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Abstract

In this paper we discuss implementing Bayesian fully nonparametric regression by defin-
ing a process prior on distributions which depend on covariates. We consider the problem of
centring our process over a class of regression models and propose fully nonparametric regres-
sion models with flexible location structures. We also introduce a non-trivial extension of a
dependent finite mixture model proposed by Chung and Dunson (2007) to a dependent infinite
mixture model and propose a specific prior, the Dirichlet Process Regression Smoother, which
allows us to control the smoothness of the process. Computational methods are developed for
the models described. Results are presented for simulated and actual data examples.

Keywords and phrases: Nonlinear regression; Nonparametric regression; Model centring;
Stick-breaking prior

1 Introduction
Standard regression techniques assume that observations y1, . . . , yn observed at x1, . . . , xn

respectively can be modelled by

yi = g(xi, γ) + εi, εi ∼ N(0, σ2) (1)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. Misspecification
of either the mean function or the error distribution may lead to biased estimates of the regres-
sion coefficients γ. For example, the error distribution may be heteroscedastic or have a chang-
ing numbers of modes. The model can be robustified by assuming that the errors ε1, . . . , εn

are modelled nonparametrically. In the Bayesian literature, an initial step in this direction was
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taken by Bush and MacEachern (1996) who assume that g(x, γ) is linear in the covariates and
that εi ∼ F where F is modelled by a Dirichlet process mixture of normals (DPMN). The
error distribution is flexibly modelled but does not depend on the covariates. Leslie, Kohn and
Nott (2007) extend this approach to allow heterogeneity in the error distribution by assuming
that εi = σ2(xi)ψi where σ2(xi) is a flexible functional form and now ψi are drawn from a
DPMN. This model allows one aspect of the error distribution to depend on the covariates but
other aspects such as multi-modality are modelled through a single distribution. The present
paper is concerned with inference in the more general model

yi = g(xi, γ) + m(xi) + εi, εi ∼ k(εi|ψi), ψi ∼ Fxi , Fxi ∼ Π(H, ξ) (2)

where m(xi) is a flexible nonparametric prior, such as a Gaussian process (e.g. Rasmussen
and Williams, 2006), k(εi|ψi) is a probability distribution with parameter ψi and Fxi is a
distribution indexed by the covariates xi while Π(H, ξ) is a density regression prior centred
over the distribution H with parameters ξ (so that E[Fxi(B)] = H(B) for all B and xi). The
distribution of εi marginalising over ψi is a mixture of distributions of type k, which defines a
flexible form. Recently developed density regression priors express the distribution as

Fx
d=

∞∑

i=1

pi(x)δθi(x) (3)

where pi(x) is an infinite vector of probabilities such that
∑∞

i=1 pi(x) = 1. MacEachern
(2001) discusses the problem of specifying a prior for a collection of distribution {Fx}x∈X
for which the marginals Fx follow Dirichlet processes (Ferguson, 1973). His single-p model
assumes that pi(x) = pi for all x and the changing distribution is modelled through a pro-
cess for θ1, θ2, θ3, . . . , which has been applied to group experimental data (De Iorio, Müller,
Rosner and MacEachern, 2004), spatial problems (Gelfand, Kottas and MacEachern, 2005)
and quantile regression (Kottas and Krnjajic, 2009). Several authors have instead considered
a regression model for pi(x). Dunson, Pillai and Park (2007) define dependent measures by
allowing each measure to be an average of several unknown, latent distributions. Specifying
weights that change with covariates allows the distributions to change. Griffin and Steel (2006)
(hereafter denoted by GS), Dunson and Park (2008) and Reich and Fuentes (2007) exploit the
stick-breaking construction of random measures. GS use permutations of the breaks to induce
dependence whereas Dunson and Park (2008) and Reich and Fuentes (2007) introduce a kernel
to allow breaks to change over x. Chung and Dunson (2007) define a specific example of this
type of process, the Local Dirichlet process, which defines the kernel to be a ball of radius φi

around x. In this case, it is simple to relate the correlation in pi(x) to the properties of the
kernel and the choice of the prior for φi. One purpose of this paper is to extend this class of
models to the nonparametric case where we have an infinite number of atoms. The methods
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developed in GS lead to prior distributions centred over a single distribution. This paper dis-
cusses a method of centring over a non-trivial model (in other words, allowing the centring
distribution to depend on the covariates). Thus, we allow for two sources of dependence on
covariates: dependence of the random probability measure on the covariates and dependence
of the centring distribution on the same (or other) covariates. Besides extra flexibility, this
provides a framework for assessing the adequacy of commonly used parametric models. We
will also propose a new density regression prior which allows us to control its smoothness.

The paper is organised in the following way: Section 2 introduces the idea of centring
a nonparametric prior over a parametric model and develops a framework for assessing the
suitability of the parametric model for observed data. Section 3 introduces a class of nonpara-
metric priors for regression, including the Dirichlet Process Regression Smoother (DPRS).
Section 4 briefly discusses computational methods for DPRS-based models with more de-
tails of the implementation available in Appendix B of the online supplement to the paper at
http://www.stat.sinica.edu.tw/statistica. Section 5 illustrates the use of these models, and a
final section concludes. Proofs are provided in Appendix A of the online supplement.

2 Centring dependent nonparametric models
Nonparametric priors for an unknown distribution, F , are usually centred over a parametric
distribution, H , by setting E[F (B)] = H(B) for measurable sets B. It is useful to extend
this idea to centre dependent nonparametric priors over parametric regression models. The
nonparametric prior will model aspects of the conditional distribution that are not well captured
by our parametric centring model and, by centring, we can use prior information elicited for the
parametric model directly. If the parameters controlling the departures of the fitted distribution
from the centring model are given priors then we can assess how well our parametric model
describes the data. The covariates used in the parametric and nonparametric parts of the model
are not required to be the same, but x will generally denote the union of all covariates.

Definition 1 A nonparametric model will be centred over a parametric model, with parame-
ters η, if the prior predictive distribution of the nonparametric model at a covariate value x

conditional on η coincides with the parametric model for each covariate value.

In this paper we will concentrate on centring over the standard regression model with
normally distributed errors in equation (1), where η = (γ, σ2). Centring then implies defining
a nonparametric prior for the distribution of εi whose predictive distribution is a zero mean,
normal distribution. We first consider centring the model in equation (2) when m(x) = 0 for
all x. A suitable centring model lets ψi = µi and defines

k(εi|ψi) = N(εi|µi, a σ2), H ∼ N(0, (1− a)σ2),
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where 0 < a < 1, which will be denoted by Model 1(a). Clearly, the prior predictive distribu-
tion of yi − g(xi, γ) is a N(0, σ2) distribution. The parameterisation of the model is discussed
by Griffin (2006), who pays particular attention to prior choice. Many distributional features,
such as multi-modality, are more easily controlled by a rather than ξ in (2). Small values of a

suggest that the nonparametric modelling is crucial. A uniform prior distribution on a supports
a wide range of departures from a normal distribution. The full model, which will be denoted
by Model 1(b), can be centred in the following way

yi − g(xi, γ)−m(xi) ∼ N(µi, a(1− b)σ2), H ∼ N(0, (1− a)(1− b)σ2),

where m(x) follows a Gaussian process prior where m(x1), . . . ,m(xn) are jointly normally
distributed with constant mean 0 and the covariance of m(xi) and m(xj) is bσ2ρ(xi, xj) with
ρ(xi, xj) a proper correlation function. A popular choice of correlation function is the flexible
Matérn class (see e.g. Stein, 1999) for which

ρ(xi, xj) =
1

2τ−1Γ(τ)
(ζ|xi − xj |)τKτ (ζ|xi − xj |),

where Kτ is the modified Bessel function of order τ . The process is q times mean squared
differentiable if and only if q < τ and ζ acts as a range parameter. The parameter b can be
interpreted as the proportion of residual variability explained by the nonparametric Gaussian
process estimate of m(x). If we consider the prior predictive with respect to Fx we obtain the
centring model yi ∼ N(g(xi, γ) + m(xi), (1− b)σ2), whereas if we integrate out both Fx and
m(x) with their priors we obtain yi ∼ N(g(xi, γ), σ2).

Dependence on the covariates x enters in three different ways: it is used in the parametric
regression function g(x, γ), it intervenes in the process m(x) and the distribution of the means
µi depends on xi through the dependent random probability measure, Π. The distribution of y

given x is marginally a standard nonparametric mixture of normals model.
Model 1(a) in combination with a density regression prior can capture non-linear rela-

tionships between the errors and regressors through changing weights pi(x). The following
proposition shows the autocorrelation structure of the k-th moment of the distribution Fx.

Proposition 1 Suppose that Fx =
∑∞

i=1 pi(x)δθi
where θ1, θ2, θ3, · · · i.i.d.∼ H and define

µ
(k)
x =

∑∞
i=1 pi(x)θk

i then

Corr
(
µ(k)

x , µ(k)
y

)
=

∞∑

i=1

E[pi(x)pi(y)]

/ ∞∑

i=1

E[p2
i (x)].

Therefore, these priors imply that the autocorrelation structure does not change with k. This
seems unsatisfactory for many applications. For example, the model would resemble a ho-
moscedastic nonparametric regression model if the variance had a large correlation over the
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range of the data but we might want a different autocorrelation for the mean. The relatively
crude correlation structure described in Proposition 1 can lead to undersmoothing of the pos-
terior estimates of the distribution. In particular, the posterior mean E[y|x] will often have
the step form typical of piecewise constant models. Introducing a Gaussian process to de-
fine Model 1(b) addresses this problem by allowing the first moment of εi to have a different
correlation structure to all higher moments.

Models 1(a) and 1(b) illustrate an important advantage of centring over a model: it pro-
vides a natural way to distinguish between the parametric dependence on covariates, captured
by g(x, γ), and the nonparametric dependence, modelled through Fx and m(x). Thus, by
choosing g(x, γ) appropriately, we may find that the nonparametric modelling is less critical.
This will be detected by a large value of a and a small value of b, and will allow us to use
the model to evaluate interesting parametric specifications. Note that the interpretation of γ

is non-standard in this model since E[yi|Fxi , γ, xi] is merely distributed around g(xi, γ) and
P (E[yi|Fxi , γ, xi] = g(xi, γ)) = 0 if yi is a continuous random variable and H is absolutely
continuous, which occurs in a large proportion of potential applications. The predictive mean,
i.e. E[Yi|γ, xi] still equals g(xi, γ), however. The prior uncertainty about this predictive mean
will increase as our confidence in the centring model (usually represented by one of the pa-
rameters in ξ) decreases.

One solution to this identifiability problem is to follow Kottas and Gelfand (2001) who fix
the median of εi, which is often a natural measure of centrality in nonparametric applications,
to be 0. If we assume that the error distribution is symmetric and unimodal, then median
and mean regression will coincide (if the mean exists). An alternative, wider, class of error
distributions, introduced by Kottas and Gelfand (2001) to regression problems, is the class of
unimodal densities with median zero (see Kottas and Krnjajic, 2009 for extensions to quantile
regression). Extending the symmetric version of this model to our context defines Model 2:

k(εi|ψi) ∼ U
([
−σ

√
(1− b)ψi, σ

√
(1− b)ψi

])
, H = Ga(3/2, 1/2)

where U(A) denotes the uniform distribution on the set A and Ga(3/2, 1/2) represents a
Gamma distribution with shape 3/2 and mean 3. This choice of H corresponds to a normal
centring distribution and this model is centred exactly like Model 1(b).

3 A Bayesian Density Smoother
This section develops a measure-valued stochastic process that can be used as a prior for
Bayesian nonparametric inference when we want to infer distributions, {Fx}x∈X , where X
is the space of covariates. It will be stationary in the sense that all marginal distributions
Fx follow a Dirichlet process. We restrict attention to Dirichlet process-based models since
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these methods dominate in the literature and our approach follows these ideas naturally. The
stick-breaking representation of the Dirichlet process (Sethuraman, 1994) is given by (3) with-
out the dependence on x and with pi = Vi

∏
j<i(1 − Vj) where V1, V2, . . . are i.i.d. with

Vi ∼ Be(1,M) while θ1, θ2, . . . are i.i.d. from some distribution H . A covariate-dependent
stick-breaking process can be defined by only including a subset of these V ’s at each x. If these
subsets are similar for similar covariates then the distribution will change in a controlled way
and effective inference will be positive. We assume that the position θi does not depend on x.
A similar idea was implemented by GS using the πDDP prior. The process is also a non-trivial
generalisation of the independently proposed Local Dirichlet Process (Chung and Dunson,
2007) from finite to infinite mixture models. This is achieved by introducing extra parameters
t1, t2, . . . that determine the order in which points enter the stick-breaking construction.

Definition 2 Let S(φ) be a shape characterized by a parameter φ and (φ, t) be a Poisson pro-
cess with intensity f(φ) with associated marks (Vj , θj) which are i.i.d. realisations of Be(1,M)
and H respectively. We define

Fx =
∑

{i|x∈S(φi)}
δθiVi

∏

{j|x∈S(φj), tj<ti}
(1− Vj).

Then {Fx|x ∈ X} follows a Subset-based Dependent Dirichlet Process which is represented
as S-DDP(M, H, f, S), where f is a non-negative function for which

∫
I(x ∈ S(φ))f(φ)dφ >

0 for all x ∈ X .

Each marginal process Fx follows a Dirichlet process. This results from the distribution of
V1, V2, . . . and the infinite number of atoms included at each x. This can be seen as follows: the
number of points included in Fx is Poisson distributed with mean

∫ ∫
I(x ∈ S(φ))f(φ)dφ dt.

This number is almost surely infinite if the condition
∫

I(x ∈ S(φ))f(φ)dφ > 0 for all x ∈
X is met. Any atom θj only appears in the stick-breaking representation of Fx at points
x which belong to a subset of X , and this allows atoms to “appear” and “disappear”. The
construction is general and could potentially be applied to arbitrary spaces if suitable shapes
are available. However, as is common with nonparametric methods, care needs to be taken in
higher dimensions due to the “curse of dimensionality”. Realisations of the distributions will
be discontinuous as will all moments. However, conditional prior predictive distributions and
moments of y given x will be continuous. The dependence between distributions at different
locations s and v can be easily measured using the correlation of Fs(B) and Fv(B) for any
measurable set B, which can be represented by

Theorem 1 If F follows an S-DDP(M, H, f, S) process then

Corr(Fs, Fv) =
2

M + 2
E

[ ∞∑

i=1

Bi

(
M

M + 1

)∑i−1
j=1 Aj

(
M + 1
M + 2

)∑i−1
j=1 Bj

]
, (4)
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where Ai = I(s ∈ S(φi) or v ∈ S(φi)) and Bi = I(s ∈ S(φi) and v ∈ S(φi)).

If s, v ∈ S(φi) for all i then the correlation will be 1. If s and v do not both fall in any S(φi)
then the correlation will be 0. Suppose that the probability of observing a shared element in
each subsequence is constant given two covariate values s and v and equals, say, ps,v. Then

Theorem 2 The correlation between Fs and Fv can be expressed as

Corr(Fs, Fv) = 2
M+1
M+2ps,v

1 + M
M+2ps,v

=
2(M + 1)ps,v

2 + M(1 + ps,v)

where, for any k, ps,v = P (s, v ∈ S(φk)|s ∈ S(φk) or v ∈ S(φk)).

This correlation is increasing both in ps,v and M , the mass parameter of the Dirichlet pro-
cess at each covariate value. As ps,v tends to the limits of zero and one, the correlation does
the same, irrespective of M . As M tends to zero, the Sethuraman representation in (3) will
be totally dominated by the first element, and thus the correlation tends to ps,v. Finally, as
M → ∞ (the Dirichlet process tends to the centring distribution) the correlation will tend to
2ps,v/(1+ps,v), as other elements further down the ordering can also contribute to the correla-
tion. Thus, the correlation is always larger than ps,v if the latter is smaller than one. Note that
the correlation between distributions at different values of x will not tend to unity as M tends
to infinity, in contrast to the πDDP constructions proposed in GS. This is a consequence of the
construction: some points will not be shared by the ordering at s and v no matter how large
M . The correlation between drawings from Fs and Fv, given by Corr(Fs, Fv)/(M + 1) (see
GS) will, however, tend to zero as M →∞. To make the result more applicable in regression,
we now define a specific, simple method for choosing the subset in p-dimensional Euclidean
space using a ball of radius r.

Definition 3 Let (C, r, t) be a Poisson process with intensity f(r) defined on Rp × R2
+ with

associated marks (Vj , θj) which are i.i.d. realisations of Be(1, M) and H respectively. We
define

Fx =
∑

{i|x∈Bri (Ci)}
δθiVi

∏

{j|x∈Brj (Cj), tj<ti}
(1− Vj)

where Br(C) is a ball of radius r around C. Then {Fx|x ∈ X} follows a Ball-based Depen-
dent Dirichlet Process which is represented as B-DDP(M, H, f), where f is a non-negative
function on R+ (the positive half-line).

The intensity f(r) can be any positive function. However, we will usually take f(r) to be a
probability density function. The following argument shows that defining f(r) more generally
does not add to the flexibility of the model. Suppose that (C, r, t) follows the Poisson process
above then writing C?

i = Ci, r?
i = ri and t?i = ti/λ for λ > 0 defines a coupled Poisson
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process (C?, r?, t?) with intensity λf(r). The ordering of t and t? is the same for the two
coupled processes and the B-DDP only depends on t through its ordering. It follows that dis-
tributions {Fx}x∈X defined using (C, r, t) and (C?, r?, t?) will be the same. In one dimension,
we induce dependence by associating each atom with an interval and only using that atom in
the stick-breaking construction if the covariate value falls within that interval. The definition
could be easily extended to ellipsoids around a central point that would allow the process to
exhibit anisotropy. It is necessary to add the latent variable t for Fx to be a nonparametric
prior. The set T (x) = {i| |x− Ci| < ri} indicates the atoms that appear in the stick-breaking
representation of Fx. If we would instead define a Poisson process on (C, r) on Rp × R+

with intensity f(r) then T (x) would be Poisson distributed with mean 2
∫

r f(r) dr. This in-
tegral can be infinite but this would have strong implications for the correlation structure. By
including t we make T (x) infinite for all choices of f and therefore define a nonparametric
process. To calculate the correlation function, and relate its properties to the parameters of the
distribution of r, it is helpful to consider ps,v. This probability only depends on those centres
from the set {Ck|s ∈ Sk or v ∈ Sk} = {Ck|Ck ∈ Brk

(s) ∪Brk
(v)}.

Theorem 3 If {Fx}x∈X follows a B-DDP then

ps,v =
∫

ν (Br(s) ∩Br(v)) f(r) dr∫
ν (Br(s) ∪Br(v)) f(r) dr

,

where ν(·) denotes the Lebesgue measure in the covariate space X .

Sofar, our results are valid for a covariate space of any dimension. However, in the sequel, we
will focus particularly on implementations with a covariate that takes values in the real line. In
this case, Theorem 3 leads to a simple expression.

Corollary 1 If {Fx}x∈X follows a B-DDP on R then

ps,s+u =
2µ2 − |u|I

4µ− 2µ2 + |u|I
where µ = E[r], I =

∫∞
|u|/2 f(r) dr and µ2 =

∫∞
|u|/2 rf(r) dr, provided µ exists.

Throughout, we will assume the existence of a nonzero mean for r and define different
correlation structures through the choice of the distribution of f(r). We will focus on two
properties of the autocorrelation. The first property is the range, say x?, which we define as
the distance at which the autocorrelation function takes the value ε which implies that

ps,s+x? =
ε(M + 2)

M + 2 + M(1− ε)
.

The second property is the mean square differentiability which is related to the smoothness of
the process. In particular, a weakly stationary process on the real line is mean square differ-
entiable of order q if and only if the 2qth derivate of the autocovariance function evaluated at
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zero exists and is finite (see e.g. Stein, 1999). In the case of a Gamma distributed radius, we
can derive the following result.

Theorem 4 If {Fx}x∈X follows a B-DDP with f(r) = βα

Γ(α)r
α−1 exp{−βr} then Fx is mean

square differentiable of order q = 1, 2, . . . if and only if α ≥ 2q − 1.

If each radius follows a Gamma distribution then we can choose the shape parameter, α, to
control smoothness and the scale parameter, β, to define the range, x?. A closed form inverse
relationship will not be available analytically in general. However, if we choose α = 1, which
gives an exponential distribution, then

β =
2
x?

log
(

1 + M + ε

ε(M + 2)

)
. (5)

M = 0.1 M = 1 M = 10
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Figure 1: The autocorrelation function for a Gamma distance distribution with range 5 with shape: α = 0.1
(dashed line), α = 1 (solid line) and α = 10 (dotted line)

Figure 1 shows the form of the autocorrelation for various smoothness parameters and a
range fixed to 5 (with ε = 0.05). Clearly, the mass parameter M which is critical for the vari-
ability of the process, does not have much impact on the shape of the autocorrelation function,
once the range and smoothness are fixed. We will concentrate on the Gamma implementation
and work with the following class

Definition 4 Let {C, r, t} be a Poisson process with intensity βα

Γ(α)r
α−1
i exp{−βri} defined on

Rp × R2
+ with associated marks (Vi, θi) which are i.i.d. realisations of Be(1,M) and H . We

define
Fx =

∑

{i|x∈Bri (Ci)}
Vi

∏

{j|x∈Brj (Cj), tj<ti}
(1− Vj)δθi ,

and then {Fx|x ∈ X} follows a Dirichlet Process Regression Smoother (DPRS) which is
represented as DPRS(M, H,α, β).

Typically, we fix α and x? and put appropriate priors on M and any other parameters in the
model. We use a prior distribution for M which can be elicited by choosing a typical value for
M to be n0 and a variance parameter η. This prior (discussed in GS) has the density function

p(M) =
nη

0Γ(2η)
Γ(η)2

Mη−1

(M + n0)2η
.
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4 Computational method
This section discusses how the nonparametric hierarchical models discussed in Section 2
with a DPRS prior can be fitted to data using a retrospective sampler. Retrospective Sam-
pling for Dirichlet process-based hierarchical models was introduced by Papaspiliopoulos and
Roberts (2008). Previous samplers based on the stick-breaking representation of the Dirichlet
process used truncation (e.g. Ishwaran and James, 2001). The Retrospective Sampler avoids
the need to truncate. The method produces a sample from the posterior distribution of all pa-
rameters except the unknown distribution. Inference about the unknown distribution will often
requires the use of some truncation method. This makes the methods comparable to Pólya-urn
based methods, which are reviewed by Neal (2000). Retrospective methods have been used for
density regression models by Dunson and Park (2008).

We assume that data (x1, y1), . . . , (xn, yn) have been observed which are hierarchically
modelled by

yi ∼ k(yi|ψi), ψi|xi ∼ Fxi , Fx ∼ DPRS(M, H,α, β).

The DPRS assumes that Fx =
∑∞

j=1 pj(x)δθj where θ1, θ2, · · · i.i.d.∼ H and p is constructed
according to the definition of the DPRS. Additional parameters can be added to the sampling
kernel or the centring distribution, and these are updated in the standard way for Dirichlet
process mixture models. MCMC is more easily implemented by introducing latent variables
s1, s2, . . . , sn and re-expressing the model as

yi ∼ k(yi|θsi), P (si = j) = pj(xi), θ1, θ2, · · · i.i.d.∼ H

The latent variables s = (s1, . . . , sn) are often called allocations since si assigns the i-th
observation to the distinct elements of Fxi (i.e. ψi = θsi). We define y = (y1, . . . , yn),
θ = (θ1, θ2, . . . ) and V = (V1, V2, . . . ). The probability p(si|xi, C, t, r, V ) is only non-zero
if xi ∈ Br(C). Let (CA, rA, tA) be the Poisson process (C, r, t) restricted to the set A and let
(θA, V A) denote the set of associated marks. If we define the set R = {(C, r, t)|x ∈ Br(C)}
with its complement RC , the posterior distribution can be written as

p(θ, s, t, C, r, V |y) ∝ p(y|θ, s)
n∏

i=1

p(si|xi, C, t, r, V )p(V )p(θ)p(C, r, t)

∝ p
(
y|θR, s

) n∏

i=1

p
(
si|xi, C

R, tR, rR, V R
)
p

(
V R

)
p

(
θR

)

× p
(
CR, rR, tR)p(V RC

)
p

(
θRC

)
p

(
CRC

, rRC
, tR

C
)

which follows from the independence of Poisson processes on disjoint sets. Therefore we can
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draw inference using the following restricted posterior distribution

p
(
θR, s, tR, CR, rR, V R|y) ∝ p

(
y|θR, s

) n∏

i=1

p
(
si|xi, C

R, tR, rR, V R
)

× p
(
V R

)
p

(
θR

)
p

(
CR, rR, tR

)

We define a retrospective sampler for this restricted posterior distribution. A method
of simulating (CR, rR, tR) that will be useful for our retrospective sampler is: 1) initialize
t1 ∼ Ga

(
1,

∫
R f(r) dC dr

)
and 2) ti = ti−1 + xi where xi ∼ Ga

(
1,

∫
R f(r) dC dr

)
. Then

(CR
1 , rR

1 ), (CR
2 , rR

2 ), . . . are independent of tR1 , tR2 , . . . and we take i.i.d. draws from the dis-
tribution

p
(
CR

k |rR
k

)
= U

(
n⋃

i=1

BrR
k
(xi)

)
, p

(
rR
k

)
=

ν
(⋃n

i=1 BrR
k
(xi)

)
f(rR

k )
∫

ν (
⋃n

i=1 Bu(xi)) f(u) du
.

It is often hard to simulate from this conditional distribution of CR
k and to calculate the nor-

malising constant of the distribution of rR
k . It will usually be simpler to use a rejection sampler

from the joint distribution of (C,R) conditioned to fall in a simpler set containing R. For ex-
ample, in one dimension we define d?(rk) = (xmin− rk, xmax + rk) where xmin and xmax are
the maximum and minimum values of x1, . . . , xn and the rejection envelope is f?

(
CR

k , rR
k

)

for which

f?(CR
k |rR

k ) = U
(
d?

(
rR
k

))
, f?(rR

k ) =
(xmax − xmin + 2rk) f(rR

k )∫
(xmax − xmin + 2u) f(u) du

.

Any values (CR
k , rR

k ) are rejected if they do not fall in R. If we use a DPRS where rk follows
a Gamma(α,β) distribution then we sample rR

k from the rejection envelope using a mixture
distribution

f?
(
rR
k

)
= wfGa(α, β) + (1− w)fGa(α + 1, β)

where w = (xmax − xmin)/(xmax − xmin + 2α
β ) and fGa(α, β) is the pdf of a Ga(α, β) dis-

tribution. This construction generates the Poisson process underlying the B-DDP ordered in t

and we will use it to retrospectively sample the Poison process in t (we can think of the DPRS
as defined by a marked Poisson process where tR follows a Poisson process and (CR, rR)
are the marks). In fact, the posterior distribution only depends on tR1 , tR2 , tR3 , . . . through
their ordering and we can simply extend the ideas of Papaspiliopoulos and Roberts (2008)
to update the allocations s. The MCMC sampler defined on the posterior distribution pa-
rameterised by rR can have problems mixing. The sampler can have much better mixing
properties by using the reparameterisation from rR to rR ? where we let dil = |xi − Cl| and
define rR ?

i = rR
i − max{dij |si = j}. Conditioning on rR ? = (rR ?

1 , rR ?
2 , . . . ) rather than

rR = (rR
1 , rR

2 , . . . ) allows each observation to be allocated to a distinct element. Initially,
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we condition on s−i = (s1, . . . , si−1, si+1, . . . , sn) and remove si from the allocation. Let
K−i = max{s−i} and let r

(1)
k = rR ?

j + max{djk|sj = k, j = 1, . . . , i− 1, i + 1, . . . , n} and

r
(2)
k = rR ?

j + max({djk|sj = k, j = 1, . . . , i− 1, i + 1, . . . , n} ∪ {|xi −Cj |}). The proposal
distribution is

q(si = j) = c−1 ×





k(yi|θk)Vk(1− Vk)Ak
∏

l<k(1− Vl)
f
(
r
(2)
k

)

f
(
r
(1)
k

) j ≤ K−i

maxm≤K−i{k(yi|θm)}Vk
∏

l<k(1− Vl) j > K−i

where Aj = #
{

m
∣∣∣r(1)

j < dmsm < r
(2)
j , sm > j

}
and

c =
K−i∑

l=1

k(yi|θl)Vl(1− Vl)Al
∏

h<l

(1− Vh)
f

(
r
(2)
l

)

f
(
r
(1)
l

) + max
l≤K−i

{k(yi|θl)}
∏

h≤K−i

(1− Vh).

If j > K−i we need to generate (θK−i+1, VK−i+1, CK−i+1, dK−i+1), . . . , (θj , Vj , Cj , dj) in-
dependently from their prior distribution. A value is generated from this discrete distribution
using the standard inversion method (i.e. simulate a uniform random variate U and the pro-
posed value j is such that

∑j−1
l=1 q(si = l) < U ≤ ∑j

l=1 q(si = l)). Papaspiliopoulos and
Roberts (2008) show that the acceptance probability of the proposed value is

α =





1 if j ≤ K−i

min
{

1, k(yi|θk)
max1≤l≤K−i

k(yi|θl)

}
if j > K−i

.

The other full conditional distributions of the Gibbs sampler are given in Appendix B of
the online supplement.

5 Examples
This section applies the models developed in Section 2 in combination with the DPRS of
Section 3 on simulated data and two real datasets: the prestige data (Fox and Suschnigg, 1989)
and the electricity data of Yatchew (2003). As a basic model, we take Model 1(a) with a
regression function f(x) = 0. This model tries to capture the dependence on x exclusively
through the Dirichlet process smoother. Model 1(b) is a more sophisticated version of Model
1, where m(x) is modelled through a Gaussian process, as explained in Section 2. Finally,
we will also use Model 2, which will always have a Gaussian process specification for m(x).
The prior on M is as explained in Section 3 with n0 = 3 and η = 1 for all examples. On the
parameters a and b we adopt a Uniform prior over (0,1). The range x? of the DPRS is such
that the correlation is 0.4 at the median distance between the covariate values. Priors on σ2

and on the parameter of the Gaussian process ζ are as in the benchmark prior of Palacios and
Steel (2006) and we fix the smoothness parameter τ of the Gaussian process at 1.
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5.1 Example 1: Sine wave

We generated 100 observations from the following model yi = sin(2πxi) + εi where xi

are uniformly distributed on (0, 1) and the errors εi are independent and chosen to be het-
eroscedastic and non-normally distributed. We consider two possible formulations: Error 1
assumes that εi follows a t-distribution with zero mean, 2.5 degrees of freedom and a con-
ditional variance of the form σ2(x) = (x − 1

2)2 which equals 0 at x = 1
2 and increases

away from 1
2 . Error 2 assumes that the error distribution is a mixture of normals p(εi|xi) =

0.3N(0.3, 0.01) + 0.7N(−0.3 + 0.6xi, 0.01). This error distribution is bimodal at xi = 0 and
unimodal (and normal) at xi = 1. The first error distribution can be represented using both
a mixture of normals and a scale mixture of uniforms whereas the second error distribution
can not be fitted using a mixture of uniforms. Initially, we assume Error 1. The results for

0 0.5 1

−1

0

1

2

0.15 0.25 0.35
0.4

0.6

0.8

1

Figure 2: Example 1 with Error 1: predictive conditional mean of y given x for Model 1(a): α = 0.1
(dashed line), α = 1 (solid line), α = 10 (dotted line). Data points are indicated by dots. The right panel
presents a magnified section of the left panel

Model 1(a) are illustrated in Figure 2 for three values of α. Smaller values of α lead to rougher
processes and the effect of its choice on inference is clearly illustrated. In the sequel, we will
only present results where α = 1.

Model 1(a) Model 1(b) Model 2
σ 0.71 (0.48, 1.13) 0.64 (0.46, 0.96) 0.68 (0.49, 1.08)
a 0.09 (0.02, 0.24) 0.05 (0.01, 0.33)
b 0.75 (0.54, 0.88) 0.76 (0.53, 0.90)
ρ 0.53 (0.31, 0.96) 0.62 (0.31, 1.19)
M 0.38 (0.14, 0.95) 1.84 (0.61, 5.27) 1.57 (0.46, 3.64)

Table 1: Example 1 with Error 1: posterior median and 95% credible interval (in parentheses) for selected
parameters

Under Model 1(a), we infer a rough version of the underlying true distribution function as
illustrated by the predictive density in Figure 3. The small values of a in Table 1 indicate a
lack of normality. The results are similar to those of GS who find that the estimated conditional
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mean is often “blocky” which reflects the underlying piecewise constant approximation to the
changing distributional form.

Model 1(a) Model 1(b) Model 2

p(y|x)
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Figure 3: Example 1 with Error 1: heatmap of the posterior predictive density p(y|x) ite dashed line) and
plot of the posterior conditional predictive variance σ2(x) (solid line) and the true value (dashed line)

In the more complicated models the conditional location is modelled through a nonpara-
metric regression function (in this case a Gaussian process prior). Both Model 1(b) and Model
2 assume a constant prior mean for m(x). Introducing the Gaussian process into Model 1 leads
to smaller values of σ since some variability can now be explained by the Gaussian process
prior. However, the posterior for a still favours fairly small values, reminding us that even if
the conditional mean is better modelled with the Gaussian process, the tails are still highly
non-Normal (see Figure 4). The estimated posterior predictive distributions (as depicted in

x = 0.15 x = 0.50 x = 0.70

−2 −1 0 1 2
0
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Figure 4: Example 1 with Error 1: The posterior predictive distribution of y given x using Model 1(a) (solid
line) and Model 1(b) (dashed line)

Figure 3) are now much smoother. Both Model 1(b) and Model 2 lead to large values for b and
thus the variance of the Gaussian process (which better fits the true variability of the mean).
This leads to better estimates of the conditional predictive variance, as illustrated in Figure 3.
Clearly a model of this type would struggle with estimation at the extreme values of x but the
main part of the functional form is well-recovered. The parameter ρ = 2

√
τ/ζ used in Table 1
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is an alternative range parameter which is favoured by Stein (1999, p.51), and indicates that the
Gaussian process dependence of m(x) is similar for Model 1(a) and Model 2. The posterior
median values of ρ lead to a range of the Gaussian process equal to 1.89 and 1.61 for Models
1(b) and 2, respectively.

Results for data generated with the second error structure are shown in Figure 5 and Table 2
(for selected parameters). Model 1(b) is able to infer the bimodal distribution for small values
of x and the single mode for large x as well as the changing variance. Model 2 is not able
to capture the bimodality by construction and only captures the changing variability. In both
cases the mean is well estimated. Small values of a illustrate the difficulty in capturing the
error structure. The large values of b indicate that the centring model (a constant model with
mean zero) does a poor job in capturing the mean.

Predictive density p(y|x) Posterior of m(x) Predictive error distribution

Model 1(b)
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Model 2
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Figure 5: Example 1 with Error 2: heatmap of posterior predictive density p(y|x), plot of the posterior of
m(x) indicating median (solid line), 95% credible interval (dashed lines) and data (dots), and the posterior
predictive error distribution indicating the 2.5th, 25th, 75th and 97.5th percentiles

Model 1(a) Model 1(b) Model 2
σ 0.70 (0.41, 1.66) 0.47 (0.34, 0.71) 0.54 (0.38, 0.98)
a 0.12 (0.02, 0.31) 0.13 (0.02, 0.38)
b 0.84 (0.66, 0.92) 0.84 (0.65, 0.94)

Table 2: Example 1 with Error 2: posterior median and 95% credible interval (in parentheses) for selected
parameters
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5.2 Prestige data

Fox (1997) consider measuring the relationship between income and prestige of 102 occupa-
tions using the 1971 Canadian census. The prestige of the jobs was measured through a social
survey. We treat income as the response and the prestige measure as a covariate. The data is
available to download in the R package car. Figure 6 shows the fitted conditional mean. In

Model 1(a) Model 1(b) Model 2

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

100

Figure 6: Prestige data: posterior distribution of the conditional mean indicating median (solid line), 95%
credible interval (dashed lines) and data (dots)

all cases the relationship between income and prestige show an increasing trend for smaller
income before prestige flattens out for larger incomes. The result are very similar to those de-
scribed in Fox (1997). The inference for selected individual parameters is presented in Table 3.
As in the previous example, the Gaussian process structure on m(x) accounts for quite a bit of

Model 1(a) Model 1(b) Model 2
σ 22.2 (14.8, 43.7) 20.0 (14.8, 30.0) 22.0 (16.2, 36.4)
a 0.12 (0.03, 0.31) 0.28 (0.08, 0.69)
b 0.66 (0.38, 0.85) 0.69 (0.40, 0.88)

Table 3: Prestige data: posterior median and 95% credible interval (in parentheses) for selected parameters

variability, rendering the error distribution not too far from normal in Model 1(b), as indicated
by the fairly large values of a.

5.3 Scale economies in electricity distribution

Yatchew (2003) considers fitting a cost function for the distribution of electricity. A Cobb-
Douglas model is fitted, which assumes that

tc = f(cust) + β1 wage + β2 pcap + β3 PUC + β4 kwh + β5 life + β6 lf + β7 kmwire + ε,

where tc is the log of total cost per customer, cust is the log of the number of customers, wage
is the log wage rate, pcap is the log price of capital, PUC is a dummy variable for public
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utility commissions, life is the log of the remaining life of distribution assets, lf is the log of
the load factor, and kmwire is the log of kilometres of distribution wire per customer. The
data consist of 81 municipal distributors in Ontario, Canada during 1993. We will fit the
DPRS model with cust as the covariate to ε and we will centre the model over two parametric
regression models by choosing f(cust) as follows: Parametric 1, γ1 + γ2 cust, and Parametric
2, γ1 + γ2 cust + γ3 cust2.

Parametric 1 Model 1(a) Model 1(b) Model 2
γ1 0.42 (-4.14, 5.10) -0.70 (-4.88, 3.20) -0.90 (-4.98, 3.09) -0.67 (-4.79, 4.30)
γ2 -0.07 (-0.13, -0.02) -0.07 (-0.14, -0.01) -0.10 (-0.20, 0.02) -0.09 (-0.20, 0.00)
β1 0.48 (-0.25, 1.16) 0.67 (0.05, 1.20) 0.71 (0.07, 1.32) 0.70 (0.00, 1.53)
β4 0.12 (-0.06, 0.31) 0.07 (-0.10, 0.25) 0.04 (-0.14, 0.22) 0.06 (-0.14, 0.23)
β6 0.97 (0.03, 1.92) 1.11 (0.29, 2.00) 1.24 (0.40, 2.10) 1.19 (0.14, 2.04)
σ 0.17 (0.15, 0.21) 0.20 (0.14, 0.36) 0.23 (0.17, 0.39) 0.27 (0.19, 0.48)
a 0.19 (0.05, 0.45) 0.75 (0.25, 0.99)
b 0.41 (0.11, 0.77) 0.55 (0,21, 0.84)

Table 4: Electricity data: posterior median and 95% credible interval (in parentheses) for selected parame-
ters of Parametric model 1 (linear) and the nonparametric models centred over Parametric model 1

The results of Yatchew (2003) suggest that a linear f(cust) is not sufficient to explain the
effect of number of customers. The results for selected parameters are shown in Tables 4 and
5 when centring over Parametric 1 and over Parametric 2, respectively. When fitting both
parametric models we see differences in the estimates of the effects of some other covariates.
The parameters β1 and β6 have larger posterior medians under Parametric 2 while β4 has a
smaller estimate. If we centre our nonparametric models over the linear parametric model
then we see the same changes for β1 and β6 and a smaller change for β4. Posterior inference
on regression coefficients is much more similar for all models in Table 5. In particular, the
parametric effect of customers is very similar for Parametric 2 and for all the nonparametric
models centred over it. The estimated correction to the parametric fit for the effect of customers
is shown in Figure 7. For models centred over the linear model, it shows a difference which
could be well captured by a quadratic effect, especially for Model 1(b) and Model 2.

Under both centring models, the importance of the nonparametric fitting of the error sharply
decreases as a Gaussian process formulation for the regression function is used, as evidenced
by the increase in a. Changing to a quadratic centring distribution leads to decreased esti-
mates of b indicating a more appropriate fit of the parametric part. This is corroborated by the
nonparametric correction to this fit as displayed in Figure 7.
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Parametric 2 Model 1(a) Model 1(b) Model 2
γ1 2.77 (-1.53, 6.96) 2.78 (-1.83, 6.88) 2.52 (-2.44, 7.56) 2.77 (-4.20, 7.79)
γ2 -0.83 (-1.19, -0.48) -0.92 (-1.42, -0.41) -0.91 (-1.69, -0.23) -0.96 (-1.57, -0.32)
γ3 0.04 (0.02, 0.06) 0.05 (0.02, 0.07) 0.04 (0.01, 0.09) 0.05 (0.01, 0.08)
β1 0.83 (0.20, 1.48) 0.79 (0.16, 1.38) 0.80 (0.14, 1.43) 0.78(-0.03, 1.41)
β4 -0.02 (-0.20, 0.15) -0.02 (-0.22, 0.17) 0.00 (-0.18, 0.18) 0.00 (-0.18, 0.19)
β6 1.25 (0.38, 2.09) 1.31 (0.52, 2.18) 1.32 (0.47, 2.15) 1.31 (0.48, 2.59)
σ 0.16 (0.13, 0.19) 0.17 (0.14, 0.23) 0.21 (0.16, 0.34) 0.22 (0.16, 0.38)
a 0.13 (0.02, 0.40) 0.77 (0.24, 0.99)
b 0.30 (0.08, 0.75) 0.37 (0.15, 0.77)

Table 5: Electricity data: posterior median and 95% credible interval (in parentheses) for selected parame-
ters of Parametric model 2 (quadratic) and the nonparametric models centred over Parametric model 2

Model 1(a) Model 1(b) Model 2
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Figure 7: Electricity data: posterior mean of the nonparametric component(s) of the model

6 Discussion
This paper shows how ideas from Bayesian nonparametric density estimation and nonparamet-
ric estimation of the mean in regression models can be combined to define a range of useful
models. We introduce novel approaches to nonparametric modelling by centring over appro-
priately chosen parametric models. This allows for a more structured approach to Bayesian
nonparametrics and can greatly assist in identifying the specific inadequacies of commonly
used parametric models. An important aspect of the methodology is separate modelling of
various components, such as important quantiles, like the median, or moments, like the mean,
which allows the nonparametric smoothing model to “do less work”. These ideas can be used
in combination with any nonparametric prior that allows distributions to change with covari-
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ates. In this paper we have concentrated on one example which is the Dirichlet Process Regres-
sion Smoother (DPRS) prior, introduced here. We have concentrated on univariate regression
problems but the methods could be extended to higher dimensions. However, we imagine that
computation will become harder with increasing dimension. The DPRS is related to the πDDP
methods of GS but allows simpler computation (and without truncation) through retrospective
methods. The parameters of the DPRS can be chosen to control the smoothness and the scale
of the process.
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