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Abstract. The famous Black-Sholes (BS) and Cox-Ross-Rubinstein (CRR) formulas
are basic results in the modern theory of option pricing in financial mathematics. They are
usually deduced by means of stochastic analysis; various generalisations of these formulas
were proposed using more sophisticated stochastic models for common stocks pricing evolu-
tion. In this paper we develop systematically a deterministic approach to the option pricing
that leads to a different type of generalisations of BS and CRR formulas characterised by
more rough assumptions on common stocks evolution (which are therefore easier to verify).
On the other hand, this approach is more elementary, because it uses neither martingales
nor stochastic equations.

Key words. Nonexpansive maps, Bellman operator, Cox-Ross-Rubinstein and Black-
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1. Generalised CRR model: a deterministic approach.

We start with an exposition of a deterministic approach to the analysis of the standard
discrete Cox-Ross-Rubinstein model of financial market and its natural modification with
more rough assumptions on the underlying common stocks prices evolution. This discussion
leads naturally to three types of the prices of an option: hedge price, minimal price and
mean price. Next, we develop this approach to cover more general models of options, in
particularly those depending on several types of common stocks, and then consider these
models in the continuous limit deriving the multidimensional versions of the Black-Sholes
formula and more general equations proposed recently by T.Lyons in [L]. In the last section
we discuss the connection with the theory of nonexpansive mappings.

A simplest model of financial market deals with only two securities: the risk-free bonds
(or bank account) and common stocks. The prices of the units of these securities, B = (Bk)
and S = (Sk) respectively, change in discrete moments of time k = 0, 1, ... according to
the recurrent equations Bk+1 = ρBk, where ρ ≥ 1 is a fixed number, and Sk+1 = ξk+1Sk,
where ξk is an (a priori unknown) sequence taking value in a fixed compact set M ∈ R.
We denote by u and d respectively the exact upper and lower bounds of M (u and d stand
for up and down) and suppose that 0 < d < ρ < u. We shall be interested especially in
two cases:

(i) M consists of only two elements, its upper and lower bounds u and d,
(ii) M consists of the whole closed interval [d, u].
No probability assumptions on the sequence ξk are specified. Case (i) corresponds to

the CRR model and case (ii) stands for the situation when only minimal information on
the future evolution of common stocks pricing is available, namely, the rough bounds on
its growth per unit of time.
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An investor is supposed to control the growth of his capital in the following way. Let
Xk−1 be his capital at the moment k− 1. Then the investor chooses his portfolio defining
the number γk of common stock units held in the moment k − 1. Then one can write

Xk−1 = γkSk−1 + (Xk−1 − γkSk−1),

where the sum in brackets corresponds to the part of the capital laid on the bank account
(and which will thus increases deterministically). All operations are friction-free. The
control parameter γk can take all real values, i.e. short selling and borrowing are allowed.
In the moment k the value ξk becomes known and thus the capital becomes equal to

Xk = γkξkSk−1 + (Xk−1 − γkSk−1)ρ.

The strategy of the investor is by definition any sequence of numbers Γ = (γ1, ..., γn)
such that each γj can be chosen using the whole previous information: the sequences
X0, ..., Xj−1 and S0, ...Sj−1. It is supposed that the investor, selling an option by the price
C = X0 should organise the evolution of this capital (using the described procedure) in a
way that would allow him to pay to the buyer in the prescribed moment n some premium
f(Sn) depending on the price Sn. The function f defines the type of the option under
consideration. In the case of the standard European call option, which gives to the buyer
the right to buy a unit of the common stocks in the prescribed moment of time n by the
fixed price K, the function f has the form

f(Sn) = max(Sn −K, 0). (1)

Thus the income of the investor will be Xn−f(Sn). The strategy γ1, ..., γn is called a hedge,
if for any sequence ξ1, ..., ξn the investor is able to meet his obligations, i.e. Xn−f(Sn) ≥ 0.
The minimal value of the initial capital X0 for which the hedge exists is called the hedging
price Ch of an option. The hedging price Ch will be called correct (or fair), if moreover,
Xn − f(Sn) = 0 for any hedge and any sequence ξj . The correctness of the price is
equivalent to the impossibility of arbitrage, i.e. of a risk-free premium for the investor.
It was in fact proven in [CRR] (using some additional probabilistic assumptions on the
sequence ξj) that for case (i) the hedging price Ch exists and is correct. On the other
hand, it is known that when the set M consists of more than two points, the hedging price
will not be correct anymore. We shall show now using exclusively deterministic arguments
that both for cases (i) and (ii) the hedge exists and is the same for both cases whenever
the function f is nondecreasing and convex (possibly not strictly).

When calculating prices, one usually introduces the relative capital Yk defined by
the equation Yk = Xk/Bk. Since the sequence Bk is positive and deterministic, the
problem of the maximisation of the value Xn − f(Sn) is equivalent to the maximisation
of Yn − f(Sn)/Bn. Consider first the last step of the game. If the relative capital of the
investor at moment n− 1 is equal to Yn−1 = Xn−1/Bn−1, then his relative capital at the
next moment will be

Yn(γn, ξn)− f(ξnSn−1)
Bn

= Yn−1 + γn
Sn−1

Bn
(ξn − ρ)− 1

Bn
f(ξnSn−1).
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Therefore, it is clear that the guaranteed income (in terms of relative capital) in the last
step can be written as

Yn−1 − 1
Bn−1

(Bf)(Sn−1),

where the Bellman operator B is defined by the formula

(Bf)(z) =
1
ρ

min
γ

max
ξ∈M

[f(ξz)− γz(ξ − ρ)]. (2)

We suppose further the function f to be nondecreasing and convex (perhaps, not strictly),
having in mind the main example, which corresponds to the standard European call option
and where this assumption is satisfied. Then the maximum in (2) is evidently attained on
the end points of M and thus

(Bf)(z) =
1
ρ

min
γ

max [f(dz)− γz(d− ρ), f(uz)− γz(u− ρ)]. (3)

One sees directly that for γ ≥ γh (resp. γ ≤ γh), the first term (resp. the second) under
max in (3) is maximal, where

γh = γh(z, [f ]) =
f(uz)− f(dz)

z(u− d)
. (4)

It implies that the minimum in (3) is given by γ = γh, which yields

(Bf)(z) =
1
ρ

[
ρ− d

u− d
f(uz) +

u− ρ

u− d
f(dz)

]
. (5)

The mapping B is a linear operator on the space of continuous functions on the positive
line that preserves the set of nondecreasing convex functions. Using this property and
induction in k one gets that the guaranteed relative income of the investor to the moment
of time n is given by the formula Y0 − B−1

0 (Bnf)(S0) and thus his guaranteed income is
equal to

ρn(X0 − (Bnf)(S0)). (6)

The hedge strategy (the use of which guarantees him this guaranteed income) is Γh =
(γh

1 , ..., γh
n), where each γh

j is calculated step by step using formula (4). The minimal value
of X0 for which this income is not negative (and which by definition is the hedge price Ch

of the corresponding option contract) is therefore given by the formula

Ch = (Bnf)(S0). (7)

Using (4) one easily finds for Ch the following CRR formula [CRR]:

Ch = ρ−n
n∑

k=0

Ck
n

(
ρ− d

u− d

)k (
u− ρ

u− d

)n−k

f(ukdn−kS0), (8)
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where Ck
n are standard binomial coefficients. When f is defined by (1), this yields

Ch = S0Pµ

(
u

ρ

ρ− d

u− d

)
−Kρ−nPµ

(
ρ− d

u− d

)
,

where the function Pk is defined by the formula

Pk(q) =
n∑

j=k

Cj
nqj(1− q)n−j ,

the integer µ is the minimal integer k such that ukdn−kS0 > K, and it is supposed that
µ ≤ n.

If the investor uses his hedge strategy Γh = (γh
1 , ..., γh

n), then the two terms under
max in expression (3) are equal (for each step j = 1, ..., n). Therefore, in the case (i)
(when the set M consists of only two elements), if X0 = Ch, the resulting income (6) does
not depend on the sequence ξ1, ..., ξn and vanishes always, whenever the investor uses his
hedge strategy, i.e. the prize Ch is correct in that case (Cox-Ross-Rubinstein theorem).

In general case it is not so anymore. Let us give first the exact formula for the
maximum of the possible income of the investor in the general case supposing that he uses
his hedge strategy. Copying the previous arguments one sees that this maximal income is
given by the formula

ρn(X0 − (Bn
minf)(S0)), (9)

where
(Bminf)(z) =

1
ρ

min
ξ∈M

[f(ξz)− γz(ξ − ρ)]|γ=γh . (10)

Thus, in the case of general M , the income of the investor playing with his hedge strategy
will consists of the sum of the guaranteed income (6) and some unpredictable surplus (risk-
free premium), which does not exceed the difference between expressions (13) and (10).
Hence, a reasonable price for the option should belong to the interval [Cmin, Ch] with Ch

given by (7) and
Cmin = (Bn

minf)(S0). (11)

Since the value Bn
min is essentially more difficult to calculate than Bn, it may be useful to

have some simple reasonable estimate for it. Taking ξ = ρ in (10) yields (Bn
minf)(z) ≤

ρ−1f(ρz) and therefore by induction

(Bn
minf)(z) ≤ ρ−nf(ρnz). (12)

Looking at the evolution of the capital Xk as at the game of the investor with the nature (γk

and ξk are their respective controls) one can say that (for the hedge strategy of the investor)
the nature plays against the investor, when its controls ξk lie near the boundary [d, u] of
the set M (then the investor gets his minimal guaranteed income (6)) and conversely, it
plays for the investor, when its controls ξk are in the middle of M , say, near ρ. If it is
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possible to estimate roughly the probability p that ξk would be near the boundaries of M ,
one can estimate the mean income of the investor (who uses his hedge strategy) by

ρn(X0 − ((Bmean)nf)(S0)),

where
(Bmeanf)(z) = p(Bf)(z) + (1− p)

1
ρ
f(ρz)

=
1
ρ

[
p
u− ρ

u− d
f(dz) + (1− p)f(ρz) + p

ρ− d

u− d
f(uz)

]
, (13)

which gives for the mean price the following approximation

Cmean = ((Bmean)nf)(S0). (14)

Denoting by Cij
k the coefficients in the polynomial development

(ε1 + ε2 + ε3)k =
∑

i+j≤k

Cij
k εk−i−j

1 εi
2ε

j
3,

and using induction, one gets for (14) the following representation:

((Bmean)nf)(S0) =
1
ρn

∑

i+j≤n

Cij
n

(
p
u− ρ

u− d

)n−i−j

(1− p)i

(
p
ρ− d

u− d

)j

f(dn−i−jρiujS0).

(15)
For the function f of form (1), it can be rewritten as

1
ρn

∑

i,j∈P

Cij
n

(
p
u− ρ

u− d

)n−i−j

(1− p)i

(
p
ρ− d

u− d

)j

(dn−i−jρiujS0 −K),

where the set P is given by the formula

P = {i ≥ 0, j ≥ 0 : i + j ≤ n & i log
ρ

d
+ j log

u

d
> log K − log S0 − n log d}.

2. Option contracts on several common stocks.

Suppose now there is a number, say I, of common stocks whose prices Si
k, i ∈ I, k =

0, 1, ..., satisfy the recurrent equations Si
k = ξi

kSi
k−1, where ξi

j take values in compact sets
Mi with bounds di and ui respectively. The investor controls his capital by choosing in
each moment of time k − 1 his portfolio consisting of γi

k units of common stocks of the
type i, the rest of the capital being laid on the risk-free bank account. His capital at the
next time k becomes therefore

Xk = γ1
kξ1

kS1
k−1 + ... + γI

kξI
kSI

k−1 + ρ(Xk−1 − γ1
kS1

k−1 − ...− γI
kSI

k−1).
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The premium to the buyer of the option at a fixed time n will be now f(S1
n, ..., SI

n), where
f is a given nondecreasing convex continuous function on the positive octant Rn

+. For
instance, the analog of the standard European option is given by the function

f(z1, ..., zI) = max(max(0, z1 −K1), ..., max(0, zI −KI)), (15)

which describes the option contract that permits to the buyer to purchase one unit of the
common stocks belonging to any type 1, ..., I by his choice.

To simplify formulas, we reduce ourselves to the case of two types of common stocks,
i.e. to the case I = 2. Similarly to the case I = 1 one obtains a similar formula to the
guaranteed relative income of the investor in the last step of the game starting from the
relative capital Yn−1 at the time n− 1, namely

Yn−1 − 1
Bn−1

(Bf)(S1
n−1, S

2
n−1),

where the Bellman operator B has the form

(Bf)(z1, z2) =
1
ρ

min
γ1,γ2

max
ξ1∈M1,ξ2∈M2

[f(ξ1z1, ξ
2z2)− γ1z1(ξ1 − ρ)− γ2z2(ξ2 − ρ)]. (16)

In order to give an explicit formula for this operator (similar to (5)), one should make
additional assumptions on the function f . We say that a nondecreasing function f on R2

+

is nice, if the expression

f(d1z1, u2z2) + f(u1z1, d2z2)− f(d1z1, d2z2)− f(u1z1, u2z2)

is nonnegative everywhere. One easily sees for instance, that any function of the form
f(z1, z2) = max(f1(z1), f2(z2)) is nice for any nondecreasing functions f1, f2 and any num-
bers di < ui, i = 1, 2, and in particular, function (15) is nice. Clear the nice functions
constitute a linear space and the set of continuous nondecreasing convex nice functions is
a convex subset in this space, which we denote NS (nice set). Furthermore, let

κ =
(u1u2 − d1d2)− ρ(u1 − d1 + u2 − d2)

(u1 − d1)(u2 − d2)
. (17)

Lemma. If f ∈ NS and κ ≥ 0, then

(Bf)(z1, z2) =
1
ρ

[
ρ− d1

u1 − d1
f(u1z1, d2z2) +

ρ− d2

u2 − d2
f(d1z1, u2z2) + κf(d1z1, d2z2)

]
(18)

and the γh1, γh2 giving minimum in (20) are equal to

γh1 =
f(u1z1, d2z2)− f(d1z1, d2z2)

z1(u1 − d1)
, γh2 =

f(d1z1, u2z2)− f(d1z1, d2z2)
z2(u2 − d2)

.
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If κ ≤ 0 (and again f ∈ NS), then

(Bf)(z1, z2) =
1
ρ

[
u1 − ρ

u1 − d1
f(d1z1, u2z2) +

u2 − ρ

u2 − d2
f(u1z1, d2z2) + |κ|f(u1z1, u2z2)

]
,

γh1 =
f(u1z1, u2z2)− f(d1z1, u2z2)

z1(u1 − d1)
, γh2 =

f(u1z1, u2z2)− f(u1z1, d2z2)
z2(u2 − d2)

.

The proof of this lemma uses only elementary manipulations. It follows that the
operator B preserves NS and by the same induction as in the previous section one proves
that if the premium is defined by a function f ∈ NS, then the hedge price for the option
contract exists and is equal to

Ch = (Bnf)(S1
0 , S2

0). (19)

One can write down a more explicit expression (analogous to (8)). For instance, for the
simplest case κ = 0,

Ch =
1
ρn

n∑

k=0

Ck
n

(
ρ− d1

u1 − d1

)k (
ρ− d2

u2 − d2

)n−k

f(dn−k
1 uk

1z1, d
k
2un−k

2 z2). (20)

For the most important particular case, when the function f is of form (15) with I = 2
formula (20) can be written in terms of the function Pk defined above (after formula (8)).
The answer depends on the position of the integers µ and ν on the real line, where µ
(resp. ν) is the minimal (resp. maximal) integer k such that uk

1dn−k
1 S1

0 > K1 (resp.
un−k

2 dk
2S2

0 > K2). For instance, if 0 < ν < µ < n, then

Ch = S1
0Pµ

(
u1(ρ− d1)
ρ(u1 − d1)

)
−K1ρ

−nPµ

(
ρ− d1

u1 − d1

)

+S2
0Pn−ν

(
u2(ρ− d2)
ρ(u2 − d2)

)
−K2ρ

−nPn−ν

(
ρ− d2

u2 − d2

)
,

and if 0 < µ < ν < n, then

Ch = S1
0Pk

(
u1(ρ− d1)
ρ(u1 − d1)

)
−K1ρ

−nPk

(
ρ− d1

u1 − d1

)

+S2
0Pn−k+1

(
u2(ρ− d2)
ρ(u2 − d2)

)
−K2ρ

−nPn−k+1

(
ρ− d2

u2 − d2

)
,

where k is the minimal integer such that

dn−k
1 uk

1S1
0 −K1 > dk

2un−k
2 S2

0 −K2.
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This formula for for Ch is similar to (8), but even if each Mi consists of only two points,
this hedge price is not correct. As in the previous section, one can represent the maximal
income of the investor who uses his hedge strategy by the formula

ρn(X0 − (Bn
minf)(S1

0 , S2
0))

with

(Bminf)(z1, z2) =
1
ρ

min
ξ1∈M1

min
ξ2∈M2

[f(ξ1z1, ξ
2z2)−γ1z1(ξ1−ρ)−γ2z2(ξ2−ρ)]|γ1=γh1,γ2=γh2 .

(21)
The corresponding minimal price of the option is

Cmin = ((Bmin)nf)(S1
0 , S2

0). (22)

Supposing as in the previous section that one can estimate the probability p of the numbers
ξi
k to be near the boundaries of the corresponding sets Mi (the case when this probability

is different for each type of common stocks can be evidently covered in the same way) one
gets for the mean price of the option (corresponding to the mean income of the investor
playing with his hedge strategy) is

Cmean = ((Bmean)nf)(S1
0 , S2

0), (23)

where (when supposing κ = 0 as above) (Bmeanf)(z1, z2) is equal to

1
ρ

[
p

ρ− d1

u1 − d1
f(u1z1, d2z2) + (1− p)f(ρz1, ρz2) + p

ρ− d2

u2 − d2
f(d1z1, u2z2)

]
. (24)

The explicit formula for (23) is similar to (12).

3. Continuous-time limit.

As was shown in [CRR], the binomial CRR formula for option prices (8) tends to
the Black-Sholes formula under an appropriate limit procedure. We find similar limits
for formulas of the previous section. Following our methodology we make it in a simplest
way ruling out all probability theory. The only ”trace” of the geometric Brownian motion
model of Black-Sholes will be the assumption (which is clearly more rough than the usual
assumptions of the standard Black-Sholes model) that the logarithm of the relative growth
of the stock prices is proportional to

√
τ for small intervals of time τ . More exactly, if τ

is the time between the successive evaluations of common stock prices, then the bounds
di, ui of Mi are given by the formulas log ui = σi

√
τ +µiτ and log di = −σi

√
τ +µiτ , where

the coefficients µi > 0 stand for the systematic growth and the coefficients σi (so called
volatilities) stand for ”random oscillations”. Moreover, as usual, log ρ is proportional to τ ,
i.e. log ρ = rτ for some constant r ≥ 1. Let B(τ) denote the corresponding operator (16).
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Under these assumptions, the calculation of the coefficient κ from (17) and the strategies
γh from the Lemma for small τ yields

κ =
1
2

(
σ1 + σ2

2
+

µ1 − r

σ1
+

µ2 − r

σ2

)√
τ + O(τ3/2),

γhj =
∂f

∂zj
(z1, z2)(1 + O(τ), j = 1, 2.

Suppose that the coefficient at
√

τ in this formula is not negative and one can use formula
(18) for B. (In fact, the opposite assumption would lead to the same resulting differential
equation.) Calculating the coefficients of (18) for small times one obtains for (Bτf)(z1, z2)
the expression

1− rτ

2

((
σ1 + σ2

2
+

µ1 − r

σ1
+

µ2 − r

σ2

)√
τ + O(τ3/2)

)
f

(
e−σ1

√
τ+µ1τz1, e−σ2

√
τ+µ2τz2

)

+
1− rτ

2

(
1−

(
σ1

2
+

µ1 − r

σ1

)√
τ + O(τ3/2)

)
f

(
eσ1

√
τ+µ1τz1, e−σ2

√
τ+µ2τz2

)

+
1− rτ

2

(
1−

(
σ2

2
+

µ2 − r

σ2

)√
τ + O(τ3/2)

)
f

(
e−σ1

√
τ+µ1τz1, eσ2

√
τ+µ2τz2

)
.

Due to the Taylor formula, one has for any σ1, σ2:

f
(
eσ1

√
τ+µ1τz1, eσ2

√
τ+µ2τz2

)
=

1
2

∂2f

∂z2
1

(z1, z2)z2
1σ2

1τ +
1
2

∂2f

∂z2
2

(z1, z2)z2
2σ2

2τ

+f(z1, z2) +
∂f

∂z1
(z1, z2)z1(σ1

√
τ + µ1τ + σ2

1τ/2) +
∂f

∂z2
(z1, z2)z2(σ2

√
τ + µ2τ + σ2

2τ/2).

Substituting these expansions in the previous formula one sees that all terms proportional
to
√

τ vanish and therefore one can write down a differential equation for the function

Fh(t, z1, z2) = lim
n→∞

(Bn(t/n)f)(z1, z2),

which actually has the form

∂F

∂t
=

1
2
σ2

1z2
1

∂2F

∂z2
1

+
1
2
σ2

2z2
2

∂2F

∂z2
2

+ rz1
∂F

∂z1
+ rz2

∂F

∂z2
− rF (25)

with initial condition F (0, z1, z2) = f(z1, z2). Rewriting equation (25) in terms of the
function R defined by the formula

F (t, z1, z2) = e−rtR(t, rt + log z1, rt + log z2) (26)
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yields a linear diffusion equation with constant coefficients

∂R

∂t
=

1
2
σ2

1

(
∂2R

∂p2
1

− ∂R

∂p1

)
+

1
2
σ2

2

(
∂2R

∂p2
2

− ∂R

∂p2

)
.

It allows to write the solution of the Cauchy problem for equation (25) explicitly, which
yields the two-dimensional version of the Black-Sholes formula for hedging option price in
continuous time

Fh = e−rt(2π)−1

∫ ∞

−∞

∫ ∞

−∞
du1du2

×f(S1
0 exp{u1σ1

√
t+(r−σ2

1/2)t}, S2
0 exp{u2σ2

√
t+(r−σ2

2/2)t}) exp{−(u2
1+u2

2)/2}. (27)

The same procedure for the one-dimensional model from section 2 gives for the continuous
version of (8) the standard Black-Sholes formula

Ch = e−rt(2π)−1/2

∫ ∞

−∞
f(S0 exp{uσ

√
t + (r − σ2/2)t}) exp{−u2/2} du,

which for the function f of the form (1.5) reduces (after simple manipulations) to a more
explicit form

Ch = S0Φ(u1)−Ke−rtΦ(u2),

where

u1,2 =
log(S0/K)

σ
√

t
+
√

t
( r

σ
± σ

2

)
.

In its turn, formula (27) can also be rewritten in a more explicit way for the function f of
form (15) (with I = 2). Namely, in that case,

Ch =
1
2π

∫ ∫

A1(t)

(
S1

0e−(u1−σ1
√

t)2/2 + K1e
−rte−u2

1/2
)

e−u2
2/2 du1du2

+
1
2π

∫ ∫

A2(t)

(
S2

0e−(u2−σ2
√

t)2/2 + K2e
−rte−u2

2/2
)

e−u2
1/2 du1du2, (28)

where the sets A1(t), A2(t) are defined by the following formulae

Ai(t) = {(u1, u2) : Si
0e

σiy1
√

t+(r−σ2
i /2)t −Ki ≥ max(0, Sj

0e
σjy1

√
t+(r−σ2

j /2)t −Kj)}

with j being equal to 2 for i = 1 and conversely.
The continuous limit of the estimates (12),(14) or (23) of the option prices for cor-

responding discrete models can be found in the same way as above. For instance, in two
dimensional case, for the function

Fmean(t, z1, z2) = (Bt
meanf)(z1, z2) = lim

n→∞
(Bn

mean(t/n)f)(z)
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one obtains the same equation (25) but with volatilities
√

pσ1,
√

pσ2 instead of σ1 and σ2

respectively. For the continuous limit of the minimal price

Fmin(t, z1, z2) = (Bt
minf)(z1, z2) = lim

n→∞
(Bn

min(t/n)f)(z)

(which is therefore equal to the difference between the hedge price Fh and the maximal
unpredictable surplus of an investor) one obtains by the same procedure a more difficult,
essentially nonlinear, equation

∂F

∂t
=

1
2

max
s1∈[0,σ1]

s2
1z

2
1

∂2F

∂z2
1

+
1
2

max
s2∈[0,σ2]

s2
2z

2
2

∂2F

∂z2
2

+ rz1
∂F

∂z1
+ rz2

∂F

∂z2
− rF. (29)

Under transformation (26) this reduces to

∂R

∂t
=

1
2

max
s1∈[0,σ1]

(
∂2R

∂p2
1

− ∂R

∂p1

)
+

1
2

max
s2∈[0,σ2]

(
∂2R

∂p2
2

− ∂R

∂p2

)
, (30)

which is a two-dimensional version of the equation obtained in [L] by means of stochastic
analysis and under certain probabilistic assumptions on the evolution of the underlying
common stocks.

5. Conclusion.

Let C(X) be the space of continuous functions on some metric space X, and let D
be a subspace of C(X). A mapping B : D 7→ C(X) is said to be nonexpansive and
homogeneous, if supx |Bf(x)−Bg(x)| ≤ supx |f(x)−g(x)| whenever Bf and Bg are defined,
and B(a+f) = a+Bf for any constant a. The theory of such mappings in the case of finite
set X, ie when C(X) = Rn, has natural applications in the study of games, discrete event
systems and timed event graphs (see e.g. [G], [BCOQ], [KM]), since it was shown that
any such mapping in Rn can be presented as the Bellman operator of some (stochastic)
game with a value. The main problem in the study of nonexpansive maps is the study of
the iterations Bk and its asymptotic behaviour as k → ∞. In the case of the mappings
in Rn a big progress in these studies was achieved by means of the investigation of the
corresponding ”generalised eigenvalue problem” Bf = a + f, f ∈ Rn, a ∈ R. One sees
that all three types of prices, Ch, Cmin, Cmean, are expressed in terms of the iterations of
some nonexpansive maps, which act not in a finite dimensional space but in the space of
continuous functions on the real line or on the plane. Other reasonable generalisations
lead to the same result. For example, it was supposed above (which is a commonly used
assumption) that the number of stock units γ, which an investor chooses in every moment
of time, is arbitrary (no restrictions are posed, this number can even be negative). However,
in reality, the boundaries on possible values of γ seem to exist either due to the general
boundary on the existing common stock units (one should suppose then that γ ≤ γ0 for
some fixed γ0), or due to the bounds on the possibilities of an investor to make (friction-
free) borrowing (one should suppose then the restrictions of the type γk ≤ Xk/Sk, say,
when no borrowing is allowed). On the other hand, one can omit the assumption of the
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friction-free exchange of the market securities. In all cases, one proves the existence of
hedge strategies and the formula of type (19), (22) for the hedging or minimal price by the
same arguments, and in all cases, the Bellman operator B is a nonexpansive homogeneous
mapping on the space of continuous functions on some metric space. However, the formula
for this B would be more complicated. Therefore, in order to be able to find the asymptotic
formulas for hedging or minimal prices in various situations one needs to expand the theory
of nonexpansive maps iterations to the infinite dimensional case.

Concluding remarks. This paper is an improved version of the author’s preprint [K].
As the author learned from a referee report, a deterministic approach to the evaluation of
stock prices was discussed recently also in [Mc].
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