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SUMMARY

We point out that Bayesian inference on the basis of a given sample is not always possible with
continuous sampling models, even under a proper prior. The reason for this paradoxical situation is
explained, and linked to the fact that any dataset consisting of point observations has zero probability
under a continuous sampling distribution. A number of examples, both with proper and improper pri-
ors, highlight the issues involved. A solution is proposed through the use of set observations, which
take into account the precision with which the data were recorded. Use of a Gibbs sampler makes the
solution practically feasible. The case of independent sampling from (possibly skewed) scale mixtures
of Normals is analysed in detail for a location-scale model with a commonly used noninformative prior.
For Student-¢ sampling with unrestricted degrees of freedom the usual inference, based on point obser-
vations, is shown to be precluded whenever the sample contains repeated observations. We show that
Bayesian inference based on set observations, however, is possible and illustrate this by an application
to a skewed dataset of stock returns.

Keywords: LOCATION-SCALE MODEL; ROUNDING; SCALE MIXTURES OF NORMALS; SKEWNESS,
STUDENT-T.

1. INTRODUCTION

The purpose of this paper is to examine some pathological situations that may arise when we
conduct Bayesian inference using a continuous sampling distribution (i.e. absolutely continu-
ous with respect to Lebesgue measure). As examples of the rather counterintuitive phenomena
that can occur, let us mention that even under a proper prior, posterior inference could be pre-
cluded for certain samples, and that adding new observations could destroy the possibility of
conducting inference while it was feasible with the previous sample. Whereas under a proper
prior problems can only arise if the likelihood function is unbounded, they can be encountered
both with bounded and unbounded likelihoods if an improper prior is used.

Since the Bayesian paradigm solely relies on probability and measure theory, we shall
examine the pitfalls mentioned above within this framework. The first thing to notice is that a
sample of point observations (which is the way in which most datasets are recorded) has zero
probability under any continuous sampling distribution. Such distributions only assign positive
probability to sets of positive Lebesgue measure, thus reflecting the idea that observations can
never be taken with complete precision. Whereas this seems a reasonable assumption, it is
often ignored in statistical practice, and the observations are recorded as single points, which
have zero probability under the assumed sampling model. From probability theory, we know
that a conditional distribution is defined up to a set of measure zero in the conditioning variable.
As a consequence, the conditional distribution of the parameters given the observables (i.e. the
posterior distribution) can fail to be well-defined for a set of measure zero in the observables.
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Since any recorded sample of point observations has probability zero of occurrence, we can
never be sure that the sample under consideration is not an “offending” one. What makes
this problem of practical relevance is that rounding can give a nonnegligible probability to an
offending sample actually being recorded. If, e.g. given the value zero for the observable, the
posterior is not well-defined, rounding the observations to a finite precision can make it quite
possible to record the value zero. Section 2 of the paper discusses these issues in some detail
and presents several simple examples to illustrate this point, using both proper and improper
priors.

In Section 3, we consider the situation where the conditional distribution of the parameter
given the observables exists (either because a proper prior is used, or the improper prior allows
for existence of such a distribution), but p(yq), the usual denominator in Bayes theorem, is
infinite for the observed sample 3. Two types of solutions are explored: to consider the limit
of the posterior distribution for a sequence of values of i converging towards g, and to use “set
observations”, which identify a point observation with the neighbourhood of positive Lebesgue
measure that would have led to this value being reported (i.e. grouped data). We show that
the second solution is superior to the first one. It is, in addition, the natural approach from the
point of view of probability or measure theory, since, as explained in the previous paragraph,
the problems arise as a consequence of conditioning on a zero measure event (another example
of the arbitrariness of conditioning on zero probability events is the famous Borel-Kolmogorov
paradox). Using set observations, inference is always possible under a proper prior. For models
with improper priors, we still need to verify that the mass assigned to the particular sample of
set observations we consider is finite. However, once the existence of the posterior has been
established for a certain sample, adding new set observations can never destroy the possibility
of conducting inference. The usual coherence properties attributed to Bayesian inference are,
therefore, restored through the use of set observations. Markov chain Monte Carlo methods,
such as Gibbs sampling, render the solution quite feasible.

The analysis of rounded or grouped data through the use of continuous sampling models
has been the object of a large literature, which was reviewed in Heitjan (1989). The focus
of the latter literature has, to our knowledge, been the quantitative effect of coarsening on
inference. This paper, on the other hand, examines the qualitative effect of coarsening on
Bayesian inference. In other words, we deal with situations where the usual Bayesian inference
is not possible on the basis of the rounded data using a continuous sampling model, and we
show that explicitly incorporating the rounding mechanism is not only a natural and general,
but also a feasible solution to the problem.

As a practically relevant example, Section 4 presents the case of independent sampling
from scale mixtures of Normals. The Student-¢ distribution is an important member of this
class for practical purposes. We also allow for extending these models to their skewed counter-
parts and complement the sampling model with a commonly used improper prior. Results are
presented for the analysis using both point observations and set observations.

In Section 5, an application to stock price returns illustrates the problem and shows the
empirical feasibility of the solution using set observations. This analysis is seen to be preferable
to a more ad-hoc solution to the problem.

For probability density functions, we use the notation of DeGroot (1970), and all proofs
are grouped in the Appendix.
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2. THE FUNDAMENTAL PROBLEM

In this section we discuss the source of the problems one may face when conducting posterior
inference with sampling distributions which are absolutely continuous (i.e. possess a density
function) with respect to Lebesgue measure. For notational convenience, the prior distribution
shall also be defined through a density function, but it should be noted that the problems ex-
plained here hinge in no way upon this assumption as the argument readily extends to any prior
distribution.

We thus consider a sampling distribution with probability density function (p.d.f.) p(y |
0), with support ) C R™ and where § € © C R"™. We complete the Bayesian model with a -
finite prior distribution given through a density p(#), which could either be proper or improper.
The resulting Bayesian model uniquely defines a joint o-finite distribution on ) x © with
density

p(y,0) =ply | 0)p(0). (2.1)

2.1. Proper Priors

If p(0) is proper the joint distribution defined through (2.1) can be decomposed into the
marginal (predictive) distribution of y with p.d.f.

o) = [ oty | (o). (2.2
and the conditional distribution of 6 given , defined through the p.d.f.
p(y | 9)p(0)
0 = 2.3
p(0 | y) o) (2.3)

if p(y) < oo and arbitrarily otherwise. Note that since p(y) in (2.2) is a p.d.f., the set of y’s
for which p(y) = oo has Lebesgue measure zero and, thus, zero probability of being observed.
However, as explained in the Introduction, current statistical practice is to conduct inference
on 6 on the basis of (2.3) with y replaced by the recorded point observation yg. This can have
serious implications since there is no guarantee that the reported value yq is not an offending
value, corresponding to p(y) = oo, in which case the usual posterior inference, based on (2.3),
is precluded. The often presumed automatic feasibility of Bayesian inference under proper
priors can, therefore, be destroyed by the use of point observations that are fundamentally
incompatible with the sampling model.

Whenever p(yq) can be computed analytically, such a problem would be detected, but the
vast majority of statistical applications to complex real-life problems has to rely on numerical
methods, which may well fail to indicate the problem. Curiously, common practice does not
include checking whether p(yg) < oo in models with a proper prior. Thus, there is a danger of
reporting senseless inference.

As an illustration, we present a simple example.

Example 1. A Scale Contaminated Model

This example concerns a scale mixture of two Normals. The behaviour of the
likelihood function in a related example was studied in Kiefer and Wolfowitz (1956)
and Titterington, Smith and Makov (1985, Ex. 4.3.7).

Consider n i.i.d. replications yi, ..., Yy, from the e-contaminated model with p.d.f.

p(yi | o) =1 —e)fn(yi | po,o”) +efn(yi | po.c), (2.4)
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where pg € R is a known quantity and fx(y; | & w?) denotes the density function
of a Normal distribution with mean & and variance w® evaluated at y;. In such a
model € € (0,1/2) could represent the probability of y; being an outlying observation,
generated with variance ¢ > 1, whereas the usual observable has variance o> < 1. For
convenience, we shall assume both € and ¢* fixed, but the following results carry over
to the case with a proper prior on (g, ¢®). The prior assumed for o will be a Beta(a,b)
distribution with p.d.f.

p(0) = B(a,b) 0" 11— 0)" (o), (2.5)

where B(a,b) is the Beta function and Iy denotes the indicator function of the set H.
Clearly, if y; # po for alli =1, ..., n, the likelihood function from (2.4) is bounded and
thus leads to a finite integral under any proper prior. If, however, r > 1 observations
are equal to g, the likelihood can be shown to have upper and lower bounds both
proportional to c~". Therefore, a finite predictive density value in (2.2) is achieved
only when a > r. Thus, use of the proper prior in (2.5) with a < r (the number of
observations equal to py) does not allow for posterior inference using (2.3). We also
immediately see that adding new observations (equal to i) can destroy the existence
of a previously well-defined posterior.

The simplicity of this example, allows us to gain further insight in the source of the prob-
lem. Itis immediate to see that, as o — 0, the sampling model in (2.4) converges in distribution
to a mixture of a Dirac distribution at yo (with probability 1 — &) and a Normal(p, ¢?) distri-
bution (with probability €). Thus, whereas any sample containing some . values has positive
probability under this limiting distribution, it is a zero probability event according to the distri-
bution in (2.4) where o > 0. This makes the likelihood unbounded as ¢ — 0, reflecting the
fact that the limiting distribution is infinitely more likely to have generated such a dataset than
that in (2.4). Note that a Bayesian analysis can still get around the problem if the prior for o
gives sufficiently small probability to a neighbourhood of o = 0 [e.g. if a in (2.5) is larger than

r].

2.2. Improper Priors

We now turn to the case of an improper prior p(6). Then, the decomposition described at the
beginning of Subsection 2.1 still applies if and only if the predictive distribution is o-finite,
i.e. the density p(y) in (2.2) is finite except possibly for a set of y’s of Lebesgue measure
zero in R™ [see Mouchart (1976) and Florens, Mouchart and Rolin (1990)]. Indeed, when the
latter condition holds, Kolmogorov’s definition of conditional distributions, which relies upon
the fact that a joint distribution is absolutely continuous with respect to any of its marginals
combined with the Radon-Nikodym Theorem, can directly be applied to obtain the conditional
distribution of the parameter # given the observable y. Obviously, the danger arising from
plugging in a particular value y in (2.3) carries over to this case. The impropriety of the prior
implies that the density p(y) in (2.2) can take an infinite value even if the observed sample
leads to a bounded likelihood. The following example illustrates this point.

Example 2. A Student-t Model

Assume n independent replications from a univariate Student-t distribution with
known location pg, unitary scale and unknown degrees of freedom v. The likelihood
function is always bounded and, as v tends to zero, behaves like =/ %), where r
is the number of observations equal to pug. We complete the Bayesian model with
an improper prior for v € (0,00), given through the density p(v) o« v~(1%% ¢ >
0. From the results in the previous paragraph, we can establish the existence of a
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conditional distribution of v given the observables if and only if n > a, since, in this
case, the marginal distribution of the observables is o-finite. However, any observed
sample for which a > n — (r/2) leads to an infinite denominator in (2.3). Note the
parallelism with Example 1, where a proper prior was used: In both cases there exists
a conditional distribution of the parameters given the observables, but application of
the usual formula in (2.3) is precluded for certain samples.

Finally, we present a simple model in which an improper prior performs better than a proper
one.

Example 3. Improper Prior Better Than Proper

Suppose we have a single observation y € ® from a Normal(0, ) distribution, and
consider an Exponential prior for o. It is then immediate that p(y), computed as in
(2.2), is finite if and only if y # 0. On the other hand, an improper prior with density

p(0) = o texp(—ao™?), a >0, (2.6)

implies a finite value of p(y) for any y € R. Clearly, the likelihood becomes unbounded
when y = 0 and o converges towards zero. The density in (2.6), which (in contrast
to the Exponential) tends to zero as o — 0, counteracts this unboundedness. On the
other hand, the lack of integrability of (2.6) as o tends to infinity is of no consequence
since the likelihood can counteract this. This simple example illustrates the fact that
our usual way of reasoning (namely that a proper prior should always be safer than an
improper one) does not necessarily hold if we condition on events of measure zero.

The examples presented so far are fairly straightforward, in the sense that the sampling
distribution has some known fixed modal value. Thus, observations exactly equal to the mode
always lead to the highest likelihood values and are the first ones that should be examined
when searching for problematic samples. The much more interesting case where the mode
of the sampling distribution depends on unknown parameters is more complicated to analyse.
Section 4 will examine the Bayesian model corresponding to sampling from scale mixtures of
Normals with unknown location and scale, under Jeffreys’ prior for these parameters.

2.3. ARemark

Before we proceed with the remainder of the paper, we note an interesting fact. As was already
mentioned in Subsection 2.1, common practice does not involve checking whether p(yg) <
oo, for the observed sample g, in models with a proper prior. On the other hand, this is
precisely the condition that is usually checked when the prior is improper. Whereas p(y) < oo
guarantees that the expression in (2.3) with y = y, defines a p.d.f. for 6, it does not, however,
imply the existence of a conditional distribution, since from p(yg) < oo it does not follow that
the predictive distribution is o-finite. If the latter does not hold, p(6 | yo) in (2.3) is properly
normalized but can not be interpreted as the conditional distribution of the parameter given the
observable. We can therefore mention two separate issues:

Condition A. The existence of a conditional distribution of the parameter ¢ given the observ-

able y.

Condition B. The fact that (2.3) defines a p.d.f. for 6 given a particular observation .

Our point is that neither Condition A nor Condition B implies the other. 1t may well happen
that A holds (under a proper prior it always does) but still p(yo) = oo for a certain value yg, in
which case p(6 | yo) in (2.3) can not be used. Conversely, the fact that p(yy) < oo for a given
value yo [and thus p(6 | yo) in (2.3) defines a p.d.f. for 4] does not imply that a conditional
distribution for @ given y exists. The ideal situation for conducting Bayesian inference is when
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both A and B hold simultaneously: while A provides an interpretation of the distribution of ¢
given y as a conditional distribution, B seems required if we wish to conduct inference on the
basis of a point observation yj.

3. ASOLUTION THROUGH SET OBSERVATIONS

In this section we shall be concerned with situations where Condition A above holds but B does
not, as we have a point observation yq for which p(yg) = oc. Examples 1-3 all display this
behaviour.

Let us first of all examine whether taking the limit of the usual posterior distribution for a
sequence of observations that converges to v, provides a useful solution. As a simple example,
we reconsider Example 1.

Example 1. Continued

We now combine the sampling model in (2.4) with the proper prior in (2.5) and
consider a < r, the number of observations equal to pi9. In this case (2.2) becomes
infinite, so that the usual formula in (2.3) can not be applied. The limit of the posterior
distributions arising from a sequence of observations that converges to the one recorded
(i.e. with r values equal to o), can be shown to be a Dirac distribution at ¢ = 0. This
can hardly be deemed of any practical use as we would rarely be happy with concluding
that the post-sample predictive (the sampling model integrated with the posterior) is
outside the (continuous) class assumed in our analysis. Furthermore, such a model
could provide a very inadequate fit to the data. As an example, suppose that ¢ is very
small and ¢® very large, and that the majority of the observations are located around
po with only one of them taking exactly the value pg. The model in (2.4) would then
appear to be rather appropriate for some positive value of 0. However, if in (2.5) we
take a = 1 and consider the limit of the posterior distributions as explained above, the
post-sample predictive becomes a mixture of a Dirac distribution at po (with very large
probability) and a Normal distribution with very large variance.

Thus, this potential solution does not seem very satisfactory. Deriving such limiting distri-
butions is usually quite hard and inference based on them often displays unattractive features,
as illustrated in the example above. As a further example, consider independent sampling from
a Normal(0, o) distribution and an Exponential prior on o as in Example 3. If the observed
values were 0 and 1, and knowledge was updated after each single observation, we would ob-
tain different answers depending on the order in which they were observed. Indeed, observing
the zero first would lead to a Dirac limiting posterior distribution for o at zero, and any further
updating would be precluded.

As a consequence of all these drawbacks, we shall not pursue this approach any further,
but focus instead on solving the problem through more careful modelling of the data generating
mechanism, in accordance with the way the data are actually observed.

Clearly, when a point value y is recorded as an observation, we do not literally believe that
1o 1S the outcome of the sampling process (indeed, it can not be according to a continuous sam-
pling model), but it should rather be interpreted as indicative of some (small) neighbourhood
So around yo. Whenever p(yg) = oc, inference will have to be based on the entire neighbour-
hood around yqg, rather than on the reported value alone. Thus, instead of (2.3) with y = yq,

we shall consider

P(y e Sy | 0)p(0)
P(yeSy)
where P(y € Sy | 6) fs p(y | O)dyand P(y € So) = [oP(y € Sy | 0)p(0)do. The

p(0 | y €Sy = (3.1)
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crucial difference between (2.3) and (3.1) is that we now condition on an event of positive
measure, namely y € Sy, thus no longer contradicting the sampling assumptions. In the case
of a proper prior, p(#), this settles the issue entirely: the conditioning event has positive prob-
ability and, thus, (3.1) can immediately be used for inference on 6. If p(#) is improper, on the
other hand, we have solved the problem of conditioning on zero measure events, but we still
need to check that the denominator in (3.1) is finite, so as to have a p.d.f. on 6. However, once
the latter has been established for a certain sample, it can no longer be destroyed by adding
new set observations.

The above procedure can be interpreted as follows: we are really observing a new random
variable, say, z = z(y) that takes values in a space, say Z, of subsets of ) that have positive
probability of occurring under p(y | 6). In practice, Z will be a countable space. In the
simplest case of directly rounding the observations, the elements of Z will constitute a parti-
tion of ). A more complicated setup is where the raw data are first rounded and afterwards
transformed, which implies that the sets in Z are not necessarily disjoint. An example of this
situation will appear in Section 5. Whenever (3.1) defines a p.d.f. for 6, the counterpart of
Condition B in Subsection 2.3 applies, in the sense that we can base inference on a properly
normalized distribution for 6 after observing z = Sy. Furthermore, if Z is countable the con-
ditional distribution of & given = is defined (i.e. the counterpart of Condition A in Subsection
2.3 holds) if and only if P(z = S) < oo forall S € Z. Whereas this always obtains under a
proper prior, it may fail to hold if p(6) is an improper density function.

In practice, computing (3.1) will be more complicated than (2.3), yet quite feasible through
straightforward numerical methods. Note that our solution falls in the category of grouped or
censored data, to which numerical methods are nowadays routinely applied, mostly through
the use of data augmentation [see Tanner and Wong (1987)] on the censored observations. In
particular, we can set up the simple Gibbs sampler with the following conditionals:

p(0 | y.y € So)=p0 | v), (3.2)

p(y | 0,y € So) xply | 0)Is,(y)- (3.3)

Sequential drawing from (3.2) — (3.3) generates a Markov chain for (y,0 | y € Sp) that
will converge to the actual joint distribution and from which posterior and predictive inference
can immediately be conducted. Remark that we only require the possibility to draw from the
“usual” posterior p.d.f. in (2.3) and from the sampling model, truncated to the observed set .Sy.
In practice, an adequate pseudo-random number generator for (3.3) will never lead to offending
values of y for which the predictive density is not finite, since it typically operates with high
precision, so that any given value yq has an extremely small probability of occurrence and is
very unlikely to be drawn in a run of typical length. In addition, the actual posterior would
then still be well-defined, and such problems could only potentially affect the numerical issue
of drawing from the conditional in (3.2).

Convergence of the Markov chain induced by (3.2) — (3.3) is always guaranteed in the
practically relevant case where the support of y in the sampling does not depend on 6. The
latter implies that our Gibbs sampler generates a chain on Sy x © and the Cartesian product
structure assures convergence as shown in Roberts and Smith (1994). For general references
in the area of Markov chain Monte Carlo and Gibbs sampling, we refer the reader to Gelfand
and Smith (1990), Casella and George (1992), Tierney (1994), and Besag, Green, Higdon and
Mengersen (1995). Brooks (1998) provides an up-to-date review of the very extensive literature
in the area of Markov chain Monte Carlo methods.
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4. INDEPENDENT SAMPLING FROM SCALE MIXTURES OF NORMALS

The present section examines a leading case where Condition A in Subsection 2.3 is fulfilled
for point observations, yet Condition B does not hold for certain values of the observables. In
particular, we consider a location-scale model with errors that are independently distributed as
scale mixtures of Normals. Thus, y; € R is assumed to be generated as

yi=p+oe,i=1,...,n, (4.1)

with location parameter 1 € R and scale parameter o > 0, where the ¢;’s are i.i.d. scale
mixtures of Normals with p.d.f.

plei | v) = / fale | 0,071 dP, |, (4.2)

for some mixing probability distribution Py, onRy, which can depend on a parameter v €
of finite or infinite dimension. Leading examples which will be studied in this section are
finite mixtures of Normals, with Py, @ discrete distribution with finite support, Student-¢
sampling, with a Gamma(»/2, v/2) mixing distribution, Modulated Normal type | [see Ro-
manowski (1979)], with Pareto(1, »/2) mixing on the support (1, oc), and Modulated Normal
type 11 [see Rogers and Tukey (1972)], where P, |, isa Beta(»/2, 1) distributionon (0,1). A
more extensive list of examples is provided in Fernandez and Steel (1996).

The parameters in the sampling model (4.1) — (4.2) are (u, o, v), and in the prior distribu-
tion we assume the following product structure:

P(,u,o,u) = P(%U) X Pl,. (43)
For (1, o) we shall adopt the commonly used improper prior with density
p(p,0) < o, (4.4)

which is both the Jeffreys’ prior (under “independence”) and the reference prior in the sense of
Berger and Bernardo (1992) when v is known [see Fernandez and Steel (1997)]. The parameter
of the mixing distribution ~ will be assigned a probability measure P,. In a general finite
mixture context with fully known components, Bernardo and Giron (1988) derive a reference
prior for v, which is then the vector of unknown mixing probabilities.

4.1. The Analysis With Point Observations
Here we follow common statistical practice in treating the recorded observations as values

Y1, ..., Yp. FOr any mixing distribution Py v and any proper prior P, we can derive:
Resulti: p(y1,...,yn) < oo requires at least two different observations;
Result ii: if n > 2 and all observations are different, then p(y1, ..., y,) < oo

The proofs of Results i and ii proceed along the same lines as the proof of Theorem 2
(presented below). Since under a continuous sampling model the probability that any two
observations are equal is zero, we can state the following result:

Theorem 1. The Bayesian model (4.1) — (4.4) allows for the existence of a conditional
distribution of (u, o, v) given (y1, ..., yy) ifand only if n. > 2.

Thus, Condition A of Subsection 2.3 holds for any scale mixture of Normals whenever
we sample at least two observations. On the other hand, from Results i and ii, Condition B
is not fulfilled if all the observations are equal, whereas it holds when all the observations
are different. Let us now examine whether Condition B holds for samples containing some
repeated observations. In this context, we obtain the following result:



Bayesi an Conti nuous Mdel |ing 9

Theorem 2. Consider the Bayesian model (4.1) — (4.4) and let s be the largest number of

observations with the same value. If 1 < s < n, we obtain p(y1,...,y,) < oc if and only
if
/ A =2/ H A2 AP, 5, < (4.5)
0<>\1§§)\n<00 z;én s,n

where, with a slight abuse of notation, Py, ..\,,) = = [T 1 Py, 10)dP,

Whereas, from Theorem 1, obtaining Condition A does not depend on the particular scale
mixture of Normals considered, nor on the prior P,, Theorem 2 implies that both intervene
when we focus on Condition B. The following theorem further examines the implications of
(4.5) for some relevant examples.

Theorem 3. Under the conditions of Theorem 2, we obtain under:
i. Sampling from finite mixtures of Normals: p(y1, ..., y,) < 0o
ii. Student-¢ or Modulated Normal type Il sampling: p(yi, ..., y,) < oc if and only if

s—1 {(s=1)/(n—s)}+e
P, (O, } = 0and / {(n—s)v—(s—1)}1dP, < oo forall e > 0.
(

n—s s—1)/(n—s)

iii. Modulated Normal type | sampling: p(yi,...,y,) < oc if and only if

s—1 {(s—1)/s}+e
P, (0, ] = 0and / {sv — (s — 1)} 71dP, < oo forall e > 0.
5 (s—=1)/s

Thus, Condition B is always fulfilled when sampling from finite mixtures of Normals, and
the mere fact that two observations are different suffices for inference. Interestingly, inference
under Student-¢ or Modulated Normal sampling requires bounding v away from zero if we
wish to consider samples with repeated observations. For Modulated Normal type | sampling
it is sufficient to take P, with supporton v > {(s — 1)/s} + € for some ¢ > 0; thus, v > 1
always guarantees a finite predictive value. On the other hand, under Student or Modulated
Normal type Il models it is required that v > (s — 1)/(n — s). The latter quantity does not
possess an upper bound independent of sample size, and, thus, whatever the choice of P,, we
can always find samples for which p(y1,...,y,) = oo. In practice, one often chooses a prior
for v with support on all of R, which means that the problem will appear under Student-¢
or Modulated Normal sampling as soon as two observations in the sample are equal. A very
disturbing consequence is that adding new observations can actually destroy the existence of a
posterior that was perfectly well-defined with the previous sample!

4.2. The Analysis With Set Observations

Let us now apply the solution proposed in Section 3 to the model (4.1) — (4.4). Thus, instead
of point observations, we shall consider as our data information that y; € S;,7 = 1,...,n,
where S; is a neighbourhood of y;. Since the prior assumed in (4.3) — (4.4) is not proper, we
need to verify whether P(y; € S1,...,y, € Sn) < oc before inference can be conducted. The
following theorem addresses this issue.

Theorem 4. Consider the Bayesian model (4.1) — (4.4) with any mixing distribution PA B
and any proper prior P,. The observations consist of » bounded intervals S, ..., .S, (of



10 C. Fernandez and MF.J. Steel

positive Lebesgue measure in ®). Then P(y; € Si,...,yn € Syp) < oo if and only if
n > 2 and there exist two sets, say, S; and .S; for which

inf —y; | > 0. 4.6
et g L= (4.6

Thus, the existence of at least two intervals that are strictly separated from each other is
a necessary and sufficient condition for inference on the basis of these set observations. The
necessity of this condition can be seen as the set counterpart of Result i in Subsection 4.1.
Now, however, this condition is also sufficient for inference with any scale mixture of Normals.
Thus, irrespective of the mixing distribution and the prior P,, the counterpart of Condition B
for set observations always holds under (4.6), whereas we know that it fails for any sample
not satisfying (4.6). On the other hand, the counterpart of Condition A will now never obtain
since the collection of offending values, i.e. the samples of sets not verifying (4.6), has positive
probability of being observed. Nevertheless, this does not preclude inference on the basis of
any sample of set observations for which (4.6) holds, as is most likely in practice.

4.3. Skewed Scale Mixtures of Normals

In some situations the symmetry assumption implicit in the model (4.1) — (4.2) might be
considered inappropriate for the data at hand. In such cases, we can follow the proposal of
Fernandez and Steel (1998) in order to introduce skewness into the model. In particular, we
can replace the density of the error term in (4.2) by

plei | v,y) = ’Y—?— 1 /Ooo{fN<% | 0, )‘i_l>1[0,oo)(5i)+fN<'Y€i | 07)‘z‘_1>1(foo,0)(€i)}dp>\i\w
v
(4.7)

where v is as before and we introduce a parameter v € R... Thus, (4.7) is obtained from (4.2)
by scaling with ~ to the right of the origin and with its inverse to the left of zero. Clearly, for
v = 1 (4.7) coincides with (4.2), but if v > 1 we introduce right skewness, whereas values of
~v < 1 lead to left skewed distributions. More details on the properties of such distributions are
provided in Fernandez and Steel (1998).
The prior distribution is now given by
B

powry) = Pluo) X Pu X Py, (4.8)

where P, , is described in (4.4) and P, and P, are any probability measures.
The following result addresses the influence of our skewness transformation.

Theorem 5. Consider the Bayesian model (4.1), (4.4), (4.7) — (4.8).

i. With point observations y, . . ., y,, we obtain p(y1, ..., y,) < oo if and only if the same
holds when v = 1.

ii. With set observations S, ..., S,, we obtain P(y; € S1,...,y, € S,) < oo if and only
if the same holds when v = 1.

Surprisingly, the extra flexibility in dealing with skewness does not affect the possibility of
conducting inference, although the actual numerical results might, of course, be quite different.
Thus, all results presented in Subsections 4.1 and 4.2 for the symmetric model immediately
apply to the skewed case. The next section will present an application of skewed Student
sampling to a financial data set.
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5. AN APPLICATION TO STOCK PRICE RETURNS

The data we will examine here were taken from Buckle (1995), and represent a sample of 49
returns on Abbey National shares between July 31 and October 8, 1991. These returns are
constructed from price data p;, i = 0,...,49,as y; = (p; — pi—1)/pi-1, % = 1,...,49. As
the data seem to exhibit some skewness, Buckle (1995) uses a Stable distribution, allowing
for asymmetry. Here, we shall follow Fernandez and Steel (1998) and use instead the skewed
Student sampling model obtained from (4.1) and (4.7) with Py, a Gamma(r /2, v/2) distri-
bution, which we combine with the prior distribution in (4.8) where P, ;) is as described in
(4.4). In this particular application, we shall choose an exponential prior distribution for v with
mean 10 and variance 100, spreading the prior mass over a wide range of tail behaviour, and
a Normal(0, 7 /2) distribution truncated to ;. for . The latter centers the prior over v = 1,
i.e. symmetry, and provides a compromise between sufficient spread and reasonably equal prior
weights to right and left skewness.

Let us first consider the analysis with point observations: Theorem 1 assures us that Condi-
tion A in Subsection 2.3 holds as n > 2. However, the data contain seven observations that are
recorded as zero. Thus, from Theorem 3 (ii) we know that Condition B does not hold with this
data set, since (s —1)/(n —s) = 6/42 = 1/7 and the prior distribution for » has mass arbitrar-
ily close to zero. Bayesian inference on the basis of this sample is, therefore, precluded. This
problem was avoided in Fernandez and Steel (1998) by slightly perturbing the original data,
thus avoiding repeated observations. However, this solution is arbitrary and not in accordance
with the way the data are recorded. Here we will, instead, consider the solution proposed in
Section 3.

The set observations corresponding to this sample are constructed as follows: prices were
recorded in integer values (in Pence) and we shall assume they were rounded to the nearest
integer. The set observations for the returns are then defined as

. 4 — 1 P ]_
S, = <pz Pbi—1 7pz pi-1+ > 7 (51)
pi—1+ 0.5 pi—1—0.5
1=1,...,49. As a consequence of the return transformation after rounding the prices, the sets

S; are not all pairwise disjoint, yet we can find at least two sets for which (4.6) holds. Thus,
Bayesian inference on the basis of set observations is possible from Theorems 4 and 5.

The numerical analysis will be conducted as indicated in Section 3. In this particular
model, data augmentation with the mixing parameters A1, ..., A, will facilitate the Gibbs sam-
pler used for the posterior analysis. Thus, the complete Gibbs sampler will be conducted on
(Y1s vy Yny My O3 V7Y, AL, - - ., A). FOr the full conditionals of y, o, v, y and (Aq, ..., A,) we
refer the reader to Fernandez and Steel (1998). Whereas the latter constitute (3.2), we now
need to add the full conditional distribution of (y1, ..., ¥,) [i.e. (3.3)], which is a product of
n skewed Normal distributions truncated to the set observations. In all, the Gibbs sampler
generates a Markov chain in 2n + 4 dimensions by cycling through six steps.

The continuous lines in Figures 1-4 display the posterior p.d.f’s of u,7 = ¢~ 1,y and v
for the set observations in (5.1). Some evidence for right skewness transpires from Figure 3
as values for v > 1 receive most of the posterior mass. The data also indicate some support
for relatively thick tails (Figure 4), although the small data set under consideration is not very
informative on tail behaviour.

Let us now contrast this analysis with the one based on perturbed point observations. The
perturbation was applied to the price data, p;, and consisted in adding a Uniformly distributed
random number on (—5 x 10~7,5 x 10~ 7) to the recorded prices, who are themselves of the
order 300. For a given perturbation, the resulting point observations y; = (p; — pi—1)/pi—1,% =
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1,...,49 no longer contained any repeated values and dashed lines in Figures 1-4 summarize
posterior inference. As indicated by the present empirical evidence, the choice between set
observations and a small ad-hoc perturbation need not be a major issue in cases where the
problematic area receives very little posterior mass. We remind the reader that problems occur
for the original unperturbed point observations whenever v < 1/7. As Figure 4 shows, very
little posterior probability is allocated to that region for v. Since the Markov chain is unlikely
to wander in this area, the particular solution adopted need not make a large difference in this
case. If we force the issue, however, and fix v at a problematic value, say » = 0.1 < 1/7, we
observe a very different picture.

Clearly, the tails of the Student-¢ sampling model with » = 0.1 are too thick to adequately
fit this data set, which displays quite a concentration of mass around the mode. As a conse-
quence, the model will try to accommodate the empirical mass around the mode by increasing
the precision 7 = o~!. Thus, the observations that are not close to the mode will tend to be
regarded as “outliers” with relatively small weights (i.e. small values of the mixing variable \;)
attached to them. This happens both when set observations are used and with perturbed data.
However, the degree to which this phenomenon affects the results is quite different.

Figures 5-7 graphically display the posterior p.d.f.’s of y, In(7) and +y. Let us first comment
on the results using set observations; as expected, the precision, 7, has its mass at much higher
values than in the case with free v [note we now graph In(7)]. As the precision is so high, the
posterior of ;1 will switch between the local modes in the empirical distribution of the complete
data v, . .., y,, depending on how they are drawn in their intervals Sy,...,.S,. This strange
behaviour of ;2 should be a clear warning to the practitioner that the model with » = 0.1 is
not a good choice for this data set. The inference on the skewness parameter, -y, is surprisingly
little affected by the restriction on v.

If we use perturbed point observations, the concentration of the data around zero is much
higher: whereas the seven repeated observations roughly lie in the set (—0.033,0.033) if we
use set observations, the corresponding perturbed point observations are all situated in the
interval (—2 x 1079,2 x 10~?). This translates into a much higher precision, evident from
Figure 6. Virtually all the weight is now assigned to the seven perturbed zero observations
(\;’s of the order 10), whereas the 42 remaining observations are practically discarded (A;’s of
the order 10~11). As a consequence, . gets almost all of its mass very close to zero (Figure 5).
In addition, Figure 7 no longer displays evidence of right skewness in the data (it so happens
that the perturbed observations are somewhat bunched on the negative axis, and five out of the
seven are situated to the left of the posterior mean on p).

Clearly, when we move to more dangerous waters by imposing v equal to a value for
which the original point observations do not allow for inference, the issue of how this problem
is resolved becomes of critical importance. We run into problems if we use small ad-hoc
perturbations, whereas larger perturbations risk seriously biasing the inference. The only real
solution to the problem seems, in our view, to be through a coherent use of set observations.

ACKNOWLEDGEMENTS

We gratefully acknowledge stimulating discussions with Peter Green, John Hartigan, Michael
Lavine, Dale Poirier, Jean-Francois Richard, Richard L. Smith and Harald Uhlig. Part of this
research was carried out at the Statistics Department of Purdue University, facilitated by a
travel grant of the Netherlands Organization for Scientific Research (NWO). Both authors were
affiliated to CentER, Tilburg University, during much of the work on this paper. The first author
was supported by a Training and Mobility of Researchers fellowship (ERBFMBICT 961021),
financed by the European Commission.



Bayesi an Conti nuous Model | i ng 13

REFERENCES

Berger, J.0., and Bernardo, J.M. (1992). On the development of reference priors (with discussion). Bayesian
Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press,
35-60.

Bernardo, J.M. and Giron, F.J. (1988). A Bayesian analysis of simple mixture problems (with discussion). Bayesian
Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.). Oxford: University Press,
67-78.

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems (with
discussion). Statist. Sci. 10, 3—-66.

Brooks, S.P. (1998). Markov chain Monte Carlo and its application. The Statistician 47, 1-33.

Buckle, D.J. (1995). Bayesian inference for stable distributions. J. Amer. Statist. Assoc. 90, 605-613.

Casella, G. and George, E. (1992). Explaining the Gibbs sampler. Amer. Statist. 46, 167-174.

DeGroot, M.H. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.

Fernandez, C., and Steel, M.F.J. (1996). On Bayesian inference under sampling from scale mixtures of Normals.
Tech. Rep. 9602, CentER, Tilburg University, The Netherlands.

Fernandez, C., and Steel, M.F.J. (1997). Reference priors for the general location-scale model. Tech. Rep. 97105, Cen-
tER, Tilburg University, The Netherlands.

Fernandez, C., and Steel, M.F.J. (1998). On Bayesian modelling of fat tails and skewness. J. Amer. Statist. As-
soc. 93, 359-371.

Florens, J.P., Mouchart, M. and Rolin, J.M. (1990). Invariance arguments in Bayesian statistics. Economic Deci-
sion Making: Games, Econometrics and Optimisation. (J. Gabszewicz, J.F. Richard and L.A. Wolsey, eds.).
Amsterdam: North-Holland, 387-403.

Gelfand, A., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer.
Statist. Assoc. 85, 398-409.

Heitjan, D.F. (1989). Inference from grouped continuous data: A review. Statist. Sci. 4, 164-183.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely
many incidental parameters. Ann. Math. Statist. 27, 887-906.

Mouchart, M. (1976). A note on Bayes theorem. Statistica 36, 349-357.

Roberts, G.0O., and Smith, A.F.M. (1994). Simple conditions for the convergence of the Gibbs sampler and
Metropolis-Hastings algorithms. Stoch. Processes Applicat. 49, 207-216.

Rogers, W.H. and Tukey, J.W. (1972). Understanding some long-tailed symmetric distributions. Statistica Neer-
landica 26, 211-226.

Romanowski, M. (1979). Random Errors in Observation and the Influence of Modulation on Their Distribution.
Stuttgart: Konrad Wittwer.

Tanner, M.A., and Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with
discussion). J. Amer. Statist. Assoc. 82, 528-550.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22, 1701—
1762.

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical Analysis of Finite Mixture Distributions.
New York: Wiley.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Theorem 2

Consider the joint distribution of (y1,...,yn, A1,-.., Ay, 4, 0, ) corresponding to (4.1) —
(4.4). After integrating out ;. with a Normal distribution, o through a Gamma distribution
on o2, and v, we are left with

—2)/2

n n (n
2 —(n—1)/2
P(Y1s -5 Yn) CX/W (HA;/O) (Z%) Sy Y dP\,..an) (A1)
+ \i=1 =1
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where
SAy) = > NAjwi—yp) (4.2)
1<i<j<n
Note that > " ; A; has upper and lower bounds which are both proportional to the biggest \;,
whereas S?()\, %) has upper and lower bounds proportional to the biggest product AiAj for
which y; # ;. Thus, Theorem 2 follows.

Proof of Theorem 3
From Theorem 2, we need to check whether (4.5) is fulfilled for each of the sampling distribu-
tions considered. This is immediate for finite mixtures of Normals. We prove parts ii and iii by
making use of Fubini’s theorem, computing (4.5) as

/ [(1)dP,, (A.3)
0
with
I(v) = / NPT Aapy, .. dPy, ), (A.4)
0<A] <. KA <00 i#n s m

where Py v is the mixing distribution corresponding to each of the sampling models.
Under Student-t sampling, Py, is @ Gamma(v/2, v /2) distribution. For A; < ... <

Y | PP A2 < Al s U/2 367072 and we can prove that I(v) is bounded (and, thus,

integrable with respect to P,) as v — oo. Let us now consider a bounded interval, say (0, B),
for v. Making use of the bounds

w? w w?
— exp(—rw) < / vl exp(—rA)d\ < —, for any r,v,w > 0, (A.5)
v 0 v

while iteratively integrating Aq, ..., A,, shows that I(v) < oc requires v > (s — 1)/(n — s).

In this case, I(v) has an upper and a lower bound which are both proportional to {(n — s)v —
(s — 1)} 1. This immediately leads to Theorem 3 (ii) for Student-z sampling. The proofs for
Modulated Normal type | and type Il sampling are simplified versions of this one, since I(v)
in (A.4) can be computed directly.

Proof of Theorem 4

After integrating out y, o and v from the joint distribution of (y1,...,yn, A1, .-, An, 4, 0, V),
which requires n > 2, we are left with p(y1, . . ., y,) in (A.1), which still needs to be integrated
over the sets Si,...,S,. Applying Fubini’s theorem, we shall first perform the integral over
these sets, dealing with the integral with respect to P, ., afterwards. Thus, we are first
concerned with evaluating

T(A) = / S2(,y) "Dy, L dy,, (A.6)
S1x%...x8n

with S2(, y) defined in (A.2).
Sufficiency: Let us assume that (4.6) holds for, say, S and Ss. First observe that

n

A1A
S Og) = T QoA+ (= pe i = QI = -t =) (AT)
1=1
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where n; = y1 —y; fori = 2,....m, p = Xam /(M + A2) and Q = (g;5)7 3, With diagonal
elements ¢;; = A; Z#i Aj, and off-diagonal elements ¢;; = ¢;; = —\;\;. Since, by assump-
tion, | 2 | > K for some constant K > 0, the integrand in (A.6) is the kernel of a Cauchy
distribution for (73, ..., n,)’. Making a transformation from v, ..., y, to y1,72, ..., 7, and
integrating (3, . .., )’ over the whole of "2 using the latter Cauchy distribution, leads to

T < (A7 ZA e | e | dpdm. (49

i1 Y1€51,91-12€52}

This integral is finite since .S; and .S, are bounded and | 7, |> K > 0. Combining (A.1),
(A.6) and (A.8) immediately implies that P(y; € S1....,yn € Sy) < oo under any probabil-
ity measure Py, .-

Necessity: Defining 72, ..., 7, as before, we have S2(\,y) = 'Qn, where n = (12, ..., 1)’
and Q = (qij)gsz2 with the elements ¢;; defined in the same way as the elements of () in

(A.7). Since Q is a PDS matrix, it can be expressed as Q = D'D for some (n — 1) x (n — 1)
nonsingular matrix D. We consider a variable transformation from y1, ..., y, toy1,&s, ..., &,
where ¢ = (&9,...,&,)" = Dn. If (4.6) does not hold, the image set of S x ... x S,, in the
transformed variables will contain an (n — 1)-dimensional connected set, C, for &, the closure
of which contains the (n — 1)-dimensional vector of zeroes. This leads to

)21 D |7 [ [ (e g
1 =2

The last integral is seen to be infinite after a polar transformation.

Proof of Theorem 5

From the unimodality of the Normal distribution, the following upper and lower bounds for
p(ei | v,v)in (4.7) can be derived

2 /oo f < Ej
v+ % o "V \h(7)
This allows us to bound p(y1, . .., yn) by

)\1/2 nﬂ) A dpdodP,dP,, A.10
H 2 Z M o ( -,)\n)’ ( ‘ )

’Y

-1 _ J max{~,1/4} for upper bound
P )dPM’” h(’y)_{min{fy,l/fy} for lower bound.

(A.9)

which, after transforming from o to ¥ = h(~y)o, can be rewritten as

n hiy 1/2),9-(n+1) R « SV
2 / (H ) / HA exp 2192;&(% p)® b dpdddP | ).

(A.11)
Clearly, for both choices of h(vy), the value of the first integral in (A.11) lies in the interval
(0,1) under any proper prior P,. On the other hand, the second integral in (A.11) corresponds
to p(y1, - .., yn) When v is fixed at the value 1. This proves Theorem 5.
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Figure 1: Posterior Density for mu
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Figure 7: Posterior Density for gamma, nu=0.1
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