

Proof. It is a direct consequence of the Riesz-Markov theo-
rem, because the regularity of CTF implies that the norm of the
functional νxs,t does not exceed exp{K(t− s)}.

If E is a measurable subset of Ṙ[s,t]
d , we shall say (using prob-

abilistic language) that E is an event on Ṙ[s,t]
d , and we shall denote

by νxs,t(E) the value of the functional νxs,t on the indicator χE of
E, i.e.

νxs,t(E) =

∫
χE(y(.))D

s,t
x y(.). (G4′)

Formula (G3) defines the family of finite complex distributions
on the path space , which gives rise to a finite complex measure
on this path space (under the regularity assumptions). Therefore,
this family of measures can be called a complex Markov process.
Unlike the case of the standard Markov processes, the generator,
say A, of the corresponding semigroup Tt is not self-adjoint, and the
corresponding bilinear ”Dirichlet form” (Av, v) is complex. Such
forms present a natural generalisation of the real Dirichlet forms
that constitute an important tool in modern probability theory, see
e.g. [Fu], [MR] and references therein. In the complex situation,
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only some particular special cases have so far been investigated, see
[AU].

The following simple fact can be used in proving the regularity
of a semigroup.

Proposition G2. Let B and A be linear operators in C0(Rd)
such that A is bounded and B is the generator of a strongly con-
tinuous regular semigroup Tt. Then A+B is also the generator of
a regular semigroup, which we denote by T̃t.

Proof. Follows directly from the fact that T̃t can be presented
as the convergent (in the sense of the norm) series of standard
perturbation theory

T̃t = Tt+

∫ t

0

Tt−sATs ds+

∫ t

0

ds

∫ s

0

dτTt−sATs−τATτ + ... (G5)

Of major importance for our purposes are the spatially homo-
geneous CTFs. Let us discuss them in greater detail, in particular,
their connection with infinitely divisible characteristic functions.
Let F(Rd) denote the Banach space of Fourier transforms of el-
ements of M(Rd), i.e. the space of (automatically continuous)
functions on Rd of form

V (x) = Vµ(x) =

∫
Rd

eipx µ(dp) (G6)

for some µ ∈ M(Rd), with the induced norm ∥Vµ∥ = ∥µ∥. Since
M(Rd) is a Banach algebra with convolution as the multiplication,
it follows that F(Rd) is also a Banach algebra with respect to
the standard (pointwise) multiplication. We say that an element
f ∈ F(Rd) is infinitely divisible if there exists a family (ft, t ≥ 0,)
of elements of F(Rd) such that f0 = 1, f1 = f , and ft+s = ftfs
for all positive s, t. Clearly if f is infinitely divisible, then it has
no zeros and a continuous function g = log f is well defined (and is
unique up to an imaginary shift). Moreover, the family ft has the
form ft = exp{tg} and is defined uniquely up to a multiplier of the
form e2πikt, k ∈ N . Let us say that a continuous function g on Rd

is a complex characteristic exponent (abbreviated CCE), if eg is an
infinitely divisible element of F(Rd), or equivalently, if etg belongs
to F(Rd) for all t > 0.
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Remark. The problem of the explicit characterisation of the
whole class of infinite divisible functions (or of the correspond-
ing complex CCEs) seems to be quite nontrivial. When dealing
with this problem, it is reasonable to describe first some natural
subclasses. For example, it is easy to show that if f1 ∈ F(R) is
infinite divisible and such that the measures corresponding to all
functions ft, t > 0, are concentrated on the half line R+ (complex
generalisation of subordinators) and have densities from L2(R+),
then f1 belongs to the Hardy space H2 of analytic functions on the
upper half plane (see e.g. [Koo]), which have no Blaschke product
in its canonical decomposition.

It follows from the definitions that the set of spatially homo-
geneous CTFs νt(dx) is in one-to-one correspondence with CCE g,
in such a way that for any positive t the function etg is the Fourier
transform of the transition measure νt(dx).

Proposition G3. If V is a CCE, then the solution to the
Cauchy problem

∂u

∂t
= V (

1

i

∂

∂y
)u (G7)

defines a strongly continuous and spatially homogeneous semigroup
Tt of bounded linear operators in C0(Rd) (i.e. (Ttu0)(y) is the
solution to equation (G7) with the initial function u0). Conversely,
each such semigroup is the solution to the Cauchy problem of an
equation of type (G7) with some CCE g.

Proof. This is straightforward. Since (G7) is a pseudo-differential
equation, it follows that the Fourier transform ũ(t, x) of the func-
tion u(t, y) satisfies the ordinary differential equation

∂ũ

∂t
(t, x) = V (x)ũ(t, x),

whose solution is ũ0(x) exp{tV (x)}. Since etV is the Fourier trans-
form of the complex transition measure νt(dy), it follows that the
solution to the Cauchy problem of equation (G7) is given by the
formula (Ttu0)(y) =

∫
u0(z)νt(dz − y), which is as required.

We say that a CCE is regular, if equation (G7) defines a regular
semigroup.
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It would be very interesting to describe explicitly all regular
CCE. We only give here two classes of examples. First of all, if
a CCE is given by the Lévy- Khintchine formula (i.e. it defines
a transition function consisting of probability measures), then this
CCE is regular, because all CTF consisting of probability measures
are regular. Another class is given by the following result.

Proposition G4. Let V ∈ F(Rd), i.e. it is given by (G6)
with µ ∈ M(Rd). Then V is a regular CCE. Moreover, if the
positive measure M in the representation (G1) for µ has no atom
at the origin, i.e. M({0}) = 0, then the corresponding measure D0,t

x

on the path space from Proposition G1 is concentrated on the set

of piecewise-constant paths in Ṙ[0,t]
d with a finite number of jumps.

In other words, D0,t
x is the measure of a jump-process.

Proof. Let W =WM be defined by the formula

W (x) =

∫
Rd

eipxM(dp). (G8)

The function exp{tV } is the Fourier transform of the measure

δ0+ tµ+
t2

2 µ⋆µ+ ... which can be denoted by exp⋆(tµ) (it is equal
to the sum of the standard exponential series, but with the convo-
lution of measures instead of the standard multiplication). Clearly
∥ exp⋆(tµ)∥ ≤ ∥ exp⋆(tf̄M)∥, where we denoted by f̄ the supremum
of the function f , and both these series are convergent series in the
Banach algebra M(Rd). Therefore ∥eV t∥ ≤ ∥eWt∥ ≤ exp{tf̄∥µ∥},
and consequently V is a regular CCE. Moreover, the same esti-
mate shows that the measure on the path space corresponding to
the CCE V is absolutely continuous with respect to the measure
on the path space corresponding to the CCE W . But the latter
coincides up to a positive constant multiplier with the probability
measure of the compound Poisson process with the Lévy measure
M defined by the equation

∂u

∂t
= (W (

1

i

∂

∂y
)− λM )u, (G9)

where λM =M(Rd), or equivalently

∂u

∂t
=

∫
(u(y + ξ)− u(y))M(dξ), (G10)
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(see e.g. [Br], [Meti] or [Pr] for the necessary background in com-
pound Poisson processes), because the condition M({0}) = 0 en-
sures thatM is actually a measure onRd\{0}, i.e. it is a finite Lévy
measure. It remains to note that as is well known in the theory of
stochastic processes (see e.g. [Pr],[Fel]) the measures of compound
Poisson processes are concentrated on piecewise-constant paths.

Therefore, we have two different classes (essentially different,
because they obviously are not disjoint) of regular CCE: those given
by the Lévy-Khintchine formula, and those given by Proposition
G4. It is easy to prove that one can combine these regular CCEs,
more precisely that the class of regular CCE is a convex cone, see
[K13].

Let us apply the simple results obtained sofar to the case of
the pseudo-differential equation of the Schrödinger type

∂ũ

∂t
= −G(−∆)αũ+ (A,

∂

∂x
)ũ+ V (x)ũ, (G11)

where G is a complex constant with a non-negative real part, α
is any positive constant, A is a real-valued vector (if ReG > 0,
then A can be also complex- valued), and V is a complex-valued
function of form (G6). The standard Schrödinger equation cor-
responds to the case α = 1, G = i, A = 0 and V being purely
imaginary. We consider a more general equation to include the
Schrödinger equation, the heat equation with drifts and sources,
and also their stable (when α ∈ (0, 1)) and complex generalisations
in one formula. This general consideration also shows directly how
the functional integral corresponding to the Schrödinger equation
can be obtained by the analytic continuation from the functional
integral corresponding to the heat equation, which gives a connec-
tion with other approaches to the path integration (see Appendix
H). The equation on the inverse Fourier transform

u(y) = (2π)−d
∫
Rd

e−iyxũ(x) dx

of ũ (or equation (G11) in momentum representation) clearly has
the form

∂u

∂t
= −G(y2)αu+ i(A, y)u+ V (

1

i

∂

∂y
)u. (G12)
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One easily sees that already in the trivial case V = 0, A = 0, α = 1,
equation (G11) defines a regular semigroup only in the case of real
positive G, i.e. only in the case of the heat equation. It turns out
however that for equation (G12) the situation is completely differ-
ent. The next result generalises the corresponding result from [M7],
[MC2] on the standard Schrödinger equation to equation (G11).

Proposition G5. The solution to the Cauchy problem of
equation (G12) can be written in the form of a complex Feynman-
Kac formula

u(t, y) =

∫
exp{−

∫ t

0

[G(q(τ)2)α − (A, q(τ))] dτ}u0(q(t))D0,t
y q(.),

(G13)
where Dy is the measure of the jump process corresponding to equa-
tion (G7).

Proof. Let Tt be the regular semigroup corresponding to equa-
tion (G7). By the Trotter formula, the solution to the Cauchy
problem of equation (G12) can be written in the form

u(t, y) = lim
n→∞

((
exp{− t

n
(G(y2)α − (A, y))}Tt/n

)n
u0

)
(y)

= lim
n→∞

∫
exp{−G t

n
[(q21)

α+ ...+(q2n)
α]+

t

n
(A, q1+ ...+qn)}u0(qn)

×νt/n(y, dq1)νt/n(q1, dq2)...νt/n(qn−1, dqn).

Using (G3), we can rewrite this as

u(t, y) = lim
n→∞

νy0,t(Fn) = lim
n→∞

∫
Fn(q(.))D

0,t
y q(.),

where Fn is the cylindrical function

Fn(q(.)) = exp{−G t

n
[(q(t/n)2)α + (q(2t/n)2)α + ...+ (q(t)2)α]}

× exp{ t
n
(A, q(t/n) + q(2t/n) + ...+ q(t))}u0(q(t)).

By the dominated convergence theorem this implies (G13).
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The statement of the Proposition can be generalised easily to
the following situation, which includes all Schrödinger equations,
namely to the case of the equation

∂ϕ

∂t
= i(A−B)ϕ,

where A is selfadjoint operator, for which therefore exists (ac-
cording to spectral theory) a unitary transformation U such that
UAU−1 is the multiplication operator in some L2(X, dµ), where
X is locally compact, and B is such that UBU−1 is a bounded
operator in C0(X).

As another example, let us consider the case of complex an-
harmonic oscillator. i.e. the equation

∂ψ̃

∂t
=

1

2

(
G∆− x2 − iV (x)

)
ψ̃, (G15)

where V = Vµ is an element of F(Rd). The Fourier transform of
this equation (or, equation (G15) in the p-representation) has the
form

∂ψ

∂t
=

1

2

(
∆−Gp2 − iV (

1

i

∂

∂p
)

)
ψ. (G16)

Proposition G6. If ReG ≥ 0, the Cauchy problem of equa-
tion (G16) defines a regular semigroup of operators in C0(Rd), and
thus can be presented as the path integral from Proposition G1.

Proof. If V = 0, the Green function for equation (G17) can be
calculated explicitly (see e.g. Section 1.4), and from this formula
one easily deduced that in case V = 0 the semigroup defined by
equation (G17) is regular. For general V the statement follows
from Proposition G2.

For numerical calculations of path integral (see e.g. [CheQ]), it
is convenient to write a path integral as an integral over a positive,
and not a complex measure. This surely can be done, because any
complex measure has a density with respect to its total variation
measure. To be more concrete, suppose that V is given by (G6),
(G1), where the positive measure M has no atom at the origin.
Then it follows from Proposition G4 that the complex measure on
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the path space defined (according to Proposition G1) by equation
(G7) has a density with respect to the measure of the Poisson pro-
cess described by equation (G9). To conclude this Appendix we
shall calculate this density. This will imply an alternative form of
the path integral in (G13), which has a more clear probabilistic
interpretation. We give here a probabilistic proof of this result,
which includes a study of the main properties of the complex mea-
sure Ds,t

y and the corresponding functional νys,t, which are defined
by equation (G7) (according to Proposition G1) and which are sim-
ilar to the properties of the underlying Poisson process defined by
equation G9. Another, more direct and more simple proof is given
in the first section of Chapter 9.

Since the trajectories of a compound Poisson process are piece-
wise constant (and finite) almost surely, a typical random path Y
of such a process on the interval of time [0, t] starting at a point
y is defined by a finite, say n, number of the moments of jumps
0 < s1 < ... < sn ≤ t, which are distributed according to the
Poisson process N with the intensity λM = M(Rd), and by the
independent jumps δ1, ..., δn at these moments, each of which is a
random variable with values in Rd \ {0} and with the distribution
defined by the probability measureM/λM . This path has the form

Yy(s) = y+Y s1...snδ1...δn
(s) =


Y0 = y, s < s1,
Y1 = y + δ1, s1 ≤ s < s2,
...
Yn = y + δ1 + δ2 + ....+ δn, sn ≤ s ≤ t

(G17)

We shall denote by E
[0,t]
y the expectation with respect to this pro-

cess.
Let us now obtain some properties of the complex measure

Ds,t
y and the corresponding functional νys,t, which are defined by

equation (G7) (according to Proposition G1) and which are similar
to the corresponding properties of positive measures of compound
Poisson processes defined by equation (G9).

As a first consequence from Proposition G4 we conclude that
typical paths for the measure Ds,t

y do not go to infinity in finite
times almost surely (from now on, almost surely will be always un-
derstood in the sense of the Poisson process described by equation
(G9)) and can be parametrised by (G17). In particular, we can
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consider only the restricted path space R[s,t]
d (instead of Ṙ[s,t]

d ),
which is more convenient, because of its linear structure. Let us

say that a cylindrical functional F on R[s,t]
d (respectively an event

E on R[s,t]
d ) is translation invariant, iff F (y + Y (.)) = F (Y (.))

for any path Y and any vector y (respectively if Y (.) ∈ E implies
y+Y (.) ∈ E). It follows from the definition of ν that if a cylindrical
functional F or an event E are translation invariant, then νys,t(F )
or νys,t(E) respectively does not depend on the initial point y, and
will be denoted simply by νs,t(F ) or νs,t(E) respectively. From the
Chapman-Kolmogorov equation we obtain now directly the follow-
ing result, which is the analogy of the probabilistic concept of the

independence of increments: if E1 and E2 are some events on R[s,τ ]
d

and R[τ,t]
d respectively, and if E2 is translation invariant, then

νys,t(E1 ∩ E2) = νys,τ (E1)ντ,t(E2). (G18)

for an arbitrary y.
Let Ej(t) denote the event that there are exactly j jumps of

the process on the interval of the length t, and the trajectories
are constant between the jumps. As we noted already, the whole
measure is concentrated on the union ∪∞

j=0Ej .

Proposition G7. Let ϕjt = ν0,t(Ej(t)) and λµ =
∫
µ(dy) =

µ(Rd). Then
ϕjt = (λµt)

j/j!. (G19)

Proof. Notice first that ϕjt = O(tj), t → 0, for all j, because
of Proposition G4 and by the well known properties of compound
Poisson processes. Let Ẽ0(t) denote the event that the end-points of
trajectories coincide, i.e. Y (0) = Y (t). Clearly, E0(t) ⊂ Ẽ0(t) and
the intersection E1(t)∩Ẽ0(t) is empty. Since ν0,t(∪j>1Ej) = O(t2),
it follows that

ϕ0t = ν0,t(Ẽ0(t)) +O(t2)

for small t. But

ν0,t(Ẽ0(t)) =

∫
νt(dy)χ{0}(y) = 1 +O(t2),

where χ{0} denotes the indicator of the one-point set {0}, because
νt = exp⋆(tµ) (see the proof of Proposition G4) and µ({0}) =
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0 by our assumptions. Therefore, ϕ0t = 1 + O(t2) for small t.
Noticing that ϕ0t = (ϕ0t/n)

n for all n by (G18) we conclude that

ϕ0t = limn→∞(1 + O(t/n)2)n = 1, which proves the statement of
the proposition for j = 0.

Next, since

ν0,t(R[0,t]
d ) = ν0,t(∪∞

j=0Ej) = νt(Rd) = exp⋆(tµ)(Rd) = etλµ ,

it follows that

ϕ1t = etλµ − 1−O(t2) = tλµ +O(t2). (G20)

The proof can be completed now as in the case of the standard
Poisson process (see e.g. [Pr]). Namely, let Nt denote the number
of jumps of the process on the interval [0, t]. Consider the random
functional αNt , where α is a parameter from (0, 1), and its average

ω(t) = ωα(t) = ν0,t(α
Nt).

By (G18), ω(t+ s) = ω(t)ω(s). Moreover, the function ω is clearly
measurable and bounded. This implies (see e.g. [Br]) that ω(t) =
etψ(α) with some function ψ. In particular, ω′(0) = ψ(α). But
clearly

ω(t) =
∞∑
n=0

αnϕnt ,

and consequently, due to (G20), ω′(0) = α(ϕ1t )
′ = αλµ, and there-

fore ω(t) = exp{tαλµ}, which evidently implies (G19).

Proposition G8. Suppose U is a Borel subset of Rd\{0} and
I = [t1, t2] ⊂ [0, t] is an interval of the length t2 − t1 = τ . Let EUI
denotes the event that in the interval [0, t] there is only one jump,
and moreover, this jump occurs on a moment of time from I, and
the size of this jump belongs to U . Then, for small τ ,

ν0,t(E
U
τ ) = µ(U)τ +O(τ2). (G21)

Proof. Due to the equation ν0,t1(E0(t1 − t)) = νt2,t(E0(t −
t2)) = 1, which follows from Proposition G7, and using formula
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(G18), one concludes that ν0,t(E
U
I ) = νt1,t2(E

U
I ). Furthermore,

since the measure of more than one jump on any interval of the
length τ is of order O(τ2), one has

ν0,t(E
U
I ) =

∫
χU (y)ντ (dy)+O(τ2) = ντ (U)+O(τ2) = τµ(U)+O(τ2).

Let us note by passing that the weak topology on Ṙ[s,t]
d re-

stricted to the set Ej(t− s) generates on Ej a natural topology, in
which two trajectories from Ej(t−s) are close, if the times and the
sizes of all their jumps are close.

Now we can prove the central property of the measure νxs,t.

Proposition G9. Let µ and M are connected by (G1), M
is a positive finite measure without an atom at the origin and f
is a bounded Borel-measurable complex-valued function. Then the
measure νys,t constructed from µ has the density with respect to ν̃ys,t
constructed from M and this density is the function ϕ such that
ϕ(Y (.)) =

∏n
j=1 f(δj) on the path Y = Yy(s) of the form (G17).

Proof. One can prove the statement separately on each event
En. The case n = 0 follows from Proposition G7 with j = 0.
Consider the case n = 1. Then, if I is an interval of the length τ
containing the moment of time s1, and if U = Uϵ(δ1) is the ball of
the radius ϵ with the centre δ1, then by Proposition G8

ν0,t(E
U
I )

ν̃0,t(EUI )
=

µ(U)

M(U)
+O(τ).

It follows from (0.2) that the r.h.s. of this expression tends to f(δ1)
as τ → 0 and ϵ → 0, which proves the required result for n = 1.
The case of an arbitrary n is considered similarly.

Since obviously the measure ν̃ys,t has the (constant) density
exp{(t − s)λM} with respect to the probability measure of the
Poisson process defined by equation (G9), the following statement
follows straightforwardly from Propositions G5 and G9.

Proposition G10. Let u0 be a bounded continuous function.
Then the solution to the Cauchy problem of equation (G12) with
the initial function u0 has the form

u(t, y) = exp{tλM}E[0,t]
y [F (Y (.))u0(Y (t))] , (G22)
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where if Y has form (G17),

F (Y (.)) = exp{−
n∑
j=0

[G (Yj , Yj)
α − i(A, Yj)](sj+1 − sj)}

n∏
j=1

(f(δj))

(sn+1 is assumed to be equal to t in this formula, and the function
f is defined in (G1)).

In particular, choosing u0 to be the exponential function eiyx0

one obtains a path integral representation for the Green function
of equation (G11) in momentum representation.

H. A review of main approaches
to the rigourous construction of path integral

We give here a short review of main approaches to the defi-
nition of path integrals, where the integral is defined as a sort of
generalised functional in some functional space, and not as a gen-
uine integral over a bona fide measure on a path space, (as in the
approach described in Appendix G or in chapter 9). As shown in
Chapter 7, these approaches can also be used to construct path in-
tegral representation to complex stochastic Schrödinger equations.

1. Analytic continuation, or complex rotation.
This is one of the earliest approaches to the mathematical

theory of Feynman integrals (see e.g. [Ca], [Nel2], [Joh1], [CaS],
[Kal2], [KKK], [Chu] and referencess therein). In particular, in
[KKK], [Chu], this integral is used for the repesentation of the
fundamental solution of the Schrödinger equation. In this approach
one considers first one of the main parameters, say the mass m, in
the standard Schrödinger equation

∂ψ

∂t
= (

i

2m
∆− iV (x))ψ (H1)

to be imaginary, i.e. of the form m = im̃, with m̃ > 0. In this
case, equation (H1) is a diffusion equation (with a complex source),
whose solution can be therefore written in terms of an integral over
the standard Wiener measure (using the Feynman-Kac formula).
This define a function of m for imaginary m. The analytic continu-
ation of this function (if it exists) can be considered as a definition
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of the path integral for complex (in particular, real)m. This contin-
uation is often called the analytic Feynman integral. Equivalently
one can carry out the analytical continuation in time.

A similar, but slightly different approach is obtained by the
idea of rotation in configuration space, see e.g. [HuM]. Namely,
changing the variables x to y =

√
ix in equation (H1) leads to the

equation
∂ψ

∂t
= (− 1

2m
∆− iV (−

√
iy))ψ,

which is again of diffusion type and can be thus treated by means
of the Feynman-Kac formula and the Wiener measure. To use this
approach one needs certain analytic assumptions on V .

Interesting applications of the analytic Feynman integral to
the mathematical theory of Feynman’s non-commutative opera-
tional calculus can be found in the series of papers [JoL1], [JoL2],
[DeFJL], see also references therein.

2. Parceval equality.
This approach was first systematically developed in [AH1].
Let h be a complex constant with a non-negative real part and

let L be a complex matrix such that 1 + L is non-degenerate with
a positive real part. To see the motivation for the main definition
given below, suppose first that a function g has the form

g(x) = gµ(x) =

∫
Rd

e−ipxĝ(p) dp =

∫
Rd

e−ipxµ(dp)

with some ĝ from the Schwarz space S, where we denoted by µ the
finite measure on Rd with the density ĝ(p). Then, g also belongs
to the Schwarz space and moreover, due to the Parceval equality,∫

exp{− 1

2h
((1 + L)x, x)}g(x) dx

= (2πh)d/2(det(1 + L))−1/2

∫
exp{−h

2
((1 + L)−1p, p)}µ(dp),

(H2)
where both sides of this equation are well defined as Riemann in-
tegrals. Suppose more generally, that

g(x) = gµ(x) =

∫
Rd

e−ipxµ(dp)
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for a finite Borel complex measure µ (not necessarily with a den-
sity), i.e. g belongs to the space F(Rd) of the Fourier transforms
of finite Borel measures on Rd. In this case, though the l.h.s. of
(H2) may not be well defined in the sense of Riemann or Lebesgue,
the r.h.s. is still well defined and can be therefore considered as
some sort of the regularisation of the (possibly divergent) integral
on the l.h.s. of (H2). In other words, in this case, the integral
on the l.h.s. of (H2) can be naturally defined by the r.h.s. ex-
pression of this equation. In order to get in (H2) an expression
not depending on the dimension (which one needs to pass succes-
fully to the infinite dimensional limit), one needs to normalise (or,
in physical language, renormalise) this integral by the multiplier
(2πh)−d/2. This leads to the following definition [AH1], which can
be now given directly in the infinite dimensional setting. Let H be
a real separable Hilbert space, let

g(x) = gµ(x) =

∫
H

e−ipxµ(dp) (H3)

be a Fourier transform of a finite complex Borel measure µ in H
and let L be a selfadjoint trace class operator in H such that 1+L
is an isomorphism of H with a non-negative real part. Define the
(normalised) Fresnel integral∫ ∗

H

exp{− 1

2h
((1 + L)x, x)}g(x)Dx

= (det(1 + L))−1/2

∫
H

exp{−h
2
((1 + L)−1p, p)}µ(dp). (H4)

For application to the Schrödinger equation one takes as the Hilbert
space H in (H4) the space Ht (sometimes called the Cameron-
Martin space) of continuous curves γ : [0, t] 7→ Rd such that γ(t) =
0 and the derivative γ̇ of γ (in the sense of distributions) belongs
to L2([0, t]), the scalar product in Ht being defined as

(γ1, γ2) =

∫ t

0

γ̇1(s)γ̇2(s) ds.

It is not very difficult to prove the following result:
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Proposition H1 [AH1]. If ψ0 ∈ F(Rd) ∩ L2(Rd) and V ∈
L2(Rd) , then the (obviously unique) solution to the Cauchy prob-
lem of equation (H2) with the initial data ψ0 has the form

ψ(t, x) =

∫ ⋆

Ht

exp{ i

2m
∥γ∥2} exp{−i

∫ t

0

V (γ(s) + x) ds}Dγ,

where this Fresnel integral is well defined in the sense of formula
(H4) (with h = im, L = 0).

The definition of the normalised (infinite dimensional) Fres-
nel integral (H4) can be generalised in various ways. The most
advanced definition in this direction was given in [CW1], where
the (infinite dimensional )differential DΘ,Z was defined (in a sense,
axiomatically) by the formula∫

Φ

Θ(ϕ, J)DΘ,Zϕ = Z(J),

where Φ and Φ′ are two Banach spaces and Θ : Φ × Φ′ 7→ C,
Z : Φ 7→ C are two given maps.

3. Discrete approximations (see e.g. [Tr1],[Tr2],[ET]).
One says that a Borel measurable complex valued function f

on Rd is Fh-integrable, if the limit

lim
ϵ→0

(2πh)−d/2
∫
Rd

exp{− 1

2h
|x|2}f(x)ψ(ϵx) dx (H5)

exists for any ψ ∈ S(Rd): ψ(0) = 1, and is ψ-independent. The
limit (H5) is then called the normalised Fresnel integral (abbrevi-
ated NFI) of f (with parameter h) and will be denoted by∫ ∗

Rd

exp{− 1

2h
x2}f(x)Dx.

Let H be a separable real Hilbert space. A Borel measurable
complex-valued function f on H is called Fh-integrable iff for any
increasing sequence {Pn} of finite dimensional orthogonal projec-
tions in H, which is strongly convergent to the identity operator,
the limit

lim
n→∞

∫ ∗

PnH

exp{− 1

2h
x2}f(x) dx
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exists and its value is independent of the choice of the sequence
{Pn}. In such a case, their common value denoted by∫ ∗

H

exp{− 1

2h
|x|2}f(x)Dx (H6)

is called the NFI of f (with parameter h). In the case of positive h
(resp. purely imaginary h), the NFI (H6) is called the normalised
Gaussian (resp. oscillatory) integral. Not surprisingly, it turns out
that this definition leads to the same formula (H4), which was the
starting point for the definition of [AH1].

We formulate here a result from [AKS2] on the existence of NFI
in a slightly more general context than in (H4), which is neccessary
for applications to stochastic Schrödinger equations. The prooof of
this generalisation does not differ from the proof in the case (H4)
(see e.g. [ET], [AlB]), and we shall not give it here.

Proposition H2 [ET],[AlB],[AKS2]. Let a function g be the
Fourier transform of a complex Borel finite measure on a Hilbert
space H, i.e. it is given by (H3). Let l ∈ H, ω ∈ C, and let L
be a selfadjoint trace class operator in H such that 1+ 2ωhL is an
isomorphism of H with a non-negative real part. Then the function
exp{(l, x)− ω(Lx, x)}g(x) is Fh-integrable, and∫ ∗

H

exp{− 1

2h
|x|2 − ω(Lx, x) + (l, x)}g(x)Dx

= det(1+2αhL)−1/2

∫
H

exp{−h
2
((1+2αhL)−1(p−il), p−il)}µ(dp).

(H7)
An application of this fact to the theory of stochastic Schrödinger

equation is given in Chapter 7.
NFI (H6) was defined above as a limit of descrete approxima-

tions, which is not dependent on the choice of approximation. The
most natural concrete type of discrete approximations for heuristic
Feynman’s integral giving the solutions to the Schrödinger equa-
tion can be obtained from the Trotter product formula. A detailed
account of the approach to Feynman’s integral based on this par-
ticular approximation, can be found e.g. in [Bere], see also [Joh2]
and references therein.



342

4. Path integral as a symbol for perturbation theory. This
approach was systematically developed in [SF]. Here one considers
the path integral simply as a convenient concise symbol, which
encodes the rules of perturbation theory in a compact form. From
this point of view, one can develope rigorously (at least for Gaussian
type integrals, which are important for quantum field theory) a
technique of calculations and transformations, which contains all
combinatorial aspects of the method of Feynman’s diagramms.

Notice that this approach considered from the point of view
of complex Markov processes from Appendix G leads to the the-
ory of Feynman’s integral for Schrödinger equations developed in
Chaprter 9.

5. Path interal from the point of view of white noise calculus.
In this approach, see [HKPS], [SH] and references therein, path
integral is considered as a distribution in Hida’s infinite dimensional
calculus, called also the white noise analysis, which is a calculus on
the dual S′ to the Schwarz space S(Rd).

Various extensions of the approaches described above and their
applications are developed in many papers, see e.g. [AlB],[ABB],[ACH],[AH2],
[Bere], [CW2], [DMN], [El], [SS], and references therein. In particu-
lar, one can find applications to semiclassical asymptotics in [ABB],
[AH2], [M1], to differential equations on manifolds in [El],[CW2], to
stochastic and infinite dimensional generalisations of Schrödinger’s
equation in [AKS1], [AKS2], [K1], [TZ1], to rigorous calculations
of important quantities of quantum mechanics and quantum field
theory in [Bere], [DMN], and the definition of the Feynman inte-
gral over the phase space in [DNM], [SS], [SF], [Bere]. A detailed
discussion of the connections between different approaches is given
in [SS]. Let us mention also the paper [Joh2], where one can find
a nice elementary discussion of general mathematical and physical
ideas leading to the notion of Feynman’s integral, in particular, of
the background of the original papers of R. Feynman.

I. Perspectives and problems

We discuss here some problems which arise from the theory
developed in this book, and indicate some possible generalisations.

1) One of the central questions arising from the developed



343

theory is to find the general class of Feller-Courrège processes, for
which one can construct semiclassical asymptotics by the methods
of Chapter 3 or 6. The question concerns the characterisation of
the necessary properties of the Lévy measure ν and (possibly de-
generate) matrix G of diffusion coefficients. Already for ν = 0 the
question is not trivial, see example from Section 3.6 showing that
for a non-regular degenerate diffusions, the small time asymptotics
of its Green function are not regular, but the semiclassical small h
asymptotics can be still constructed by the standard scheme. More
general, it is important to try to justify this construction for gen-
eral Maslov’s tunnel equation (as defined in Chapter 6) and the
corresponding tunnel systems, which comprise important physical
examples going far beyond the range of the problems of the prob-
ability theory.

2) An important question is whether it is possible to prove the
unimodality of general non-symmetric stable laws. Probably, some
ideas from [IC] or [Yam] corresponding to the one-dimensional case
can be used here for such a generalisation, which would allow the
whole theory of Chapters 5,6 to be automatically generalised to
the case of general (non-symmetric) stable jump- diffusions. Next,
apparently there exists a deeper connection between the theory of
stable Lévy motions and the Brunn-Minkowski theory. Namely,
due to a famous result of Minkowski, to each symmetric measure
µ on a sphere (with some additional weak non-degeneracy assump-
tion) corresponds a unique convex body whose surface area mea-
sure coincides with µ (see e.g. [Sch] for the proof of this result
and the definition of the surface area measure). It seems that the
properties of local times and excursions of finite dimensional stable
motions with the spectral measure µ should be governed by the
surface structure of the corresponding convex body.

3) It was demonstrated in Section 5.6 how the analytic results
of Chapter 5 can be used to obtain the generalisation of the lim sup
law of stable motions to the case of corresponding diffusions. It
seems that in the same way lots of other results of stable motions,
for instance on the behaviour of lim inf (see [Ber], [We] and refer-
ences therein), can be generalised to stable and stable-like jump-
diffusions. Furthermore, in our exposition, we avoided the study
of completely skew stable laws, especially those corresponding to
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the subordinators, which are stable motions with α < 1, d = 1,
and a Lévy measure concentrated on the positive half line only.
These processes play an important role in the general theory of
stochastic processes. It seems possible to develop the theory of the
corresponding stable diffusions (subordinators non-homogeneous in
space) using the approaches from the present paper. Lots of the
beautiful properties of subordinators (see e.g. [Ber]) can then be
generalised to the corresponding stable diffusions.

4) The two-sided estimate for the (generalised) heat kernels we
proved, say in Theorem 3.2 of Chapter 5 or in Theorem 2.3 from
Chapter 7, are restricted to finite times, i.e. they are not uniform
with respect to t→ ∞, which means that they can not be used for
the study of the behaviour of the corresponding processes for large
times. It would be interesting to generalise these estimates for all
times using perhaps some ideas from the well studied case of the
standard diffusion (see e.g. [Da1],[Da2]). If such results would be
obtained, one can use them, for example, to obtain the information
on the sample path properties of stable jump-diffusions, as time
tends to infinity, in the same way, as the estimates for finite times
are used in section 5.6 to the study of the sample path properties
for small times.

Two-sided estimates of the heat kernel of diffusion equations
can be used to deduce the Harnack inequalities for positive solu-
tions of these equations (see references in the introduction). Using
the two-sided estimates from Chapter 5 one can hope to obtain
some analogous inequalities for stable jump-diffusions.

5) In order to globalise the asymptotics for complex stochastic
equations of Chapter 7, one needs the results on the global exis-
tence of the solutions to the boundary-value problem of complex
Hamiltonians.

6) An interesting problem is to develop the scattering theory
for the stochastic Schrödinger equation, whose ”free” evolution is
given by Theorem 4.3 of hapter 1.

7) An alternative way of study the stochastic Schrödinger
equations of Chapter 7 can be based on the ”elementary formula”
of Elworthy-Truman, see e.g. [TZ1], [TZ2] for this approach in the
case of the unitary evolution or of the stochastic heat equation.
It is natural to try to develop this approach in the general com-



plex stochastic situation. This development may help to answer
many questions arising around the representation of the solutions
of stochastic and quantum stochastic equations in terms of the
Feynmann path integral. 8) Stochastic Schrödinger equations con-
sidered in Chapter 7 do not exaust the class of SSE which appear
in physics. One of natural generalisations convern the equations
where the white noise is substituted by a general stable (or even
Lévy) noise, or by a general semimartingale. The theory developed
in Chapter 7 should work for this case, if one developes the corre-
sponding method of stable stochastic characteristics (or genreally
stochastic characteristics of Lévy type) similar to the case of white
noise considered in Section 2.7.
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[Ber] J. Bertoin. Lévy processes. Cambridge Univ. press,
1996.



334

[BGR] J. Bertrand, B. Gaveau, G. Rideau. Poisson processes
and quantum field theory: a model. In: [AcW], 74-80.

[BF] F. Berezin, L. Faddeev. A remark on Schrödinger equa-
tion with a singular potential. Sov. Math. Dokl. 2 (1961), 372-375.

[Bi] N.H. Bingham. Maxima of Sums of Random Variables and
Suprema of Stable Processes. Z. Warscheinlichkeitstheorie verw.
Geb. 26 (1973), 273-296.

[Bis] J.M. Bismut. Large deviations and the Malliavin Calcu-
lus. Progress in Math. v. 45. Birkhäuser, Boston, 1984.
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MAIN NOTATIONS

Rea, Ima -real and imaginary part of a complex number a
Br(x) (resp. Br)- the ball of radius r centred at x (resp. at the
origin)
N ,Z- natural and integer numbers respectively
Cd,Rd - complex and real d-dimensional spaces
Sd - d -dimensional unit sphere in Rd+1

(x, y) or xy - the scalar product of the vectors x, y
1m or Em - the m×m-unit matrix
if A is a d× d matrix, then A′ denotes the transpose to A,
if A is a d× d selfadjoint matrix and δ is a real number,

then A ≥ δ means A ≥ δ1d
Sp(A) - spectrum of the operator A
KerA - kernel of the matrix (or operator) A
tr A - the trace of the operator A
Θa,b (resp. Θa) - the indicator of the closed interval [a, b] (resp.
[0, a]), i.e. Θa,b(x) equals one or zero according to whether x ∈ [a, b]
or otherwise
f = O(g) means |f | ≤ Cg for some constant C
Cnk - binomial coefficients
C(X) - the Banach space of bounded continuous functions on

a topological space X equipped with the uniform norm;
if X is locally compact, then C0(X) denotes the subspace
of C(X) of functions vanishing at infinity

Summation over repeating indices will be always assumed.
The numeration of formulas and theorems is carried out indepen-
dently in each chapter. A reference to, say, formula (2.4) in chapter
3, when referred to from another chapter, will be given as to for-
mula (3.2.4).
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