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Introduction
The Scalable Langevin Exact (ScaLE) is a diffusion-based approach to simulate from an intractable
distribution. The ScaLE is a recent alternative to gradient based Langevin MCMC schemes such
as MALA which circumvents the need to use Metropolis type correction. The ScaLE method ap-
proximates the intractable distribution of interest with the quasi-stationary distribution of a ‘killed’
Brownian motion. Subsampling approach invoked in the construction of the algorithm provides sub-
linear scalability with respect to the size of the data. The method finds its use in the big data setting
where the method has sub-linear cost with respect to the size of the data. The Re-sampled Scalable
Langevin Exact (ReScaLE) method is a alternative method of sampling from an intractable distribu-
tion of interest. In contrast to ScaLE, the ReScaLE method uses a different approach to simulate from
the quasi-stationary distribution of a ‘killed’ Brownian motion whose invariant distribution is given
by concerned intractable distribution. The aim of this poster is to furnish an introduction ReScaLE
methodology as a tool to sample from an intractable distribution of interest.

Main Objective

• HOW TO SIMULATE FROM AN INTRACTABLE DISTRIBUTION π ∝
N∏
i=1

πi ?.

• Simulate the stationary distribution of Langevin diffusion

dXt =
1

2
∇ log π(Xt)dt + dBt, X0 = x0, t ∈ [0, T ]. (1)

Path-Space Rejection Sampling for diffusion

1. Propose path X from a measure W for the target measure Q such that dQdW(X) ≤M .

2. Accept the path X with probability

PW(X) :=
1

M

dQ
dW

(X) (2)

Exactly sampling the trajectories of Langevin diffusion

p0,t(·, y) = w0,t(·, y)EW|Xt=y

(
dQ
dW

(X)

)
(3)

For µ(x) = 1
2∇ log π(x), the transition density is:

p0,t(x0 = 0, x) ∝ exp

{
−x

2

2t

}
{π(x)}

1
2Ex0,x

exp

−
t∫

0

φµ(Xs)ds


 −→ π. (4)

where

l := inf
x

µ2 + µ′

2
(x) φµ(Xs) :=

(µ(Xs)
2 + µ′(Xs))
2

− l (5)

Double the drift! - Drop π(x)

p0,t(x0 = 0, x) ∝ exp

{
−x

2

2t

}
{π(x)}Ex0,x

exp

−
t∫

0

φ2µ(Xs)ds


 −→ π2. (6)

Killed Brownian Motion
The φ2µ(Xt) can be interpreted as the state-dependent ‘killing’ rate of a Brownian motion. The
density of a killed Brownian motion conditioned on its survival is called the quasi-stationary density.
The quasi-stationary density of a killed Brownian motion with killing rate φ2µ is

q0,t(0, x) ∝ exp

{
−x

2

2t

}
Ex0,x

exp

−
t∫

0

φ2µ(Xs)ds


 . (7)

Problems:
1. Problem-1: How to continuously sample trajectory of a Brownian motion?

2. Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?

3. Problem-3: It is difficult to unveil the sample path of a Brownian motion conditioned on its
survival until large time t.

Sampling from the QSD of Brownian motion
• ScaLE method uses SMC-based approach to simulate from the quasi-stationary density of a

‘killed’ Brownian motion.

Result - 1: Poisson Thinning
Let τ1, ..., τk be the Poisson process with rate M where M is such that sup

x
φ(x) ≤M . Let

Xτ1, ..., Xτk be the realised skeleton of a Brownian motion {Xt : t ≥ 0} at times τ1, ..., τk. If process

is killed at τj with probability
φ(Xτj

)

M . Then,

P(Process survived until time t) = exp

−
t∫

0

φ(Xs)ds



Result - 2: Glynn & Blanchet’s approach of estimating the QSD
1. Initialize the probability vector π = π0 on the non-absorbing states of Markov chain.

2. Select a non-absorbing state of the Markov chain x0 and set X0 = x0.

3. Simulate the Markov chain normally starting with X0 until absorption. Update πby counting the
number of visits to each state until absorption.

4. Choose an initial position according to normalized vector π and goto step 3.

5. Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

Big data setting
Replace the expensive φ function by an unbiased estimators φ̂, which are cheaper to evaluate.

ReScaLE method - Pseudocode

Algorithm 0.1: RESCALE ALGORITHM(µ, x0)

1. µ← 2× µ, l← inf
x∈R

µ2+µ′

2 , φ← µ2+µ′

2 − l,M ← sup
x∈R

φ(x)

2. t0← 0;Xt0 ← x0
3.

do


(t1, t2, ...) ∼ Poisson Process of rate M starting at t0
(Xt1, Xt2, ...) ∼ Brownian Motion started at position Xt0
Kill the process at Xti with probability φ(Xti)/M
exit once kill occurs

4. starting time ∼ U [0, tkill]
5. starting value ∼ Brownian Bridge conditioned on neighborsof starting time
6. GOTO 2. with t0← tkill;Xt0 ← starting value
return ((Xt1, Xt2, ...))

An illustration of the ReScaLE method

Logistic regression on Menarche data and computational cost on artificial data
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Current challenges and further research
•No formal proof exists for the regenerative algorithm by Glynn and Blanchet for CTMC on

general state space.

•How to make the method ‘adaptive’ and ‘speed-up’ the method for faster convergence to
quasi-stationary density?

References
[1] A. Beskos, O. Papaspiliopoulos, and G. O. Roberts. Retrospective exact simulation of diffusion

sample paths with applications. Bernoulli, 12(6):1077–1098, 2006.

[2] J. Blanchet, P. Glynn, and S. Zheng. Analysis of a stochastic approximation algorithm for
computing quasi-stationary distributions. Adv. in Appl. Probab., 48(3):792–811, 09 2016.

[3] M. Pollock, P. Fearnhead, A. M. Johansen, and G. O. Roberts. The Scalable Langevin Exact
Algorithm: Bayesian Inference for Big Data. ArXiv e-prints, September 2016.

Acknowledgment
This is a joint work with Dr. Murray Pollock & Prof. Gareth Roberts under the Oxford-Warwick

Statistics Program (OxWaSP) - a joint DPhil program being run between the department of statistics,
University of Oxford and University of Warwick, UK.


