Bayesian Time Series Analysis

Mark Steel, University of Warwick”*

Abstract

This article describes the use of Bayesian methods in the statistical analysis of time series. The use
of Markov chain Monte Carlo methods has made even the more complex time series models amenable to
Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated
counterparts, state-space models, Markov switching and mixture models, and models allowing for time-
varying volatility. A final section reviews some recent approaches to nonparametric Bayesian modelling

of time series.

1 Bayesian methods

The importance of Bayesian methods in econometrics has increased rapidly over the last decade. This
is, no doubt, fuelled by an increasing appreciation of the advantages that Bayesian inference entails. In
particular, it provides us with a formal way to incorporate the prior information we often possess before
seeing the data, it fits perfectly with sequential learning and decision making and it directly leads to exact
small sample results. In addition, the Bayesian paradigm is particularly natural for prediction, taking into
account all parameter or even model uncertainty. The predictive distribution is the sampling distribution
where the parameters are integrated out with the posterior distribution and is exactly what we need for
forecasting, often a key goal of time-series analysis.

Usually, the choice of a particular econometric model is not prespecified by theory and many com-
peting models can be entertained. Comparing models can be done formally in a Bayesian framework
through so-called posterior odds, which is the product of the prior odds and the Bayes factor. The Bayes
factor between any two models is the ratio of the likelihoods integrated out with the corresponding prior
and summarizes how the data favour one model over another. Given a set of possible models, this im-
mediately leads to posterior model probabilities. Rather than choosing a single model, a natural way

to deal with model uncertainty is to use the posterior model probabilities to average out the inference
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(on observables or parameters) corresponding to each of the separate models. This is called Bayesian
model averaging. The latter was already mentioned in Leamer (1978) and recently applied to economic
problems in e.g. Fernandez et al. (2001) (growth regressions) and in Garratt ef al. (2003) and Jacobson
and Karlsson (2004) for macroeconomic forecasting.

An inevitable prerequisite for using the Bayesian paradigm is the specification of prior distributions
for all quantities in the model that are treated as unknown. This has been the source of some debate,
a prime example of which is given by the controversy over the choice of prior on the coefficients of
simple autoregressive models. The issue of testing for a unit root (deciding whether to difference the
series before modelling it through a stationary model) is subject to many difficulties from a sampling-
theoretical perspective. Comparing models in terms of posterior odds provides a very natural Bayesian
approach to testing, which does not rely on asymptotics or approximations. It is, of course, sensitive to
how the competing models are defined (e.g. do we contrast the stationary model with a pure unit root
model or a model with a root larger than or equal to one?) and to the choice of prior. The latter issues
have lead to some controversy in the literature, and prompted a special issue of The Journal of Applied
Econometrics with animated discussion around the paper by Phillips (1991). The latter paper advocated
the use of Jeffreys’ principles to represent prior ignorance about the parameters (see also the discussion
in Chapter 6 of Bauwens et al., 1999).

Like the choice between competing models, forecasting can also be critically influenced by the prior.
In fact, prediction is often much more sensitive than parameter inference to the choice of priors (es-
pecially on autoregressive coefficients) and Koop et al. (1995) show that imposing stationarity through
the prior on the autoregressive coefficient in a simple AR(1) model need not lead to stabilization of the

predictive variance as the forecast horizon increases.

2 Computational algorithms

Partly, the increased use of Bayesian methods in econometrics is a consequence of the availability of very
efficient and flexible algorithms for conducting inference through simulation in combination with ever
more powerful computing facilities, which have made the Bayesian analysis of non-standard problems
an almost routine activity. Particularly, Markov chain Monte Carlo (MCMC) methods have opened up a
very useful class of computational algorithms and have created a veritable revolution in the implemen-
tation of Bayesian methods. Whereas Bayesian inference before 1990 was at best a difficult undertaking
in practice, reserved for a small number of specialized researchers and limited to a rather restricted set
of models, it has now become a very accessible procedure which can fairly easily be applied to almost
any model. The main idea of MCMC methods is that inference about an analytically intractable poste-
rior (often in high dimensions) is conducted through generating a Markov chain which converges to a
chain of drawings from the posterior distribution. Of course, predictive inference is also immediately
available once one has such a chain of drawings. Various ways of constructing such a Markov chain
exist, depending of the structure of the problem. The most commonly used are the Gibbs sampler and

the Metropolis Hastings sampler. The use of data augmentation (i.e. adding auxiliary variables to the



sampler) can facilitate implementation of the MCMC sampler, so that often the analysis is conducted
on an augmented space including not only the model parameters but also things like latent variables and
missing observations. An accessible reference to MCMC methods is e.g. Gamerman (1997).

As a consequence, we are now able to conduct Bayesian analysis of time series models that have
been around for a long time (such as ARMA models) but also of more recent additions to our catalogue
of models, such as Markov switching and nonparametric models, and the literature is vast. Therefore, I
will have to be selective and will try to highlight a few areas which I think are of particular interest. I

hope this can give an idea of the role that Bayesian methods can play in modern time series analysis.

3 ARIMA and ARFIMA models

Many models used in practice are of the simple ARIMA type, which have a long history and were
formalised in Box and Jenkins (1970). ARIMA stands for Autoregressive Integrated Moving Average
and an ARIMA(p, d,q) model for an observed series {y;}, t = 1,...,T is a model where the dth
difference z; = y; — y;—q is taken to induce stationarity of the series. The process {z;} is then modelled

as z; = (4 & with
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or in terms of polynomials in the lag operator L (defined through L°z; = x;_;):
d(L)ey = 0(L)uy

where {u;} is white noise and usually Normally distributed as u; ~ N(0,0?). The stationarity and
invertibility conditions are simply that the roots of ¢(L) and 6(L), respectively, are outside the unit
circle. An accessible and extensive treatment of the use of Bayesian methods for ARIMA models can be
found in Bauwens et al. (1999). The latter book also has a useful discussion of multivariate modelling
using Vector Autoregressive (VAR) models and cointegration.

The MCMC samplers used for inference in these models typically use data augmentation. Marriott
et al. (1996) use a direct conditional likelihood evaluation and augment with unobserved data and errors
to conduct inference on the parameters (and the augmented vectors ¢, = (g0,6_1,...,€1-p)" and u, =
(uo,u—1,...,u1—q)). A slightly different approach is followed by Chib and Greenberg (1994), who
consider a state-space representation and use MCMC on the parameters augmented with the initial state
vector.

ARIMA models will either display perfect memory (if there are any unit roots) or quite short memory
with geometrically decaying autocorrelations (in the case of a stationary ARMA model). ARFIMA
(Autoregressive Fractionally Integrated Moving Average) models (see Granger and Joyeux, 1980) have
more flexible memory properties, due to fractional integration which allows for hyperbolic decay.

Consider z; = Ay; — p1, which is modelled by an ARFIMA(p, d, ¢) model as:

G(L)(1 — L)’z = 0(L)uy,



where {u;} is white noise with u; ~ N(0,0?), and § € (—1,0.5). The fractional differencing operator
(1 — L)% is defined as

(1-L) =) ¢O)L,
5=0

where ¢o(-) = 1 and for j > 0:

cj(a):]}i[1<1_1za>.

This model takes the entire past of z; into account, and has as a special case the ARIMA(p, 1, q) for y;
(for § = 0). If § > —1, z; is invertible (Odaki, 1993) and for § < 0.5 we have stationarity of z;. Thus,
we have three regimes:

0 € (=1,—0.5): y, trend-stationary with long memory

0 € (—0.5,0): z stationary with intermediate memory

5 € (0,0.5): z stationary with long memory.

Of particular interest is the Impulse Response Function I(n), which captures the effect of a shock of

size one at time ¢ on y;1,, and is given by

n
In)=>Y c(=0—-1)J(n—1),
i=0

with J (i) the standard ARMA(p, q) impulse responses (i.e. the coefficients of ¢~*(L)#(L)). Thus, I(c0)
is 0 for 6 < 0,0(1)/¢(1) for § = 0 and oo for § > 0. Koop et al. (1997) analyse the behaviour of the
impulse response function for real U.S. GNP data using a set of 32 possible models containing both
ARMA and ARFIMA models for z;. They use Bayesian model averaging to conduct predictive infer-
ence and inference on the impulse responses, finding about one third of the posterior model probability
concentrated on the ARFIMA models. Koop et al. (1997) use importance sampling to conduct inference
on the parameters, while MCMC methods are used in Pai and Ravishanker (1996) and Hsu and Breidt
(2003).

4 State-Space Models

The basic idea of such models is that an obervable 3, is generated by an observation or measurement
equation
Yt = F t/ 91‘, + v,

where v; ~ N (0, V;), and is expressed in terms of an unobservable state vector 6; (capturing e.g. levels,

trends or seasonal effects) which is itself dynamically modelled through a system or transition equation
0 = Grbi—1 + wy,

with w; ~ N (0, W}) and all error terms {v; } and {w; } are mutually independent. Normality is typically

assumed, but is not necessary and a prior distribution is required to describe the initial state vector 6.



Models are defined by the (potentially time-varying) quadruplets { F;, G¢, Vi, W} and the time-varying
states 6, make them naturally adaptive to changing circumstances. This feature also fits very naturally
with Bayesian methods, which easily allow for sequential updating. These models are quite general and
include as special cases e.g. ARMA models, as well as stochastic volatility models, used in finance (see
later in this entry).

There is a relatively long tradition of state-space models in econometrics and a textbook treatment can
already be found in Harvey (1981). Bayesian methods for such models were discussed in e.g. Harrison
and Stevens (1976) and a very extensive treatment is provided in West and Harrison (1997), using the
terminology ‘“Dynamic Linear Models”. An accessible introduction to Bayesian analysis with these
models can be found in Koop (2003, Ch. 8).

On-line sequential estimation and forecasting with the simple Normal state-space model above can
be achieved with Kalman filter recursions, but more sophisticated models (or estimation of some aspects
of the model besides the states) usually require numerical methods for inference. In that case, the main
challenge is typically the simulation of the sequence of unknown state vectors. Single-state samplers
(updating one state vector at a time) are generally less efficient than multi-state samplers, where all the
states are updated jointly in one step. Efficient algorithms for multi-state MCMC sampling schemes
have been proposed by Carter and Kohn (1994) and de Jong and Shephard (1995). For fundamentally
non-Gaussian models, the methods in Shephard and Pitt (1997) can be used. A recent contribution of
Harvey et al. (2005) uses Bayesian methods for state space models with trend and cyclical components,

exploiting informative prior notions regarding the length of economic cycles.

S Markov switching and mixture models

Markov switching models were introduced by Hamilton (1989) and essentially rely on an unobserved
regime indicator s;, which is assumed to behave as a discrete Markov chain with, say, K different levels.
Given s; = 1 the observable y; will be generated by a time series model which corresponds to regime
i, where ¢ = 1,..., K. These models are often stationary ARMA models, and the switching between
regimes will allow for some non-stationarity, given the regime allocations. Such models are generally
known as hidden Markov models in the statistical literature.

Bayesian analysis of these models is very natural, as that methodology provides an immediate frame-
work for dealing with the latent states, {s;}, and a simple MCMC framework for inference on both the
model parameters and the states was proposed in Albert and Chib (1993). A bivariate version of the
Hamilton model was analysed in Paap and van Dijk (2003), who also examine the cointegration rela-
tions between the series modelled and find evidence for cointegration between U.S. per capita income
and consumption. Using a similar model, Smith and Summers (2005) examine the synchronisation of
business cycles across countries and find strong evidence in favour of the multivariate Markov switching
model over a linear VAR model.

When panel data are available, another relevant question is whether one can find clusters of enti-

ties (such as countries or regions) which behave similarly, while allowing for differences between the



clusters. This issue is addressed from a fully Bayesian perspective in Friihwirth-Schnatter and Kauf-
mann (2006), where model-based clustering (across countries) is integrated with a Markov switching
framework (over time). This is achieved by a finite mixture of Markov switching autoregressive models,
where the number of elements in the mixture corresponds to the number of clusters and is treated as an
unknown parameter. Frithwirth-Schnatter and Kaufmann (2006) analyse a panel of growth rates of in-
dustrial production in 21 countries and distinguish two clusters with different business cycles. This also
feeds into the important debate on the existence of so-called “convergence clubs” in terms of income per
capita as discussed in Durlauf and Johnson (1995) and Canova (2004).

Another popular way of inducing nonlinearities in time series models is through, so-called, threshold
autoregressive models, where the choice of regimes is not governed by an underlying Markov chain,
but depends on previous values of the observables. Bayesian analyses of such models can be found in
e.g. Geweke and Terui (1993) and are extensively reviewed in Ch. 8 of Bauwens et al. (1999). The use of
Bayes factors to choose between various nonlinear models, such as threshold autoregressive and Markov
switching models was discussed in Koop and Potter (1999).

Geweke and Keane (2005) present a general framework for Bayesian mixture models where the state
probabilities can depend on observed covariates. They investigate increasing the number of components
in the mixture, as well as the flexibility of the components and the specification of the mechanism for
the state probabilities, and find their mixture model approach compares well with ARCH-type models

(as described in the next section) in the context of stock return data.

6 Models for time-varying volatility

The use of conditional heteroskedasticity initially introduced in the ARCH (autoregressive conditional
heteroskedasticity) model of Engle (1982) has been extremely successful in modelling financial time
series, such as stock prices, interest rates and exchange rates. The ARCH model was generalised to
GARCH (generalised ARCH) by Bollerslev (1986). A simple version of the GARCH model for an

observable series {y; }, given its past which is denoted by I;_1, is the following:

Yt = Ut\/}Tt (1)

where {u;} is white noise with mean zero and variance one. The conditional variance of y; given I;_; is

then h;, which is modelled as
p q
h =w+ Z ayr Z Bihi— (2)
i=1 j=1

where all parameters are positive and usually p = ¢ = 1 is sufficient in practical applications. Bayesian
inference for such models was conducted through importance sampling in Kleibergen and van Dijk
(1993) and using MCMC methods in Bauwens and Lubrano (1998).

An increasingly popular alternative model allows for the variance h; to be determined by its own

stochastic process. This is the so-called stochastic volatility model, which in its basic form replaces (2)



by the assumption that the logarithm of the conditional volatility is driven by its own AR(1) process
In(hy) = a+dIn(hi—1) + vy,

where {v; } is a white noise process independent of {u;} in (1). Inference in such models requires deal-
ing with the latent volatilities, which are incidental parameters and have to be integrated out in order to
evaluate the likelihood. MCMC sampling of the model parameters and the volatilities jointly is a natural
way of handling this. An MCMC sampler where each volatility was treated in a separate step was intro-
duced in Jacquier et al. (1994) and efficient algorithms for multi-state MCMC sampling schemes were
suggested by Carter and Kohn (1994) and de Jong and Shephard (1995). Many extensions of the simple
stochastic volatility model above have been proposed in the literature, such as correlations between the
{u;} and {v;} processes, capturing leverage effects, or fat-tailed distributions for u;. Inference with
these more general models and ways of choosing between them are discussed in Jacquier et al. (2004).
Recently, the focus in finance has shifted more towards continuous-time models, and continuous-
time versions of stochastic volatility models have been proposed. In particular, Barndorff-Nielsen and
Shephard (2001) introduce a class of models where the volatility behaves according to an Ornstein-
Uhlenbeck process, driven by a positive Lévy process without Gaussian component (a pure jump pro-
cess). These models introduce discontinuities (jumps) into the volatility process. The latter paper also
considers superpositions of such processes. Bayesian inference in such models through MCMC meth-
ods is complicated by the fact that the model parameters and the latent volatility process are often highly
correlated in the posterior, leading to the problem of overconditioning. Griffin and Steel (2006b) pro-
pose MCMC methods based on a series representation of Lévy processes, and avoid overconditioning
by dependent thinning methods. In addition, they extend the model by including a jump component in
the returns, leverage effects and separate risk pricing for the various volatility components in the super-
position. An application to stock price data shows substantial empirical support for a superposition of
processes with different risk premiums and a leverage effect. A different approach to inference in such
models is proposed in Roberts et al. (2004), who suggest a reparameterisation to reduce the correlation
between the data and the process. The reparameterised process is then proposed only in accordance with

the parameters.

7 Semi- and Nonparametric Models

The development and use of Bayesian nonparametric methods has been a rapidly growing topic in the
statistics literature, some of which is reviewed in Miiller and Quintana (2004). However, the latter review
does not include applications to time series, which have been perhaps less prevalent than applications in
other areas, such as regression, survival analysis and spatial statistics.

Bayesian nonparametrics is sometimes considered an oxymoron, since Bayesian methods are inher-
ently likelihood-based, and, thus, require a complete probabilistic specification of the model. However,
what is usually called Bayesian nonparametrics corresponds to models with priors defined over infinitely-
dimensional parameter spaces (functional spaces) and this allows for very flexible procedures, where the

data are allowed to influence virtually all features of the model.
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Defining priors over collections of distribution functions requires the use of random probability mea-
sures. The most popular of these is the so-called Dirichlet process prior introduced by Ferguson (1973).
This is defined for a space © and a o-field B of subsets of ©. The process is parameterised in terms
of a probability measure H on (©, B) and a positive scalar M. A random probability measure, F', on
(©, B) follows a Dirichlet process DP(M H) if, for any finite measurable partition, By, . . . , By, the vec-
tor (F'(By),...,F(By)) follows a Dirichlet distribution with parameters (M H(By),..., MH(By)).
The distribution H centres the process and M can be interpreted as a precision parameter.

The Dirichlet process is (almost surely) discrete and, thus, not always suitable for modelling ob-
servables directly. It is, however, often incorporated into semiparametric models using the hierarchical
framework

yi ~ g(yilu;) with u; ~ F and F ~ DP(MH), (3)

where ¢(-) is a probability density function. This model is usually referred to as a Mixture of Dirichlet
Processes. The marginal distribution for y; is a mixture of the distribution characterized by g(-). This
basic model can be extended: the density g(-) or the centring distribution H can be (further) parame-
terised and inference can be made about these parameters. In addition, inference can be made about the
mass parameter M. Inference in these models using MCMC algorithms has become quite feasible, using
methods based on MacEachern (1994) and Escobar and West (1995).

However, the model in (3) assumes independent and identically distributed observations and is, thus,
not directly of interest for time series modelling. A simple approach followed by Hirano (2002) is to
use (3) for modelling the errors of an autoregressive model specification. However, this does not allow
for the distribution to change over time. Making the random probability measure F’ itself depend on
lagged values of the variable under consideration y; (or, generally, any covariates) is not a straightfor-
ward extension. Miiller et al. (1997) propose a solution by modelling y; and y;_1 jointly, using a Mixture
of Dirichlet Processes. The main problem with this approach is that the resulting model is not really a
conditional model for y; given y;_1, but incorporates a contribution from the marginal model for y;_;.
Starting from the stick-breaking representation of a Dirichlet process, Griffin and Steel (2006a) introduce
the class of Order-based Dependent Dirichlet Processes, where the weights in the stick-breaking repre-
sentation induce dependence between distributions that correspond to similar values of the covariates
(such as time). This class induces a Dirichlet process at each covariate value, but allows for dependence.
Similar weights are associated with similar orderings of the elements in the representation and these
orderings are derived from a point process in such a way that distributions that are close in covariate
space will tend to be highly correlated. One proposed construction (the arrivals ordering) is particularly
suitable for time series and is applied to stock index returns, where the volatility is modelled through
an order-based dependent Dirichlet process. Results illustrate the flexibility and the feasibility of this
approach. Jensen (2004) uses a Dirichlet process prior on the wavelet representation of the observables

to conduct Bayesian inference in a stochastic volatility model with long memory.



8 Conclusion: where are we heading?

In conclusion, Bayesian analysis of time series models is alive and well. In fact, it is an ever grow-
ing field, and we are now starting to explore the advantages that can be gained from using Bayesian
methods on time series data. Bayesian counterparts to the classical analysis of existing models, such as
AR(F)IMA models are by now well-developed and a lot of work has already been done there to make
Bayesian inference in these models a fairly routine activity. The main challenge ahead for methodolog-
ical research in this field is perhaps to further develop really novel models that constitute not merely
a change of inferential paradigm, but are inspired by the new and exciting modelling possibilities that
are available through the combination of Bayesian methods and MCMC computational algorithms. In
particular, nonparametric Bayesian time-series modelling falls in that category and I expect that more

research in this area will be especially helpful in increasing our understanding of time series data.
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