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1. Introduction

Forecasting has a particularly critical role in economics and in many other sciences. How-

ever, forecasts are often very dependent on the model used, and the latter is not usually

a given. There are many different models that researchers can use and the choice be-

tween them is far from obvious. Thus, the uncertainty over which model to use is an

important aspect of forecasting or indeed any inference from data. Once we have realized

that model uncertainty critically affects forecasts (and forecast uncertainty), the pooling

of forecasts over models seems a natural way to deal with this. Such pooling can be done

in many ways. The weights in combining different forecasts could simply be uniform or

they could be based on historical performance (see for example Hendry and Clements, 2002

and Diebold and Lopez, 1996). A related methodology for dealing with large number of

regressors used in macroeconomic forecasting is based on principal components or factors

as in Stock and Watson (2002). Alternatively, the weights used in combining forecasts can

be based on posterior model probabilities within a Bayesian framework. This procedure,

which is typically referred to as Bayesian model averaging (BMA), is in fact the standard

approach to model uncertainty within the Bayesian paradigm, where it is natural to reflect

uncertainty through probability. Thus, it follows from direct application of Bayes’ theorem

as is explained in e.g. Leamer (1978), Min and Zellner (1993) and Raftery et al. (1997).

Min and Zellner (1993) show that mixing over models using BMA minimizes expected

predictive squared error loss, provided the set of models under consideration is exhaustive.

Raftery et al. (1997) state that BMA is optimal if predictive ability is measured by a

logarithmic scoring rule. Thus, in the context of model uncertainty, the use of BMA

follows from sensible utility considerations. In addition, empirical evidence of superior

predictive performance of BMA can be found in, e.g., Raftery et al. (1997), Fernández et

al. (2001a,b) and Ley and Steel (2009). Predictive quality, in this literature, is typically

measured in terms of a (proper) predictive score function that takes the entire predictive

distribution into account. In particular, a popular quantity to use is the log predictive

score. Alternative scoring rules are discussed in Gneiting and Raftery (2007).

I thank Toni Espasa for the kind invitation to contribute a paper to this special issue of the Bulletin.
This paper was written while visiting the Department of Statistics at the Universidad Carlos III de Madrid,
and I gratefully acknowledge their hospitality.

1



In economic applications we often face a large number of potential models with only

a limited number of observations to conduct inference from. A good example is that of

cross-country growth regressions. Insightful discussions of model uncertainty in growth

regressions can be found in Brock and Durlauf (2001) and Brock et al. (2003). Various

approaches to deal with this model uncertainty have appeared in the literature, starting

with the extreme-bounds analysis in Levine and Renelt (1992) and the confidence-based

analysis in Sala-i-Martin (1997). Fernández et al. (2001b) introduce the use of BMA in

growth regressions. In this context, the posterior probability is often spread widely among

many models, which strongly suggests using BMA rather than choosing a single model.

However, growth regressions is certainly not the only application area for BMA methods in

economics. In the context of time series modelling, for example, it was used for posterior

inference on impulse responses in Koop et al. (1994). Tobias and Li (2004) use BMA in

the context of returns to education. The methodology has been applied by Garratt et

al. (2003) for probability forecasting in the context of a small long-run structural vector

error-correcting model of the U.K. economy. In addition, it was used for the evaluation of

macroeconomic policy by Brock et al. (2003) and for the modelling of inflation by Cogley

and Sargent (2005). Forecasting inflation using BMA has also been examined in Eklund

and Karlsson (2007) and González (2010). Note that Eklund and Karlsson (2007) propose

the use of so-called predictive weights in the model averaging, rather than the standard

BMA, which is based on posterior model probabilities. An alternative strategy of dynamic

model averaging, due to Raftery et al. (2010b) is used in Koop and Korobolis (2009) for

inflation forecasting. The idea here is to use state-space models in order to allow for the

forecasting model to change over time while, at the same time, allowing for coefficients

in each model to evolve over time. Due to the use of approximations, the computations

essentially boil down to the Kalman filter.

Even within the standard BMA context, there are different approaches in the literature.

Differences between methods can typically be interpreted as the use of different prior

assumptions. As shown in Ley and Steel (2009) and Eicher et al. (2011) prior assumptions

can be extremely critical for the outcome of BMA analyses. For the use of BMA in practice

it is important to understand how the (often almost arbitrarily chosen) prior assumptions
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may affect our inference. The prior structures typically used in practice are designed to be

“vague” choices, that require only a minimal amount of prior elicitation. More informative

prior structures, such as the hierarchical model prior structures of Brock et al. (2003) can

also be used, but of course, require more elicitation effort on the part of the user.

In principle, the effect of not strongly held prior opinions should be minimal. This

intuitive sense of a “non-informative” or “ignorance” prior is often hard to achieve when

we are dealing with comparing models (see, e.g., Kass and Raftery, 1995). However, we

should attempt to identify the effect of these assumptions in order to inform the analyst

which prior settings are more informative than others, and in which direction they will

influence the result. Ideally, prior structures are chosen so that they protect the user against

unintended consequences of prior choices. For example, Ley and Steel (2009) advocate the

use of hierarchical priors on model space, and show that this increases flexibility and

decreases the dependence on essentially arbitrary prior assumptions.

For the sake of computational ease, sometimes approximations to the posterior model

probabilities are used such as the BIC (Bayesian Information Criterion) used in Raftery

(1995) and Sala-i-Martin et al. (2004). Ley and Steel (2009) show that the approach in

Sala-i-Martin et al. (2004) corresponds quite closely to a BMA analysis with a particular

choice of prior. It is important to stress that the dependence on prior assumptions does

not disappear if we make those assumptions implicit rather than explicit. Thus, the claim

in Sala-i-Martin et al. (2004) that their approach is less sensitive to prior assumptions is

perhaps somewhat misleading.

For practitioners it is useful to know that freely available code for BMA exists on the web.

In particular, there are R packages by Clyde (2010), Raftery et al. (2010a) and Feldkircher

and Zeugner (2011). There is also code available in Fortran which is a development of

the code in Fernández et al. (2001b) as explained in Ley and Steel (2007). The latter

code is available at the Journal of Applied Econometrics data and code archive. Amini

and Parmeter (2011) replicate some results in the literature with the R based packages

and also explore frequentist model averaging techniques, such as the one in Magnus et

al. (2010).
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In this paper, we will, for simplicity, focus only on the application of standard BMA in the

context of a linear regression model with uncertainty regarding the selection of explanatory

variables. The next section briefly summarizes the main ideas of BMA. Section 3 describes

the Bayesian model, and Section 4 examines some consequences of prior choices in more

detail. The final section concludes.

2. The Principles of Bayesian Model Averaging

This section briefly presents the main ideas of BMA. When faced with model uncertainty,

a formal Bayesian approach is to treat the model index as a random variable, and to use

the data to conduct inference on it. Let us assume that in order to describe the data y we

consider the possible models Mj , j = 1, . . . , J , grouped in the model spaceM. In order to

give a full probabilistic description (i.e., a Bayesian model) of the problem, we now need

to specify a prior P (Mj) on M and the data will then lead to a posterior P (Mj | y).

This posterior can be used to simply select the “best” model (usually the one with highest

posterior probability). However, in the case where posterior mass on M is not strongly

concentrated on a particular model, it would not be wise to leave out all others. The

strategy of using only the best model has been shown to predict worse than BMA, which

mixes over models, using the posterior model probabilities as weights.

Thus, under BMA inference on some quantity of interest, ∆, which is not model-specific,

such as a predictive quantity or the effect of some covariate, will then be obtained through

mixing the inference from each individual model

P∆ | y =

J∑
j=1

P∆ | y,Mj
P (Mj | y). (1)

This implies a fully probabilistic treatment of model uncertainty.

In order to implement BMA in practice, we thus need to be able to compute the pos-

terior distribution on M. It follows directly from Bayes’ Theorem that P (Mj | y) ∝

ly(Mj)P (Mj), where ly(Mj), the marginal likelihood of Mj , is simply the likelihood inte-

grated with the prior on the parameters of Mj , denoted here by p(θj |Mj). Thus,

ly(Mj) =

∫
p(y | θj ,Mj) p(θj |Mj) dθj . (2)
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However, in practice J can be very large, making exhaustive computation of the sum

in (1) prohibitively expensive in terms of computational effort. Then we often resort to

simulation over M. In particular, we can use a Markov chain Monte Carlo (MCMC)

sampler to deal with the very large model space M (for example, containing 1.5 × 1020

models for the growth dataset of Sala-i-Martin et al. 2004 with 67 potential regressors).

If the posterior odds between any two models are analytically available (as is the case for

the model used in the next section), this sampler moves in model space alone. Thus, the

MCMC algorithm is merely a tool to deal with the practical impossibility of exhaustive

analysis ofM, by only visiting the models which have non-negligible posterior probability.

Other approaches to dealing with the large model space are the use of a coin-flip importance-

sampling algorithm in Sala-i-Martin et al. (2004), and the branch-and-bound method de-

veloped by Raftery (1995). Eicher et al. (2011) experiment with all three algorithms on

the FLS data and find that results from the MCMC and branch-and-bound methods are

comparable, with the coin-flip method taking substantially more computation time, and

leading to somewhat different results. The Bayesian Adaptive Sampling approach of Clyde

et al. (2011) adopts an alternative sampling strategy, which provides sequential learning

of the marginal inclusion probabilities, while sampling without replacement. The latter is

implemented in the R package of Clyde (2010). Bottolo and Richardson (2010) use Evo-

lutionary Stochastic Search, which is designed to work for situations where the number

of regressors is orders of magnitude larger than the number of observations (such as in

genetic applications).

3. The Bayesian Model

Consider a Normal linear regression model for n observations of some response variable,

grouped in a vector y, using an intercept, α, and explanatory variables from a set of k

possible regressors in Z. We allow for any subset of the variables in Z to appear in the

model. This results in 2k possible models, which will thus be characterized by the selection

of regressors. Model Mj will be the model with the 0 ≤ kj ≤ k regressors grouped in Zj ,

leading to

y |α, βj , σ ∼ N(αιn + Zjβj , σ
2I), (3)
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where ιn is a vector of n ones, βj ∈ <kj groups the relevant regression coefficients and

σ ∈ <+ is a scale parameter.

Extensions to dynamic models are relatively straightforward, in principle, as some of the

variables in Z can be lagged values of y. The use of BMA in panel data has been discussed

in Moral-Benito (2010) in the context of growth regressions with country-specific fixed

effects.

For the parameters in a given model Mj , Fernández et al. (2001a) propose a combination

of a “non-informative” improper prior on the common intercept and scale and a so-called

g-prior (Zellner, 1986) on the regression coefficients, leading to the prior density

p(α, βj , σ |Mj) ∝ σ−1f
kj

N (βj |0, σ2g(Z ′jZj)
−1), (4)

where fqN (w|m,V ) denotes the density function of a q-dimensional Normal distribution on

w with mean m and covariance matrix V . The regression coefficients not appearing in Mj

are exactly zero, represented by a prior point mass at zero. The prior on βj in (4) should

be proper, since an improper prior would not allow for meaningful Bayes factors. The

general prior structure in (4), sometimes with small changes, is shared by many papers in

the literature, (see, e.g., Clyde and George, 2004).

Based on theoretical considerations and simulation results, Fernández et al. (2001a,b)

choose to use g = max{n, k2} in (4). In the literature, the two choices for g that underlie

this recommendation are used quite frequently. The value g = n roughly corresponds to

assigning the same amount of information to the conditional prior of β as is contained

in one observation. Thus, it is in the spirit of the “unit information priors” of Kass and

Wasserman (1995) and the original g-prior used in Zellner and Siow (1980). Fernández

et al. (2001a) show that log Bayes factors using this prior behave asymptotically like

the Schwarz criterion (BIC), and George and Foster (2000) show that for known σ2 model

selection with this prior exactly corresponds to the use of BIC. Choosing g = k2 is suggested

by the Risk Inflation Criterion of Foster and George (1994).

A natural Bayesian response to uncertainty (in this case, about which value of g to use)

is to introduce a probability distribution. Thus, recent contributions suggest making g

random by putting a hyperprior on g. In fact, the original Zellner-Siow prior can be
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interpreted as such, and Liang et al. (2008) propose the class of hyper-g priors. Ley and

Steel (2010) review the literature in this area and propose an alternative prior on g, which is

compared with existing priors both in terms of theoretical properties (such as consistency)

and in terms of empirical behaviour using various growth datasets and a dataset on returns

to schooling (see Tobias and Li, 2004). Many of these prior distributions for g share the

same form in that they correspond to a Beta prior for the shrinkage factor g/(1 + g).

The prior model probabilities are often specified by P (Mj) = θkj (1 − θ)k−kj , assuming

that each regressor enters a model independently of the others with prior probability θ.

Raftery et al. (1997) and Fernández et al. (2001a,b) choose θ = 0.5, which implies that

P (Mj) = 2−k and that expected model size is k/2. Sala-i-Martin et al. (2004) examine

the sensitivity of their results to the choice of θ. The next section will consider the prior

on the model space M more carefully.

The assumption of prior independent inclusion of regressors can be contentious in some

contexts. Chipman et al. (2001) argue that in situations where interactions are consid-

ered, or some covariates are collinear, it may be counterintuitive to treat the inclusion of

each regressor as independent a priori. In particular, they recommend “dilution” priors,

where model probabilities are diluted across neighbourhoods of similar models. From an

economic perspective, a related idea was proposed by Brock et al. (2003), who construct

the model prior by focusing on economic theories rather than individual regressors. This

implies a hierarchical tree structure for the prior on model space and was also used, e.g.,

in Durlauf et al. (2011).

4. Prior Assumptions and Posterior Inference

4.1. Model prior specification and model size

Consider the indicator variable γi, which takes the value 1 if covariate i is included in the

regression and 0 otherwise, i = 1, . . . , k. Given the probability of inclusion, say θ, γi will

then have a Bernoulli distribution, and if the inclusion of each covariate is independent

then the model size W will have a Binomial distribution:

W ≡
k∑

i=1

γi ∼ Bin(k, θ).
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This implies that, if we fix θ, as is typically done in most of the literature, the prior model

size will have mean θk and variance θ(1− θ)k.

Typically, the use of a hierarchical prior increases the flexibility of the prior and reduces

the dependence of posterior and predictive results (including model probabilities) on prior

assumptions. Thus, making θ random rather than fixing it seems sensible. This idea was

implemented by Brown et al. (1998), and is also discussed in, e.g., Clyde and George

(2004) and Nott and Kohn (2005). If we choose a Beta prior for θ with hyperparameters

a, b > 0, i.e., θ ∼ Be(a, b), the prior mean model size is E[W ] = a
a+bk. The implied prior

distribution on model size is then a Binomial-Beta distribution (Bernardo and Smith, 1994,

p. 117). In the case where a = b = 1 we obtain a discrete uniform prior for model size

with P (W = w) = 1/(k + 1) for w = 0, . . . , k.

This prior depends on two parameters, (a, b), and Ley and Steel (2009) propose to facil-

itate prior elicitation by fixing a = 1. This still allows for a wide range of prior behaviour

and makes it attractive to elicit the prior in terms of the prior mean model size, m. The

choice of m ∈ (0, k) will then determine b through b = (k −m)/m.

Thus, in this setting, the analyst only needs to specify a prior mean model size, which is

exactly the same information one needs to specify for the case with fixed θ, which should

then equal θ = m/k. With this Binomial-Beta prior, the prior mode for W will be at zero

for m < k/2 and will be at k for m > k/2. The former situation is likely to be of most

practical relevance and reflects a mildly conservative prior stance, where we require some

data evidence to favour the inclusion of regressors.

For the case of k = 67 (corresponding to the growth data set in Sala-i-Martin et al.,

2004), Figure 1 contrasts the prior model-size distributions with fixed θ (solid lines) and

random θ (dashed lines), for two choices for mean model size: m = 7, which is used in

Sala-i-Martin et al. (2004), and m = 33.5, which corresponds to a uniform prior in the

random θ case. Clearly, the prior with fixed θ is very far from uniform, even for m = k/2.

Generally, the difference between the fixed and random θ cases is striking: prior model size

distributions for fixed θ are quite concentrated. Treating θ as random will typically imply

more prior uncertainty about model size, which is often more reasonable in practice.
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Fig. 1. Prior model size for k = 67; fixed θ (solid) and random θ (dashed).

For ease of presentation, these discrete distributions are depicted through continuous graphs.

4.2. Prior odds

Posterior odds between any two models in M are given by

P (Mi|y)

P (Mj |y)
=
P (Mi)

P (Mj)
· ly(Mi)

ly(Mj)
,

where ly(Mi) is the marginal likelihood, defined in (2). Thus, the prior distribution on

model space only affects posterior model inference through the prior odds ratio P (Mi)/P (Mj).

For a prior with a fixed θ = 0.5 prior odds are equal to one (i.e., each model is a priori

equally probable). Generally, if we fix θ and express things in terms of the prior mean

model size m, these prior odds are

P (Mi)

P (Mj)
=

(
m

k −m

)ki−kj

,

from which it is clear that the prior favours larger models if m > k/2. For the hierarchical

Be(a, b) prior on θ, with a = 1 and the prior elicitation in terms of m we obtain the prior

odds:
P (Mi)

P (Mj)
=

Γ(1 + ki)

Γ(1 + kj)
·

Γ
(
k−m
m + k − ki

)
Γ
(
k−m
m + k − kj

) .
Ley and Steel (2009) illustrate that the random θ case always leads to downweighting

of models with kj around k/2, irrespectively of m. This counteracts the fact that there
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are many more models of size around k/2 in the model space M than of size nearer to 0

or k. In contrast, the prior with fixed θ does not take the number of models at each kj

into account and simply always favours larger models when m > k/2 and the reverse when

m < k/2.

The choice of m is critical for fixed θ, but much less so for random θ. The latter prior

structure is naturally adaptive to the data observed. This is illustrated by Figure 2, which

plots the log of the prior odds of a model with ki = (kj−1) regressors versus a model with

kj regressors as a function of kj .
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Fig. 2. Log of Prior Odds: ki = (kj − 1) vs varying kj .

Whereas the fixed θ prior always favours the smaller model Mi for m < k/2, the choice

of m for random θ only moderately affects the prior odds, which swing towards the larger

model when kj gets larger than approximately k/2. This means that using the prior with

fixed θ will have a deceptively strong impact on posterior model size. This prior does not

allow for the data to adjust prior assumptions on mean model size that are at odds with

the data, making it a much less robust choice.

4.3. Bayes factors

The marginal likelihood in (2) forms the basis for the Bayes factor (ratio of marginal

likelihoods) and can be derived analytically for each model with prior structure (4) on the

model parameters. If g in (4) is fixed and does not depend on the model size kj , the Bayes

factor for any two models from (3)–(4) becomes:

ly(Mi)

ly(Mj)
= (1 + g)

kj−ki
2

(
1 + g(1−R2

i )

1 + g(1−R2
j )

)−n−1
2

, (5)
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where R2
i is the usual coefficient of determination for model Mi. The expression in (5)

is the relative weight that the data assign to the corresponding models, and depends on

sample size n, the factor g of the g-prior and the size and fit of both models. Ley and

Steel (2009) remark that this expression is very close to the one used in Sala-i-Martin et

al. (2004) provided we take g = n.

If we assign a hyperprior to g, then we need to deal with the fact that, generally, the

integral of (5) with respect to g does not have a straightforward closed-form solution.

Liang et al. (2008) approximate this integral with a Laplace approximation, but Ley and

Steel (2009) formally integrate out (5) with g and implement this with a Gibbs sampler

approach over model space and g. In the latter, the Bayes factor between any two models

given g is given by (5), and the conditional posterior of g given Mj is

p(g | y,Mj) ∝ (1 + g)
n−kj−1

2 [1 + g(1−R2
j )]−

n−1
2 p(g |Mj),

where p(g |Mj) is the hyperprior on g (which could potentially depend on Mj). The advan-

tage of conducting posterior inference on (g,Mj) is that it does not rely on approximations

and it makes prediction quite straightforward: for every g drawn in the sampler we predict

as with a fixed g (Fernández et al., 2001a), and predictions are simply mixed over values

of g in the sampler.

It is interesting to examine more in detail how the various prior choices translate into

model size penalties. In the case of fixed g we deduce from (5) that if two models fit

equally well (i.e., R2
i = R2

j ), then the Bayes factor will approximately equal g(kj−ki)/2. If

one of the models contains one more regressor, this means that the larger model will be

penalized by g−1/2. Thus, both the choices of g and m have an implied model size penalty.

Ley and Steel (2009) and Eicher et al. (2011) examine the trade-off between choosing m

and g in this context.

Ley and Steel (2010) compare various hyperpriors on g and conclude that the hyper-g/n

prior of Liang et al. (2008) and the benchmark prior they propose are fairly safe choices

for use in typical economic applications.
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5. Concluding Remarks

The use of Bayesian Model Averaging is rapidly becoming an indispensable tool in eco-

nomics to deal with model uncertainty. Whereas this is a powerful tool with a strong

foundation in statistical theory, the empirical results of such procedures can, however, be

quite sensitive to prior assumptions. It is therefore important that we investigate the ef-

fect of various prior structures in order to be able to give sensible recommendations to

practitioners. The use of hierarchical priors seems a good way to specify robust priors,

and, in the context of variable selection in the linear regression model with a number of

observations of the same order of magnitude as the number of potential covariates, I would

recommend the use of a hierarchical prior on θ (with a sensible value for prior mean model

size) and the use of a hyperprior on g of the types mentioned at the end of the previous

section.
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