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1 Introduction

Stochastic frontier models are commonly used in the empirical study of firm! efficiency and
productivity. The seminal papers in the field are Aigner, Lovell and Schmidt (1977) and
Meeusen and van den Broeck (1977), while a recent survey is provided in Bauer (1990). The
ideas underlying this class of models can be demonstrated using a simple production model?
where output of firm i, Y;, is produced using a vector of inputs, X;, (i = 1...N). The
best-practice technology for turning inputs into output depends on a vector of unknown

parameters, 3, and is given by:

Yi=f(X5 ). (1)

This so-called production frontier captures the maximum amount of output that can be
obtained from a given level of inputs. In practice, actual output of a firm may fall below
the maximum possible. The deviation of actual from maximum output is a measure of
inefficiency and is the focus of interest in many applications. Formally, equation (1) can

be extended to:

Y = [(Xi; B)7, (2)
where 0 < 7; < 1 is a measure of firm-specific efficiency and 7; = 1 indicates firm i is fully
efficient.

In this chapter we will discuss Bayesian inference in such models. We will draw on

our previous work in the area: van den Broeck, Koop, Osiewalski and Steel (1994), Koop,

Osiewalski and Steel (1994, 1997, 1998a,b) and Koop, Steel and Osiewalski (1995), whereas

IThroughout this chapter, we will use the term “firm” to refer to the cross-sectional unit of analysis.
In practice, it could also be the individual or country, etc.

2In this chapter we focus on production frontiers. However, by suitably redefining ¥ and X, the methods
can be applied to cost frontiers.



theoretical foundations can be found in Fernandez, Osiewalski and Steel (1997). It is worth-
while to digress briefly as to why we think these models are worthy of serious study. Effi-
ciency measurement is very important in many areas of economics® and, hence, worthy of
study in and of itself. However, stochastic frontier models are also close to other classes of
models and can be used to illustrate ideas relating to the linear and nonlinear regression
models; models for panel data, variance components, random coefficients and, generally,
models with unobserved heterogeneity. Thus, stochastic frontier models can be used to
illustrate Bayesian methods in many areas of econometrics. To justify our adoption of the
Bayesian paradigm, the reader is referred to our work in the area. Suffice it to note here
that the competitors to the Bayesian approach advocated here are the classical econometric
stochastic frontier approach (see Bauer, 1990 for a survey) and the deterministic or non-
parametric Data Envelopment Analysis (DEA) approach (see, e.g., Fare, Grosskopf and
Lovell, 1994). Each of the three approaches has strengths and weaknesses, some of which
will be noted in this chapter.

This chapter is intended to be reasonably self-contained. However, we do assume that
the reader has a basic knowledge of Bayesian methods as applied to the linear regression
model (e.g. Judge, Griffiths, Hill, Litkepohl and Lee, 1985, Chap. 4 or Poirier, 1995, pp.
288-309 and 524-550). Furthermore, we assume some knowledge of simulation methods.
Koop (1994, pp. 12-26) provides a simple survey of some of these methods. Osiewalski and
Steel (1998) focuses on simulation methods in the context of stochastic frontier models.
Casella and George (1992) and Chib and Greenberg (1995) are good expository sources
for Gibbs sampling and Metropolis-Hastings algorithms, respectively. Geweke (1999) is a
complete survey of both Bayesian methods and computation.

The remainder of the chapter is organized as follows. The second section considers

the stochastic frontier model with cross-sectional data beginning with a simple log-linear

31n addition to standard microeconomic studies of firm efficiencies, stochastic frontier models have been
applied to e.g. environmental issues and macroeconomic growth studies.



model then considering a nonlinear extension and one where explanatory variables enter
the efficiency distribution. The third section discusses the issues raised by the availability
of panel data.

2 The Stochastic Frontier Model with Cross-Sectional
Data

2.1 Introduction and Notation

The model given is equation (2) implicitly assumes that all deviations from the frontier are
due to inefficiency. This assumption is also typically made in the DEA approach. However,
following standard econometric practice, we add a random error to the model, (;, to capture

4

measurement (or specification) error®, resulting in:

Yi = (X B)TiGi- (3)
The addition of measurement error makes the frontier stochastic, hence the term “stochastic
frontier models”. We assume that data for ¢ = 1... N firms is available and that the
production frontier, f(-), is log-linear (e.g. Cobb-Douglas or translog). We define X; as a
1 x (k+1) vector (e.g. X; = (1 L; K;) in the case of a Cobb-Douglas frontier with two

inputs, L and K) and, hence, (3) can be written as:

Yi = T + v — 2, (4)

“This error reflects the stochastic nature of the frontier and we shall conveniently denote it by “mea-
surement, error”. The treatment of measurement error is a crucial distinction between econometric and
DEA methods. Most economic data sets are quite noisy and, hence, we feel including measurement er-
ror is important. DEA methods can be quite sensitive to outliers since they ignore measurement error.
Furthermore, since the statistical framework for DEA methods is nonparametric, confidence intervals for
parameter and efficiency estimates are very difficult to derive. However, econometric methods require the
researcher to make more assumptions (e.g. about the error distribution) than do DEA methods. Recently,
there has been some promising work on using the bootstrap with DEA methods which should lessen some
of the criticisms of DEA (see Simar and Wilson, 1998a,b, and the references contained therein).



where 3 = (Gy...0), vi = In(Y;), v; = In(§;), 2; = —In(1;) and z; is the counterpart of
X; with the inputs transformed to logarithms. z; is referred to as inefficiency and, since
0 < 7; <1, it is a non-negative random variable. We assume that the model contains an
intercept with coefficient 3y. Equation (4) looks like the standard linear regression model,
except that the “error” is composed of two parts. This gives rise to another name for these
models, vz. “composed error models”.

" and

For future reference, we define y = (y1...yn)", v = (v1...0n)", 2 = (21...2n)
the N x (k + 1) matrix = (2] ...2y). Also, let fs(a|b,c) denote the density function
of a Gamma distribution with shape parameter b and scale ¢ so that a has mean b/c and
variance b/c?. p(d) = f%(d|g, F) indicates that d is r-variate Normal with mean g and
covariance matrix F'. We will use I(.) to denote the indicator function; i.e. I(G) = 1

if event (G occurs and is otherwise 0. Furthermore, Iy will indicate the N x N identity

matrix and ¢y and N X 1 vector of ones. Sample means will be indicated with a bar, e.g.

7= NNy
2.2 Bayesian Inference

In order to define the sampling model®, we make the following assumptions about v; and

zifori=1...N:
1. p(v;lh™) = fL(v5]0, 1) and the v;s are independent.
2. v; and 2z; are independent of one another for all 7 and [.
3. p(z] A1) = fa(z]1, A7) and the z;s are independent.

The first assumption is commonly made in cross-sectional analysis, but the last two

require some justification. Assumption 2. says that measurement error and inefliciency

5We use the terminology “sampling model” to denote the joint distribution of (y, 2) given the parameters
and shall base the likelihood function on the marginal distribution of ¥ given the parameters.
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are independent of one another. Assumption 3. is a common choice for the non-negative
random variable, z;, although others (e.g. the half-Normal) are possible. Ritter and Simar
(1997) show that the use of very flexible one-sided distributions for z; such as the unre-
stricted Gamma may result in a problem of weak identification. Intuitively, if z; is left too
flexible, then the intercept minus z; can come to look too much like v; and it may become
virtually impossible to distinguish between these two components with small data sets.
The Gamma with shape parameter 1 is the Exponential distribution, which is sufficiently
different from the Normal to avoid this weak identification problem.® In addition, van den
Broeck et al. (1994) found the Exponential model the least sensitive to changes in prior
assumptions in a study of the most commonly used models. Note that A is the mean of
the inefficiency distribution and let @ = (', h, A)’ denote the parameters of the model.
The likelihood function is defined as:

N

L(y; 0) = [ [ p(yilz:, 0),

i—1
which requires the derivation of p(y;|x;,0) = [ p(vi|xi,zi,0)p(2:|0)dz;. This is done in
Jondrow, Lovell, Materov and Schmidt (1982) for the Exponential model and in van den
Broeck et al. (1994) for a wider class of inefficiency distributions. However, we do not repeat
the derivation here, since we do not need to know the explicit form of the likelihood function.
To understand why isolating the likelihood function is not required, it is necessary to explain
the computational methods that we recommend for Bayesian inference in stochastic frontier
models.

Bayesian inference can be carried out using a posterior simulator which generates draws
from the posterior, p(f|y, z). In this case, Gibbs sampling with data augmentation is a nat-

ural choice for a posterior simulator. This algorithm relies on the fact that sequential draws,

In van den Broeck et al. (1994) and Koop, Steel and Osiewalski (1995), the Erlang distribution (i.e.
the Gamma distribution with fixed shape parameter, here chosen to be 1, 2 or 3) was used for inefficiency.
The computational techniques necessary to work with Erlang distributions are simple extensions of those
given in this section.



0) and 2, from the conditional posteriors p(fly, x, 26~ V) and p(z|y, z, 0(*)), respectively,
will converge to draws from p(0, z|y, ) from which inference on the marginal posteriors of ¢
or of functions of z (such as efficiencies) can immediately be derived. In other words, we do
not need to have an analytical formula for p(|y, z) (and, hence, the likelihood function),
but rather we can suffice with working out the full conditional distributions p(f|y, z, z) and
p(zly, x,0). Intuitively, the former is very easy to work with since, conditional on z, the
stochastic frontier model reduces to the standard linear regression model”. If p(dly, z, z) as
a whole is not analytically tractable, we can split up ¢ into, say, 5 and (h, \) and draw se-
quentially from the full conditionals p(5|h, Ay, z, ), p(h, N\|B,y, x, 2) and p(z|y,x, 3, h, A).
However, before we can derive the Gibbs sampler, we must complete the Bayesian model
by specifying a prior for the parameters.

The researcher can, of course, use any prior in an attempt to reflect his/her prior beliefs.
However, a proper prior for h and A~! is advisable: Ferndndez, Osiewalski and Steel (1997)
show that Bayesian inference is not feasible (in the sense that the posterior distribution
is not well-defined) under the usual improper priors for h and A~'. Here, we will assume
a prior of the product form: p(6) = p(B)p(h)p(A~1). In stochastic frontier models, prior
information exists in the form of economic regularity conditions. It is extremely important
to ensure that the production frontier satisfies these, since it is highly questionable to
interpret deviations from a non-regular frontier as representing inefficiency. In an extreme
case, if the researcher is using a highly flexible (or nonparametric) functional form for f(-) it
might be possible for the frontier to fit the data nearly perfectly. It is only the imposition of
economic regularity conditions that present this overfitting. The exact form of the economic
regularity conditions depend on the specification of the frontier. For instance, in the Cobb-

Douglas case, 3; > 0, i = 1...k ensures global regularity of the production frontier. For

7 As shown in Ferndndez, Osiewalski and Steel (1997), the use of the full model with data augmentation
also allows for the derivation of crucial theoretical results on the existence of the posterior distribution and
moments.



the translog specification things are more complicated and we may wish only to impose
local regularity. This requires checking certain conditions at each data point (see Koop,
Osiewalski and Steel, 1998b). In either case, we can choose a prior for 5 which imposes
economic regularity. As emphasized by Ferndndez, Osiewalski and Steel (1997), a proper

or bounded prior is sufficient for 5. Thus, it is acceptable to use a Uniform (flat) prior:

p(B) < I(E), (5)

where I(F) is the indicator function for the economic regularity conditions. Alternatively,
a Normal prior for 3 is proper and computationally convenient. In this chapter, we will use
p(0) as a general notation, but assume it is either truncated Uniform or truncated Normal.
Both choices will easily combine with a Normal distribution to produce a truncated Normal
posterior distribution.

For the other parameters, we assume Gamma priors:

p(h) = fa(h|an, by) (6)

and

p(A) = fa(A May, by). (7)

Note that, by setting ap, = 0 and b, = 0 we obtain p(h)  h™!, the usual noninformative
prior for the error precision in the Normal linear regression model. Here, the use of this
improper prior is precluded (see Theorem 1 (ii) of Ferndndez, Osiewalski and Steel, 1997),
but small values of these hyperparameters will allow for Bayesian inference (see Proposition
2 of Fernandez, Osiewalski and Steel, 1997) while the prior is still dominated by the likeli-
hood function. The hyperparameters ay and b, can often be elicited through consideration
of the efficiency distribution. That is, researchers may often have prior information about

the shape or location of the efficiency distribution. As discussed in van den Broeck et al.



(1994), setting ay = 1 and by = —In(7*) yields a relatively noninformative prior which
implies the prior median of the efficiency distribution is 7*. These are the values for a, and
by used in the following discussion.

The Gibbs sampler can be developed in a straightforward manner by noting that, if z
were known, then we could write the model as y 4+ z = 20 + v and standard results for the

Normal linear regression model can be used. In particular, we can obtain

p(Bly, .2, h, X = [ATHBIB T (@) p(B), (8)
where

o~

B = (z'z) 12 (y + 2).

Furthermore,

(y—2f+2)(y—x20+2)
2

Also, given z, the full conditional posterior for A™! can easily be derived:

p(hly,z, 2,8, A1) = fa(hlay + %, by, + ). (9)

p()\flfy,a?,?:,ﬂ, h) = fG(Ail,N + 17Z/LN - 1Il<7'*)) <1O>

Equations (8), (9) and (10) are the full conditional posteriors necessary for setting up
the Gibbs sampler conditional on z. To complete the posterior simulator, it is necessary to
derive the posterior distribution of z conditional on #. Noting that we can write z = 23 —
y+v,where v has p.d.f. f{(v|0,h"'Iy) and z; is a priori assumed to be i.i.d. fo(z]1,A71)2

we obtain:

8The assumption that the inefficiencies are drawn from the Exponential distribution with unknown
common mean A can be interpreted as a hierarchical prior for z;. Alternatively, a classical econometrician
would interpret this distributional assumption as part of the sampling model. This difference in interpre-
tation highlights the fact that the division into prior and sampling model is to some extent arbitrary. See
Fernéndez, Osiewalski and Steel (1997) for more discussion of this issue.



N
p(ly, 2, 8,h, A7 ") o [N (zlzB—y — ' A oy, B ) [ (2 > 0). (11)

=1

A Gibbs sampler with data augmentation on (3,h, A1, 2) can be set up by sequentially
drawing from (8), (9), (10) and (11), where (3, h) and A 'are independent given z, so that
(10) can be combined with either (8) or (9) and there are only three steps in the Gibbs. Note
that all that is required is random number generation from well-known distributions, where
drawing from the high-dimensional vector z is greatly simplified as (11) can be written as
the product of N univariate truncated Normals.

Given posterior simulator output, posterior properties of any of the parameters or of the
individual 7;s can be obtained.® The latter can be calculated using simulated draws from
(11) and transforming according to 7; = exp(—z;). It is worth stressing that the Bayesian
approach provides a finite sample distribution of the efficiency of each firm. This allows us
to obtain both point and interval estimates, or even e.g. P(7; > 7;]y, x). The latter is po-
tentially crucial since important policy consequences often hinge on one firm being labelled
as more eflicient in a statistically significant sense. Both DEA and classical econometric ap-
proaches typically only report point estimates. The DEA approach is nonparametric and,
hence, confidence intervals for the efficiency measures obtained are very hard to derive.!®
Distributional theory for the classical econometric approach is discussed in Jondrow et al.
(1982) and Horrace and Schmidt (1996). These papers point out that, although point
estimates and confidence intervals for 7; can be calculated, the theoretical justification is

not that strong. For example, the maximum likelihood estimator for 7; is inconsistent and

9Note that we have not formally proven that the posterior mean and variance of 8 exist (although numer-
ical evidence suggests that they do). Hence, we recommend using the posterior median and interquartile
range of # to summarize properties of the posterior. Since 0< 7; < 1, we know that all posterior moments
exist for the firm specific efficiencies.

0Recent work on bootstrapping DEA frontiers is promising to surmount this problem and this procedure
seems to be gaining some acceptance.



the methods for constructing confidence intervals assume unknown parameters are equal
to their point estimates. For this reason, it is common in classical econometric work to
present some characteristics of the efficiency distribution as a whole (e.g. estimates of )
rather than discuss firm specific efficiency. However, firm specific efficiencies are often of
fundamental policy importance and, hence, we would argue that an important advantage

of the Bayesian approach is its development of finite sample distributions for the 7;s.

2.3 Extensions

There are many ways of extending the previous model. For instance, we could allow for
different distributions for z; (see Koop, Steel and Osiewalski, 1995) or for many outputs to
exist (see Ferndndez, Koop and Steel, 1998). Here we focus on two other extensions which
are interesting in and of themselves, but also allow us to discuss some useful Bayesian

techniques.

2.3.1 Explanatory variables in the Efficiency Distribution

Consider, for instance, a case where data is available for many firms, but some are private
companies and others are state-owned. Interest centers on investigating whether private
companies tend to be more efficient than state owned ones. This type of question can be
formally handled by stochastic frontier models if we extend them to allow for explanatory
variables in the efficiency distribution. Let us suppose that data exists on m variables
which may affect the efficiency of firms (i.e. wy;, fori =1...N and j = 1...m). We
assume w;; = 1 Is an intercept and w;; are 0-1 dummy variables for j = 2...m. The latter
assumption could be relaxed at the cost of increasing the complexity of the computational
methods. Since A, the mean of the inefficiency distribution, is a positive random variable,
a logical extension of the previous model is to allow it to vary over firms in the following

manner:

10



A= T1e (12)
j=1

where the ¢; > 0 are unknown parameters. Note that if ¢; = 1 for j = 2...m then this
model reduces to the previous one. To aid in interpretation, observe how this specification
allows, for instance, for private and state-owned firms to have different inefficiency distrib-
utions. If wy; = 1 indicates that firm i is private, then ¢9 > 1 implies that the mean of the
inefficiency distribution is lower for private firms and, hence, that private firms tend to be
more efficient than state-owned ones. We stress that such a finding would not imply that
every private firm is more efficient than every state-owned one, but rather that the former
are drawing their efficiencies from a distribution with a higher mean. Such a specification
seems very suitable for many sorts of policy issues and immediately allows for out-of-sample
predictions.

For the new parameters, ¢ = (¢1 ... ¢n)’, we assume independent Gamma priors: p(¢) =
p(P1) - .. p(pm) with p(o;) = fa(d;las,b;) for j = 1...m. If the explanatory variables have
no role to play (i.e. ¢o = ... = ¢, = 1 ), then ¢; is equivalent to A~! in the previous
model. This suggests one may want to follow the prior elicitation rule discussed above and
set a; = 1 and by = —In(7*). The other prior hyperparameters, a; and b; for j = 2...m,
can be selected in the context of particular applications with moderate values for these
parameters yielding a relatively noninformative prior. See Koop, Osiewalski and Steel
(1997) for details.

A posterior simulator using Gibbs sampling with data augmentation can be set up as a
straightforward extension of the one considered above. In fact, the posterior conditionals
for # and h (i.e. equations (8) and (9)) are completely unaffected and the conditional for
zin (11) is only affected in that A~'ty must be replaced by the vector n = ()\fl e )\fvl)’,

where \; ! is given in equation (12). Tt can also be verified that for j =1...m:!!

"M This is where the assumption that the w;;s are 0-1 dummies is crucial.
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N N
p(Bsly, 2,2, 8,h,w,¢0 ) = fa(dila; + 3wy, b+ 3 wyz [ ¢4, (13)
=1 =1

= s7#qj

where ¢(~7) = (h1...Pj-1,0i11---Pm) . Hence, Bayesian inference in this model can again
be conducted through sequential drawing from tractable distributions.

So far, we have focussed on posterior inference. This stochastic frontier model with
varying efficiency distribution can be used to illustrate Bayesian model comparison. Sup-
pose m = 2 and we are interested in calculating the Bayes factor comparing model M,
where ¢ = 1 (e.g. there is no tendency for state-owned and private firms to differ in their
efficiency distributions) against model My with ¢o # 1. The prior for M, is given above.
Define ¢ = (3, h, ¢(72))’ as the parameters in the model M; and let p;(.) indicate a density
under M, for I = 1,2. If we make the reasonable assumption that ps (1| = 1) = p1 (),
then the Bayes factor in favor of M; can be written as the Savage-Dickey density ratio (see

Verdinelli and Wasserman, 1995):

B _p2<¢2:1’y7$7w)

12 — )
Pap2 = 1)

the ratio of posterior to prior density values at the point being tested. Note that the

(14)

denominator of (14) is trivial to calculate since it is merely the Gamma prior for ¢ evaluated
at a point. The numerator is also easy to calculate using (13). As Verdinelli and Wasserman

(1995) stress, a good estimator of p(¢a = 1|y, x, w) on the basis of R Gibbs replications is:

1
R

where superscript () denotes the 7 draw in the Gibbs sampling algorithm. That is, we

R
Zp<¢2 = Hyu P Z(T)uﬂ(r)u h(r)u w, ¢(72)(T))7 (15)

r=1

can just evaluate (13) at ¢o = 1 for each draw and average. Bayes factors for hypotheses
such as this can be easily calculated without recourse to evaluating the likelihood function

or adding steps to the simulation algorithm (as in the more general methods of Gelfand

and Dey, 1994 and Chib, 1995, respectively).
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2.3.2 Nonlinear Production Frontiers

The previous models both assumed that the production frontier was log-linear. However,
many common production functions are inherently nonlinear in the parameters (e.g. the
constant elasticity of substitution or CES or the asymptotically ideal model or AIM, see
Koop, Osiewalski and Steel, 1994). However, the techniques outlined above can be extended
to allow for an arbitrary production function. Here we assume a model identical to the
stochastic frontier model with common efficiency distribution (i.e. m=1) except that the

production frontier is of the form:!2

yi = f(23; ) +vi — 2. (16)

The posterior simulator for everything except (3 is almost identical to the one given above.

Equation (10) is completely unaffected, and (9) and (11) are slightly altered by replacing
z0 by f(z;0) = (f(z1;9) ... f(zn; B))'-

However, the conditional posterior for 3 is more complicated, having the form:
hN

p(Bly, x, 2,7, A71) o exp (—5 ;(y — [ (s 8) + Zi)2> p(B). (17)

Equation (17) does not take the form of any well-known density and the computational

algorithm selected will depend on the exact form of f(x;3). For the sake of brevity, here

we will only point the reader in the direction of possible algorithms that may be used

for drawing from (17). Two major cases are worth mentioning. First, in many cases, it

might be possible to find a convenient density which approximates (17) well. For instance,

in the case of the AIM model a multivariate-t density worked well (see Koop, Osiewalski

and Steel, 1994). In this case, importance sampling (Geweke, 1989) or an independence

chain Metropolis-Hastings algorithm (Chib and Greenberg, 1995) should work well. On

2The extension to a varying efficiency distribution as in (12) is trivial and proceeds along the lines of
the previous model.
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the other hand, if no convenient approximating density can be found, a random walk chain
Metropolis-Hastings algorithm might prove a good choice (see Chib and Greenberg, 1995).
The precise choice of algorithm will be case-specific and, hence, we do not discuss this issue

in any more detail here.

3 The Stochastic Frontier Model with Panel Data

3.1 Time-invariant Efficiency

It is increasingly common to use panel data'® in the classical econometric analysis of the
stochastic frontier model. Some of the statistical problems (e.g. inconsistency of point
estimates of firm specific efficiency) of classical analysis are alleviated with panel data
and the assumption of a particular distributional form for the inefficiency distribution can
be dispensed with at the cost of assuming time-invariant efficiencies (i.e. treating them
as “individual effects”). Schmidt and Sickles (1984) is an early influential paper which
develops a relative efficiency measure based on a fixed effects specification and an absolute
efficiency measure based on a random effects specification. In this paper, we describe a
Bayesian alternative to this classical analysis and relate the random /fixed effects distinction
to different prior structures for the efficiency distribution.

Accordingly, assume that data is available for ¢ = 1... N firms for t = 1...7T time
periods. We will extend the notation of the previous section so that y; and v; are now T x 1
vectors and x; a T X k matrix containing the 1" observations for firm i. Note, however,
that the assumption of constant efficiency over time implies that z; is still a scalar and z
an N x 1 vector. For future reference, we now define y = (v, ...yy) and v = (v]...v})

/

as NT x 1 vectors and x = (2 ...2)y) as an NT X k matrix. In contrast to previous

BOf course, many of the issues which arise in the stochastic frontier model with panel data also arise in
traditional panel data models. It is beyond the scope of the present chapter to attempt to summarize the
huge literature on panel data. The reader is referred to Matyas and Sevestre (1996) or Baltagi (1995) for
an introduction to the broader panel data literature.
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notation, x; does not contain an intercept. We assume that the stochastic frontier model

can be written as:

Ys = Potr + 26 + v; — 2itr, (18)

where (3 is the intercept coefficient and v; is i.i.d. with p.d.f. f(v;|0, A 'I7). As discussed
in Ferndndez, Osiewalski and Steel (1997), it is acceptable to use an improper noninfor-
mative prior for h when 7" > 1 and, hence, we assume p(h) oc h™!. We discuss different

choices of priors for Fy and z; in the following material.

3.1.1 Bayesian Fixed Effects Model
Equation (18) looks like a standard panel data model (see, e.g., Judge et al., 1985, Chap.
13). The individual effect in the model can be written as:

a; = fo — 2,

and the model rewritten as:

Y; = ;L + QTZ(S + v;. (19)

Classical fixed effects estimation of (19) proceeds by making no distributional assumption
for a;, but rather using firm-specific dummy variables. The Bayesian analogue to this is to
use flat, noninformative priors for the a;s.!* Formally, defining a = (a; ... ay)’, we then

adopt the prior:

p(a, 8, h) o< h™1p(6). (20)

Note that this implies we now deviate from Assumption 3 in subsection 2.2.
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The trouble with this specification is that we cannot make direct inference about z;
(since (3 is not separately identified) and, hence, the absolute efficiency of firm i: 7, =
exp(—z;). However, following Schmidt and Sickles (1984), we define relative inefficiency as:

rel

2]% = z; — min(z;) = max(o;) — . (21)
J J

In other words, we are measuring inefliciency relative to the most efficient firm (i.e. the firm
with the highest a;).!> Relative efficiency is defined as 77 = exp(—2z/“) and we assume

% %
that the most efficient firm has 77 = 1.

It is worth noting that this prior seems like an innocuous noninformative prior, but

rel
i

this initial impression is false since it implies a rather unusual prior for r7¢. In particular,
as shown in Koop, Osiewalski and Steel (1997), p(r7®) has a point mass of N~1 at full
efficiency and is p(r7®) oc 1/r7¢ for r7¢ € (0,1). The latter is an L-shaped improper prior
density which, for an arbitrary small a € (0,1), puts an infinite mass in (0,a) but only
a finite mass in (a,1). In other words, this “noninformative” prior strongly favors low
efficiency.

Bayesian inference in the fixed effects model can be carried out in a straightforward
manner, by noting that for Uniform p(8), (19)-(20) is precisely a Normal linear regression
model with Jeffreys’ prior. The vector of regression coefficients (¢/ §') in such a model
has a (IV 4 k)-variate Student-t posterior with N(7"— 1) — k degrees of freedom (where we
have assumed that N(T'— 1) > k, which implies 7" > 1). For typical values of N, T" and
k the degrees of freedom are enormous and the Student-t will be virtually identical to the
Normal distribution. Hence, throughout this subsection we present results in term of this

Normal approximation.

Using standard Bayesian results for the Normal linear regression model (e.g. Judge et

BTt is worth noting that the classical econometric analysis assigns the status of most efficient firm to
one particular firm and measures efliciency relative to this. The present Bayesian analysis also measures
efficiency relative to the most efficient firm, but allows for uncertainty as to which that firm is.
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al., 1985, Chap. 4), it follows that the marginal posterior for § is given by (for general

p(6)):

p(8ly, ) = (616, h~"S")p(6), (22)
where
R N
6 =51 (w — ) (yi — Titr), (23)
i=1
N 1
S=) 8 Ti= 5uipz;
R
and

Si = (@ — vrT;) (@ — 10T;).

Note that (23) is the standard “within estimator” from the panel data literature. Finally,

1 N .

lm (ys — qutr — 3715)/(% — Ty — 130),
NT—-1)—k ;

where @; is the posterior mean of «a; defined below.

The marginal posterior of « is the N-variate Normal with means

o~
— J— JR—

Q; = Y; — &;0,

and covariances

INE,
cov(a;, o) = h! (# —I—at_islat_j’) :

where A(i,j) = 11if ¢ = j and 0 otherwise. Thus, analytical formulae for posterior means
and standard deviations are available and, if interest centers on these, posterior simulation
methods are not required. However, typically interest centers on the relative efficiencies

which are a complicated nonlinear function of «, viz.,

17



rrel = exp(a; — max(a;)), (24)
j

7

and, hence, posterior simulation methods are required. However, direct Monte Carlo in-
tegration is possible since the posterior for a is multivariate Normal and can easily be
simulated. These simulated draws of « can be transformed using (24) to yield posterior

draws of 7"7’6[.

However, this procedure is complicated by the fact that we do not know
which firm is most efficient (i.e. which firm has largest «;) and, hence, is worth describing
in detail.

We begin by calculating the probability that a given firm, i, is the most efficient:

P(ri = 1ly,z) = P(a; = max(a)ly, =), (25)

which can be easily calculated using Monte Carlo integration. That is, (25) can simply be
estimated by the proportion of the draws of a which have «; being the largest.
Now consider the posterior for 7% over the interval (0,1) (i.e. assuming it is not the

most efficient):

p<7n;’el’y7 Z p rel’y7 rel_ )P( rel_1’y7 ) (26)

=15
Here P( 7 = 1|y, z) can be calculated as discussed in the previous paragraph. In addition,

p(riy, z, T;fel = 1) can be calculated using the same posterior simulator output. That is,

el

assuming firm j is most efficient, then r[* = exp(o; — «;) which can be evaluated from

those draws of o that correspond to a; = max;(¢y). Hence, posterior analysis of the relative
efficiencies in a Bayesian fixed effects framework can be calculated in a straightforward

manner. 16

16This procedure can be computationally demanding since P(r} rel = 1)y, z) and p(ri®y,z, ’"El) must be
calculated for every possible ¢ and j. However, typically, P(r’ el = 1|y, x) is appreciable (e.g. > 0.001) for
only a few firms and the rest can be ignored (see Koop, Oswwalskl and Steel, 1997, p. 82).
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3.1.2 Bayesian Random Effects Model

The Bayesian fixed effects model described above might initially appeal to researchers
who do not want to make distributional assumptions about the inefficiency distribution.
However, as we have shown above, this model is implicitly making strong and possibly
unreasonable prior assumptions. Furthermore, we can only calculate relative, as opposed
to absolute, efficiencies. For these reasons, it is desirable to develop a model which makes
an explicit distributional assumption for the inefficiencies. With such a model, absolute
efficiencies can be calculated in the spirit of the cross-sectional stochastic frontier model of
section 2, since the distribution assumed for the z;s allows us to separately identify z; and
Bo. In addition, the resulting prior efficiency distributions will typically be more in line
with our prior beliefs. Another important issue is the sensitivity of the posterior results on
efficiency to the prior specification chosen. Since T is usually quite small, it makes sense
to “borrow strength” from the observations for the other firms by linking the inefficiencies.
Due to Assumption 3 in subsection 2.2, this is not done through the sampling model. Thus,
Koop, Osiewalski and Steel (1997) define the difference between Bayesian fixed and random
effects models through the prior for z;. In particular, what matters are the prior links that
are assumed between the z;s. Fixed effects models assume, a priori, that the z;s are fully
separated. Random effects models introduce links between the z;s, typically by assuming
they are all drawn from distributions that share some common unknown parameter(s).
In Bayesian language, the random effects model then implies a hierarchical prior for the
individual effects.

Formally, we define a Bayesian random effects model by combining (18) with the prior:

N
p(Bo, 8, h, 2, A1) o< b ip(8) fa (AL, —In(T")) Hfg<ZZ"1, AT, (27)
i1

That is, we assume noninformative priors for h and 3y, whereas the inefficiencies are again

assumed to be drawn from the Exponential distribution with mean A. Note that the z;s
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are now linked through this common parameter A, for which we choose the same prior as
in section 2.

Bayesian analysis of this model proceeds along similar lines to the cross-sectional sto-
chastic frontier model presented in section 2. In particular, a Gibbs sampler with data
augmentation can be set up. Defining 5 = (f ¢') and X = (iy7 : z) the posterior

conditional for the measurement error precision can be written as:

p(hly,z,z,6,X°") = fo <h[%, % ly = X3+ (Un©ur)e] [y — X8+ (In© LT)Z]> . (28)
Next we obtain:
p(Bly,x,z,h, A1) = [T (ﬂ!ﬁ, hfl(X’X)*l) p(6), (29)

where
A=XX)"y+ Uy @)z,

The posterior conditionals for the inefficiencies takes the form:

N

p(zly, @, B, h, A7) o [N (2 (v 1 Z) B =G — (ThA) ', (Th) n) [[ 1(2 > 0),  (30)

=1
where § = (7, ...7y) and T = (T} ... Ty ).
Furthermore, the posterior conditional for A™', p(A~!|y, z, 2, 3, h), is the same as for the
cross-sectional case (i.e. equation 10).
Using these results, Bayesian inference can be carried out using a Gibbs sampling al-

gorithm based on (10), (28), (29) and (30). Although the formulas look somewhat compli-

cated, it is worth stressing that all conditionals are either Gamma or truncated Normal.
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3.2 Extensions

Extending the random effects stochastic frontier model to allow for a nonlinear production
function or explanatory variables in the efficiency distribution can easily be done in a
similar fashion as for the cross-sectional model (see subsection 2.3 and Koop, Osiewalski
and Steel, 1997). Furthermore, different efficiency distributions can be allowed for in a
straightforward manner and multiple outputs can be handled as in Fernandez, Koop and
Steel (1998). Here we concentrate on extending the model in a different direction. In
particular, we free up the assumption that each firm’s efficiency, 7;, is constant over time.
Let us use the definitions of X and J introduced in the previous subsection and write the

stochastic frontier model with panel data as:

y=X0—v+w, (31)

where v is a T'N x 1 vector containing inefficiencies for each individual observation and ¥
and v are defined as in subsection 3.1. In practice, we may want to put some structure on
v and, thus, Ferndndez, Osiewalski and Steel (1997) propose to rewrite it in terms of an

M-dimensional vector v as:

v = Du, (32)

where M < TN and D is a known TN x M matrix. Above, we implicitly assumed
D = Iy @ tp which implies M = N and u; = v;; = z;. That is, firm-specific inefficiency
was constant over time. However, a myriad of other possibilities exist. For instance, D can
correspond to cases where clusters of firms or time periods share common efficiencies, or
parametric time dependence exists in firm-specific efficiency. Also note the case D = Iy,
which allows each firm in each period to have a different inefficiency (i.e. v = ). Thus,
we are then effectively back in the cross-section framework without exploiting the panel

structure of the data. This case is considered in Koop, Osiewalski and Steel (1998a,b),
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where interest centered on the change in efficiency over time.!” With all such specifications,
it is possible to conduct Bayesian inference by slightly altering the posterior conditionals
presented above in an obvious manner.

However, as discussed in Ferndndez, Osiewalski and Steel (1997), it is very important to
be careful when using improper priors on any of the parameters. In some cases, improper
priors imply that the posterior does not exist and, hence, valid Bayesian inference cannot
be carried out. Intuitively, the inefliciencies can be interpreted as unknown parameters. If
there are too many of these, prior information becomes necessary. As an example of the
types of results proved in Ferndndez, Osiewalski and Steel (1997), we state one of their
main theorems:

Theorem (Ferndndez, Osiewalski and Steel, 1997, Theorem 1)

Consider the general model given in (31) and (32) and assume the standard noninfor-
mative for h: p(h) oc h™'. If rank(X : D) < T'N then the posterior distribution exists for
any bounded or proper p(3) and any proper p(u). However, if rank(X : D) = T'N, then
the posterior does not exist.

The Bayesian random effects model discussed above has rank(X : D) < TN, so the
posterior does exist even though we have used an improper prior for h. However, for the
case where efficiency varies over time and across firms (i.e. D = Iry), more informative
priors are required in order to carry out valid Bayesian inference. Fernandez, Osiewalski
and Steel (1997, Prop. 2) show that a weakly informative (not necessarily proper) prior on

h that penalizes large values of the precision is sufficient.

1"Koop, Osiewalski and Steel (1998a,b) also allow the frontier to shift over time and interpret such
shifts as technical change. In such a framework, it is possible to decompose changes in output growth
into components reflecting input change, technical change and efficiency change. The ability of stochastic
frontier models with panel data to calculate such decompositions is quite important in many practical
applications. Also of interest are Baltagi and Griffin (1988) and Baltagi, Griffin and Rich (1995), which
develop a more general framework relating changes in the production function with technical change in a
non-stochastic frontier panel data model.
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4 Summary

In this chapter, we have described a Bayesian approach to efficiency analysis using sto-
chastic frontier models. With cross-sectional data and a log-linear frontier, a simple Gibbs
sampler can be used to carry out Bayesian inference. In the case of a nonlinear frontier,
more complicated posterior simulation methods are necessary. Bayesian efficiency measure-
ment with panel data is then discussed. We show how a Bayesian analogue of the classical
fixed effects panel data model can be used to calculate the efficiency of each firm relative
to the most efficient firm. However, absolute efficiency calculations are precluded in this
model and inference on efficiencies can be quite sensitive to prior assumptions. Accordingly,
we describe a Bayesian analogue of the classical random effects panel data model which can
be used for robust inference on absolute efficiencies. Throughout we emphasize the compu-
tational methods necessary to carry out Bayesian inference. We show how random number
generation from well-known distributions is sufficient to develop posterior simulators for a

wide variety of models.

5 References

Aigner, D.; Lovell, C.A.K. and Schmidt, P. 1977: Formulation and estimation of stochastic
frontier production function models. Journal of Econometrics, 6, 21-37.

Baltagi, B. 1995: Fconometric Analysis of Panel Data, New York: John Wiley and
Sons.

Baltagi, B. and Griffin, J. 1988: A general index of technical change, Journal of Political
Economy, 90, 20-41.

Baltagi, B.; Griffin, J and Rich, D. 1995: The measurement of firm-specific indexes of
technical change, Review of Economics and Statistics, 77, 654-663.

Bauer, P. 1990: Recent developments in the econometric estimation of frontiers. Journal

23



of Econometrics, 46, 39-56.

van den Broeck, J.; Koop, G.; Osiewalski J. and Steel, M.F.J. 1994: Stochastic frontier
models: A Bayesian perspective. Journal of Econometrics, 61, 273-303.

Casella, G. and George, E. 1992: Explaining the Gibbs sampler. The American Statis-
tictan, 46, 167-174.

Chib, S. 1995: Marginal likelihood from the Gibbs output. Journal of the American
Statistical Association, 90, 1313-1321.

Chib, S. and Greenberg, E. 1995: Understanding the Metropolis-Hastings algorithm.
The American Statistician, 49, 327-335.

Fare, R.; Grosskopf, S. and Lovell, C.A.K. 1994: Production Frontiers. Cambridge,
U.K.: Cambridge University Press.

Fernandez, C.; Koop, G. and Steel, M.F.J. 1998: A Bayesian analysis of multiple output
production frontiers. manuscript.

Fernandez, C.; Osiewalski, J. and Steel, M.F.J. 1997: On the use of panel data in
stochastic frontier models with improper priors. Journal of Econometrics, 79, 169-193.

Gelfand, A. and Dey, D.K. 1994: Bayesian model choice: Asymptotics and exact calcu-
lations. Journal of the Royal Statistical Society, Series B, 56, 501-514.

Geweke, J. 1989: Bayesian inference in econometric models using Monte Carlo integra-
tion. Fconometrica, 57, 1317-1340.

Geweke, J. 1999: Using simulation methods for Bayesian econometric models: Inference,
development and communication (with discussion). Econometric Reviews, 18, 1-126.

Horrace, W. and Schmidt, P. 1996: Confidence statements for efficiency estimates from
stochastic frontiers. Journal of Productivity Analysis, 7, 257-282.

Jondrow, J.; Lovell, C.A.K.; Materov, [.S. and Schmidt, P. 1982: On the estimation
of technical inefficiency in the stochastic frontier production function model. Journal of
Econometrics, 19, 233-238.

Judge, G.; Griffiths, W.; Hill, R.C.; Liitkepohl, H. and Lee, T.-C. 1985: The Theory

24



and Practice of Econometrics, Second edition. New York: John Wiley and Sons.

Koop, G. 1994: Recent progress in applied Bayesian econometrics. Journal of Fconomic
Surveys, 8, 1-34.

Koop, G.; Osiewalski, J. and Steel, M.F.J. 1994: Bayesian efficiency analysis with a
flexible form: The AIM cost function. Journal of Business and Fconomic Stalistics, 12,
93-106.

Koop, G.; Osiewalski, J. and Steel, M.F.J. 1997: Bayesian efficiency analysis through
individual effects: Hospital cost frontiers. Journal of Fconomelrics, 76, 77-105.

Koop, G.; Osiewalski, J. and Steel, M.F.J. 1998a: Modeling the sources of output
growth in a panel of countries. Journal of Business and Fconomic Statistics, forthcoming.

Koop, G.; Osiewalski, J. and Steel, M.F.J. 1998b: The components of output growth:
A stochastic frontier analysis. Ozford Bulletin of Economics and Statistics, forthcoming.

Koop, G.; Steel, M.F.J. and Osiewalski, J. 1995: Posterior analysis of stochastic frontier
models using Gibbs sampling. Computational Statistics, 10, 353-373.

Matyas, L. and Sevestre, P. (editors) 1996: The Econometrics of Panel Data, Dordrecht:
Kluwer Academic Publishers.

Meeusen, W. and van den Broeck, J. 1977: Efficiency estimation from Cobb-Douglas
production functions with composed errors. International Economic Review, 8, 435-444.

Osiewalski, J. and Steel, M.F.J. 1998: Numerical tools for the Bayesian analysis of
stochastic frontier models. Journal of Productivily Analysis, 10, 103-117.

Poirier, D. 1995: Intermediate Statistics and Econometrics: A Comparative Approach.
Cambridge, Mass.: The MIT Press.

Ritter, C. and Simar, L. 1997: Pitfalls of Normal-Gamma stochastic frontier models.
Journal of Productivity Analysis, 8, 167-182.

Schmidt, P. and Sickles, R. 1984: Production frontiers and panel data. Journal of
Business and Economic Statistics, 2, 367-374.

Simar, L. and Wilson, P.W. 1998a: A general methodology for bootstrapping in non-

25



parametric frontier models. manuscript.

Simar, L. and Wilson, P.W. 1998b: Sensitivity analysis of efficiency scores: How to
bootstrap in nonparametric frontier models. Management Science, 44, 49-61.

Verdinelli, I. and Wasserman, L. 1995: Computing Bayes factors using a generalization
of the Savage-Dickey Density Ratio. Journal of the American Statistical Association, 90,
614-618.

26



