CHAPTER 4

Bayesian Multivariate Skewed
Regression Modelling With an
Application to Firm Size

4.1 Introduction

In this chapter, we study the application of Bayesian multivariate linear
regression models, where the errors have skewed distributions belonging
to one of two parametric classes. In particular we apply the multivariate
skewed distributions as defined by Ferreira and Steel (2003), henceforth
denoted by FS, and by Sahu et al. (forthcoming), henceforth denoted by
SDB. The resulting regression models are employed in a study on firm size.
In FS we introduced a novel method for the generation of multivariate
skewed distributions. An p-dimensional skewed distribution is defined via
an affine linear transformation of independent univariate variables, each
with a possibly skewed distribution. As is shown in FS, this method gener-
ates a very general class of distributions. For the distribution of the univari-
ate components involved in the transformation we suggested the method
defined in Fernandez and Steel (1998). We note however that other choices
could have been made. The multivariate skewed distributions defined in
this fashion share a number of interesting characteristics, including: direct
analytical form of the probability density function (pdf), ease of moment
calculation, analytical form of Mardia’s measure of skewness in most cases,
absence of restrictions on mean and covariance structure due to skewness,
freedom from conditioning arguments, thus not involving cumulative dis-
tribution functions (cdf’s) and freedom from the particular choice of coor-
dinate axes. The main disadvantage of this class of distributions is that, in
general, it is not closed under marginalisation or conditioning.

The second class of multivariate skewed distributions that will be studied in
this chapter is the one developed in SDB. Using a hidden truncation model
(Arnold and Beaver 2000) and conditioning on as many unobserved quan-
tities as variables, SDB extend the work of Azzalini and Dalla Valle (1996)
and Branco and Dey (2001), and develop a more general class of skewed
distribution. This class of distributions is among the most general within
the hidden truncation modelling framework. It is closely related to the class
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of elliptical distributions and it shares some of the latter properties, such as
closedness under marginalisation and conditioning. The evaluation of the
pdf of these multivariate skewed distributions requires the calculation of an
p-dimensional cdf, which can be problematic for high dimensions and/or
for certain distributions. Further, it imposes that the skewness of the dis-
tribution is introduced along the coordinate axes, consequently restricting
the flexibility of the class.

We apply both classes of multivariate skewed distributions in a Bayesian
linear regression setup. We compare the methodologies using skewed and
fat-tailed distributions, namely the skew-Student distribution as defined
by each method. We also analyse the models without fat tails, using skew-
Normal distributions. Finally, we compare these alternatives with the sym-
metric ones: Student and Normal. The prior distribution is always chosen
to be proper and, for the common parameters, equal for both classes of
distributions. Formal model comparison is carried out using Bayes factors.
We apply the Bayesian regression models to a study of the distribution of
firm size. Using data for three hundred publicly traded companies we eval-
uate the validity of common economic hypotheses, such as the suitability
of the law of proportionate effects (Gibrat 1931). For all companies, data
is available at two points in time: 1980 and 1990, permitting the study not
only of the size distribution of the companies, but also of growth in the
1980’s. We also examine the influence of research and development effort
and investment on the distribution of the quantities of interest.

The remainder of this chapter is organised into four sections. In Section
4.2 we outline the two classes of multivariate skewed distributions. We in-
troduce the Bayesian multivariate regression models in Section 4.3. Section
4.4 is devoted to the analysis of the firm size application. Finally, we offer
a brief discussion in Section 4.5.

4.2 Multivariate skewed distributions

This section provides a brief review of the two classes of multivariate skewed
distributions that are going to be studied in this chapter. Further details
are available from the respective references. A number of other classes of
multivariate skewed distributions is available in the literature and we refer
the interested reader to the first part of the current edition. Our particular
choice is inspired by the facts that both classes are quite general and have
separately been analysed in a Bayesian framework, similar to the one here.
In the sequel, we will apply the notation FS and SDB as prefixes to the
skewed distributions, dropping the term “skew” (e.g., the skew-Normal
distribution as defined in Ferreira and Steel (2003) will be denoted as FS-
Normal).
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4.2.1 FS skewed distributions

In FS the authors introduce a general method for the construction of multi-
variate skewed distributions, based on affine linear transformations of uni-
variate variables with skewed distribution. Let p € Ny be the dimension
of the random variable € = (e1,...,€p) € R and v = (y1,...,7,)" € R}.
Also,let £ = (f1(-),..., fp(-))" denote a vector of p unimodal and symmetric
univariate pdf’s. The distribution of € is a multivariate skewed distribution
with independent components where, for j = 1,...,p, the pdf of ¢; is
p(€;17v5, f3), which corresponds to a skewed version of the distribution with
pdf f;(-).

Following an affine transformation, given a vector p = (f1,...,1p)" and a
non-singular matrix A € RP*?, the variable n = (m,...,n,)" € RP, defined
as

n=Ae+np (4.1)

has a general multivariate skewed distribution, with parameters u, A, « and
denoted by F'S(u, A,~,f). The pdf for n is then simply given by,

p
p(nlp, A, v, £) = ||A]| 7 T] pl(m — ) AG [y, £, (4.2)
j=1

where, A,_j1 denotes the j-th column of A=1, ||A|| denotes the absolute
value of the determinant of A, and p(-|y;, f;) is the pdf corresponding to
the univariate skewed distribution.
FS shows that, in contrast to the elliptical distribution case, knowledge of
A’A is not sufficient. Further, a decomposition of the nonsingular matrix
A = OU is applied, where O is an p x p orthogonal matrix and U is
an p X p upper triangular matrix with strictly positive diagonal elements.
Straightforward manipulation shows that A’A = U'U.
The skewed version of the symmetric pdf f;(-) can be obtained using a
number of different methods. In FS, the authors generate univariate skewed
distributions using the method proposed by Fernandez and Steel (1998). If
fi() is a univariate pdf that is symmetric around zero, decreasing in the
absolute value of its argument and if v; € (0,00), then the latter method
defines

p(ejlvi, fi) = Llfj (fﬂj_mgn(ej)) (4.3)

Vit

to be the pdf of a univariate skewed distribution, where sign(-) is the usual
sign function.
The multivariate skewed distributions generated by (4.1)-(4.3) have a num-
ber of interesting characteristics of which we highlight its validity for any
vector of univariate distributions , the dependence of the existence of mo-
ments on the existence of moments of the univariate distributions alone,
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and the possibility of unrestricted modelling of mean, variance and skew-
ness.

4.2.2 SDB skewed distributions

In SDB the authors introduce a novel method for the introduction of skew-
ness into elliptical distributions.
Let ¥ denote a p x p covariance matrix and u € RP. Then, a continuous
elliptical distribution of the p-dimensional vector € can be defined by the
pdf )

Flel, 2, 97) = 75 g® [(e — p)'S (e — )], (4.4)

where ¢(®)(-) is a function from R, to R, given by

r(5)  g(=p) (45)
7 fooo r&=1g(r;p)dr

with g(z; p) a non-increasing, function from R to R such that the integral

in (4.5) exists. Now let

X T 0
p=(¢,€)', p=(u",0,) and ¥ = ;
0 I,

where 9, € and p* are in P, 0, is the p-dimensional zero vector, ¥£* is an

p X p covariance matrix and I, denotes the p-dimensional identity matrix.

Further, let ¢ have pdf f(¢|u, X, g*?)) as in (4.4). By defining
n=De+1,

where D = diag(d), § € R?, the random variable n|e > 0, has a multivari-
ate skewed distribution as defined by SDB, denoted by SDB(u, %, 8, g?).
The conditional pdf of n|e > 0, is given by

p(n|w,,8,9P) = 22 f(n|p, T + D?,gP))x
P [v>0n|D(S+D*) " (n = w), I, - D(S+ D7D, gf™],  (46)

9 (z) =

with v € R and P(-|u, ¥, g'P)) the probability function corresponding to
the pdf (4.4),

@) = ) glavmi) (47)
. m2  [o r27lg(a+r;2p)dr

and finally a = (n — )" (X + D?) "' (n — p).

The class of distributions described by (4.6) has the property of being
closed under marginalisation and conditioning. The main practical prob-
lem in using these distributions is that the calculation of the cdf required
in (4.6) can be complicated, especially in higher dimensions and for certain
distributions. SBD remark that an MCMC sampler does not require evalu-
ating this cdf, but it does necessitate drawings from truncated multivariate
distributions which can be computationally difficult.
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4.3 Regression models

In the sequel, we assume that n observations from an unknown underlying
process are available, each of which is given as a pair (y;,x;), i =1,...,n.
For each i,y; € RP represents the variable of interest and x; € R* is a vector
of covariates. Throughout, we condition on x; without explicit mention in
the text. The observations are grouped in X € R"** and Y € R"*P, with
the ¢th row corresponding to observation i, ¢ =1,...,n.

We assume that the process generating the variable of interest can be de-
scribed by independent sampling for ¢ = 1,...,n from the linear regression
model

yi = A7 *n, + B'x;, (4.8)

where \; € Ry has some distribution parameterised by v, Bis a k x p
matrix of real coefficients, and 7, € P has a distribution with a specific
form.
In this chapter we are going to assume that 7, follows one of two alterna-
tives: F'S(0,,4,7,f) or SDB(0,,%,d,9®), where f is the p-dimensional
vector with all components equal to ¢(-), the standard normal pdf and
9P (u) = 2L,
corresponding to the skew-Normal distributions for both classes.
In a similar manner as when dealing with mixtures of normals, imposing a
specific (mixture) distribution on \; extends (4.8) to a substantially larger
class of distributions. As examples, imposing a Dirac prior on A\; = 1 re-
trieves the skew-Normal distributions, while if A; has a Gamma, distribution
with both precision and shape parameters equal to v/2, then y; has a skew-
Student distribution with v degrees of freedom (df). The present chapter
will assume one of the two alternatives above. Assuming that v = 1, or
that 6 = 0, generates the symmetric special cases of the distributions,
obviously coinciding for both classes. In summary, in the present chapter
we will consider one pair of models that can model both skewness and fat
tails (FS-Student and SDB-Student), one pair of models that can model
skewness alone (FS-Normal and SDB-Normal), one model than can model
only fat tails (Student) and, finally one model that can not model skewness
nor fat tails (Normal).

4.8.1 Prior distributions

The definition of the Bayesian models is completed with the specification
of the prior distribution of the unknown parameters. In order to compare
FS and SDB skewed distributions, we specify common prior distributions
whenever possible. For FS we assume that the prior is of the form

PB,A,-y,u = PB|APAP-YP,,.
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In a similar manner we assume that for the SDB models, the prior structure
is
Pg 6., = PpsPsPsP,.

Using the decomposition of a nonsingular matrix A = QU, the decomposi-
tion of a covariance matrix ¥ = U'U and the fact that A’/A =U'U = X, we
note that O in the FS parameterisation has no counterpart in the SDB
model. We impose a prior on U for both models through an inverted
Wishart distribution on X. The latter has as parameters ¢ > p — 1 and

@, an p X p covariance matrix, and its pdf is given by
ptat1

P(Z]Q,q) < [QIF[E[77F exp (=5 tr £7'Q),
with tr denoting the trace operation.
As in FS, O has an distribution on OP that is invariant to linear orthogonal
transformations, where OPF is a set of orthogonal matrices that ensures
identifiability (see Appendix B of FS for details).
The prior on B is set conditional on ¥, and is taken to be a matricvariate
Normal with parameters By, Y and M, with By a k x p matrix of real
components and M a k X k covariance matrix. Then, the pdf of the prior
distribution on B is

p(B|Bo, £ ® M) oc [M| %|%|" 3 exp [-1 tr S1(B — By)'M (B — B0)].

For the models with heavy tails, the parameter v controls the df. An ex-
ponential prior on v, with hyperparameter d and restricted to (3,00) is
imposed. This prior does not allow for extremely heavy tails, as it imposes
the existence of the first three moments of the distributions. This was not
seen to be too restrictive for the applications in Section 4.4.

The priors on « and & used here are the ones suggested by FS and SDB.
We assume that v € % has prior distribution with pdf

_ — (1—;"?
p(7) = [T 2ms) 12 {372 exp [ = P | o () +

._1)2
+exp [_ (%23 ) ]I[l,oo)(’yj)}a
imposing that for any two constants such that 1 < v, < 7, we have

that Ply; € (Ya,)] = P ['yj € (%, %)], which is inspired by symmetry
considerations in the FS model. The vector § is assumed to have a Normal

distribution with zero mean and covariance I'.

4.8.2 Numerical implementation

In order to conduct inference numerical methods have to be adopted. In
particular, we construct Markov chain Monte Carlo methods (MCMC). For
both classes of models, we used hybrid samplers composed of Metropolis-
Hastings steps for all parameters except v for both classes and for A;, i =
1,...,n for the FS models, where Gibbs steps are easy to implement. For
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the FS models, the sampler is close to the one in FS. For the SDB models,
we use a sampler similar to the one suggested in SDB.

Details of the MCMC samplers are omitted here on grounds of brevity but,
a description of the samplers as well as our Matlab implementation of the
Bayesian models can be obtained from the authors upon request.

4.4 Application to firm size

The relative sizes of firms, their dynamics, and their relation to the firms’
particular characteristics is an important problem in economics and the
focus of substantial research effort. A large review of studies on firm size
can be found in Ahn (2001). In this section we perform a study of the size
distribution of a cohort of three hundred companies, in the manufacturing
sector, in the years 1980 and 1990.

The set of firms that we study here originates from a larger cohort, cre-
ated and maintained by Bronwyn H. Hall, containing information on about
3000 publicly traded companies in the U.S. manufacturing sector. The orig-
inal dataset contains the records of an unbalanced panel from 1951-1991.
Further information about the dataset and panel can be found in Hall
(1993a,b).

From the complete dataset we randomly selected a cohort of three hundred
firms for which data is available for both 1980 and 1990. We are interested
in studying the overall distribution of three measures of firm size (market
value, tangible assets and sales), under the influence of two cofactors (re-
search and development (R&D) effort, and investment). The quantifiers of
firm size are expressed as the logarithm of the original values, measured
in millions of dollars. The covariates R&D and Investment are measured
as the ratio between quantity spent and total assets, both standardised to
have mean zero and unit variance. In addition to our predictors we also
included a constant term.

We stress that the cohort of firms that we study is not a random sample
from the set of all of U.S. manufacturing firms. All firms in this study were
publicly traded during the period 1980-1990, implying that small firms,
less likely to be quoted in the stock market, are underrepresented in the
cohort. Further, we impose that the firms have survived the period of study,
implying that our cohort of firms does not contain failing firms. See Geroski
et al. (2003, p. 51) for a discussion of how this could affect the results.

In this chapter we analyse the joint distribution of the firm size variables
for 1980 and 1990 and their growth between 1980 and 1990. We are es-
pecially interested in testing for the presence of skewness and fat tails in
the distributions. The existence of skew distributions for measures of firm
size is not a novel hypothesis in economic theory. In fact, it has been sug-
gested in many previous studies, a good review of which is provided by
Sutton (1997). Gibrat (1931) introduced the law of proportionate effect,
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also known as Gibrat’s law, where the firm size variables are assumed to
have a Lognormal distribution.

In order to investigate the presence of skewness, Figure 4.1 presents pairwise
scatterplots for the firm size measures at 1980 and 1990. Particularly from
the plots on the two left-most columns of the figure, some skewness is
apparent. The presence of skewness is also suggested by marginal skewness
measures. For the 1980 data the sample skewness is 0.34, 0.10 and -0.16
for Market value, Tangible assets and Sales, respectively; for the 1990 data
the sample skewness is, in the same order, 0.24, 0.17 and -0.03.

Figure 4.1 Pairwise scatterplots of the firm size measures at 1980 (top row) and
1990 (bottom Tow).
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The full definition of the Bayesian models introduced in Subsection 4.3
requires the setting of the hyperparameters. In what follows, By and M, in
the matricvariate prior for B are set to the k x p zero matrix and 1001,
respectively. For the prior on ¥, @ is set to I, and ¢ is set to p+2 (ensuring
the existence of a prior mean). The remaining hyperparameters are set as
in FS and SDB. In particular, s is set to unity, I' = 100f, and d = 0.1.
These settings generate a rather vague prior on the model parameters.
Inference for the models was always conducted using every tenth realisa-
tion from a chain of 50,000 iterations. A burn-in period of 10,000 samples
preceded the collection phase. For all models, convergence was achieved
early in the burn-in period.
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Formal model comparison will be conducted by comparing marginal likeli-
hoods. The p, estimator in Newton and Raftery (1994) is used to provide
estimates of marginal likelihoods, with their § set to 0.1.

We now provide posterior and predictive inference divided into two sections,
the first for the cross-sectional studies on the distribution of firm size at
1980 and 1990 and the second for the analysis of firm growth for that
period.

4.4.1 Distribution of firm size

The presence of skewness in the distribution of firm size can easily be
determined by examining the marginal posterior distributions of 4 and
4. For the FS models, « different from the p-dimensional vector of ones
indicates skewness. For the SDB models, the same holds if é differs from
the p-dimensional zero vector. Figure 4.2 presents estimates of the posterior
density of the components of v (left column) and of § (right column), for
the data relating to 1980 (upper row) and 1990 (lower row) for the skewed
Student models. In each plot, the prior distribution for the parameter is
also presented. For both points in time, for the FS models evidence on
the presence of skewness is rather strong. The ~ parameter of the FS-
Student, estimated for the 1980 data has two components with distributions
markedly centred away from unity. For 1990 the same model reveals that
all components are different from unity. The presence of skewness in the
SDB models is less evident, with only one component of § substantially
different from zero.

We now examine the effect of R&D and Investment in the distribution of
firm size. Table 4.1 presents summaries of the marginal posterior distribu-
tions of the regression coefficients, estimated using the FS-Student model.
The magnitude of the coefficients provides evidence that the influence of
covariates is restricted. Nevertheless, some conclusions can be drawn. Re-
search and development seem to have a mostly negative effect on the firm
size variables in 1980. A possible explanation is the fact that if a firm as-
signs a substantial amount to R & D, then its immediate sales and turnover
are reduced and, as a consequence, so is its value. In contrast, Investment is
seen to have a mostly positive effect on Market value and Tangible assets.
Both covariates appear to have been more influential in 1980 than in 1990.
The SDB model leads to similar inference on the regression coefficients.
So far, we have noted the presence of skewness in the distributions. Now
we study the tails of the distributions. Figure 4.3 presents the posterior
density for v for the heavy tailed models, for 1980 (left) and 1990 (right).
As is evident, heavy tails are strongly supported by the data. All models
have similar estimates for the pdf of v, with the symmetric Student model
focusing on slightly lower values. This may be a consequence of modelling
with an elliptical distribution which does not capture the skewness present
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Figure 4.2 Marginal posterior pdf of the components of v (left column) and &
(right column), for the data relating to 1980 (upper row) and 1990 (lower row),

for the skewed Student models. The prior distribution of the parameter is shown
by the dotted line.
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in the data. Heavier tails are then required to account for the inadequacy
of the elliptical model.

Figure 4.3 Marginal posterior pdf of v for the FS-Student (solid line), the SDB-
Student (dashed line) and the Student (dot-dashed line) models. Panel (a) plots

the estimates for 1980 and (b) the estimates for 1990. The prior distribution of
the parameter is shown by the dotted line.
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We conclude the analysis of the distribution of firm size with a formal
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Table 4.1 Summaries of the marginal posterior distributions of the regression
coefficients, estimated using the FS-Student model

Year Covariate  Size var. Mean Std 5% quant. 95% quant.

M. value 0.02 0.13 -0.18 0.24
R&D T. assets -0.36 0.13 -0.57 -0.14
Sales -0.30 0.12 -0.50 -0.10
1980
M. value 0.32 0.10 0.15 0.50
Investment T. assets 0.13 0.11 -0.05 0.31
Sales 0.04 0.10 -0.12 0.22
M. value -0.03 0.12 -0.22 0.16
R&D T. assets -0.05 0.11 -0.22 0.14
Sales 0.01 0.10 -0.16 0.18
1990
M. value 0.28 0.27 -0.18 0.73
Investment T. assets 0.15 0.25 -0.26 0.58
Sales 0.19 0.21 -0.14 0.57

comparison of the different models. Table 4.2 shows the difference in log
marginal likelihood between the FS-Student model and all other models.
A negative value denotes an advantage for the FS-Student model. If prior
model probabilities are assumed equal for all models, the exponentials of
the values in Table 4.2 are posterior odds versus the FS-Student model. For
both years, models that allow for heavier tails are shown to be more ade-
quate. Also, skewed models are preferred, with the FS models getting more
support than their SDB counterparts. In particular, the FS-Normal models
dominate the SDB-Normal ones. In summary, the results from Table 4.2
suggest strong data support for skewness and fat tails. Thus, the symmetry
and Normal tail behaviour assumptions (the law of proportionate effects)
do not hold for the set of companies that we analyse in this chapter.

4.4.2 Analysis of firm growth

The second part of our application is devoted to the study of firm growth.
We analyse the growth of Market value and of Tangible assets between 1980
and 1990. We define y; = (y;,y?)’, i = 1,...,n, where for observation 4,
y} represents the difference in the logarithm of Market value between 1990
and 1980 and, equivalently, y? denotes the difference in the logarithm of
Tangible assets in the same period. We also want to assess the impact of the
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Table 4.2 Distribution of firm size - difference in log marginal likelihood between
the FS-Student model and all other models. Negative values denote advantage for
the FS-Student model.

Student Normal
FS SDB Elliptical FS SDB Elliptical

1980 0 -6.2 -12.7  -56.0 -95.2 -117.3
1990 0 -3.3 -11.0 -46.5 -49.7 -58.4

1980 effort in R&D and Investment on the growth of the firms. Therefore,
we use these measures as covariates. We also include a constant term in
our analysis.

Table 4.3 presents the difference in log marginal likelihood between the
different models and the one for the FS-Student model with all covariates.
We also include the models with only the constant term. As in the previous
subsection, the skewed models are supported by the data. Also, heavy-
tailed models are strongly favoured. The skewed Student models provide
equivalent alternatives for the distributions. However, as in the previous
subsection, there is a marked difference in terms of the skewed Normal
models in favor to the FS ones, especially when covariate information is
used. This ranking of the models is not affected by the inclusion of the
R&D and Investment cofactors, even though the covariates are assessed
to be quite important. For all models, the covariates prove to be quite
important.

Table 4.3 Distribution of firm growth - difference in log marginal likelihood be-
tween the FS-Student model with all covariates and all other models. Negative
values denote advantage for the FS-Student model with covariates.

Student Normal
FS SDB Elliptical FS SDB Elliptical

With cofactors 0 0.4 -25.6 -49.3 -68.4 -87.8
Without -32.2 -33.0 -60.6 -75.6 -77.2 -111.5

The influence of the covariates on firm growth can be assessed by the plots
in Figure 4.4, where posterior pdf’s for the coefficients of the covariates
are presented. These estimates were obtained from the FS-Student models.
Figure 4.4 (a) shows the distinct effect of R&D on the two measures of
firm growth. R&D effort in 1980 has a positive effect on Tangible asset
growth and a negative effect on the growth of Market value. From Figure
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4.4 (b) we realize that Investment has almost no effect on Market value
and has a strong positive effect on Tangible assets. In summary, growth in
Tangible assets is positively affected by both R&D and Investment, while

growth in Market value is negatively affected by R&D and is not affected
by Investment.

Figure 4.4 FS-Student estimate of the marginal posterior densities of the coeffi-
cients of cofactors R&D (a) and Investment (b). The solid lines represents the
estimates of the coefficient for Market value growth and the dashed lines the ones
for Tangible asset growth.
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As evidenced in Table 4.3 heavy tails are supported by the data. The poste-
rior median value of v for the FS-Student model is 3.80 when covariates are
used and 3.70 when only the constant term is used. The median values for
the remaining heavy-tailed models are similar. The presence of heavy tails
does not support the common assumption in economics that firm growth
has a Normal distribution.

Until now, we have not graphically presented any skewed distribution. The
application in Section 4.4.1, with its three covariates, is not directly suitable
for visualization. However, here we analyse a bi-dimensional problem and
we can provide some contour plots of the posterior predictive pdf’s. Figure
4.5 presents contour plots of the posterior predictive densities, for the FS-
Student model and FS-Normal with only the constant term, overplotted
with the true data represented by the dots. The presence of skewness in
the distribution is obvious, especially for the FS-Normal model. By fixing
tail behaviour to be the one of the Normal distribution, the distribution has
to be substantially more skewed than if heavier tails are allowed. This can
explain the reason for the near equivalence of the FS and SDB models for
the Student alternatives, and for the advantage of the FS models when only
Normal tails are allowed. The majority of firms experienced growth during
the ten-years period up to 1990. However, a considerable number of firms
exhibited a decrease, sometimes considerable, in one or both measures. In
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particular, after inspecting the contours of the pdf’s, we can conclude that
a firm having its Market value diminishing while increasing Tangible assets
is more likely than the opposite. This can be generated by a poor opinion of
the firm by the market, even when Tangible assets are increasing. As these
are manufacturing firms, this could be linked with the general decline in
the manufacturing sector in that period.

Figure 4.5 Data (dots) and contours of the posterior predictive density of the F.S-
Student (a) and F'S-Normal (b) models with only the constant term as regressor
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Contour plots of the posterior predictive pdf’s for the SDB models are not
included due to the fact that their computation is much more demand-
ing. Due to the pdf form in (4.6)-(4.7) the computation of the posterior
predictive pdf contours would require substantial computing effort.

4.5 Discussion

In this chapter we review and compare two different alternatives for skewed
distributions. The first methodology, introduced in Ferreira and Steel (2003),
generates multivariate skewed distributions by using linear transformations
of univariate skewed distributions. The second, proposed by Sahu et al.
(forthcoming), uses a hidden truncation framework, where one unobserved
component is required for each dimension.

We provide general Bayesian linear regression models that can allow for
both skewness and heavy tails. FS have derived sufficient conditions for
inference under general improper prior. However, as similar conditions are
not available for the SDB models, we conduct inference here under a proper
prior, when possible common to both models. We also analyse restricted
versions of the most general models, by excluding either skewness, heavy
tails or both.
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The regression models are used in two econometric applications: cross-
sectional studies of the distribution of a cohort of manufacturing firms, in
two time periods, and the analysis of the growth of the same firms between
the two periods. We also assess the relevance of R&D and Investment on the
distributions. Fat tails and skewness found support in both applications.
The FS models were seen to be more suited to the applications at hand. The
preference was substantially stronger for the Normal models, indicating the
flexibility of the FS models. One methodological reason for this flexibility is
that the FS class of distributions can model mean, covariance and skewness
separately. The same is not true for the SDB class, where fixing ¥ and
increasing 4 in absolute value leads to a decrease in the correlation between
the variables. Thus, in the SDB class of distributions, it is not possible to
model simultaneously highly correlated and heavily skewed data. We feel
that this is an advantage of the FS models, and according to the model
comparison we performed in this article, one that can have strong practical
relevance.

In addition, the models proposed in FS are much more computationally effi-
cient, both in terms of model fitting and model comparison. The numerical
methods necessary to conduct inference under the SDB models, rely on a
data augmentation procedure requiring one truncated multivariate variable
for each observation. The updating of these variables can be quite demand-
ing. Model comparison based on marginal posterior probabilities is also an
expensive computational issue. Estimation of these marginal probabilities
can be done, at least, in two different ways. The first involves calculating
multivariate cdf values, which is difficult for most common distributions,
especially in high dimensions. The second is to apply Monte Carlo integra-
tion using the data augmentation procedure used in model fitting, with the
augmented variables sampled from the prior. None of these procedures is
required for the FS models, where the pdf of the skewed distribution has
a much more explicit form which is straightforward to evaluate for most
cases.
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