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Abstract: Many production processes yield both good outputs and undesirable
ones (e.g. pollutants). In this paper, we develop a generalization of a stochastic
frontier model which is appropriate for such technologies. We discuss efficiency
analysis and, in particular, define technical and environmental efficiency in the
context of our model. Methods for carrying out Bayesian inference are described
and applied to a longitudinal (or panel) data set of Dutch dairy farms.
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1 Introduction

Stochastic frontier models are commonly used in the empirical study of
production technology and the efficiency of economic agents, such as firms,
individuals or countries. The seminal papers in the field are Aigner, Lovell
and Schmidt (1977) and Meeusen and van den Broeck (1977), while a sur-
vey is provided in Bauer (1990). The ideas underlying this class of models
can be applied to production models, but also to cost frontiers (by suitably
redefining the quantities involved). The discussion here will focus on pro-
duction frontiers, which aim to capture the maximum amount of output
that can be obtained from a given level of inputs. Thus, they describe the
best-practice technology for turning inputs into output. In practice, actual
output of an individual production unit may fall below the maximum possi-
ble. The latter deviation from the frontier is a measure of inefficiency and is
the focus of interest in many applications. The introduction of measurement
or specification error is required by the fact that we do not know where the
frontier is situated and have to estimate it from the available data. This
makes the frontier stochastic, hence the term “stochastic frontier model”.
The standard stochastic frontier model addresses the situation where only
one output is produced, with a set of inputs. Inference with such stan-
dard stochastic frontier models can be done using classical or Bayesian
approaches. In previous work, we have introduced and argued in favour of
a Bayesian approach (see e.g. van den Broeck, Koop, Osiewalski and Steel,
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1994). Some theoretical foundations for Bayesian analysis in stochastic fron-
tier models are presented in Ferndndez, Osiewalski and Steel (1997) and an
introductory survey of Bayesian methods in such models can be found in
Koop and Steel (2000). Classical methods are discussed in e.g. Bauer (1990)
or Horrace and Schmidt (1996). The present paper will take a Bayesian
view.

An important extension of this framework is to allow for more than one
type of output to be produced simultaneously. A Bayesian model for these
multiple-output production processes is proposed in Fernandez, Koop and
Steel (2000a). The present paper further extends the above model in order
to deal with situations where an individual unit produces undesirable out-
puts (such as pollution) as an inevitable by-product of the production of
desirable outputs. In the application used in this paper, for example, Dutch
dairy farms produce not only good outputs, such as milk, but also undesir-
able outputs, such as excessive nitrogen due to the application of manure
and chemical fertilizers. It is thus important to understand the nature of the
best-practice technology available to farmers for turning inputs into good
and bad outputs. Furthermore, it is important to see how individual farmers
measure up to this technology. In other words, evaluation of farm efficiency,
both in producing as many good outputs and as few undesirable outputs
as possible, is of interest. Here, we describe how extensions of stochastic
frontier models can be used to shed light on these issues. We begin by ex-
plaining the generalization of the standard single-output stochastic frontier
model to allow for several good outputs, following Fernandez et al. (2000a).
Next, we consider the more challenging case where some of these outputs
can be undesirable. In the fourth Section, we shall briefly outline the prior
used in the Bayesian model and the inference procedure used. Finally, we
present some of the results for our empirical application involving Dutch
dairy farms.

2 A Stochastic Frontier Model with Multiple Good
Outputs

In Fernandez et al. (2000a), we developed extensions of stochastic {rontier
models to allow for efficiency analysis in the presence of multiple outputs.
Note that previous work with multiple outputs has often involved either
having data on prices (e.g. in order to estimate a demand system) or on
costs (e.g. in order to estimate a cost function). However, particularly in
the case when some of the outputs are not sold in markets (e.g. pollution),
such price or cost information is not available. Hence, it is important to
develop methods which involve only output and input data.

The theoretical starting point in most analyses of multiple-output technol-
ogy is a transformation function:

fly,z) =0,
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where ¥y is a vector of p good outputs and z is a vector of inputs. If the
transformation function is separable then we can write it as:

In the present paper, we assume a constant elasticity of transformation
form for 8(y), but the basic ideas extend to any form.

To establish some terminology, note that 8(y) = constant maps out the
output combinations that are equivalent. Hence, it is referred to as the
production equivalence surface, which is (p — 1)-dimensional. By analogy
with the single output case, hy(z) defines the maximum output (as mea-
sured by 6(y)) that can be produced with inputs x and is referred to as the
production frontier.

Since the empirical application used in the present paper involves (un-
balanced) longitudinal or panel data, we assume that we have a set of
NT observations corresponding to outputs of N different firms, where
firm ¢ is observed for time periods ¢ = 1,...,T;. The output of firm 7
(¢=1,...,N)at timet (t=1,...,7;) is p-dimensional and is given by the
vector Y oy = (Uit 1)s- - Ygitp) € RY . We use the following transforma-
tion of the p-dimensional output vector:

1/q

P
o(i,t) - Zaj yl(li7t7j) 9 (1)
j=1

with a; € (0,1) for all j = 1,...,p and such that 2521 a; = 1 and with
q > 1. For fixed values of a = (ay,...,03), ¢ and 0y, (1) defines a
(p — 1)-dimensional surface in §Rf_ corresponding to all the p-dimensional
vectors of outputs y(; ;) that are technologically equivalent. In other words,
(1) plots the production equivalence surface.

Given the transformation from the multivariate output vector y; ;) to the
univariate quantity 6(; ;) (the parameters of which we estimate from the
data), the basic problem of finding firm-specific efliciencies is essentially
the same as in the single-output case. If we interpret the value 0(; ;) as a
kind of “aggregate output”, and group these transformed outputs in an
NT-dimensional vector

log 6 = (log 01,1y, -, 10801, 1yy, - - -, 1ogbn 1yy)'s (2)
we model log # through the following stochastic frontier model:
log =V3—Dz+e,. (3)

In the latter equation, V' = (v(2(1,1)),--.,v(T(n,1y)))" denotes an NT x k
matrix of exogenous regressors, where U(x(m)) is a k-dimensional function
of the inputs x(; ;) corresponding to firm ¢ at time ¢. The particular choice
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of v(-) defines the specification of the production frontier: e.g. v(z(; 1)) is the
vector of an intercept and all logged inputs for a Cobb-Douglas technology,
whereas a translog frontier also involves squares and cross products of these
logs. The corresponding vector of regression coeflicients is denoted by 8 €
B C R*. Often, theoretical considerations will lead to regularity conditions
on B, which will restrict the parameter space B to a subset of ®*, still k-
dimensional and possibly depending on z. For instance, we typically want
to ensure that the marginal products of inputs are positive.

Technical inefficiency is captured by the fact that firms may lie below the
frontier, thus leading to a vector of inefficiencies v = Dz € %ﬂ T where
D is an exogenous NT x M (M < NT) matrix and z € Z with Z =
{2 = (21,...,2m) € RM . Dz € RYT}. Through different choices of
D, we can accommodate various amounts of structure on the vector v of
inefficiencies. For instance, taking D = Iny7, the NT-dimensional identity
matrix, leads to an inefficiency term which is specific to each different
firm and time period. For a balanced panel (i.e. T, = T,i = 1,...,N),
D = Iy ® vy, where 1 is a T-dimensional vector of ones and ® denotes
the Kronecker product, implies inefficiency terms which are specific to each
firm, but constant over time (¢.e. “individual effects”). In our application
we make the latter choice for D (but with the obvious generalization to
an unbalanced panel). Since we are working in terms of log6, the log of
the aggregate output, the technical efficiency corresponding to firm ¢ (at
any period) will be defined as 7; = exp(—2;) where z; is the appropriate
element of z. For more discussion and alternative definitions of efficiency
measures, see Ferndndez, Koop and Steel (2000b). The term ¢, in (3) is
meant to capture all other influences, such as measurement or specification
error, and is accordingly not restricted in its sign.

Stochastics will be introduced into the sampling model through distribu-
tions on z (which could, equivalently, be considered part of the prior) and
€4. Here, we use a choice of D that makes Z = §Rf and we assume inde-
pendence across observations and between 2 and <. In order to fully specify
a likelihood function for the p-dimensional outputs when p > 1, we also
introduce a distribution on the weighted output shares, defined as

alyl

J(4,¢,9) .

Nits) = ~<p g0 qu L j=1,...,p, (4)
1=1 YY)

In particular, we group them into 7; ;) = (77(1-71571), ... ,77(1-7257]0))’, and assume
independent sampling from

p(a.ols) = 5 (inls), (5)

where s = (s1,...,8p)) € R and f%71(~|s) is the p.d.f. of a Dirichlet
distribution with parameter s.
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3 A Stochastic Frontier Model with Good and Bad
Outputs

Important issues in environmental policy hinge on multiple output produc-
tion technologies where some of the outputs are undesirable. For instance,
we have data on farms which produce good outputs (e.g. dairy products)
for the market and undesirable outputs (pollutants). We will refer to un-
desirable outputs as “bads”. Efficiency analysis using stochastic frontier
models can be used to shed light on practical policy questions, involving
both the goods and the bads. For instance, if we find dairy farms to be
environmentally efficient then pollution can only be reduced by reducing
production at dairy farms. However, if many dairy farms are highly envi-
ronmentally ineflicient, then by adopting best-practice technology pollution
can be reduced without harming production of milk.

The question now arises as to how to adapt the analysis of the previous
section to allow for undesirable outputs and both technical and environmen-
tal inefficiency. Following Fernandez et al. (2000a), we make one particular
adaptation which we argue is reasonable. Others are clearly possible, and
these are a topic of past and current research. For instance, Koop (1998)
and Reinhard, Lovell and Thijssen (1999) assume that undesirable outputs
can be treated as inputs. Ferndndez et al. (2000b) adapt the aggregator
function in (1) to accommodate bad outputs. Here, we model the good
outputs as in the previous section, but add a second frontier for the bad
outputs. Environmental efficiency is then measured relative to this second
frontier.

If we let b indicate a vector of m bad outputs, the most general description
of best-practice technology is given by:

fly,z,0) =0.

We assume this transformation function can be broken down into:
0(y) = hy(x),

and
K(b) = hp(y).

In other words, the general transformation function can be broken down
into two equations involving a “goods production equivalence surface” 6(y),
a “goods production frontier” hy(z), a “bads production equivalence sur-
face” k(b), and a “bads production frontier” hy(y). The assumption that
the amount of good outputs produced depends on the inputs, while pro-
duction of bad outputs depends on the amount of good outputs is likely
to be reasonable in many cases. If not, modifications of the present model
can be implemented.
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We begin with the model for the good outputs described in the previous sec-
tion given by equations (1)-(5). We further let b(; 1y = (D(i,1,1y5 - - - 0(i,t,m))
be the vector of m bad outputs for firm ¢ in period . We define the environ-
mental production equivalence surface through a similar constant elasticity
of transformation form:

1/r
Ko = | D% Ve | (6)
j=1

with v; € (0,1) for all j = 1,...,m and such that ZTZI v; = 1 and with
O0<r<l1.
Environmental inefliciency is measured using a stochastic frontier model
with (6) as dependent variable. That is, we define log % similarly to log 6
and set

logk =Ub 4+ Mv 4¢3 (7)

where U = (u(y(1,1)), - - -, w(¥Y(n,1y)))" is & function of the good outputs. U
plays a similar role to V' in equation (3) and, hence, the particular choice of
u(-) defines the specification of the bads production frontier. Environmental
inefficiencies are given by Mv € %fT. M plays an analogous role to D
in the previous section and here we set M = D which implies that the
technical and environmental efliciency of each firm is constant over time.
Thus, environmental efficiency of firm ¢ will be defined as T9; = exp(—v;).
To complete the sampling model, we shall introduce the following distri-
butional assumptions. We link both frontiers by joint distributions on the
inefficiency error terms and on the measurement error terms, while still
retaining independence across observations. In particular, we assume a bi-
variate Normal distribution for (g4,¢5). That is, if we let f#(c|a, A) denote
the R-variate Normal p.d.f. with mean a and covariance matrix A, evalu-
ated at ¢, we take:

3
Pleg=X) = 13" ( gi

where ¥ is a 2 x 2 P.D.S. matrix.

For the inefficiency error terms, we adopt a similar strategy, except that
these have to be nonnegative. We assume independence between firms and
foreachi=1,..., N, we take a truncated Normal inefliciency distribution:

P21, vilie, Q) = fX ((20,00) 11, Q) (1, Q) L (21,01), (9)

where f(u,§) is the integrating constant of the truncated Normal and
Iz () is the indicator function for R%.

0,X® INT> (8)

Finally, we define a weighted vector of shares for the bads:

')/',“bri .
J(4t,9) jzl

M 3 , M, (10)
s i)

Sty =
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stack them to form (s = (((ie1),-- -+ Ciye,m))’s and assume independent
sampling from

pCunlh) = 5 Cuanlh), (11)
where h = (hq,...,hy) € R

4 The Prior and Bayesian Inference

In the previous Sections, we have defined the sampling model, which de-
pends on the parameters (5,6, %, i, Q, &, v, ¢, 7, 8, h). We shall use the proper
prior structure

p(8,6,%, 11,9, 0,7, 4,7,8,h) = p(3, 8, X)p(p, Qp(a)p(v)p(q)p(r)p(s)p(h)

The prior we assume on these parameters is chosen to be rather nonin-
formative, except that we restrict 8 and § to their respective regularity
regions, and we impose that ¢ > 1 and 0 < r < 1, again for economic
theory considerations.

In particular, we take an Inverted Wishart prior on £2:

p(2) = fw (2. 10) (12)

combined with
p(pl) = 3 (ul0, ), (13)

Fernéndez, Koop and Steel (1999) report some simulation exercises to cali-
brate the prior of (4, 2) (4.e. choose values for the hyperparameters in (12)
and (13)) so as to induce a reasonable prior on the efficiencies 71; and Ty;.
For the other parameters we assume

0,05 o f (oo o) S (S0 M) ew (5.8.8), (14
where RR indicates the regularity region,

p(0) = 75 (alao). (19)

p(v) = 5~ (90), (16)

p(q) o< fa(al1,90)1(1,00)(2), (17)

where fg(.]a,b) denotes a Gamma density function with shape parameter
a and mean a/b (if @ = 1, we have an Exponential),

p(r) oc fa(r|1,70)L0,1)(r), (18)

p(s) = ch(8j|17kj)7 (19)
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and, finally,
p(h) = ] fo(r;|1,ny). (20)

Jj=1

We adopt noninformative choices for the hyperparameters in (14)-(20).
The resulting posterior from combining the sampling model with the prior
just described does not lend itself to immediate analytical analysis. Instead,
we shall use a Markov chain Monte Carlo (MCMC) algorithm on the space
of the parameters augmented with the inefficiencies (z,v). The Markov
chain will be constructed from Gibbs steps for (2,v),(3,6), %, where we
can draw immediately from the conditionals, and Normal random walk
Metropolis samplers for , i, o, v, q,7, s, h, since the conditionals for the
latter do not have a well-known form. We fine-tune results from preliminary
runs in order to select the variance for the increments in the random walk
Metropolis samplers. The relevant conditional posterior distributions are
described in detail in Fernandez et al. (1999).

5 An Application to a Panel of Dutch Dairy Farms

We apply the model described in the previous Sections to a data set involv-
ing NV = 613 Dutch dairy farms for the years 1991-94. It is an unbalanced
panel with a total number of observations NT = 1545. For each farm, we
have data on p = 2 good outputs, m = 1 bad output and 3 inputs:

e Good outputs: Milk (millions of kg) and Non-milk (millions of 1991
Guilders).

e Bad output: Nitrogen surplus (thousands of kg).

e Inputs: Family labor (thousands of hours), Capital (millions of 1991
Guilders) and Variable input (thousands of 1991 Guilders).

Variable input includes inler alia hired labor, concentrates, roughage and
fertilizer. Non-milk output contains meat, livestock and roughage sold. The
definition of capital includes land, buildings, equipment and livestock. Fur-
ther detail on this data set is given in Reinhard et al. (1999).

Both the goods and bad production frontiers are here assumed to take
Cobb-Douglas forms. A more detailed discussion of the empirical results
can be found in Fernédndez et al. (1999).

Table 1 provides some characteristics of the posterior distribution. Note
that the column labelled “Median” is the posterior median. The columns
labelled “2.5%” and “97.5” are the 2.5% and 97.5% percentiles, respec-
tively of the posterior distribution. “RTS” means returns to scale, which
indicates the relative increase in aggregate output expressed as a fraction
of a relative increase in all inputs (or good outputs for the bads frontier).
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We also summarize results for the technical and environmental efficiencies
of a typical or average farm, 71y and 7o¢. The latter results correspond to
a predictive out-of-sample efficiency distribution, obtained by integrating
out the distribution in (9) with the posterior of (1, ). Our model allows
for technical and environmental efficiencies to be correlated with one an-
other and that correlation is evaluated at 0.25, indicating that there is a
slight tendency for technically inefficient farms to also be environmentally
inefficient.

Table 1: Posterior Results for Dutch Dairy Farm Data Set

Median | 2.5% 97.5%

51 (Intercept) | -3.533 [ -3.694 | -3.226
B2(Labour) 0.120 0.090 | 0.150
5(Capital) | 0537 | 0504 | 0572
B4(Variable) 0.487 0.463 | 0.509
RTS (Goods) | 1.145 1.115 | 1.173
61 (Intercept) | 2.578 2.262 | 2.890
5o (Milk) 0.889 0.858 | 0.921
63(Non-milk) | 0.081 0.065 | 0.098
RTS(Bads) 0.971 0.940 | 1.001

q 1.004 1.000 | 1.019
oy 0.534 0.510 | 0.565
Tiy 0.620 0.415 | 0.880
T2y 0.345 0.198 | 0.599

All results seem reasonably in accordance with economic intuition. Some
of the more interesting results are:

e Firms tend to be more efficient technically than environmentally. In
fact, the posterior median of the environmental efficiency for a typical
farm is only 0.345, indicating that the typical farm produces roughly
three times as much nitrogen surplus as would be consistent with best
practice! Using the same data, Reinhard et al. (1999) and Fernandez
et al. (1999), who both use a single-frontier model, find similar results.

e The small positive correlation between both types of efficiencies indi-
cates that farms which tend to be less efficient technically also tend
to be less efficient environmentally. In contrast, the single frontier
analysis of Ferndndez et al. (1999) finds a moderately negative cor-
relation.

e However, there is a large spread of efficiencies across farms, which
manifests itself in large differences between the 2.5 and 97.5th per-
centiles of both technical and environmental efficiencies.
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e Rather than conducting inference on the efliciency for a typical (un-
observed) farm, we can also conduct inference on farm-specific effi-
ciencies. Given that we have observed these farms, their efficiencies
are less dispersed, and can lead to a ranking of firms, in the sense
that e.g. the efficiencies of quartile firms (in the efficiency ranking)
are quite well separated, and the posterior probability of these firms
being reversed in the ranking is very low.

e Increasing returns to scale seem to exist for the production of good
outputs, while slightly decreasing returns exists for bad output pro-
duction.

e The elasticity of nitrogen production with respect to milk produc-
tion (62) is much larger than the elasticity with respect to non-milk
production (63). This finding indicates that it is the milk production
side of dairy farming that is most associated with the production of
nitrogen.

We hesitate to draw policy conclusions based solely on this one set of em-
pirical results for one model specification. However, to illustrate the types
of issues that our model can be used to address, we offer the following
comments. The relatively large degree of environmental inefficiency indi-
cates that pollution can be reduced in many farms at little cost in terms of
foregone output. That is, if inefficient farms were to adopt best-practice
technology and move towards their environmental production frontiers,
production of pollutants could be reduced at no cost to milk or non-milk
production. The positive correlation between the two types of efficiencies
indicates that improving environmental efliciency could be associated with
improvements in technical efficiency. Hence, policies aimed at improving ef-
ficiency (e.g. by educating farmers in best-practice technology) could have
large payoffs. Furthermore, the pattern of returns to scale results indicate
that larger farms have advantages. Hence, policies which promote rational-
ization of farms (e.g. encouraging larger farms to purchase smaller farms)
could result both in more production of milk and non-milk outputs (due to
increasing returns to scale in the good production frontier) and less pollu-
tion (due to decreasing returns in the environmental production frontier).

6 Conclusions

In this paper, we have shown how the standard stochastic frontier model
with a single output can be extended to multiple outputs where some of
the outputs are undesirable. The model we develop can be used to model
production technologies which produce e.g. pollutants. The empirical ap-
plication to Dutch dairy farms shows the practicality of this approach and
highlights some important policy issues which our model can address.
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