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ABSTRACT Staged tree models generalise discrete Bayesian net-
works (BNs). They are particularly useful when modelling

asymmetric situations where BNs would unnecessarily assume
an underlying state space to have a product structure. Centrally,
staged trees do not rely on an a priori set of problem variables and
are particularly strong when a model is specified in terms of rela-
tionships between a collection of events. We now apply a recent
algebraic characterisation of these models to infer putative causal
hypotheses and to translate these into easily calculable statements
which do not rely on a graphical representation

STAGED TREE MODELS
A probability tree is an event tree T = (V,E) with labelled edges
θ(e), e ∈ E. The product

∏
e∈E(λ) θ(e) of transition probabilities

along root-to-leaf paths λ defines a strictly positive probability mass
function on T . Every probability tree represents a discrete paramet-
ric statistical model.

A staged tree is a probability tree where the emanating labels of
certain vertices are identified:

v0 v1

v2 v3

v4

◦ ◦

◦
campus θ0

Leam. θ1

Coventry θ2

landlord grumpy θ3

friendly θ4

grumpy θ3

friendly θ4

move house θ5

stay θ6

leave city θ7

stay θ8

A BN representation:

location

landlord

moving leaving

• Staged tree models include discrete (and context-specific) BNs
as a special case.

• They are always faithful and all atomic probabilities are strictly
positive.

• Tree graphs are efficient in modelling asymmetric problems.

AN ALGEBRAIC CHARACTERISATION
We write the probability Pθ(A) of an event A as a formal polynomial

cA,T (θ) =
∑
λ∈A

∏
e∈E(λ)

1e(λ)θ(e)

which is a sum of atomic probabilities together with an indicator
function of a unit passing through the edge e.
The effect of the causal manipulation on an event A can be eas-
ily calculated as a differentiation on this polynomial

Pθ(A || v) =
∂2cT ,A(θ)

∂θ(e)∂1e
= cT (v),A(θ)

and coincides with an analogous formal polynomial defined on the
subtree rooted at the intervention vertex v ∈ V .

CAUSAL MANIPULATIONS IN STAGED TREES
We can manipulate vertices to force all units to follow a certain
development. E.g. manipulating v2 in T below forces students to
live in one of the two cities.
Graphically, this is a projection onto a subtree with inherited labels.
Here, the thick depicted T (v2) ⊆ T .

• Situations upstream of the manipulation and counterfactuals are
not affected.

• Vertex manipulation is more general than Pearl’s atomic
cause, it is more like a context-specific intervention.

• Causes and effects are events, not random variables.

• Effects are depicted downstream of a causal manipulation, so
cause and effect are ordered chronologically.

EXAMPLE: ADVANTAGES OF AN ALGEBRAIC APPROACH TO CAUSALITY
The intervention on v2 in T transforms the polynomial cT (θ) = θ0 + θ1θ3 + θ1θ4 + θ2θ3θ5θ7 + θ2θ3θ5θ8 + θ2θ3θ6 + θ2θ4 to the polynomial of the
subtree T (v2), so cT (v2)(θ) = θ3θ5θ7 + θ3θ5θ8 + θ3θ6 + θ4.
The probability of a student leaving the city, assuming she was initially forced to live there, is Pθ(v4 || v2) =

∂cT ,v2
(θ)

∂θ7∂1e7
= θ3θ5. This is simply the

probability of the subpath v2 → v4 in T .

There is not always a straight forward graphical way of repre-
senting a manipulation operation, e.g.:
• Forcing students to live in one of the two cities is not a vertex

manipulation in the tree on the right.

• Forcing students who are renting with a grumpy landlord to move
can be represented by T (v4) ⊆ T but on the right we would
force a unit to go through two mutually exclusive edges simulta-
neously, following two different unfoldings from w3.
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grumpy θ3
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Leamington θ1

Cov. θ2
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′
5

leave city θ′′5

stay θ6

CONCLUSIONS
Algebraic and differential methods allow us to perform causal ma-
nipulations on staged tree models without referring to the graph
structure. They can be greatly generalised to models with a mono-
mial parametrisation that do not rely on a priori problem variables.
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