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ABSTRACT We are interested in charac-
terising the class [T ,ΘT ] of statistically

equivalent representations of a probability
tree model P(T ,ΘT ). This problem is analo-
gous to the one of finding one essential graph
D? which indexes a class [D] of DAG repre-
sentations for a BN model PD. In the case
of staged trees (and chain event graphs), no
such graphical result is available. We thus
present an alternative algebraic characteri-
sation, showing that an interpolating polyno-
mial cT ∈ R[ΘT ] uniquely identifies [T ,ΘT ].
This is important for computational rea-
sons, in model selection and for causal dis-
covery.

POLYNOMIALS IN TREE MODELS
We define an interpolating polynomial of the model P(T ,ΘT ) as cg,T (θ) =

∑
λ∈Λ(T ) g(λ)πθ(λ),

where g = 1 or an indicator function. Denote by [T ,ΘT ]c ⊆ [T ,ΘT ] the class of polynomially
equivalent tree representations, sharing the same interpolating polynomial.

There is a bijective map c : s(c(θ)) 7→ (T ,ΘT ), identifying a tree representation from a tree-
compatible polynomial c. Interpolating polynomials are tree-compatible. In practice, c maps a
certain order of summation to a corresponding graph, using θ(e) 7→ e ∈ E (see below).

MAIN RESULTS

PROPOSITION For a finite and discrete BN model with decomposable DAG D and class
of tree representations [T ,ΘT ]D we find that [T ,ΘT ]c = [T ,ΘT ]D for any clique-induced in-
terpolating polynomial c. As a consequence, one interpolating polynomial captures all tree
representations of a decomposable BN and thus, in particular, all fatorisations according to D.

THEOREM Let (S,ΘS), (T ,ΘT ) ∈ [T ,ΘT ] be statistically equivalent staged trees with inter-
polating polynomials cS ∈ R[ΘS ] and cT ∈ R[ΘT ]. Then there is a bijective map Φ : cS 7→ cT .
In particular, we can transform (S,ΘS) into (T ,ΘT ) using a finite number of tree-compatible
reorderings of the interpolating polynomial in combinations with substitutions of terms of edge
probabilities.

EXAMPLE: TREE REPRESENTATIONS OF A DECOMPOSABLE BN
Consider a BN with (clique) parametrisation

pθ(x) = θ(x1, x2, x3)θ(x2, x3, x4)θ(x3, x5)θ(x4, x6)

according to a decomposable DAGD, shown on the
right. Define a probability tree (T ,ΘT ) ∈ [T ,ΘT ]D
with πθ(λ(x)) = pθ(x) for all x ∈ X.

The interpolating polynomial cT (θ) =
∑
x∈X pθ(x)

is given below. Each of the summations we see cor-
responds (via the map c above) to a different tree
representation in the class [T ,ΘT ]c = [T ,ΘT ]D.The
interpolating polynomial allows us to traverse the
whole class of tree representations of the BN, and
stratified trees are the ones giving a recursive fac-
torisation of pθ according to D.
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cT (θ) =
∑

(x1,x2,x3)∈X{1,2,3}

θ(x1, x2, x3)
∑

x4∈X4

θ(x2, x3, x4)
∑

x5∈X5

θ(x3, x5)
∑

x6∈X6

θ(x4, x6) p123(x1, x2, x3)p4(x4|x2, x3)p5(x5|x3)p6(x6|x4)

=
∑

(x2,x3,x4)∈X{2,3,4}

θ(x2, x3, x4)
∑

x1∈X1

θ(x1, x2, x3)
∑
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∑
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θ(x4, x6) p234(x2, x3, x4)p1(x1|x2, x3)p5(x5|x3)p6(x6|x4)
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∑

x6∈X6

θ(x4, x6) p35(x3, x5)p12(x1, x2|x3)p4(x4|x2, x3)p6(x6|x4)

=
∑

(x4,x6)∈X{4,6}

θ(x4, x6)
∑
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∑
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∑

x5∈X5

θ(x3, x5). p46(x4, x6)p23(x2, x3|x4)p12(x1|x2, x3)p5(x5|x3)

THE PROBABILITY TREE
Let the graph T = (V,E) be an event tree
and ΘT = {θv | v ∈ V } a set of parameter
vectors θv = (θ(e) | e ∈ E(v)) ∈ ∆◦#E(v)−1.
Then,

πθ(λ) =
∏

e∈E(λ)

θ(e)

defines a strictly positive probability mass
function on the root-to-leaf paths λ ∈ Λ(T ).
We call the pair (T ,ΘT ) a probability tree.

Such a labelled graph is a picture for a dis-
crete parametric statistical model

P(T ,ΘT ) =
{
πθ˜ | θ ∈ ∆◦d(E)

}
⊆∆◦#Λ(T )−1.

Denote by [T ,ΘT ] the set of possible repre-
sentations of P(T ,ΘT ). We say that two trees
(T ,ΘT ), (S,ΘS) ∈ [T ,ΘT ] are statistically
equivalent.

Two vertices v, w ∈ V are in the same stage if
and only if their parameter vectors coincide,
θv = θw. We then write v ∼ w.
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Think of this as a sort of conditional indepen-
dence statement, as formalised in Thwaites
& Smith (2015).

The stage structure of a tree (T ,ΘT ) may be
captured in the stage ideal

IT =
∑
v∼w
〈θv,i − θw,i | i = 1, . . . ,#E(vi)〉

in a ring R[ΘT ]. This object is geometri-
cally very simple but not invariant across
[T ,ΘT ].

• Finite, discrete BN models form a subclass
of the class of staged probability trees.
• Staged trees are graphically more com-

plex but much more expressive than BNs.
• These trees have the same algebraic prop-

erties as Chain Event Graphs, introduced in
Smith & Anderson (2008).

CONCLUSIONS
Our paper analyses discrete and context-
specific BNs as well as stratified CEGs as
subclasses of staged tree models, and char-
acterises their equivalence classes via inter-
polating polynomials. We developed an
algorithm for the map c, identifying cor-
responding graphs from a tree-compatible
polynomial, and have examined computa-
tional aspects of our work in Leonelli et
al. (2015). Future research will focus on
causal interpretations of these results, based
on Cowell & Smith (2015).
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