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1. Introduction.

1. Aims of the paper and its content. This paper is a continuation of the author’s
work on measure-valued limits of k-nary interacting particle systems (see [Ko1], [Ko2],
[Ko3]). It extends the main results from [Ko4] devoted to the interactions of only pure
jump type to the case when a non-trivial spatial motion is present in the model. Major
particular cases concern (i) spatially non-trivial mass exchange processes which include
the Smoluchovski models with continuous mass distributions and its extensions with not
necessary binary coagulations or fragmentation, (ii) processes of collisions described by the
Boltzmann type kernels. The main objectives of the paper are (i) to show that as a number
of particles go to infinity and under a natural scaling of interaction rates, the processes
of k-nary interacting particle systems converge to measure-valued deterministic processes
(hydrodynamic limits), (ii) to derive general kinetic equations that describe the evolution
of these limiting processes, (iii) to prove the well-posedness of the Cauchy problem and
the propagation of chaos property for these equations.

In [BK] we used a different method to obtain similar kinetic equations which was
formal (i.e. without any rigorous convergence or existence results). In fact, we developed
two such methods, one was suggested in [Be] and was based on the study of the evolution
of the generating functionals and another was based on the idea of propagation of chaos
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(see e.g. [BM], [MT], [Sz]). In this paper we shall justify the formal calculations of [BK] for
the models under consideration proving the propagation of chaos property for the solutions
of our kinetic equations.

The paper is organized as follows. In the introduction, we first fix some general
notations, then describe our basic Markov models for k-nary interacting particles and
present a heuristic deduction of the corresponding kinetic equations, and finally discuss
the basic assumptions on the model which are needed to the rigorous analysis that follows.
In Section 2 we deduce the main properties of our Markov processes of k-nary interacting
particles. In Section 3 we formulate and in Section 4 prove our main results on the weak
convergence of these Markov processes to the deterministic processes described by the
kinetic equations and on the well-posedness and the propagation of chaos property for
these equations. Section 5 is devoted to the regularity of the solutions to kinetic equations
obtained above outlying also a non-probabilistic approach to proving the existence of these
solutions. In Section 6 the most important particular examples are discussed. In Appendix
we collect the auxiliary results needed in the main text.

2. General notations. We list here a few notations that will be used throughout the
paper without further reminder:

1 denotes the function that equals identically 1 or the identity operator in a Banach
space; 1M for a set M denotes the indicator function of M that equals 1 for x ∈ M and
vanishes otherwise; o(1)x→a denotes a function depending on x that tends to zero as x → a;

for a measurable space Y , B(Y ) denotes the Banach space of real bounded measurable
functions on Y equipped with the usual sup-norm; if Y is a topological space, Cb(Y )
denotes the Banach subspace of B(Y ) consisting of continuous functions; M(Y ) is the
space of finite (signed) measures on Y , considered as a Banach space with the norm ‖.‖
on M(Y ) being the total variation norm; for µ ∈ M(Y ) we shall denote by |µ| the total
variation measure of µ so that ‖µ‖ =

∫
Y
|µ|(dy);

if X is a locally compact space, C0(X) (respectively Cc(X)) is the Banach space of
continuous functions vanishing at infinity and equipped with sup-norm (respectively its
subspace consisting of functions with a compact support);

the upper subscript ”+” for all these spaces (e.g. C+
0 (X), M+(X)) will denote the

corresponding cones of non-negative elements;
(f, ν) =

∫
f(x)ν(dx) is the usual pairing between Cb(X) and M(X); if A is a linear

operator in Cb(X), we denote by A? its dual operator acting in M(X);
by a symmetric function of n variables we shall understand a function, which is sym-

metric with respect to all permutations of these variables, and by a symmetric operator
on the space of functions of n variables we shall understand an operator that preserves the
set of symmetric functions;

for a finite subset I = {i1, ..., ik} of a countable set J , we denote by |I| the number of
elements in I, by Ī its complement J \ I, by xI the collection of the variables xi1 , ..., xik

and by dxI the measure dxi1 ...dxik
.

A transitional kernel from X to Y means, as usual, a measurable function µ(x, .) from
x ∈ X to the cone of positive finite measures on Y .

We shall denote by DX [0,∞) the Skorokhod space of càdlàg paths [0,∞) 7→ X
equipped with the standard filtration Ft. We shall denote by bald P and E the prob-
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ability and the expectation of events and functions respectively.
3. State space and observables of systems of interacting particles. Throughout the

paper we shall denote by X a locally compact metric space equipped with its Borel sigma
algebra. Denoting by X0 a one-point space and by Xj the powers X × ... ×X (j-times)
considered with their product topologies, we shall denote by X their disjoint union X =
∪∞j=0X

j , which is again a metric locally compact space. In applications, X specifies the
state space of one particle and X = ∪∞j=0X

j stands for the state space of a random number
of similar particles. We shall denote by Bsym(X ) (resp. Csym(X )) the Banach spaces of
symmetric bounded measurable (resp. continuous) functions on X and by Bsym(Xk)
(resp. Csym(Xk)) the corresponding spaces of functions on the finite power Xk. The
space of symmetric measures will be denoted byMsym(X ). The elements ofM+

sym(X ) and
Csym(X ) are called respectively the (mixed) states and observables for a Markov process on
X . We shall denote the elements of X by bold letters, e.g. x, y. Sometimes it is convenient
to consider the factor spaces SXk and SX obtained by the factorization of Xk and X with
respect to all permutations, which allows for the identifications Csym(X ) = C(SX ) and
likewise. Symmetrical laws on Xk (which are uniquely defined by their projections to
SXk) are called exchangeable systems of k particles. A key observation for the theory of
measure-valued limits is the inclusion SX to M+(X) given by

x = (x1, ..., xl) 7→ δx1 + ... + δxl
, (1.1)

which defines a bijection between SX and the space M+
δ (X) of finite linear combinations

of δ-measures (notice that our inclusion (1.1) differs by a normalization from the form of
this inclusion discussed in [Da]).

Clearly each f ∈ Bsym(X ) is defined by its components fk on Xk so that for x =
(x1, ..., xk) ∈ Xk ⊂ X , say, one can write f(x) = f(x1, ..., xk) = fk(x1, ..., xk) (the upper
index k at f is optional and is used to stress the number of variables in an expression).
Similar notations are for measures. In particular, the pairing between Csym(X ) and M(X )
can be written as

(f, ρ) =
∫

f(x)ρ(dx) = f0ρ0 +
∞∑

n=1

∫
f(x1, ..., xn)ρ(dx1...dxn),

f ∈ Csym(X ), ρ ∈M(X ), (1.2)

so that ‖ρ‖ = (1, ρ) for ρ ∈M+(X ).
A useful class of measures (and mixed states) on X is given by the decomposable

measures of the form Y ⊗ and Y ⊗̃, which are defined for an arbitrary finite measure Y (dx)
on X by their components

(Y ⊗)n(dx1...dxn) = Y ⊗n(dx1...dxn) = Y (dx1)...Y (dxn) (1.3)

and
(Y ⊗̃)n(dx1...dxn) =

1
n!

Y ⊗n(dx1...dxn) =
1
n!

Y (dx1)...Y (dxn). (1.4)
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Notice that unlike Y ⊗̃ the measure Y ⊗ need not be a finite measure on X even when Y is
finite. Similarly the decomposable observables (or exponential vectors) are defined for an
arbitrary g ∈ C(X) as

(g⊗)n(x1, ..., xn) = g⊗n(x1, ..., xn) = g(x1)...g(xn). (1.5)

We shall use also the additively decomposable observables defined for an arbitrary g ∈
C(X) as

(g+)(x1, ..., xn) = g(x1) + ... + g(xn) (1.6)

(g+ vanishes on X0). In particular, if g = 1, then g+ = 1+ is the number of particles:
1+(x1, ..., xn) = n.

4. Basic Markov models for k-nary interacting particles. A k-nary interaction is
specified by a transition kernel

P k(x1, ..., xk; dy) = {P k
m(x1, ..., xk; dy1...dym)}

from SXk to SX with the intensity

P k(x1, ..., xk) =
∫

P k(x1, ..., xk; dy) =
∞∑

m=0

∫
P k

m(x1, ..., xk; dy1...dym)

such that P k(x; {x}) = 0 for all x ∈ Xk. The intensity defines the rate of decay of any
collection of k particles x1, ..., xk and the measure P k(x1, ..., xk; dy) defines the distribution
of possible outcomes. Supposing that any k particles from a given set of n ≥ k particles
can interact, we arrive to the following generator of k-nary interacting particle systems
specified by the kernel P k:

(Gkf)(x1, ..., xn)

=
∞∑

m=0

∑

I⊂{1,...,.n},|I|=k

∫
(f l+(n−k)(xĪ , y1, ..., ym)− f(x1, ..., xn))P k

m(xI ; dy1...dym)

=
∑

I⊂{1,...,.n},|I|=k

∫
(f(xĪ ,y)− f(x1, ..., xn))P k(xI , dy). (1.7)

Taking into account all possible interactions of order ≤ k given by the kernels P = {P l
m},

l = 0, ..., k, m = 0, 1, ..., with the intensity

P (x) =
∫

P (x; dy) =
∫ ∞∑

m=0

P l
m(x1, ..., xl; dy1, ..., dym) (1.8)

whenever x = (x1, ..., xl) with l ≤ k, and P (x) = 0 whenever x ∈ X l with l > k, yields the
generator of a general pure jump Markov processes with the interaction of order ≤ k:

(G≤kf)(x1, ..., xn) =
∑

I⊂{1,...,n}

∫
(f(xĪ ,y)− f(x1, ..., xn))P (xI , dy). (1.9)
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Now let A be an operator in C0(X) with domain D(A) ⊂ Cc(X) whose closure
generates a (unique) Feller semigroup in C0(X) and the corresponding Feller process zx

s

with sample paths in DX [0,∞) (x stands for the initial point). It implies (see e.g. [EK])
that the corresponding martingale problem is well posed for A, i.e. for any x ∈ X, the
process zx

s yields a unique distribution on DX [0,∞) such that

Mt = f(zx
t )− f(x)−

∫ t

0

Af(zx
s ) ds (1.10)

is an Ft-martingale for all f ∈ D(A) with M0 = 0 almost surely. The process zx
s describes

the underlying ”free” motion of particles on X. The operator A naturally induces (second
quantization procedure) the operator Adiag on Cb(SX ) with domain D(Adiag) being the
linear span of the the tensor product D(A) ⊗ ... ⊗ D(A). This operator preserves each
Cb(SXk) (i.e. it is diagonal) and is uniquely specified by its action on decomposable
observables:

(Adiagg
⊗n)(x1, ..., xn) =

n∑

j=1

g(x1)...g(xj−1)(Ag)(xj)g(xj+1)...g(xn) (1.11)

for any g ∈ D(A). The operator Adiag describes the independent motion of any finite
collection of particles on X. Our basic model of interacting particles with a pure jump
k-nary interaction and subject to a underlying free motion specified by A is defined as a
Markov process on X with the generator

G = Adiag + G≤k (1.12)

on Cb(SX ). Surely one needs some additional assumptions to ensure the existence and
uniqueness of so defined Markov process (see below).

Changing the state space by (1.1) yields the corresponding Markov process onM+
δ (X).

In order to see how Adiag acts in B(Mδ(X)) it is instructive to rewrite (1.11) in the form

[Adiag exp{(ln g, .)}](ν) = (Ag, ν) exp{(ln g, ν)} (1.13)

for g ∈ D(A) taking values in (0, 1], where ν = δx1 + ... + δxn .
Formula (1.13) defines the natural extension of Adiag to B(M(X)), as the linear span

of functions µ 7→ exp{(ln g, µ)} with g taking value in (0, 1] is dense in Cb(M(X)). For
example, by differentiation, one gets from (1.13) that

[Adiag(ln g, .)k](ν) = k(Ag, ν)(ln g, ν)k−1.

Choosing a positive parameter h, we shall perform now the following scaling: firstly,
we scale the empirical measures δx1 + ... + δxn by a factor h, secondly we scale all l-
nary interactions by a factor hl, and thirdly we scale the whole generator by 1/h (which
effectively means the scaling of time as in the theory of superprocesses, see e.g. [Dy]).
After this scaling the operator (1.12) takes the form

Λhf(hν) = (Ah
diag + Gh

≤k)f(hν) = Adiagf(hν) +
1
h

k∑

l=0

hl
∑

I⊂{1,...,n},|I|=l

∞∑
m=0
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×
∫

[f(hν −
∑

i∈I

hδxi
+ hδy1 + ... + hδym

)− f(hν)]P (xI ; dy1...dym) (1.14)

(we have omitted the index k from the notation of Λ for brevity) and acts on the space
B(M+

hδ(X)) of functions defined on the set M+
hδ(X) of measures of the form hν = hδx1 +

... + hδxn
. For linear functions

fg(µ) =
∫

g(x)µ(dx) = (g, µ) (1.15)

on M(X), one has

Λhfg(hν) = (A(g), hν) +
1
h

k∑

l=0

hl
∑

I⊂{1,...,n},|I|=l

×
∫

[hg+(y)− h
∑

i∈I

g(xi)]P (xI ; dy). (1.16)

5. Kinetic equations in weak, mild and interaction representations. Applying formula
(A2) from Appendix yields for the r.h.s. of (1.14) the formula

Adiagf(hν) +
1
h

k∑

l=0

1
l!

∞∑
m=0

∫
[f(hν − hδz1 − ...− hδzl

+ hδy1 + ... + hδym)− f(hν)]

×P (z1, ..., zl; dy1...dym)
l∏

j=1

(hδx1 + ... + hδxn)(zj)

+
1
h

∑

Γ

αΓhl−p

∫
[f(hν − hγ1δz1 − ...− hγpδzp + hδy1 + ... + hδym)− f(hν)]

×P (z1, ..., z1, ..., zp, ..., zp; dy1...dym)
p∏

j=1

(hδx1 + ... + hδxn)(zj), (1.17)

where
∑

Γ is the sum over all Young schemes Γ = {1 ≤ γ1 ≤ ... ≤ γp} with γp > 1 and
γ1+...+γp = l ≤ k, and P (z1, ..., z1, ...zp, ...zp; dy1...dym) means that the first γ1 arguments
of P equal z1, the next γ2 arguments equal z2 etc. As h → 0 and hδx1 + ... + hδxn tends
to some finite measure µ (i.e. the number of particles tends to infinity, but the ”whole
mass” remains finite due to the scaling of each atom), the operator (1.17) tends (formally
at least) to

(Λf)(µ) = Adiagf(hν) +
k∑

l=0

1
l!

∞∑
m=0

∫
[− δf

δµ(z1)
− ...− δf

δµ(zl)
+

δf

δµ(y1)
+ ... +

δf

δµ(ym)
]
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×P (z1, ..., zl; dy1...dym)
l∏

j=1

µ(dzj). (1.18)

The equation ḟ = Λf describing the evolution of functions onM+(X) is a first order partial
differential equation in functional derivatives. The kinetic equations we are interested in
are the characteristics of this equation describing the evolution of measures themselves,
i.e. the deterministic process t 7→ µt such that f(µt) satisfies the equation ḟ = Λf . In
the present infinite-dimensional framework, it is convenient to write these equations in the
weak form. To get them, we pick up a linear function fg of form (1.15) onM(X) and insert
fg(µt) in the evolution equation ḟ = Λf . As δfg

δµ(z) = g(z) and Adiagfg(µ) = (A(g), µ) this
leads to the following weak kinetic equation

d

dt
(g, µt) = (A(g), µt) +

k∑

l=0

1
l!

∫

z1,...,zl,y

[g+(y)− g(z1)− ...− g(zm)]

×P (z1, ..., zl; dy)
l∏

j=1

µt(dzj).

or in the concise form (using notation (1.4))

d

dt
(g, µt) = (A(g), µt) +

∫
(g+(y)− g+(z))P (z; dy)µ⊗̃t (dz), (1.19)

which must hold for g ∈ D(A). Integrating over time yields the following integral version
of the weak kinetic equation

(g, µt)− (g, µ0)−
∫ t

0

ds

(
(A(g), µs) +

∫
(g+(y)− g+(z))P (z; dy)µ⊗̃s (dz)

)
= 0. (1.20)

Next, by the standard perturbation theory approach (Du Hammel formula), (1.19) is
formally equivalent (see Lemma A4 for a version of the rigorous result) to the following
(strong) mild kinetic equation

µt = eA?tµ0 +
∫ t

0

eA?(t−s)π(µs) ds (1.21)

where the integral is well defined as the Riemann or Lebesgue integral with respect to
the norm topology on M(X) and where π(ν) is the nonlinear transformation on measures
from the r.h.s. of (1.20) defined by

(g, π(ν)) =
∫

(g+(y)− g+(z))P (z; dy)ν⊗̃(dz). (1.22)

We shall say that µt is a weakly mild solution if (1.21) is satisfied in the weak sense. At
last, in the particular case when the semigroup e−A?t is well defined (which holds e.g.
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when A is a first order partial differential operator), one can apply e−A?t to the both sides
of (1.21) to get the kinetic equation in the interaction representation (respectively the weak
interaction representation)

νt = ν0 +
∫ t

0

e−A?sπ(eA?sνs) ds (1.23)

for νt = e−A?tµt, where the integral is well defined as the Riemann or Lebesgue integral
(respectively, in the weak sense).

Equations (1.19)-(1.23) can be called regular kinetic equations, the term ”regular”
expressing the fact that the kernel P (z; dy) is weakly continuous in z. They include
spatially non-trivial Boltzmann and Smoluchiovski equations with a mollifier. The main
classical spatially non-trivial kinetic equations (e.g. the Boltzmann equation without a
mollifier) are not regular in this sense, their transition kernel being singular due to the
assumption of the locality of interaction. At the end of the paper we shall show how
these equations can be obtained (formally at least) from the regular kinetic equations by
a natural limiting procedure.

6. Basic assumptions on the model. In order to justify the above calculations one needs
of course some additional assumptions. Aiming at classical models of statistical mechanics
(coagulation, fragmentation, collisions), we shall reduce our consideration to the case when
the phase space X and the operator A have an additional product structure, namely we
assume the following condition:

(C1) X = Q × V , where both Q and V are locally compact metric space (we shall
denote by Q and V the unions ∪∞j=0Q

j and ∪∞j=0V
j respectively) and the operator A is

specified by its action on factorizable functions (g ⊗ h)(q, v) = g(q)h(v) as

(A(g ⊗ h))(q, v) = h(v)(Bvg)(q), q ∈ D(B),

where Bv, v ∈ V , is a family of linear operators in C0(Q) defined on the same domain
D(B) = D(Bv) such that the closure of each Bv generates a conservative Feller semigroup
on C0(Q); one easily sees that the closure of this A defined on the domain D(B)× Cc(V )
generates a Feller semigroup on Cc(X).

We shall discuss now the basic assumptions on the transition kernel P . Essentially
they represent natural extensions to k-nary interaction of basic assumptions used in binary
models (see e.g. [No] and references therein). Let L be a non-negative function on X. As
this function can be often interpreted as a mass or a size of a particle, we shall call the num-
ber L(x) the size of a particle x. We say that P (x; dy) in (1.9) is L-preserving (respectively
L-non-increasing) if the measure P (x; dy) is supported on the set {y : L+(y) = L+(x)}
(respectively {y : L+(y) ≤ L+(x)}). We say that P (x; dy) is l-nary L-preserving or L-
non-increasing, if the corresponding property holds only for x ∈ X l. We shall say that
the intensity (1.8) is multiplicatively L-bounded or L⊗-bounded (respectively additively L-
bounded or L+-bounded) whenever P (x) ≤ cL⊗(x) (respectively P (x) ≤ cL+(x)) for all x
and some constant c > 0, where we used the notations (1.5), (1.6). In the future, we shall
always take c = 1 here for brevity. We shall need also some conditions that forbid the
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creation of dust, i.e. of a large number of small particles. One can work with various con-
ditions of this kind. We shall use the following two conditions (see some other possibilities
in [Ko4]):

(C2) P (x; dy) is l-nary 1-non-increasing (i.e. the number of particles does not increase
by l-nary interactions) for l ≥ 2 and the number of particles created by an act of l-nary
interaction with l = 1 is uniformly bounded, i.e. P 1

m(x; dy1...dym) = 0 for all x and m > m0

with some m0,
(C3) if k > 2, then either P is 1-non-increasing (in particular, no fragmentation is

allowed) or L(x) ≥ ε for all x and some ε > 0, i.e. the size of the particles can not become
arbitrary small.

Remark. Condition (C3) is void for k ≤ 2 and is the simplest (and a very strong)
assumption for dealing with some additional technical difficulties arising from the interac-
tions of higher orders.

2. Preliminaries.

We prove here the basic properties of our model of k-nary interacting particles given
by operator (1.14). The first Proposition 2.1 is devoted to the general model with L⊗-
bounded intensity. The second Proposition 2.2 shows that in case of (1+L)+-boundedness,
the corresponding Markov process enjoys a remarkable property: it preserves the finiteness
of the moments of the convex functions of L. The third Proposition 2.3 is devoted to the
tightness of the family of our Markov models of interacting particle systems as h → 0.

Proposition 2.1. Suppose
(i) the transition kernel P (x, .) is L-non-increasing and (1+L)⊗-bounded for some con-

tinuous non-negative function L on X, and is a continuous function from SX to M+(SX ),
where M+(SX ) is considered with its weak topology;

(ii) conditions (C1), (C2) hold and L is a function of the second variable only, i.e.
L(q, v) = L(v) for all q, v, and such that L(v) →∞ as v →∞;

(iii) P 0(dy) = 0, i.e. no spontaneous input in the system is possible.
Then (i) the Markov process Zhν(t) with generator (1.14) and the starting point hν

in M+
hδ(X) ⊂ M+(X) is uniquely defined; (ii) the process fL(Zhν(t)) is a non-negative

supermartingale, where fL is defined by (1.15); (iii) given arbitrary b > 0, T > 0, for a
family Zhν(t) with h ∈ (0, 1] and initial hν with (1 + L, hν) ≤ b, it follows that

P

(
sup

t∈[0,T ]

fL+1(Zhν(t)) > r

)
≤ C(T, b,M2)

r
(2.1)

for all r > 0, where the constant C(T, b,M2) depends on T ,b and M2 from (ND1) (but not
on h); (iv) the moment measures of Zhν(t) are uniformly bounded, i.e. E(‖Zhν(t)‖r) are
uniformly bounded for t ∈ [0, T ] for arbitrary r ≥ 1 and T > 0.

Proof. As P is L-non-increasing and L depends on the second variable only (and
hence A(f(L)) = 0 for any f ∈ Cc(R+)),

ΛhfL(hν) = Gh
≤kfL(hν) ≤ 0, ν ∈M+

δ (X),
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and by (C2),

Λhf1(hν) ≤
∫

(1+(y)− 1(z))P (z; dy)hν(dz) ≤ m0f1+L(hν).

Moreover, the intensity q of the jumps of the operator Gh
≤k equals

q(hν) =
1
h

k∑

l=1

hl
∑

I⊂{x1,...,xn},|I|=l

∫
P (xI ; dy) ≤ 1

h

k∑

l=1

1
l!

(f1+L(hν))l (2.2)

for ν = (δx1 + ... + δxn
). Hence the conditions of Lemma A3 hold with f1+L playing the

role of the barrier ψ (notice that the property of A implies similar properties of Adiag by
Theorem 10.1 from Chapter 4 of [EK]), which implies statements (i)-(iii). It remains to
prove (iv). For this we observe that

Λh(f1)r(hν) =
1
h

k∑

l=0

hl
∑

I⊂{1,...,n}
hr

∞∑
m=0

((n + m− l)r − nr)P (xI ; dy1...dyn),

which by (C2) does not exceed

n∑

i=1

hr((n + m0 − 1)r − nr)P (xi; dy)

≤ (f1(hν) + fL(hν))(m0 − 1)rhr−1(n + m0 − 1)r−1 ≤ rmr
0(f1(hν) + fL(hν))(f1(hν))r−1.

As P is L-non-increasing, fL(Zhν(t)) is almost surely uniformly bounded and using induc-
tion in r we can conclude that

E(Λh(f1)r(Zhν(t)) ≤ C(1 + E((f1)r(Zhν(t))

with some constant C. Consequently, using the martingale property of the process (A3)
with f = (f1)r and Gronwall’s lemma implies (iv), which completes the proof of Proposi-
tion 2.1.

Proposition 2.2. Under the conditions of Proposition 2.1, suppose additionally that
(C3) holds and P is (1 + L)+-bounded. Then for any β ≥ 1 and r > 0

E
(
fLβ (Zhν(s))‖Zhν(s)‖r

) ≤ a(t)fLβ (hν)‖hν‖r + b(t) (2.3)

uniformly for all s ∈ [0, t] with an arbitrary r > 0, t > 0, and with some constants a(t), b(t)
depending on t, β, r, but not on h.

Proof. First let r = 0. As the process is L-non-increasing, the process Zhν(s) lives
on measures with support on the set {x ∈ X : L(x) ≤ c/h} with some constant c. As the
expectation of the number of particles is bounded it follows that

max
s∈[0,t]

EfLβ (Zhν(s))

10



is bounded (not necessarily uniformly in h). Similarly

max
s∈[0,t]

EΛhfLβ (Zhν(s))

is also bounded which allows to conclude (by Lemma A3 and by approximating Lβ by
functions with a compact support) that the process

Mg(t) = fg(Zhν(t))− fg(hν)−
∫ t

0

Λhfg(Zhν(s)) ds (2.4)

is a martingale for any g ∈ D(A) and also for g = Lβ . Consequently

E(fLβ (Zhν(t))) ≤ fLβ (hν) +
∫ t

0

EΛh(fLβ (Zhν(s))) ds. (2.5)

Since (1.8) is L-non-increasing,
∫

(Lβ)+(y)P (x, dy) ≤
∫

(L+(y))βP (x, dy) ≤ (L+(x))βP (x, dy),

and consequently for ν = δx1 + ... + δxn

ΛhfLβ (hν) ≤ 1
h

k∑

l=0

hl
∑

|I|=l

[((L+(xI))β − (Lβ)+(xI)]P (xI)

≤
k∑

l=1

1
l!

∫
[(L(y1) + ... + L(yl))β − (L(y1))β − ....− (L(yl))β ]P (y1, ..., yl)

l∏

j=1

(hν(dyj)),

where we used Lemma A2. Using the symmetry with respect to permutations of x1, ..., xn,
we conclude that (ΛhfLβ )(hν) does not exceed

k∑

l=2

1
(l − 1)!

∫
[(L(y1) + ... + L(yl))β − (L(y1))β − ....− (L(yl))β ](1 + L(y1))

l∏

j=1

(hν(dyj)).

Using the elementary inequalities

(a + b)β − aβ − bβ ≤ w1
β(abβ−1 + baβ−1)

and
a[(a + b)β − aβ − bβ ] ≤ w2

β(abβ + baβ)

(that hold for all positive a, b with some constants w1
β and w2

β , see e.g. [Ca] for a proof of
the second one) for a = L(y1), b = L(y2) + ... + L(yl), and again the symmetry yields for
the last expression the estimate

k∑

l=2

κl
β(Lβ(y1) + Lβ−1(y1))L(y2)

l∏

j=1

(hν(dyj)) (2.6)

11



with some constants κl
β . In case k > 2, this does not exceed ãfLβ (hν) + b̃ with some ã, b̃,

as (C3) implies that ‖Zhν(t)‖ are uniformly bounded almost surely. From this estimate,
(2.5) and Gronwall’s lemma, one obtains (2.3). In case k = 2 one sees that ‖Zhν(t)‖ is not
involved in (2.6) and we get the same conclusion as for k > 2 using only the boundedness
of fL(Zhν(t)) (and induction in β if necessarily).

Next, let r > 0. Then

Λh(fLβ fr
1) =

1
h

k∑

l=0

hl
∑

I⊂{1,...,n},|I|=l

∞∑
m=0

×
∫

[(fLβ (hν − hνI + hδy1 + ... + hδym
)− fLβ (hν))(n− l + m)rhr

+fLβ (hν)((n− l + m)r − nr)]P (xI ; dy1...dym).

Estimating the first term in brackets as above and the second term as in the proof of
Proposition 2.1 (iv), we get for this expression the estimate

[
k∑

l=2

κl
β(Lβ(y1) + Lβ−1(y1))L(y2)

l∏

j=1

(hν(dyj)) + fLβ (hν)]fr
1(hν),

and again the application of Gronwall’s lemma completes the proof.
As the function L may stay finite with |x| → ∞, we need another barrier to get the

compactness of the family Zhν . In applications, the function L stands for the size of the
particle (energy, mass, etc) and the function L̃ introduced below stands for the magnitude
of its position.

Proposition 2.3. Under the assumptions of Proposition 2.1, suppose additionally
that P is (1+Lα)+-bounded for some α ∈ [0, 1], (C3) holds and there exists a non-negative
continuous function L̃ on Q such that

(i) the jumps are local in q, i.e. there exists a constant K such that P (q1, ..., ql,v; M) 6=
0 only if

max
i,j

|L̃(qi)− L̃(qj)| ≤ K, sup
y1,y2∈M

|L̃(y1)− L̃(y2)| ≤ 2K,

(ii) L̃(q) →∞ as q →∞ and L̃ is a barrier for the Feller process zx
s generated by A,

i.e. L̃ can be represented as a limit of increasing functions ψn from D(A) with uniformly
bounded A(ψn) and

(AL̃)(q, v) ≤ C(L̃(x) + L(v))

with some constant C,
(iii) (1 + Lβ + L̃, hν) ≤ b for the initial conditions hν with some constants β > 1 and

b > 0.
Then, if either (1) P (x, .) is 1-non-increasing or (2) (AL̃)(q, v) ≤ b(L̃(x)+Lα(v)) and

condition (iii) holds with β = 1 + α, then the family Zhν(t) from Proposition 2.1 satisfies
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the compact containment condition, i.e. for arbitrary η > 0, T > 0 there exists a compact
subset Γη,T ⊂M+(X) for which

inf
hν

P(Zhν(t) ∈ Γη,T for 0 ≤ t ≤ T ) ≥ 1− η, (2.7)

and moreover, Zhν(t) is tight as a family of processes with sample paths in DM+(X)[0,∞).
Proof. By conditions (ii)

ΛhfL̃(hν) ≤ CfL̃(hν) + CfL(hν)

+
1
h

k∑

l=1

hl
∑

I⊂{1,...,n},|I|=l

∫
[hL̃+(y)− h

∑

i∈I

L̃(xi)]P (xI ; dy),

and by condition (i) in case (1) of (iv) the integral in this expression does not exceed

∫
2K1+(y)P (z; dy)(hν)⊗̃(dz)

≤
∫

2K1+(z)(1 + L)+(z)(hν)⊗̃(dz) ≤
∫

2Kk2
k∑

l=1

(‖hν‖+ fL(hν))‖hν‖l−1.

Hence, the martingale property of (2.4) with g = L̃ yields sups∈[0,t] E(1+L+ L̃, Zhν(s)) <
∞ and hence by Doob’s martingale inequality

P

(
sup

t∈[0,T ]

fL̃+L+1(Z
hν(t)) > r

)
→ 0, r →∞,

uniformly in h ∈ (0, 1]. This implies (2.7) by the standard Prokhorov criterion of com-
pactness for a family of measures in case (1).

In case (2) of (iv) we get

ΛhfL̃(1+L)(hν) ≤ CfL̃(1+L)(hν) + CfL+L1+α(hν)

+
1
h

k∑

l=1

hl
∑

I⊂{1,...,n},|I|=l

∫
(h(L̃(1 + L))+(y)− h

∑

i∈I

(L̃(1 + L))(xi))P (xI ; dy),

and similarly to the above, the integral in this expression does not exceed
∫

3K((L+(z))1+α + kL+(z) + k)(hν)⊗̃(dz) + ((L + 1)L̃, hν).

By Proposition 2.2 and Gronwall’s lemma this implies that sups∈[0,t] E((1 + L)L̃, Zhν(s))
is bounded which implies (2.7) as above.
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It remains to prove tightness. By the well known Jacubovski criterion (see e.g. [EK]
or [Da]), when the compact containment condition holds, in order to get tightness it is
enough to show the tightness of the family of the real valued processes f(Zhν(t)) (as a
family of processes with sample paths in DR[0,∞)) for any f from a dense subset (in
the topology of uniform convergence on compact sets) of Cb(M+(X)). By the Weierstrass
theorem, it is thus enough to verify tightness of f(Zhν(t)) for f from the algebra generated
by fg of type (1.15) with g ∈ D(A) ⊂ Cc(X). But by Lemma A3, the process (2.4) is a
martingale for any g ∈ D(A) and the tightness now follows from the general Theorem 9.4
from Chapter 3 of [EK] (see details of quite similar arguments in [Je], [Ko4], [No]) .

Remark. Alternatively, one can prove tightness from the estimates of the quadratic
variations of the martingale (2.4) that are obtained in the proof of Theorem 3.1 below.

3. Main results.

Theorem 3.1. Under the assumptions of Propositions 2.1, 2.3 suppose additionally
that the family of initial measures hν converges (weakly) to a measure µ0 ∈M+(X). Then

(i) there is a subsequence of the family of processes Zhν(t) that weakly converges to a
process µt in M+(X) such that (1.20) holds for all t and all g ∈ D(A),

(ii) this solution enjoys the following additional property: for arbitrary T

sup
t∈[0,T ]

∫
(1 + Lβ)(x)µt(dx) ≤ b(T ) (3.1)

and
sup

t∈[0,T ]

∫
(L̃)(x)µt(dx) ≤ b(T )

with some constant b(T ),
(iii) if the intensity is not only L-non-increasing but also L-preserving, then the ob-

tained solution µt is also L-preserving, i.e. for all t

∫
L(x)µt(dx) = fL(µt) = fL(µ0) =

∫
L(x)µ0(dx), (3.2)

(iv) if µt is any solution of (1.20) satisfying (3.1), then π(µt) is a weakly continuous
function of t and µt satisfies both the corresponding weak and weakly mild kinetic equations,
i.e. (1.19) holds for all g ∈ D(A) and (1.21) holds in the weak sense.

(v) At last, if α = 0, i.e. P is bounded, then statement (iv) holds without restriction
(3.1) (for any T including T = 0).

Remark. Due to an extension of a theorem of de la Vallee-Poussin (see Theorem
3.5 in [LW]), (L, µ0) < ∞ implies (U(L), µ0) < ∞ with some U which is a non-negative
continuously differentiable convex function on [0,∞) such that U(0) = 0, U ′(0) ≥ 0, U ′

is a concave function and limr→∞ U ′(r) = ∞. Hence by extending Proposition 2.2 from
power functions Lβ to any such functions U(L) (which is more or less straightforward),
one gets the existence of the solutions to (1.20) for all µ0 such that (1 + L + L̃, µ0) < ∞.
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We shall obtain now two uniqueness results, one under the additional assumption of
the invertibility of the semigroup etA, and another for general A, but for solutions with
finite exponential moments.

Theorem 3.2. (i) Under the conditions of Theorem 3.1, suppose additionally that
the operator A generates a deterministic process on X, i.e. (etAf)(x) = f(φt(x)), where
φt, −∞ < t < ∞, is a group of homeomorphisms of X (for example, X is a differentiable
manifold and A is a smooth vector field defining a flow on X). Then any solution µt of
(1.20) and (3.1) satisfies (1.23) in the strong sense, i.e.

d

dt
νt = e−tA?

π(etA?

νt) (3.3)

for νt = e−tA?

µt, where the derivative is understood in the sense of the norm on M(X)
and the r.h.s. of (3.3) is also norm-continuous.

(ii) Moreover, if µ1
t , µ2

t are any two solutions of (1.20) satisfying (3.1), then

∫
(1 + L)|ν1

t − ν2
t | (dx) ≤ aeat

∫
(1 + L)|ν1

0 − ν2
0 | (dx) (3.4)

for some constant a = a(T ) uniformly for t ∈ [0, T ]. In particular, the uniqueness holds
for the solutions of (1.20), (3.1) with given initial conditions, and consequently the whole
family of processes Zhν(t) from Theorem 3.1 (not just its subsequence) converges weakly
to µt.

Theorem 3.3. (i) Under the assumptions of Theorem 3.1 suppose additionally that∫
exp{ωLγ(x)}µ0(dx) < ∞ for some positive ω and γ. Then there exists a unique global

weak solution of the corresponding kinetic equations satisfying

sup
t∈[0,T ]

∫
(1 + L̃(x) + exp{ωLα(x)})µt(dx) < ∞. (3.5)

If α = 0, i.e. P is bounded, then uniqueness holds without restriction (3.5).
As a consequence, we shall obtain now a version of the propagation of chaos property

for the interacting particle system Zhν . In general, this property means (see e.g. [Sz])
that the moment measures of some random measures tend to the product measures when
passing to a certain limit. The moment measures µm

t of the processes Zhν(t) are defined
as

µm
t,h(dx1...dxm) = E

(
Zhν(t)(dx1)...Zhν(t)(dxm)

)
. (3.6)

Corollary. Under the conditions of Theorems 3.2 or 3.3 suppose the the family of
initial measures hν = hν(h) converges weakly to a certain measure µ0 as h → 0. Then for
any m = 1, 2, ..., the moment measures µm

t,h converge weakly to the product measure µ⊗m
t .

Proof. By Theorems 3.2, 3.3, for any g ∈ Cc(SXm) the random variables

ηh =
∫

g(x1, ..., xm)Zhν(t)(dx1)...Zhν(t)(dxm)
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converge almost surely to the
∫

g(x1, ..., xm)
∏m

j=1 µt(dxj) as h → 0. But by Proposition
2.1 (iv) the random variables ηh have uniformly bounded variances (second moments),
which implies that also the expectations of ηh converge to the expectation of its point-wise
limit.

4. Proofs.

Proof of Theorem 3.1.
(i) By Lemma A3, the process

Mg(t) = Mg(t;h) = fg(Zhν(t))− fg(hν)−
∫ t

0

Λhfg(Zhν(s)) ds (4.1)

is a martingale for any g ∈ Cc(X).
By Proposition 2.3 we can choose a sequence of positive numbers tending to zero such

that the family Zhν(t) is weakly converging as h → 0 and belong to this sequence. Let us
denote the limit by µt and prove that it satisfies (1.20). The positivity of µt follows from
the corresponding properties of Zhν(t).

By Skorokhod’s theorem, we can and will assume that Zhν(t) converges to µt almost
surely. The idea now is to pass to the limit in equation (4.1). Let us show first that
martingale (4.1) tends to zero almost surely. To this end let us estimate the quadratic
variation [Mg(t)] of the martingale (4.1). Let Π = {s1 < s2 < ...} denote the (random) set
of jumps of Mg(t) caused by the jump part Gh

≤k of Λh. As the number of these jumps is
almost surely finite for any h > 0, one has

[Mg(t)] =
∑

sj≤t

(∆fg(Zhν(sj)))2 +
∑

sj≤t

N(j)∑

i=1

[M i
g(sj)−M i

g(sj−1)], (4.2)

where ∆Z(s) = Z(s)−Z(s−) denotes the jump of a process Z(s) and [M i
g(sj)−M i

g(sj−1)]
are the quadratic variations of the free motion of each particle i = 1, ..., N(j) that is present
between sj−1 and sj . By (C2), the number of particles created in one go is bounded, and
hence it follows from (1.14) that

|∆fg(Zhµ(sj))|2 ≤ ‖g‖2(m0 + 2k)2h2 (4.3)

for any sj . As the number of jumps on the interval [s, t] is controlled by the product of
(t − s) and the maximal intensity on [0, T ] (see e.g. [Br]), and the expectation of the
intensity is of order 1/h by (2.3), it follows that the first term in (4.2) tends to zero almost
surely as h → 0. Next, the expectation of [M i

g(t)−M i
g(s)] is uniformly of order O(t−s)h2,

because (1.10) is a martingale for f = g and by Ito’s formula for the quadratic variation
[Mt] = [g(zx

t )] one has

[Mt] =
1
h2

[M i
g(t)] = g2(zx

t )− g2(x)− 2
∫ t

0

g(zx
s−)(Ag)(zx

s−) ds− 2
∫ t

0

g(zx
s−) dMt. (4.4)
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Since the maximum of the number of particles is of order 1/h almost surely, it implies that
the second term in (4.2) also tends to zero almost surely as h → 0. As [Mg] tends to zero
almost surely, we conclude that the martingale (4.1) tends to zero almost surely.

As the first two terms on the r.h.s. of (4.1) tend obviously to the first two terms on
the l.h.s. of (1.20), to prove the statement (i) it remains to show that the integral on the
r.h.s. of (4.1) tends to the last integral on the l.h.s. of (1.20).

To this end, let us observe that

|Λhfg(Zhν(s))− Λfg(Zhν(s))| → 0, h → 0, (4.5)

uniformly for s ∈ [0, t], because by (1.16) and Lemma A2, for any η = δv1 + ... + δvm

Λhfg(hη) = (A(g), hη) +
k∑

l=0

1
l!

∫
[g+(y)− g(z1)− ...− g(zl)]P (z1, ..., zl; dy)

l∏

j=1

(hη(dzj))

+
∑

Γ

αΓhl−p

∫
(g+(y)− γ1g(z1)− ...− γpg(zp))P (z1, ..., z1, ..., zp, ..., zp; dy)

p∏

j=1

(hη(dzj)),

and all terms in the
∑

Γ tend to zero, as all

hl−p

∫

z1,...,zp,y

P (z1, ..., z1, ..., zp, ..., zp; dy)
p∏

j=1

(hη(dzj)) (4.6)

tend to zero as h → 0 uniformly for all η ∈M+
δ (X) with uniformly bounded fL(hη).

When (4.5) is proved, it remains to show that

|Λfg(Zhν(t))− Λfg(µt)| → 0,

or more explicitly that the integral

∫ t

0

ds

∫
(g+(y)− g+(z))P (z; dy)[µ̃⊗s (dz)− Z̃hν(s)⊗(dz)] (4.8)

tends to zero as h → 0. But from a weak convergence it follows (see e.g. [EK]) that ZNh(s)
converges to µs for almost all s ∈ [0, t]. Hence we need to show that

∫
P (z; dy)[µ̃⊗s (dz)− Z̃hν(s)⊗(dz)] (4.9)

tends to zero as h → 0 under condition that Zhν(t) weakly converges to µt (then the
convergence of (4.8) to zero would follow from the dominated convergence theorem).

To prove (4.9) decompose the integral in (4.9) into the sum of two integrals by decom-
posing the domain of integration into the domains {z = (z1, ..., zm) : max L(zj) ≥ K} and
its complement. On the second domain, the integrand is uniformly bounded and hence
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the weak convergence of Zhν(s) to µt ensures the smallness of the l.h.s. of (4.9). Hence
we need only to show that for any l, by choosing K arbitrary large, we can make

∫

L(z1)≥K

L(z1)[
l∏

j=1

µs(dzj) +
l∏

j=1

Zhν(s)(dzj)]

arbitrary small. But this integral does not exceed

K

Kβ

∫
(L(z1))β [

l∏

j=1

µs(dzj) +
l∏

j=1

Zhν(s)(dzj)],

which is finite and tends to zero as K →∞ due to Proposition 2.3.
(ii) This follows from the corresponding estimate of the approximating process Zhν(s).
(iii) As the approximations Zhν are clearly L-preserving whenever the transition kernel

P is, we only need to show that

lim
h→0

∫
L(x)(µt − Zhν(t))(dx) = 0. (4.10)

But this is done as above. Decomposing the domain of integration into two parts: {x :
L(x) ≤ K} and its complement, we observe that the required limit for the first integral is
zero due to the weak convergence of Zhν(t) to µt, and on the second part both integrals
from (4.10) can be made arbitrary small by choosing K large enough, due to the Proposition
2.3.

(iv) It follows from (1.20) that (g, µt) is an absolutely continuous function of t for
any g ∈ D(A) and that (1.19) holds almost surely. Next, a straightforward approximation
argument shows that (g, µt) is continuous for all g ∈ C0(X). And this implies that for
g ∈ D(A), the r.h.s. of (1.19) is a continuous function of t, because one can write P (z; dy) =
P (z; dy)χ(z)+P (z; dy)(1−χ(z)) with χ(z) is a smoothed version of the indicator 1L(.)≤r,
and then the integral of the first function is continuous by the above and the integral
of the second function can be made arbitrary small by choosing r large enough (due to
(3.1)). This implies (1.19). Equation (1.21) follows then by general Lemma A4 from the
Appendix.

(v) This is the same as (iv).
Proof of Theorem 3.2. (i) A straightforward calculation shows that if (etAf)(x) =

f(φt(x)), where φt, −∞ < t < ∞, is a group of homeomorphisms of X, then

(f, e−tA?

π(etA?

ν)) =
∫ ∫

(f+(φ−1
t (y))− f+(z))P (φt(z); dy)ν⊗̃(dz). (4.11)

Hence, if νt is norm-continuous in t, then e−tA?

π(etA?

νt) is also norm-continuous, because
the mappings ν(dx) 7→ g(x)ν(dx) and ν 7→ ∫

p(x, .)ν(dx) are both norm continuous for
any bounded measurable g and any weakly continuous transition kernel p(x, .) with a
bounded intensity (our transition kernel P (z; .) is of course not bounded, but all tails
vanish uniformly due to (3.1)).
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Next, from (1.23) with the integral understood in the weak sense it follows that νt is
absolutely continuous in the sense of the norm-topology onM(X), and hence by the above,
the function under the integral on the r.h.s. of (1.23) is also continous in the sense of the
norm-topology. This implies (3.3) by a remark given after Lemma A1 of the Appendix.

By (i), Lemma A1 from the Appendix (see also Remark (ii) to this Lemma) can be
applied to the measure (1+L)(x)(ν1

t − ν2
t )(dx). Consequently, denoting by ft a version of

the density of ν1
t − ν2

t with respect to |ν1
t − ν2

t | from Lemma A1 yields
∫

(1 + L)(x)|ν1
t − ν2

t |(dx) = ‖(1 + L)(ν1
t − ν2

t )‖

=
∫

(1 + L)(x)|ν1
0 − ν2

0 |(dx) +
∫ t

0

ds

∫

X

fs(x)(1 + L)(x)(ν̇1
s − ν̇2

s )(dx).

By (3.3) the last integral equals

∫ t

0

ds

k∑

l=1

∫ ∫ (
[e−sA(fs(1 + L))]+(y)− [e−sA(fs(1 + L))]+(z)

)
P (z; dy)

×
l∑

j=1

esA?

(ν1
s − ν2

s )(dzj)
j−1∏

i=1

(esA?

ν2
s )(dzi)

l∏

i=j+1

(esA?

ν1
s )(dzi). (4.12)

Let us pick up arbitrary l ≤ k and j ≤ l and estimate the corresponding term in the sum
(4.12). It equals

∫ ∫ (
[e−sA(fs(1 + L))]+(y)− [e−sA(fs(1 + L))]+(z)

)
P (z; dy)

×(e−sAfs)(zj)|esA?

(ν1
s − ν2

s )|(dzj)
j−1∏

i=1

(esA?

ν2
s )(dzi)

l∏

i=j+1

(esA?

ν1
s )(dzi), (4.13)

where we used Remark (iii) after Lemma A1. As L is non-increasing by P (z; dy),
(
[e−sA(fs(1 + L))]+(y)− [e−sA(fs(1 + L))]+(z)

)
(e−sAfs)(zj)

≤ (e−sA(1 + L))+(y)− (e−sAfs)(zj)[e−sA(fs(1 + L))]+(z)

≤ m0 + 2k + (e−sAL)+(z)− (e−sAL)(zj)−
∑

i6=j

(e−sAfs)(zj)(e−sAfs)(zi)(e−sAL)(zi)

≤ m0 + 2k + 2
∑

i6=j

L(zi),

where the constant m0 is from condition (C2) and where we used that e−sAL = L (because
L(q, v) depends on v only). Hence (4.13) does not exceed

∫
(m0 + 2k + 2

∑

i 6=j

L(zi))(k + Lα(zj) +
∑

i 6=j

Lα(zi))|µs − νs|(dzj)
j−1∏

i=1

νs(dzi)
l∏

i=j+1

µs(dzi).
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Consequently, by (3.1), the integral (4.12) does not exceed

a(r, T )
∫ t

0

ds

∫
(1 + L)(x)|µs − νs|(dx)

with some constant a(r, T ), which implies (3.4) by Gronwall’s lemma. Proof of Theorem
3.2 is complete.

Proof of Theorem 3.3. Consider only the case α > 0 (the case α = 0 being similar).
Let µ1

t and µ2
t be any two solutions having the same initial conditions µ1

0 = µ2
0. By

Theorem 3.1 (iv) they are also weakly mild solutions. Hence

‖µ1
t − µ2

t‖ = sup
‖g‖=1

(g, µ1
t − µ2

t ) ≤ sup
g

∫ t

0

(e(t−s)Ag, π(µ1
s)− π(µ2

s)) ds

≤ sup
g

k∑

l=1

∫ t

0

ds

∫

z,y

((e(t−s)Ag)+(y)− (e(t−s)Ag)+(z))P (z, dy)

×
l∑

j=1

(µ1
s − µ2

s)(dzj)
j−1∏

i=1

µ2
s(dzi)

l∏

i=j+1

µ1
s(dzi)

≤ C

k∑

l=1

∫ t

0

ds

∫

z

(1 + L)+(z))
l∑

j=1

|µ1
s − µ2

s|(dzj)
j−1∏

i=1

µ2
s(dzi)

l∏

i=j+1

µ1
s(dzi)

with some constant C, and by symmetry and since (L, µj
s) are uniformly bounded, it follows

that

‖µ1
t − µ2

t‖ ≤ C

∫ t

0

(1 + Lα, |µ1
s − µ2

s|) ds

with some other constant C. Dividing the integral into two parts with L(z) ≥ K and
L(z) < K and using (3.5) yields

‖µ1
t − µ2

t‖ ≤ C

∫ t

0

(1 + Kω)‖µ1
s − µ2

s‖ ds + C̃(1 + Kα) exp{−ωKα},

which by Gronwall’s lemma yields

‖µ1
t − µ2

t‖ ≤ C̃(1 + Kα) exp{−ωKα} exp{C(1 + Kα)t}.

For t ≤ ω/C, we can pass to the limit K →∞ to get zero on the r.h.s. of this inequality,
which proves the uniqueness stated in Theorem 3.3. To get the existence in the required
class of solutions, we notice that the statement and the proof of Proposition 2.3 remains
true if one takes the function exp{ωLγ} instead of Lβ there. Hence (3.5) holds for any T
whenever it holds for T = 0.
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5. Regularity of solutions.

We shall give here two results on the regularity of the solutions to kinetic equations
first being devoted to the case of a smoothing Bv and another to the case of Bv generating
a deterministic flow. We shall assume the following additional assumption on our model:

(C4) Q = Rd (most of the results are easily generalized to the case when Q is a finite-
dimensional connected Riemannian manifold with the Lebesgue volume form dq, or even
for more general models with X being a fibre bundle over a manifold Q) and the jumps
are deterministic in q, i.e.

P (q1, v1, ..., ql, vl; dp1dw1...dpmdwm)

= ηl(q1, ..., ql)δ(p1 − ωl
1(q1, ..., ql))...δ(pm − ωl

m(q1, ..., ql))Π(v1, ..., vl; dw1...dwm), (5.1)

where Ω(q) = {ωl
j} is a continuous mapping from SQ to itself such that all points in

Ω(q1, ..., ql) always belong to the convex hull of the set {q1, ..., ql} and η = {ηl} is a
collection of non-negative continuous symmetric functions having support on the set {q =
(q1, ..., ql) : max |qi − qj | < K} with some K < ∞.

In the first case we shall look for the solutions in the form µt(q, dv)dq, where each µt

is a transition kernel from Q to V , i.e. µt belongs to the positive cone L1(Q,M+(V )) of
the Banach space L1(Q,M(V )) with the norm

‖µ(., .)‖ =
∫

Q

‖µ(q, .)‖ dq =
∫

Q

∫

V

|µ(q, dv)| dq.

The Banach space L1(Q,M(V )) is isometrically embedded in the Banach spaceM(X) and
in the future, with some abuse of notation, we shall identify the elements of L1(Q,M(V ))
with their images in M(X). Let us denote by prQ the projection in M(Q × V ) on the
first variable, i.e. (prQµ)(dq) =

∫
V

µ(dq dv). Clearly µ ∈ L1(Q,M(V )) if and only if
prQµ ∈ L1(Q).

Theorem 5.1. Under the conditions of Theorem 3.1, suppose additionally that for
all t > 0 and v ∈ V ,

etB?
v (M(Q)) ⊂ L1(Q),

etB?
v defines a strongly continuous semigroup (of contraction) on L1(Q) and prQetB?

v is a
compact operator M(X) 7→ L1(Q). Then any solution µt of (1.20), (3.1) with an initial
condition µ0 from L1(Q,M(V )) belongs to L1(Q,M(V )) for all t, and t 7→ prQµt is a
norm continuous function. Moreover, under conditions of Theorem 3.3, there exists a
unique solution satisfying (3.5).

Remark. For the conditions on Bv of the Theorem to hold, it is enough to assume that
for all v operator Bv defines a Feller semigroup on Q with a continuous Green function
G(t, q, q0; v) such that its derivative with respect to q0 exists and is uniformly bounded
for any t. The basic examples of such processes are given by non-degenerate diffusions,
regular degenerate diffusions in the sense of [Ko5] and stable-like jump diffusions whose
Green function was constructed in [Ko5], [Ko6], see also the appendix to [K1] and review
[JS].
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Proof. Uniqueness is a consequence of Theorem 3.4, and all other statements follow
from Lemma A4 (ii), (iii), or more precisely its simple modification with prQµt considered
instead of µt everywhere in the arguments of this Lemma.

Theorem 5.2. Suppose the conditions of Theorem 3.2 hold, Bv generates a flow of
diffeomorphisms on Q, i.e.

(etB?
v (g ⊗ h))(q, v) = h(v)g(φv

t (q)), (5.2)

where φv
t is a group of diffeomorphisms of Q and moreover the mapping π preserves the

Banach subspace L1(X) ⊂M(X). Then for any µ0(q, v) from L1(X) ⊂M(X)) such that

∫ ∫
(1 + L1+α)(v)µ0(q, v) dvdq < ∞, (5.3)

there exists a unique weak solution of the corresponding kinetic equations with initial data
µ0(q, v) and it belongs to L1(X) for all times.

Proof. Since uniqueness follow from Theorem 3.2, one only needs to show that there
exists a solution that belongs to L1(X). This can be done in two steps by the following
well known procedure (see e.g. [LM]). First consider an approximation to our transition
kernel P by the kernels

PM (z1, ..., zl; .) =
{

P (z1, ..., zl; .), ∀j L(zj) ≤ M
(L+(z1, ..., zl))−1P (z1, ..., zl; .) otherwise.

For any finite M , the transition kernel PM is uniformly bounded, and hence the r.h.s. of
(3.3) is a uniformly (in t) Lipshitz continuous function of νt, which one sees by inspection
from the explicit formula (4.11). Consequently, any standard approximation procedure
leading to a solution of (3.3) (Picard’s method, or Euler’s broken lines) yields a unique
solution of (3.3). Hence, as the initial condition belongs to L1(X) and both mappings
exp{tA?} and π preserve this space, it follows that all approximations and hence the
solution µM

t (q, v)dqdv itself belong to this space for all times. At last, condition (3.1)
ensures that the family µM

t is uniformly bounded and moreover, from (3.3) one concludes
that ‖µM

t −µM
s ‖ is of order O(t−s) uniformly for all M . Consequently, by Askoli’s theorem,

there exists a sequence Mn → ∞ as n → ∞ such that the corresponding solutions µMn
t

converge as a family of continuous functions on [0, T ] with values in the Banach space
L1(X). The limit clearly solves (3.3) and belongs to L(X). Theorem is proved.

Remark. The corresponding results in L1(Q,M(V )) are not clear for Bv from (5.2),
because L1(Q,M(V )) is not preserved by exp{tB?

v} with such Bv.

6. Examples: k-nary Boltzmann and Smoluchovski equations.

As a basic example, let us distinguish the processes that combine pure coagula-
tions of no more than k particles, spontaneous fragmentation in no more than k pieces,
and collisions (or collision breakages) of no more than k particles (with an arbitrary
k). These processes are specified by a Feller generator A, by the transition kernels
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P l
1(z1, ..., zl) = Kl(z1, ..., zl; dy), l = 2, ..., k, called the coagulation kernels, the transi-

tion kernels P 1
m(z; dy1...dym)= Fm(z; dy1...dym), m = 2, ..., k, called the fragmentation

kernels and the kernels

P l
l (z1, ..., zl; dy1...dyl) = Cl(z1, ..., zl; dy1...dy2), l = 2, ..., k,

called the collision kernels, all other Pm
l are supposed to vanish. Then equation (1.19)

takes the form

d

dt
(g, µt) = (Ag, µt) +

k∑

l=2

1
l!

∫

z1,...,zl,y

[g(y)− g(z1)− ...− g(zl)]Kl(z1, ..., zl; dy)
l∏

j=1

µt(dzj)

+
k∑

m=2

∫

z,y1,...,ym

[g(y1) + ... + g(ym)− g(z)]Fm(z; dy1...dym)µt(dz)

+
k∑

l=2

1
l!

∫
[g(y1) + ... + g(yl)− g(z1)− ...− g(zl)]Cl(z1, ..., zl; dy1...dyl)

l∏

j=1

µt(dzj). (6.1)

Moreover, suppose L̃(q, v) is |q|2 (or some smoothed version of |q|), and with some function
L on V that is preserved by the kernels K, F, C, which means that, say, the measures
Kl(z1, ..., zl; .) are supported on the set {y : L(y) = L(z1) + ... + L(zl)}. For this model
condition (C2) is clearly satisfied. The following two basic particular cases of this model
are to be distinguished.

(i) Q = Rd, V = R+, A = Bv is a smoothing operator from Theorem 5.1 (see also
Remark after this Theorem) and L(v) = v is interpreted as a mass of a particle. Then
our model describes a k-nary analog of a spatially non-trivial Smoluchovski’s coagulation-
fragmentation model (with possible collision-breakage specified by the kernels Cl, see [CR],
[KK], [Sa] for a physical discussion of collision breakage and [LW], [Ko3] for a mathematical
treatment of the corresponding problem with a discrete mass distribution) with a mollifier.
To write it in a more familiar form let us assume for simplicity that no collision breakage
takes place, i.e. all Cl vanish and that the the measures Kl and Fl have densities with
respect to Lebesgue measure on the manifolds in the phase space arising from the conser-
vation of mass property. Taking into account also (5.1), one can then rewrite (6.1) in the
form

d

dt
(g, µt) = (Bvg, µt) +

k∑

l=2

∫ ∞

0

...

∫ ∞

0

l∏

j=1

µt(qj ; dvj)
∫

Rdl

dq1...dql

ηl(q)[g(Ω(q), v1 + ... + vl)− g(q1, z1)− ...− g(ql, zl)]Kl(v1, ..., vl)+
k∑

m=2

∫

Σ

dv1...dvm

∫
dqµt(q; dv)γ(q)[g(q, v1)+...+g(q, vm)−g(q, v1+...+vm)]Fm(v1, ..., vm),

(6.2)
where

∫
Σ

dv1...dvm denotes the Lebesgue integral over the symplex

Σ = {{vi ≥ 0}m
i=1 : v1 + ... + vm = v}
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and where γ, Kl, Fm are some non-negative symmetric functions. Assuming µt have densi-
ties with respect to Lebesgue measure dv one can easily rewrite this equation in the strong
form used e.g. in [Am] or [LW]. The results on the well-posedness and the propagation
of chaos property that follow from Theorem 5.1 and Corollary to Theorem 3.3 are new
for equation (6.2) even for the case of a binary pure coagulation- fragmentation model,
i.e. if Kl, Fl do not vanish only for l = 2. For the binary pure coagulation-fragmentation
model without a mollifier (the corresponding equation of type (6.5) below) some results on
the existence of the solution are obtained in [LW] for bounded domains and under some
additional monotonicity assumptions on the fragmentation kernel (the arguments of [LW]
being based on the approach from [PL]), and the well-posedness is proved for uniformly
bounded K2, F2 in [Am]. In both [LW] and [Am], operator A = Bv is a non-degenerate dif-
fusion with a very restrictive dependence on v. The corresponding spatially homogeneous
model is of course much better understood (see [DS], [Ko4], [No]).

(ii) Q = V = Rd, L = v2 is the kinetic energy of a particle, all Kl and Fl vanish,
A = Bv = v ∂

∂q , (5.1) holds and transition kernels Π in (5.1) preserve the total momentum
and energy and are invariant under shifts and permutations of vj . Then equation (6.1)
takes the form (see (A22)):

d

dt
(g, µt) = (v

∂

∂q
g, µt) +

k∑

l=2

1
l!

∫

S
d(l−1)−1
Γ,v

∫

Rdl

×(g+(Ω(q),v − 2(v,n)n)− g+(q,v))η(q)Bl({vi − vj}l
i,j=1; dn)µt(q1; dv1)...µt(ql; dvl).

(6.3)
One can also write it in the strong form using (A24). Equation (6.3) is a k-nary analog of
the (generalized, see e.g. [LM],[MT]) Boltzmann equation with a mollifier. Theorem 5.2
implies that if (C4) holds for Ω and η, and Bl in (6.3) has the form Bl({vi−vj}l

i,j=1, n) dn,

where dn is Lebesgue measure on S
d(l−1)−1
Γ,v and Bl is a continuous function such that

|Bl({vi − vj}l
i,j=1, n)| ≤ C

∑

i 6=j

‖vi − vj‖2α

with some constants C > 0, α ∈ [0, 1], then for any µ0(q, v) ∈ L1(X) such that
∫ ∫

(1 + |v|2(α+1))µ0(q, v) dvdq < ∞

there exists a unique global solution of the weak kinetic equation (6.3) such that

sup
t∈[0,T ]

∫ ∫
(1 + |v|2(α+1))µt(q, v) dvdq < ∞ (6.4)

for any T > 0. For the case of a usual binary Boltzmann equation with a mollifier (k = 2,
α = 1/2 in (6.3)) the uniqueness condition (6.4) is a slight improvement to the classical
theorem, where the existence of the fourth moment is required, see reviews and references
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in [LM], and a more recent treatment in [AG], where mollified Boltzmann is called (a
bit misleadingly) the generalized Boltzmann . For recent developments in the theory of
spatially homogeneous Boltzmann equation we refer to [Vi] and [MW].

To conclude, let us show how the classical kinetic equations are obtained (heuristically)
from the regular kinetic equations considered in this paper. Suppose instead of ηl we are
given a family ηε

l of functions such that for each l, this family converges weakly to the
measure σδDiag on SQl, where δDiag is the δ-measure of the diagonal set of Ql and σ is a
continuous function on Q, i.e.

lim
ε→0

∫

Ql

f(q1, ..., ql)ηε
l (q1, ..., ql)dq1...dql

=
∫

Ql

f(q1, ..., ql)σ(q1)δDiag(dq1...dql) =
∫

Q

f(q, ..., q)σ(q)dq

for all continuous f ∈ Cb(SQ). Performing a formal limit as ε → 0 in the kinetic equation
(1.19) leads to the following kinetic equation in weak form

d

dt

∫

V

g(q, v)µt(q, dv)

=
∫

V

(Bvg)(q, v)µt(q, dv) +
∫

v,w

(g+(q,w)− g+(q,v))Π(v; dw)σ(q)µ⊗̃t (q, dv). (6.5)

A rigorous analysis of this limiting procedure is far from being trivial (even for classi-
cal Boltzmann equation the well-posedness is still open, see e.g. [Ma], [PL], [AV] for a
discussion of this problem) and will be discussed in a separate publication.

Appendix.

We collect here some auxiliary results used in the main text.
1. A tool for dealing with the problem of uniqueness. This is based on the following

result that is proved in [Ko4].
Lemma A1. Let Y be a measurable space and the mapping t 7→ µt from [0, T ] to

M(Y ) is continuously differentiable in the sense of the norm in M(Y ) with a (continuous)
derivative µ̇t = νt. Let σt denote a density of µt with respect to its total variation |µt|, i.e.
the class of measurable functions taking three values −1, 0, 1 and such that µt = σt|µt| and
|µt| = σtµt almost surely with respect to |µt|. Then there exists a measurable functions
ft(x) on [0, T ]× Y such that ft is a representative of class σt for any t ∈ [0, T ] and

‖µt‖ = ‖µ0‖+
∫ t

0

ds

∫

Y

fs(y)νs(dy). (A1)

Remarks. (i) To facilitate the application of this result, it is worth noticing that (as
one easily checks) if Y is a locally compact set, µ̇t = νt holds in the weak sense and νt

is continuous in the sense of the norm topology of M(Y ), then µ̇t = νt holds also in the
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strong sense. (ii) Suppose the assumptions of Lemma A1 hold and L(y) is a measurable,
non-negative and everywhere finite function on Y such that ‖Lµs‖ and ‖Lνs‖ are uniformly
bounded for s ∈ [0, t]. Then (A1) holds with Lµt and Lνt instead of µt and νt respectively.
In fact, though s 7→ Lνs may be discontinuous in the sense of norm, one can write the
required identity first with the space Ym instead of Y , where Ym = {y : L(y) ≤ m},
and then pass to the limit as m → ∞. (iii) We shall need also the following obvious
transformation property of densities. Let Y be a measurable space and s : Y 7→ Y is
a measurable bijection with a measurable inverse s−1. Denote by S and S? the induced
transformations on bounded measurable functionds and finite measures defined by

(Sf)(x) = f(s(x)), (f, S?µ) = (Sf, µ).

Let X+A+(µ)∪A−(µ) denote the Hahn decomposition of X defined by the signed measure
µ. Then clearly

A±(S?µ) = s(A±(ν)).

Consequently, if σ(µ) denote a density of µ with respect to its total variation |µ|, then
(σ(S?µ))(x) = (S−1σ(µ))(x) = (σ(µ))(s−1(x)).

2. A combinatorial identity. The following identity is used in our derivation of kinetic
equations and its (very simple) proof can be found again in [Ko4]. We shall denote by δx

the Dirac measure at x. By a Young scheme Γ we mean a collection Γ = {γ1, ..., γl} of
natural numbers such that 1 ≤ γ1 ≤ ... ≤ γl. Let h > 0 be a positive parameter.

Lemma A2. For any natural k, there exist constants αΓ parametrized by all Young
schemes Γ = {γ1, ..., γl} with γ1 + ... + γl = k such that for any natural n, f ∈ Bsym(Xk)
and a collection of points x1, ..., xn in X

hk
∑

I⊂{1,...,n},|I|=k

f(xI) =
1
k!

∫
f(y1, ..., yk)

k∏

j=1

(hδx1 + ... + hδxn)(yj)

+
∑

Γ

αΓhk−l

∫
f(y1, ..., y1, y2, ..., y2, ..., yl, ..., yl)

l∏

j=1

(hδx1 + ... + hδxn)(yj), (A2)

where
∑

Γ is the sum over all Young schemes Γ = {γ1, ..., γl} such that γ1 + ...+γl = k and
γl > 1 (or, equivalently, l < k), and f(y1, ..., y1, y2, ..., y2, ..., yl, ..., yl) means that the first
γ1 arguments of f are equal to y1, the next γ2 arguments are equal to y2, etc. Moreover,
if f is non-negative, then the l.h.s. of (A2) does not exceed the first term of the r.h.s. of
(A2).

3. On the generators of Markov processes. To give a correct description of our basic
model of k-nary interactions, we need the following corollary of the general theory of
Markov processes, whose proof we sketch here for completeness.

Lemma A3. Suppose
(i) X is a locally compact metric space,
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(ii) A is an operator in Cb(X) with a separable and separating domain D(A) such
that the martingale problem is well posed for it, i.e. for any x ∈ X there exists a unique
process zx

s with sample paths in DX [0,∞) such that

Mt = f(zx
t )− f(x)−

∫ t

0

Af(zx
s ) ds (A3)

is an Ft-martingale for all f ∈ D(A) with M0 = 0 almost surely, and zx
s is a strong Markov

process on X,
(iii) q(x, .) is a transition kernel on X which is continuous with respect to the weak

topology of M+(X) and such that q(x, {x}) = 0 for all x,
(iv) there exists a continuous non-negative function ψ on X such that the intensity

q(x) = q(x,X) is uniformly bounded on all sets Ua = {x : ψ(x) ≤ a}, and moreover
Gψ(x) ≤ b + cψ(x) for all x and some constants b, c ≥ 0, where

Gf(x) =
∫

(f(y)− f(x))q(x, dy), (A4)

(v) there exists a non-decreasing sequence of non-negative functions ψm ∈ D(A) that
converges point-wise to ψ as m → ∞ and such that with Aψm ≤ 0 for all m and the
sequence Aψm converges point-wise to some function (which can be naturally denoted by)
Aψ.

Then
(i) for the operator A+G on Cb(X) with domain D(A), the martingale problem is well

posed, i.e. for any x ∈ X there exists a unique process Zx
s with sample paths in DX [0,∞)

such that

Mt = f(Zx
t )− f(x)−

∫ t

0

(A + G)f(Zx
s ) ds (A5)

is an Ft-martingale for all f ∈ D(A) with M0 = 0 almost surely, and this Zx
s is a strong

Markov process on X; the corresponding semigroup Ttf(x) = Ef(Zx
t ) is a semigroup of

contractions on Cb(X);
(ii) the process

ψ(Zx
t )− ψ(x)−

∫ t

0

(A + G)ψ(Zx
s ) ds (A6)

is an Ft-martingale vanishing at t = 0 almost surely, and for arbitrary positive T and r

P

(
sup

t∈[0,T ]

ψ(Zx
t ) > r

)
≤ C(T )

r
, (A7)

where C(T ) depends only on T ,b, c and ψ(x).
Sketch of the proof. Instead of G, consider its approximation Gn defined as

(Gnf)(x) =
∫

(f(y)− f(x))1̃ψ(.)(x)≤nq(x, dy),
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where 1̃ψ(.)≤n is a continuous function X 7→ [0, 1] that coincides with 1ψ(.)≤n on the set of
all x where ψ(x) /∈ [n, n + 1]. As each Gn is bounded, the statement (i) holds for A + Gn

and the corresponding process Zx,n
t by the standard perturbation theory (see Theorems

10.3, 4.6 and 4.2 (c) from Chapter 4 of [EK]). Moreover, each Gn enjoys the same property
Gnψ(x) ≤ b + cψ(x). Let us show first that

ψ(Zx,n
t )− ψ(x)−

∫ t

0

(A + Gn)ψ(Zx,n
s ) ds (A8)

is a martingale and
Eψ(Zx,n

t ) ≤ (ψ(x) + tb)ect. (A9)

To this end, let us observe that Gnψm(x) ≤ ω(n) with some constant ω(n) (depending on
n). As ψm ∈ D(A), and hence

Eψm(Zx,n
t ) ≤ ψm(x) +

∫
E(A + Gn)ψm(Zx,n

s ) ds. (A10)

it follows that Eψm(Zx,n
t ) is uniformly bounded (for a given n). Consequently we can pass

to the limit as m → ∞ in (A10) (using monotone and dominated convergence theorems
on the l.h.s. and r.h.s. of (A10) respectively) to obtain

Eψ(Zx,n
t ) ≤ ψ(x) +

∫
EGnψ(Zx,n

s ) ds ≤ ψ(x) +
∫ t

0

E(c + bψ(Zx,n
s ) ds,

which leads to (A9) by Gronwall’s lemma. By a straightforward limiting argument one
shows now that (A7) is a martingale for any n.

Hence, for any T and with probability arbitrary close to one, the processes ψ(Zx,n
t )

are uniformly bounded for t ∈ [0, T ], and hence A + Gn form a localizing sequence for
A + G such that Theorem 6.3 from Chapter 4 of [EK] can be applied to get the well-
posedness of the martingale problem for A + G and hence the existence and uniqueness of
the corresponding Markov process. At last, passing to the limit as n → ∞ in (A8),(A9)
yields the same properties for ψ(Zx

t ), and hence using the Doob maximal inequality for
martingales yields (A7).

4. Weak equations on dual semigroups. Suppose A is a generator of a strongly con-
tinuous contraction semigroup etA on a Banach space B with the (dense in B) domain
D(A). Let D(π) be a subspace of the dual Banach space B? and let π : D(π) 7→ B? be
a (possibly non-linear) measurable mapping. We want to discuss the two basic notions of
the generalized solutions to the formal equation

µ̇t = A?µt + π(µt) (A11)

in B?. One says that a mapping t 7→ µt from [0, T ] to B? is a weak solution of (A11) if

d

dt
(g, µt) = (Ag, µt) + (g, π(µt)) (A12)
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for all g ∈ D(A), and a mild (respectively weakly mild) solution to (A11) if

µt = etA?

µ0 +
∫ t

0

e(t−s)A?

π(µs) ds, (A13)

where etA?

denotes of course the dual semigroup on B? and the integral is well defined in
the sense of Riemann or Lebesgue (respectively if the integral is understood in the weak
sense, i.e. if

(g, µt) = (g, etA?

µ0) +
∫ t

0

(g, e(t−s)A?

π(µs)) ds (A14)

holds for all g ∈ B).
Remarks. (i) By the weak topology on B? we always mean the topology generated by

the duality (B, B?). More precisely, this topology is usually called the ?-weak topology.
(ii) If etA is a strongly continuous contraction semigroup on B, then etA?

is clearly a weakly
(but not necessarily strongly) continuous contraction semigroup on B?.

Lemma A4. (i) Let t 7→ µt be a weakly continuous mapping from [0, T ] to B? (with
a given µ0) such that π(µt) is well defined and is also weakly continuous. Then µt is a
weak solution to (A11) if and only if it is a weakly mild solution to (A11).

(ii) Suppose additionally that etA?

is a compact operator in the Banach space B? for
any t > 0 (i.e, it takes bounded sets to relatively compact sets and hence transforms weakly
convergent sequences into strongly convergent ones), then if µt and π(µt) are both weakly
continuous, then any weakly mild solution of (A11) is also a mild solution.

(iii) If additionally to the assumptions of (i) and (ii), there exists a closed subspace
L ⊂ B? such that etA?

(B?) ⊂ L for all t > 0 and etA?

is a strongly continuous semigroup
on L, then any solution µt of weak and mild equation from (ii) with µ0 ∈ L belongs to L
for all t and is a norm continuous function of t.

Proof. (i) In one direction the statement is straightforward. Namely, differentiating
(A14) with a g ∈ D(A) yields (A12), because

d

dt

∫ t

0

(e(t−s)Ag, νs) ds = (g, νt) +
∫ t

0

(Ae(t−s)Ag, νs) ds (A15)

for any weakly continuous νt and a g ∈ D(A). Consequently, in order to show that (A12)
implies (A14) one needs to show that if t 7→ µt and t 7→ νt are two weakly continuous
mappings from [0, T ] to B? such that

d

dt
(g, µt) = (Ag, µt) + (g, νt) (A16)

for all g ∈ D(A), then

µt = etA?

µ0 +
∫ t

0

e(t−s)A?

νs ds (A17)

in the weak sense. To show this we first observe that one shows as above (by means of
(A15)) that (A17) implies (A16). Hence it remains to show that a solution µt to (A16) is
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unique for given µ0 and νt. But to do this, it is clearly enough to show that a solution to
the homogeneous equation

d

dt
(g, µt) = (Ag, µt), g ∈ D(A), (A18)

is unique for a given µ0. To see this, one observes that if t 7→ µt is a weakly continuous
mapping from [0, T ] to B? satisfying (A18) then for any t ≤ T

d

ds
(e(t−s)Ag, µs) = 0, g ∈ D(A), s ∈ [0, t]

(the weak continuity of µt and the strong continuity of the semigroup etA are essential
when proving that this derivative is well defined). Consequently (g, µt) = (etAg, µ0) =
(g, etA?

µ0), which implies µt = etA?

µ0, because D(A) is dense in B.
(ii) The function under the integral in (A13) is uniformly bounded as π(µt) is weakly

continuous (and hence bounded) and etA?

is a contraction. Moreover, this function is a
norm-continuous function of s for 0 ≤ s < t (as etA?

is a compact operator), which implies
that the integral in (A13) is a well defined Riemann integral.

(iii) The Riemann integral in (A13) belongs to L, if µ0 ∈ L, as L is closed and the
function under the integral belongs to L for 0 ≤ s < t. This implies that µt ∈ L for all t
and moreover that µt is norm continuous, because

µt+τ − µt =
∫ t+τ

t

e(t+τ−s)A?

π(µs) ds + (eτA? − 1)
∫ t

0

e(t−s)A?

π(µs) ds,

and etA?

is strongly continuous on L.
5. Boltzmann collision kernels for k-nary interactions. Here we are interested in

mappings that take any collection v = {v1, ..., vl} of l vectors from Rd to another collection
w = {w1, ..., wl} of l vectors from Rd in such a way that the total momentum and kinetic
energy are preserved, i.e.

v1 + ... + vl = w1 + ... + wl, |v1|2 + ... + |vl|2 = |w1|2 + ... + |wl|2. (A19)

Let a d(l − 1)-dimensional plane in Rdl be defined by

Γ = {u = (u1, ..., ul) ∈ Rdl : u1 + ... + ul = 0},

and let
S

d(l−1)−1
Γ = {n ∈ Γ : ‖n‖ = |n1|2 + ... + |nl|2 = 1}.

One sees by inspection that in terms of u = {u1, ..., ul} defined by w = u + v conditions
(A19) mean that u ∈ Γ and

‖u‖2 =
l∑

j=1

u2
j = 2

l∑

j=1

(wj , uj) = 2(w,u) = −2
l∑

j=1

(vj , uj) = −2(v,u),
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or equivalently that u = ‖u‖n, n ∈ S
d(l−1)−1
Γ and

‖u‖ = 2(w,n) = −2(v,n). (A20)

In particular (v,n) ≤ 0 and denoting

S
d(l−1)−1
Γ,v = {n ∈ S

d(l−1)−1
Γ : (n,v) ≤ 0},

we conclude that for any transition kernel P (v; dw) from (Rd)l to itself that preserves the
total momentum and kinetic energy, is invariant under shifts in Rd and is symmetric with
respect to the permutations of v one has

∫

Rdl

g(w)P (v; dw) =
∫

S
d(l−1)−1
Γ,v

g(v − 2(v,n)n)B({vi − vj}l
i,j=1; dn), (A21)

where B({vi − vj}l
i,j=1; .) is a measure on S

d(l−1)−1
Γ,v that is invariant with respect to all

permutations of {v1, ..., vl}. Consequently, the k-nary extension of the spatially homoge-
neous Boltzmann equation in the weak form (equation (1.19) with P as above and without
spatial motion) has the form

d

dt
(g, µt) =

k∑

l=2

1
l!

∫

S
d(l−1)−1
Γ,v

∫

Rdl

×(g+(v − 2(v,n)n)− g+(v))Bl({vi − vj}l
i,j=1; dn)µt(dv1)...µt(dvl). (A22)

To write this equation in a more familiar form we have to reduce our attention to the
solutions µt being absolutely continuous with respect to Lebesgue measures on Rd, i.e.
having the form µt(v) dv. For simplicity, we shall assume also that the measures Bl are
absolutely continuous with respect to Lebesgue measure on S

d(l−1)−1
Γ,v . In this case, one

can rewrite (A22) (using also the symmetry) as

d

dt
(g, µt) =

k∑

l=2

1
(l − 1)!

∫

S
d(l−1)−1
Γ,v

dn
∫

Rdl

×(g(v1 − 2(v,n)n1)− g(v1))Bl({vi − vj}l
i,j=1,n)µt(v1)...µt(vl) dv1...dvl.

Changing the variables of integration, the r.h.s. of this equation can be written also as

k∑

l=2

1
(l − 1)!

∫

S
d(l−1)−1
Γ,−w

dn
∫

Rdl

g(w1)B̃l({wi − wj}l
i,j=1,n)

l∏

i=1

µt(wi − 2(w,n)ni) dwi

−
k∑

l=2

1
(l − 1)!

∫

S
d(l−1)−1
Γ,v

dn
∫

Rdl

g(v1)Bl({vi − vj}l
i,j=1,n)

l∏

i=1

µt(vi) dvi, (A23)
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where we used that |det(∂w
∂v )| = 1 (as v 7→ w is an orthogonal transformation) and where

B̃l({wi − wj}l
i,j=1,n) = Bl({wi − wj − 2(w,n)(ni − nj)}l

i,j=1,n).

Notice that (w,n) depends only on the projection of w on Γ, i.e. on the collection of
differences {wi − wj}. It is convenient now to make a different parametrization of B.
Namely, let us denote by Sd(l−1)−1 the unit sphere in Rd(l−1) and for a u = {u2, ..., ul} ∈
Rd(l−1) let ū = u2 + ... + ul ∈ Rd and

Sd(l−1)−1
u = {e = {e2, ..., el} ∈ Sd(l−1)−1 : (e,u) =

l∑

j=2

(ej , uj) ≤ 0}.

Then each n from S
d(l−1)−1
Γ or S

d(l−1)−1
Γ,v can be written as

n = (1 + |ē|)−1/2{−ē, e}

with e ∈ Sd(l−1)−1 or e ∈ S
d(l−1)−1
{v2−v1,...,vl−v1} respectively. Then the measures Bl and B̃l can

be written respectively as σl(v2−v1, ..., vl−v1; e) de and σ̃l(w2−w1, ..., wl−w1; e) de, e.g.

Bl({vi − vj}l
i,j=1,n)dn = σl(v2 − v1, ..., vl − v1; e)de.

Using also the natural notation u − z = {u2 − z, ..., ul − z} for u ∈ Rd(l−1) and z ∈ Rd

one deduces from equation (A23) that

µ̇t(z) =
k∑

l=2

1
(l − 1)!

∫

S
d(l−1)−1
z−w

de
∫

Rdl

σ̃l(u− z, e)

µt

(
z +

2(u− z, e)
1 + |ē|2 ē

) l∏

i=2

µt

(
ui − 2(u− z, e)

1 + |ē|2 ei

)
dui

−µt(z)
k∑

l=2

1
(l − 1)!

∫

S
d(l−1)−1
u−z

de
∫

Rd(l−1)
σl(u− z, e)

l∏

i=2

µt(ui) dui. (A24)

In case of binary interaction, i.e. when k = 2, one has n = 1√
2
(−e, e), e ∈ Rd and the

transformation v 7→ w takes the form

w1 = v1 − (v2 − v1, e)e, w2 = v2 + (v2 − v1, e)e.

If additionally B(v1−v2,n) depends only on ‖v1−v2‖ and |(v1−v2, e)|, then B̃ = B, σ̃ = σ
and equation (A24) becomes the standard spatially homogeneous Boltzmann equation. In
section 6 a spatially non-trivial version of equation (A24) is discussed.
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