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1. Introduction

Performing inference on the determinants of GDP growth is challenging because, in addi-
tion to the complexity and heterogeneity of the objects of study, a key characteristic of the
empirics of growth lies in its open-endedness (Brock and Durlauf, 2001). Open-endedness
entails that, at a conceptual level, alternative theories may suggest additional determinants
of growth without necessarily excluding determinants proposed by other theories. The ab-
sence, at the theoretical level, of such tradeoff leads to substantial model uncertainty, at
the empirical level, about which variables should be included in a growth regression. In
practice, a substantial number of growth determinants may be included as explanatory
variables. If two such variables are capturing different sources of relevant information and
should both be included, we will talk of jointness (as defined later), whereas if they perform
very similar roles they should not appear jointly, which we will denote by disjointness. We
could think of these situations as characterized by the covariates being complements or
substitutes, respectively.

Various approaches to deal with this model uncertainty have appeared in the literature:
early contributions are the extreme-bounds analysis in Levine and Renelt (1992) and the
confidence-based analysis in Sala-i-Martin (1997). Fernández et al. (2001b, FLS hence-
forth) use Bayesian model averaging (BMA, see Hoeting et al., 1999) to handle the model
uncertainty that is inherent in growth regressions, as discussed above. BMA naturally
deals with model uncertainty by averaging posterior inference on quantities of interest
over models, with the posterior model probabilities as weights. Other papers using BMA
in this context are León-González and Montolio (2004) and Papageorgiou and Masanjala
(2005). Alternative ways of dealing with model uncertainty are proposed in Sala-i-Martin
et al. (2004, SDM henceforth),1 and Tsangarides (2005). Insightful discussions of model
uncertainty in growth regressions can be found in Brock and Durlauf (2001) and Brock,
Durlauf and West (2003). All of these studies adopt a Normal linear regression model and
consider modeling n growth observations in y using an intercept and explanatory variables
from a set of k variables in Z, allowing for any subset of the variables in Z to appear in the
model. This results in 2k possible models, which will thus be characterized by the selection
of regressors. We call model Mj the model with the 0 ≤ kj ≤ k regressors grouped in Zj ,
leading to

y|α, βj , σ ∼ N(αιn + Zjβj , σ
2I), (1)

where ιn is a vector of n ones, βj ∈ <kj groups the relevant regression coefficients and
σ ∈ <+ is a scale parameter.

Based on theoretical considerations and simulation results in Fernández et al. (2001a),

We thank Gernot Doppelhofer for stimulating our interest on these issues, and for kindly making a
preliminary draft of Doppelhofer and Weeks (2006) available to us. Useful comments from the editor, an
anonymous referee and Charalambos Tsangarides are gratefully acknowledged.

1 SDM’s procedure BACE in fact uses approximate Bayesian posterior probabilities of regression models
based on the Schwarz criterion, as proposed by Raftery (1995).
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FLS adopt the following prior distribution for the parameters in Mj :

p(α, βj , σ|Mj) ∝ σ−1f
kj

N (β|0, σ2(gZ ′
jZj)−1), (2)

where fq
N (w|m,V ) denotes the density function of a q-dimensional Normal distribution on

w with mean m and covariance matrix V and they choose g = 1/max{n, k2}. Finally, the
components of β not appearing in Mj are exactly zero, represented by a prior point mass
at zero.

The prior model probabilities are specified by P (Mj) = θkj (1 − θ)k−kj , which implies
that each regressor enters a model independently of the others with prior probability θ.
Thus, the prior expected model size is θk. We follow Fernández et al. (2001a) and FLS
in choosing θ = 0.5, which is a benchmark choice—implying that P (Mj) = 2−k and that
expected model size is k/2. Throughout this paper, we shall use the same prior as in FLS.
An explicit analysis of alternative priors in this context is carried out in Ley and Steel
(2007).

FLS use a Markov chain Monte Carlo (MCMC) sampler to deal with the very large model
space (k = 41 for their data set, leading to 2.2× 1012 possible models to consider), which
can easily be implemented through a Metropolis algorithm over model space alone—since
the marginal likelihoods and thus the posterior model odds between any two models are
analytically available; see FLS for details. Thus, the MCMC sampler is only implemented
to deal with the practical impossibility of exhaustive analysis of the model space: the chain
will visit only the most promising models, which are the ones with non-negligible posterior
probability.

The results in FLS indicate that the posterior probability is widely spread among many
models (Table 1), which implies the superiority of BMA over choosing a single model but,
precisely because of its richness, also makes it harder to summarize posterior results.

Table 1. FLS Data: distribution of posterior model probability and model size.
(MCMC sampler with 2 million recorded draws after a burn-in of 1 million draws.)

Number Posterior Number of Regressors

of Models Prob. Mean St.Dev.

1 0.01 10 -

5 0.04 8.7 1.1

25 0.10 8.9 1.4

50 0.14 9.0 1.4

100 0.19 9.1 1.4

190 0.25 9.1 1.4

1,606 0.50 9.4 1.5

8,688 0.75 9.6 1.5

25,269 0.90 9.8 1.6

39,839 0.95 9.8 1.6

71,493 0.99 9.9 1.6

148,342 1.00 9.9 1.6
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In related work, Doppelhofer and Weeks (2005, DW henceforth) analyze the same linear
regression model (using the BACE method of SDM) and introduce a measure of jointness
“to address dependence among explanatory variables.” DW propose a jointness statistic
defined as the log ratio of the joint posterior inclusion probability of a set of variables
over the product of the individual posterior inclusion probabilities. Below we discuss this
measure as well as another measure proposed by the same authors in a later paper.

In this paper we propose alternative measures of jointness for Bayesian variable selection,
based on probabilistic arguments and illustrate their application in the context of BMA.
The next section discusses measures of jointness, which will be applied to two different
growth data sets: the FLS data and the DW data in Section 3. The final section concludes.

2. Jointness in Bayesian Variable Selection

We propose four criteria that a useful measure of jointness—i.e., of the tendency of vari-
ables to appear together—should have:

[C1] Interpretability—any jointness measure should have either a formal statistical or a clear
intuitive meaning in terms of jointness.

[C2] Calibration—values of the jointness measure should be calibrated against some clearly
defined scale, derived from either formal statistical or intuitive arguments.

[C3] Extreme jointness—the situation where two variables always appear together should
lead to the jointness measure reaching its value reflecting maximum jointness.

[C4] Definition—the jointness measure should always be defined whenever at least one of the
variables considered is included with positive probability.

Consider two variables, i and j, and let P (i) denote the posterior probability of inclusion
for regressor i—i.e., P (i) is simply defined as the sum of the posterior probabilities of all
models that contain regressor i. Similarly, P (i∩ j) is the posterior probability of including
both variables i and j, defined as the sum of the posterior probabilities of all models that
contain both regressors i and j. Clearly P (i) ≥ P (i ∩ j). To economize on notation, we
shall not make the dependence on the sample explicit, but it should be understood that
all posterior quantities are conditional on the observed sample.

DW define jointness as (the logarithm of):

JDW
ij =

P (i ∩ j)
P (i)P (j)

(3)

There are several problems associated with this measure. First, since JDW
ij = P (i|j)/P (i) =

P (j|i)/P (j), it can be verified that as either P (i) or P (j) approaches unity, then JDW
ij also

approaches unity—regardless of the behaviour of the other variable. In fact, it is bounded
from above as JDW

ij ≤ 1/ max{P (i), P (j)}. This means that when the inclusion proba-
bility of one of the variables exceeds e−1 = 0.37 this variable can never be a “significant
complement” (i.e., corresponding to log(JDW

ij ) > 1) of any other variable in the data set
according to the DW jointness measure.

3



Secondly, consider a case of extreme jointness where variables i and j always appear
together; then JDW

ij = P (i)−1 = P (j)−1 = P (i ∩ j)−1 so the DW measure equals the
reciprocal of P (i ∩ j). This makes comparisons of DW-jointness across different pairs of
variables quite difficult, and is not consistent with the fixed critical level used by DW. It
also raises questions about interpretation, since while P (i∩ j) could itself be considered a
natural measure of jointness, that does not apply to its reciprocal.

Thirdly, contrary to the claim in DW, JDW
ij does not correspond to the posterior odds

of models including i and j vs models that include them individually. This ratio is properly
defined in equation (7) below. Finally, JDW

ij is not defined whenever one of the regressors
does not appear in any of the visited models. In conclusion, JDW

ij does not meet any of
the criteria listed above.

In subsequent work, Doppelhofer and Weeks (2006, DWa henceforth) propose an al-
ternative jointness measure, based on the cross-product ratio of the binary indicators of
variable inclusion. For two regressors i and j this measure corresponds to (the logarithm
of):

JDWa
ij =

P (i ∩ j)P (̃ı ∩ ̃)
P (i ∩ ̃)P (̃ı ∩ j)

, (4)

where ı̃ and ̃ stand for the exclusion of i and j, respectively. This measure can be written
as

JDWa
ij =

P (i|j)
P (̃ı|j)

÷ P (i|̃)
P (̃ı|̃)

, (5)

which clearly shows that JDWa
ij can be interpreted as the posterior odds of including i

given that j is included divided by the posterior odds of including i given that j is not
included—rather than the posterior odds interpretation given in DWa.

The measure JDWa
ij is undefined both (i) when either of the regressors is always in-

cluded, and (ii) when one of the regressors is never included. Furthermore, in practically
relevant situations where, say, P (i) → 1, the measure depends crucially on the limit of the
ratio P (̃ı ∩ ̃)/P (̃ı ∩ j) which means that the (few) low-probability models without i can
make the measure range all the way from 0 (if they all include j) to ∞ (if they all exclude
j). This critical dependence of the jointness involving important variables on models with
very low posterior probability seems an undesirable characteristic. Against the criteria
proposed, JDWa

ij meets [C2] and [C3], but it fails to meet [C1] and [C4].

We now present our own alternative jointness measures, which satisfy all the criteria
proposed in this paper. Consider Fig. 1, where the posterior probabilities of two variables
are represented in a Venn diagram. As mentioned, a raw, yet perhaps natural, measure of
jointness is simply the probability of joint inclusion, P (i∩ j)—i.e., the intersection shown
in the diagram. The diagram also suggests two better measures of jointness: (i) the joint
probability (i.e., intersection) relative to the probability of including either one (i.e., the
union), and (ii) the joint probability relative to the probability of including either one,
but not both—i.e., excluding the intersection itself. We shall denote these measures of
jointness by J ?

ij and Jij .
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 P( not i ∩ not j  )

P( i )                               P( j  )

P( i  ∩ j  )

Fig. 1. Jointness.

Thus, the measures of jointness proposed in this paper are:

J ?
ij =

P (i ∩ j)
P (i ∪ j)

=
P (i ∩ j)

P (i) + P (j)− P (i ∩ j)
∈ [0, 1] (6)

Jij =
P (i ∩ j)

P (i ∩ ̃) + P (j ∩ ı̃)
=

P (i ∩ j)
P (i) + P (j)− 2P (i ∩ j)

∈ [0,∞) (7)

which meet [C4], since these quantities are always well-defined, when one of the variables
is included with positive probability. In the extreme jointness case discussed above (when
i and j appear always together), while JDW

ij = P (i ∩ j)−1, we have that JDWa
ij = ∞,

J ?
ij = 1 and Jij = ∞, which implies that the latter three measures also satisfy [C3]. In case

that P (i) → 1, we obtain J ?
ij → P (j) and Jij → P (j)/[1− P (j)], which are well-behaved

quantities in line with intuition.

Furthermore, note that Jij does indeed correspond to the posterior odds ratio of the
models including both i and j vs the models that include them only individually. Since
this fact leads to a more straightforward interpretation in a statistically meaningful metric,
Jij is our preferred measure of jointness.

Table 2 summarizes how the different measures of jointness mentioned above perform
in terms of the criteria proposed in this paper.

Table 2. Compliance with Criteria for Measures of Jointness
Interpretability Calibration Extreme Definition

JDW
ij no no no no

JDWa
ij no yes yes no

P (i ∩ j) no yes no yes

J ?
ij yes yes yes yes

Jij yes yes yes yes

Another advantage of the measures proposed here is that they are easily extended to the
case of more than two regressors. In particular, we define multivariate jointness for general
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sets of regressors S through two quantities: P (S), which is the total posterior probability
assigned to those models having all regressors in S, and P (⊂ S), defined as the posterior
mass assigned to all models including only proper subsets of S. Then we can generalize
the measures above as follows:

J ?
S =

P (S)
P (⊂ S) + P (S)

∈ [0, 1] (8)

JS =
P (S)

P (⊂ S)
∈ [0,∞) (9)

Thus, the measure J ?
S is the posterior mass of the models containing all of S as a

fraction of the posterior mass assigned to all models having any (or all) of the regressors in
S. As before, the measure JS is the posterior odds ratio between those models having all
the variables in the set S and the models including only proper subsets of these variables.

3. Jointness of Growth Determinants

3.1. The FLS Data

We first illustrate the behaviour of our proposed measures of jointness using the growth
data of FLS. This data set contains k = 41 potential regressors to model the average per
capita GDP growth over 1960-1992 for a sample of n = 72 countries.2

The results are based on an MCMC chain on model space with 2 million recorded
draws, after a burn-in of 1 million. The correlation between model visit frequencies and
probabilities computed on the basis of the exact posterior odds of the visited models
is 0.992, indicating excellent convergence. An estimate of the total model probability
captured by the chain, computed as in George and McCulloch (1997), is 70%.3 Results are
virtually identical to those obtained in FLS on the basis of a chain of the same length.4

Table 3 displays the marginal posterior probabilities of inclusion of each regressor—i.e.,
P (i). Fig. 2 displays scatter plots of the logarithms of P (i∩ j), J ?

ij , and Jij for all possible
combinations of two regressors. Fig. 2 shows that log(J ?

ij) and log(Jij) are linearly related

2 The dataset and the original f77 code used in FLS are available on the Journal of Applied Econometrics
code and data archive at http://qed.econ.queensu.ca/jae/. The updated code used here has been uploaded
to that website, and is also available at http://www.warwick.ac.uk/go/msteel/steel homepage/software/
which will subsequently contain the most recent version of the code.

3 This is quite high, given that we only visit one in every 15 million models. Longer chains will capture
marginally more of this posterior probability, but they will only add models with very small posterior
probabilities without affecting any of the conclusions.

4 Note that in the applications in this paper, the regressors have been standardized to have (zero mean
and) unit variance to ease the comparison between regression coefficients. The dependent variable is
expressed in percentage points of annual per capita GDP growth and displays similar behaviour in both
datasets—means of 2.1 and 1.8, and standard deviations of 1.9 and 1.8.
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for a range of values, but the relation turns non-linear as P (i ∩ j) → 1. The ranking in
terms of both jointness measures is, however, identical, so the only issue for identifying
jointness is to decide on suitable “critical” values. This will be easier for Jij , given its
interpretation as a posterior odds ratio. Another notable feature of Fig. 2 is that both
jointness measures tend to be increasing in P (i ∩ j). This relationship is less exact for
average values of P (i∩ j), but it does seem that extremely high and low values of P (i∩ j)
correspond to similar extremes for both jointness measures. The main features of Fig. 2
are closely mirrored by a similar graph for the SDM data set used in the next subsection,5

thus lending more generality to our findings.

Jointness
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Fig 2. FLS data: Joint inclusion probabilities, bivariate jointness J ?
ij and Jij .

5 This graph is available from http://www.warwick.ac.uk/go/msteel/steel homepage/software/.
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Table 3. FLS data: Marginal posterior summary of the β’s.
(Regressors are standardized.)

Conditional on Inclusion

Regressors Prob. E(βi|y)
√

Var(βi|y)
|E(βi|y)|√
Var(βi|y)

E(βi|y)
√

Var(βi|y)
|E(βi|y)|√
Var(βi|y)

Sign

1 log GDP in 1960 1.00 -1.4180 0.269 5.3 -1.4180 0.267 5.3 1.0

2 Fraction Confucian 1.00 0.4900 0.117 4.2 0.4922 0.113 4.4 1.0

3 Life expectancy 0.95 0.9574 0.371 2.6 1.0120 0.300 3.4 1.0

4 Equipment investment 0.94 0.5575 0.222 2.5 0.5920 0.179 3.3 1.0

5 Sub-Saharan dummy 0.76 -0.4772 0.334 1.4 -0.6303 0.225 2.8 1.0

6 Fraction Muslim 0.66 0.2565 0.219 1.2 0.3909 0.143 2.7 1.0

7 Rule of law 0.52 0.2594 0.280 0.9 0.5027 0.172 2.9 1.0

8 Number of years open economy 0.50 0.2556 0.283 0.9 0.5088 0.174 2.9 1.0

9 Degree of capitalism 0.47 0.1577 0.184 0.9 0.3347 0.114 2.9 1.0

10 Fraction Protestant 0.46 -0.1441 0.176 0.8 -0.3129 0.120 2.6 1.0

11 Fraction GDP in mining 0.44 0.1384 0.176 0.8 0.3136 0.122 2.6 1.0

12 Non-Equipment investment 0.43 0.1346 0.173 0.8 0.3130 0.116 2.7 1.0

13 Latin American dummy 0.19 -0.0729 0.175 0.4 -0.3829 0.205 1.9 1.0

14 Primary school enrollment, 1960 0.18 0.0941 0.224 0.4 0.5126 0.241 2.1 1.0

15 Fraction Buddhist 0.17 0.0394 0.100 0.4 0.2356 0.114 2.1 1.0

16 Black market premium 0.16 -0.0355 0.092 0.4 -0.2250 0.106 2.1 1.0

17 Fraction Catholic 0.11 -0.0123 0.113 0.1 -0.1118 0.326 0.3 0.7

18 Civil liberties 0.10 -0.0388 0.134 0.3 -0.3879 0.212 1.8 1.0

19 Fraction Hindu 0.10 -0.0247 0.094 0.3 -0.2556 0.182 1.4 1.0

20 Primary exports, 1970 0.07 -0.0209 0.089 0.2 -0.2916 0.178 1.6 1.0

21 Political rights 0.07 -0.0205 0.090 0.2 -0.2994 0.189 1.6 1.0

22 Exchange rate distortions 0.06 -0.0134 0.063 0.2 -0.2202 0.142 1.6 1.0

23 Age 0.06 -0.0098 0.048 0.2 -0.1714 0.110 1.6 1.0

24 War dummy 0.05 -0.0097 0.051 0.2 -0.1886 0.127 1.5 1.0

25 Fraction of Pop. Speaking English 0.05 -0.0071 0.039 0.2 -0.1512 0.104 1.5 1.0

26 Fraction speaking foreign language 0.05 0.0089 0.051 0.2 0.1893 0.146 1.3 0.9

27 Size labor force 0.05 0.0099 0.069 0.1 0.2107 0.240 0.9 0.8

28 Ethnolinguistic fractionalization 0.04 0.0059 0.042 0.1 0.1718 0.154 1.1 1.0

29 Spanish Colony dummy 0.03 0.0058 0.050 0.1 0.1693 0.211 0.8 0.9

30 S.D. of black-market premium 0.03 -0.0041 0.031 0.1 -0.1337 0.117 1.1 1.0

31 French Colony dummy 0.03 0.0042 0.031 0.1 0.1358 0.117 1.2 1.0

32 Absolute latitude 0.02 0.0005 0.040 0.0 0.0212 0.257 0.1 0.5

33 Ratio workers to population 0.02 -0.0030 0.031 0.1 -0.1220 0.158 0.8 0.9

34 Higher education enrollment 0.02 -0.0041 0.039 0.1 -0.1720 0.187 0.9 1.0

35 Population growth 0.02 0.0032 0.035 0.1 0.1513 0.188 0.8 0.9

36 British colony dummy 0.02 -0.0019 0.022 0.1 -0.0913 0.121 0.8 0.9

37 Outward orientation 0.02 -0.0018 0.021 0.1 -0.0865 0.117 0.7 0.9

38 Fraction Jewish 0.02 -0.0014 0.020 0.1 -0.0701 0.127 0.6 0.8

39 Revolutions and coups 0.02 0.0000 0.017 0.0 0.0009 0.136 0.0 0.5

40 Public education share 0.02 0.0004 0.017 0.0 0.0230 0.130 0.2 0.6

41 Area (scale effect) 0.02 -0.0006 0.014 0.0 -0.0427 0.108 0.4 0.8

Fig. 3 displays the log posterior odds, log(Jij), for all the 820 = 41(41 − 1)/2 pairs of
variables. In the plot, the log Bayes factors, log(Jij), are sorted lexicographically along
the horizontal axis, first by P (i) and then by P (j). Thus, since variable 1 has the highest
inclusion probability, all its pairings appear first. Among those, variable 2 appears first,
then 3, etc.

Posterior odds in Fig. 3 are classified as conveying positive, strong, very strong or
decisive evidence of jointness when they exceed 3, 10, 30 or 100, and horizontal lines
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Fig 3. FLS data: Log posterior odds in favor of jointness, log(Jij).

separate these regions.6 Only 8 pairs (1% of the total) display some degree of evidence for
jointness. These are variables 1 and 2 (GDP in 1960 and Fraction Confucian), which show
decisive jointness, the pairs (1, 3), (1, 4), (2, 3), (2, 4) display strong evidence of jointness,
while there is positive evidence for (1, 5), (2, 5), and (3, 4). As was already suggested by
Fig. 2, only the regressors with high values for P (i ∩ j) and thus, high marginal inclusion
probabilities tend to appear jointly in the growth regressions. Both of these probabilities
are over 0.75 for the pairs mentioned above, and over 0.93 for those pairs with strong
or decisive jointness. This means that we do not have, for this data set, any regressor
pairs that virtually always appear together, while appearing in less than 75% of the visited
models. Fig. 4 summarizes the jointness results graphically. The nodes are proportional
to posterior probabilities of inclusion and the thickness of the joining lines is proportional
to log(Jij) for any pair.

Examining sets of more than two regressors, we note that jointness of all four triplets
of the first four variables is supported by posterior odds of 7 to one and higher, whereas
the jointness of all four of these variables is favorably supported by posterior odds of 7.8.
Posterior odds pertaining to jointness for the first five variables, however, are only 2 to
one.

6 These cutoff points are easily interpretable—e.g., positive evidence implies the models with both re-
gressors get more than three times as much posterior probability as those with only one of the regressors.
The actual values of the cutoff points are inspired by Jeffreys (1961, p. 432).
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3. Life Expectancy 4. Equipment Investment

5. Sub-Saharan

pentagon.nb 1

Fig 4. Pairwise joint growth determinants.
(Nodes and graphs are proportional to posterior probabilities.)

Table 1 shows that the visited models typically have 9 or 10 regressors. This means
that models tend to have five or six regressors in addition to the four or five that are
usually present. Since we see no jointness beyond the first five variables, these additional
regressors have to be alternating. Evidence suggesting that variables do appear on their
own, but not jointly will be denoted by disjointness. This can occur, e.g., when variables
are highly collinear and are proxies for each-other. We can, again, interpret posterior odds
directly, and similar thresholds (now favoring models with separate inclusion) can be used
for disjointness. See Fig. 3 for a graphical display. Table 4 summarizes the posterior odds
for assessing disjointness. Now 757 pairs of variables (92.3% of total) display some degree
of disjointness—leaving only 63 pairs with posterior odds, i.e., Jij , larger than 1/3. In line
with Fig. 2, decisive disjointness occurs only for determinants with small posterior inclusion
probabilities (usually under 5%). The only exception is decisive disjointness between Civil
liberties and Political rights, which are indeed likely to be good substitutes for each other.
For triplets of variables, we get even more evidence of disjointness: 8,752 of the 10,660
possible triplets (i.e., 82.1%) indicate decisive disjointness.

Table 4. Pairwise Disjointness
Evidence posterior odds Number Percentage

Favorable 1
10

< PO ≤ 1
3

79 10.4

Strong 1
30

< PO ≤ 1
10

182 24.0

Very Strong 1
100

< PO ≤ 1
30

353 46.6

Decisive PO ≤ 1
100

143 18.9

Total 757 92.3

In conclusion, the five most important variables (at the top of Table 3) are not mutually
exclusive determinants and tend to appear jointly. This is perhaps not surprising as they
seem to capture rather different explanations for growth. The variables in the data set
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with moderate marginal inclusion probabilities do not have strong jointness or disjointness
relations (with one exception), while the variables with least marginal importance tend to
avoid occurring jointly and alternate their presence in the visited models.

Table 3 also presents the first two moments of the regression coefficients. The first set of
moments is marginalized over all models visited, including the zeros for those models that
exclude the regressor in question. These numbers reveal a strong positive correlation (equal
to 0.89) between the absolute values of the normalized posterior mean and the inclusion
probabilities. This ensures us that there are no variables with high inclusion probability
but counteracting effects in different substantial sets of models. Any serious doubt as to
the sign of the effect would be reflected in a posterior mean close to zero and a large
posterior variance. This is reassuring as it implies that the direction of the influence of
variables with high inclusion probabilities tends to be clear. Plots of the posterior densities
of the βi’s can be found in FLS, which shows that the variable “Fraction Catholic” has
modes on different sides of the origin. Indeed, this is the one variable where the value of
the normalized posterior mean is a lot lower than could be expected on the basis of the
(moderate) inclusion probability.

The second set of moments presented in Table 3 are computed conditionally upon
inclusion—i.e., by averaging over only those models which actually include the coefficient
in question. These moments are important for assessing the effect of each regressor, given
that it is included in the model. Clearly, differences with the unconditional moments can
be very large if the regressor has a low or even moderate posterior inclusion probability.

3.2. Application to the Data Set of SDM and DW

SDM, DW and DWa use a larger data set, and model annual GDP growth per capita
between 1960 and 1996 for n = 88 countries as a function of k = 67 potential drivers.
This leads to an even larger model space with 267 = 1.5 × 1020 models, and requires a
slight update to the code used for FLS. In the Fortran code used in FLS, an unsigned
double-precision variable was used to index models for all the MCMC accounting. This
results in an upper limit of 252 models.7 We have updated the code by using instead
two model indices, making it suitable for any k ≤ 104. The revised code is available at
http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

This very large model space is remarkably well explored by an MCMC chain with 2
million retained model visits, after discarding the first million as a burn-in, as evidenced
by a correlation between model visit frequencies and actual posterior probabilities of the
set of visited models equal to 0.995. The chain visits 126,844 models and is estimated to
cover 47% of the total posterior mass. This is a very high coverage, given that we visit

7 Double-precision numbers cannot distinguish between 252 and 1 + 252 because they have the same
internal representation. The 64-bit double format uses 1 bit for the sign and 11 for the exponent, leaving
52 bits available for the fraction—thus the upper limit on ‘counting’ of 252. Adding a second index doubles
the upper limit to 2104, which should be enough in most practical applications.

11



less than one model for every 1015 models in the space. Any additional models (visited by
running longer chains) will have virtually zero posterior probabilities, and will not affect
the conclusions in any way.

Despite the much larger model space, Table 5 shows that posterior model probabilities
are more concentrated than in the previous case and that the models with high posterior
probability tend to be smaller, containing around 6–7 regressors.

Table 5. SDM Data: Distribution of posterior model probability and model size.
(MCMC sampler with 2 million recorded draws after a burn-in of 1 million draws.)

Number Posterior Number of Regressors

of Models Prob. Mean St.Dev.

1 0.07 6 -

5 0.10 6.3 0.5

25 0.18 6.4 0.7

50 0.23 6.3 0.9

100 0.29 6.4 1.0

752 0.50 6.6 1.2

4,627 0.75 6.8 1.3

13,527 0.90 6.9 1.4

21,948 0.90 6.9 1.4

42,363 0.99 7.0 1.4

126,844 1.00 7.0 1.4

Table 6 presents the marginal inclusion probabilities for those regressors that are in-
cluded more than 1% of the time8 as well as the moments of the corresponding β’s in the
same format as Table 3. Again, note the high correlation between the absolute values of the
unconditional standardized posterior means of the β’s and the posterior inclusion proba-
bilities. There are, however, some interesting differences with the results based on the FLS
data set. In spite of the fact that the posterior model probability is more concentrated with
the SDM data, there are no regressors that are virtually always included. Nevertheless,
fewer regressors have marginal inclusion probabilities exceeding 10% and there is a longer
tail of marginally less important variables (53 out of the possible 67). In addition, the
important determinants of growth are often not the same ones: only Past GDP, Primary
school enrollment, Fraction Confucian, Life expectancy, Fraction GDP in mining and the
Sub-Saharan and Latin American dummies receive inclusion probabilities above 10% for
both data sets, and appear in a very different ordering in both. By comparing the moments
of β conditionally upon inclusion, we can assess whether the effects of these regressors are
similar in both datasets.9 Comparing Tables 3 and 6 reveals that they all have the same

8 This is merely for ease of presentation, but the sampler was run over the entire model space with the
complete set of the 67 potential regressors. The table displaying the marginal posterior summary for all
67 variables is available at http://www.warwick.ac.uk/go/msteel/steel homepage/software/.

9 These particular regressors were all measured in the same way in both data sets, and the raw moments
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signs, but some have rather different magnitudes: the main difference is in the effect of
Past GDP, which is almost twice as large with the FLS data set (the difference is more
than 2.5 times the posterior standard deviation).

The results on posterior inclusion probabilities and posterior moments of β are,10

however, quite close to those in SDM, which are replicated in DW and DWa. It is, therefore,
interesting to compare our findings on jointness with those in DW, based on their criterion
JDW

ij in (3) and those in DWa, based on JDWa
ij in (4). We do not find much evidence of

jointness (see Fig. 5), with only pairs (1, 2) and (2, 4) displaying posterior odds in favor
of jointness greater than 3. Weak jointness (with posterior odds over 2.5) exists for pairs
(1, 3), (1, 4), (2, 3), (3, 5) and (5, 6). No jointness is found for triplets, with 2.2 being the
highest posterior odds in favor of trivariate jointness, corresponding to the triplet (1,2,4).
In contrast, evidence for disjointness abounds, with 99.1% of possible pairs indicating some
disjointness and 70% displaying decisive disjointness. Such disjointness is found almost ex-
clusively between relatively unimportant regressors. There is only one occasion of decisive
disjointness between two variables each having over 10% marginal inclusion probability:
the Latin American and Spanish colony dummies. Clearly, these dummies are likely to be
substitutes, given the large amount of former Spanish colonies in Latin America. If we con-
sider triplets of variables, we even find decisive disjointness in 98.2% of all combinations.
Again, this tends to affect mostly combinations with relatively unimportant variables. Ex-
ceptions are the triplets (Fraction in tropical area, Malaria prevalence, Life expectancy)
and (Fraction in tropical area, Malaria prevalence, Sub-Saharan dummy), where it is clear
not all three variables involved are required to provide the information. We do, however,
need two of them, since the variables are not found to be decisively pairwise disjoint.

In sharp contrast, DW and DWa find disjointness only between variables with more
than 10% inclusion probabilities. However, they both identify the disjointness between the
Latin American and Spanish colony dummies. They find pairwise disjointness between the
Fraction tropical area and Malaria prevalence and between the Sub-Saharan dummy and
Malaria prevalence (whereas we found this disjointness to exist only through the triplet).
In addition, none of the jointness relations we find are identified by the DW criterion.
Of course, finding conclusive evidence of jointness in the sense of DW in cases where the
inclusion probability of one of the variables exceeds 0.37 is precluded by the very definition
of JDW

ij , as explained in Section 2. The criterion in DWa identified jointness in four of the
seven pairs in which we encountered at least weak jointness. However, two of the three
remaining pairs (East Asian dummy with the investment price and with primary school

were very similar, so that the standardization does not affect this comparison.

10 For the moments of β, this similitude cannot be assessed directly from Table 6, but it is clear from
running the sampler without standardizing the data. These results are available from

http://www.warwick.ac.uk/go/msteel/steel homepage/software/.
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Table 6. DW data: Marginal posterior summary of the β’s.
(Regressors are standardized.)

Conditional on Inclusion

Regressors Prob. E(βi|y)
√

Var(βi|y)
|E(βi|y)|√
Var(βi|y)

E(βi|y)
√

Var(βi|y)
|E(βi|y)|√
Var(βi|y)

Sign

1 Primary school enrollment, 1960 0.87 0.7080 0.338 2.1 0.8101 0.218 3.7 1.0

2 Investment price 0.86 -0.3900 0.195 2.0 -0.4530 0.125 3.6 1.0

3 East Asian dummy 0.84 0.5647 0.293 1.9 0.6693 0.179 3.7 1.0

4 log GDP in 1960 0.78 -0.5828 0.371 1.6 -0.7444 0.235 3.2 1.0

5 Fraction in tropical area 0.66 -0.4703 0.370 1.3 -0.7180 0.175 4.1 1.0

6 Population coastal density 0.56 0.2516 0.246 1.0 0.4527 0.135 3.4 1.0

7 Malaria prevalence 0.20 -0.1411 0.302 0.5 -0.6950 0.256 2.7 1.0

8 Fraction Confucian 0.17 0.0725 0.176 0.4 0.4326 0.168 2.6 1.0

9 Life expectancy 0.16 0.1556 0.390 0.4 0.9554 0.415 2.3 1.0

10 Sub-Saharan dummy 0.15 -0.1068 0.282 0.4 -0.7277 0.300 2.4 1.0

11 Latin American dummy 0.14 -0.0832 0.219 0.4 -0.5825 0.214 2.7 1.0

12 Spanish colony dummy 0.11 -0.0454 0.143 0.3 -0.4216 0.173 2.4 1.0

13 Fraction GDP in mining 0.10 0.0305 0.102 0.3 0.3023 0.147 2.1 1.0

14 Ethnolinguistic fractionalization 0.10 -0.0331 0.111 0.3 -0.3316 0.155 2.1 1.0

15 Fraction Buddhist 0.09 0.0315 0.112 0.3 0.3505 0.167 2.1 1.0

16 Fraction Muslim 0.09 0.0319 0.116 0.3 0.3705 0.178 2.1 1.0

17 Population density 0.08 0.0201 0.077 0.3 0.2535 0.122 2.1 1.0

18 Government consumption share 0.08 -0.0231 0.092 0.3 -0.3078 0.157 2.0 1.0

19 Number of years open economy 0.07 0.0286 0.115 0.2 0.3851 0.198 1.9 1.0

20 Political rights 0.07 -0.0278 0.115 0.2 -0.3966 0.204 1.9 1.0

21 Fraction speaking foreign language 0.06 0.0156 0.073 0.2 0.2762 0.150 1.8 1.0

22 Openness measure 1965–74 0.05 0.0148 0.075 0.2 0.2989 0.165 1.8 1.0

23 Real exchange rate distortions 0.05 -0.0142 0.075 0.2 -0.3038 0.176 1.7 1.0

24 Higher education enrollment 0.05 -0.0158 0.084 0.2 -0.3545 0.191 1.9 1.0

25 Government share of GDP 0.04 -0.0115 0.063 0.2 -0.2578 0.159 1.6 1.0

26 Public investment share 0.04 -0.0115 0.063 0.2 -0.2709 0.155 1.7 1.0

27 Air distance to big cities 0.04 -0.0096 0.057 0.2 -0.2583 0.150 1.7 1.0

28 Primary exports 0.03 -0.0090 0.063 0.1 -0.3144 0.208 1.5 1.0

29 Fraction population under 15 0.03 0.0091 0.069 0.1 0.3383 0.259 1.3 1.0

30 Fraction population in tropics 0.03 -0.0101 0.072 0.1 -0.3673 0.242 1.5 1.0

31 Fraction Protestant 0.02 -0.0072 0.060 0.1 -0.3064 0.242 1.3 1.0

32 Fraction Hindu 0.02 0.0048 0.038 0.1 0.2047 0.146 1.4 1.0

33 Nominal Government share 0.02 -0.0032 0.030 0.1 -0.1760 0.141 1.2 1.0

34 Outward orientation 0.02 -0.0030 0.027 0.1 -0.1611 0.122 1.3 1.0

35 Revolutions and coups 0.02 -0.0026 0.026 0.1 -0.1570 0.128 1.2 1.0

36 Civil liberties 0.02 -0.0039 0.042 0.1 -0.2438 0.231 1.1 1.0

37 Fertility 0.02 -0.0049 0.061 0.1 -0.3021 0.379 0.8 0.9

38 Colony dummy 0.02 -0.0029 0.032 0.1 -0.1924 0.177 1.1 1.0

39 European dummy 0.01 -0.0004 0.047 0.0 -0.0315 0.397 0.1 0.5

40 Absolute latitude 0.01 0.0021 0.050 0.0 0.1583 0.402 0.4 0.6

41 Hydrocarbon deposits 0.01 0.0018 0.023 0.1 0.1378 0.152 0.9 0.9

42 Fraction Catholic 0.01 -0.0035 0.048 0.1 -0.2790 0.329 0.8 0.9

43 British colony dummy 0.01 0.0017 0.022 0.1 0.1406 0.152 0.9 1.0

44 Religion measure 0.01 -0.0013 0.018 0.1 -0.1137 0.123 0.9 1.0

45 Average inflation 1960–90 0.01 -0.0014 0.018 0.1 -0.1209 0.122 1.0 1.0

46 Landlocked country dummy 0.01 -0.0011 0.018 0.1 -0.1072 0.138 0.8 0.9

47 Terms of trade growth in 1960s 0.01 0.0012 0.019 0.1 0.1174 0.150 0.8 0.9

48 Defense spending share 0.01 0.0013 0.020 0.1 0.1238 0.150 0.8 1.0

49 Square of inflation 1960—90 0.01 -0.0010 0.016 0.1 -0.1037 0.121 0.9 1.0

50 Fraction of population over 65 0.01 0.0005 0.032 0.0 0.0493 0.313 0.2 0.6

51 Public education spending share 0.01 0.0011 0.018 0.1 0.1156 0.146 0.8 1.0

enrollment) are labeled significantly disjoint according to JDWa
ij . As the three variables

involved are the ones with highest posterior inclusion probabilities, this may be related to
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Fig 5. DW Data: Log posterior odds in favor of jointness, log(Jij).

the potentially erratic behaviour of JDWa
ij for important regressors, as discussed in Section

2. Both the measures of DW and especially that of DWa indicate many bivariate jointness
links beyond those found through Jij . All this clearly shows that the DW and DWa
jointness measures provide very different summaries of the posterior distribution than the
measure introduced here.

4. Concluding Remarks

Growth regressions are affected by uncertainty regarding which regressors to include from
a set of k potential covariates, where k could be quite large (k = 41 and k = 67 in our
applications). Bayesian Model Averaging is an effective and intuitive way of dealing with
this problem and leads to a k-dimensional posterior distribution for the vector of regression
coefficients β, which consists of a mixture of continuous distributions and point masses in
each dimension. Summarizing such a posterior distribution beyond the information con-
tained in these marginals is quite challenging and requires well-honed tools for extracting
relevant pieces of information. It is important that these tools provide us additional insight
into properties of the posterior that are particularly interesting for both researchers and
policymakers, and that they are easy to interpret. We argue that our jointness measure
J proposed in (9) satisfies both criteria: it addresses relevant questions and is directly
interpretable as the posterior odds ratio between models that include a set of variables
and models that include only proper subsets. In addition, it is naturally defined for any
set of regressors and is not restricted to bivariate jointness evaluations (between variables
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or sets of variables). More formally, we propose a set of desiderata for jointness measures
and assess how various measures put forward in the literature perform in terms of these
criteria. This comparison clearly favors the measures introduced here.

We applied the jointness measure J to two data sets used for growth regressions in
the recent literature. In both data sets we encounter jointness only between important
determinants of growth. The regressors involved are complements in that each of them
has a separate role to play in explaining growth. Much more frequently, we encounter
situations of disjointness, where regressors are substitutes and really should not appear
together in interesting growth models. However, the regressors displaying disjointness
relationships tend to be fairly unimportant drivers of growth. When we consider triplets
rather than pairs of variables, these conclusion are strengthened in that we find even less
jointness and more disjointness. However, even then decisive disjointness is mostly confined
to variables with relatively small posterior inclusion probabilities.

Thus, the data sets analyzed here seem to contain a few key growth determinants that
have a clearly defined and separated role to play, and should, thus, occur jointly in growth
regressions, while a substantial fraction of the regressors is of relatively small importance
and captures effects that can also be accounted for by other regressors. In between we have
a number of variables with typically moderate explanatory power and no clear jointness
or disjointness relationships. It is perhaps mostly due to this latter group that model
uncertainty is such an important feature of growth regression.

We hope the simple jointness measure J introduced here can provide a useful tool for
further exploration of the posterior distribution in problems involving Bayesian variable
selection. In particular, we hope it may contribute to our understanding of the growth of
countries or regions.
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