
Reconstruction of transcriptional dynamics from gene
reporter data using differential equations
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ABSTRACT
Motivation: Promoter driven reporter genes, notably luciferase (luc)
and green fluorescent protein (gfp), provide a tool for the generation of
a vast array of time-course data sets from living cells and organisms.
The aim of this study is to introduce a modeling framework based
on stochastic and ordinary differential equations that addresses
the problem of reconstructing transcription time course profiles and
associated degradation rates. The dynamical model is embedded into
a Bayesian framework and inference is performed using Markov chain
Monte Carlo algorithms.
Results: We present three case studies where the methodology is
used to reconstruct unobserved transcription profiles and to estimate
associated degradation rates. We discuss advantages and limits
of fitting either stochastic or ordinary differential equations and
address the problem of parameter identifiability when model variables
are unobserved. We also suggest functional forms such as on/off
switches and stimulus response functions to model transcriptional
dynamics and present results of fitting these to experimental data.
Supplementary Information: Supplementary information (SI) is
provided with the submission.
Contact: B.F.Finkenstadt@Warwick.ac.uk

INTRODUCTION
Imaging data from luciferase (LUC) and green fluorescent protein
(GFP) reporters combined with fluorescent tagging of protein can
provide very high quality data with good temporal resolution
(Millar et al. 1995; Nelson et al. 2004). In this case the actual
imaging time series is approximately proportional to the abundance
of an artificial protein. The underlying transcriptional dynamics
are unobserved and are masked by two degradation processes,
namely of reporter mRNA and reporter protein. In this study
we address the problem of back-calculating from the observed
protein activity to the hidden transcriptional dynamics where it is
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of interest to estimate the associated rates of degradation as part of
the analysis. We formulate a probability model based on (stochastic)
differential equations which provides the mechanistic rules for
the back-calculation. In practise heterogeneous data sets may be
available from different experiments which contain information
about the transcription process and model parameters. Data sources
may be of different quality and time resolution, as well as from
single cells or an aggregated population of cells. Longitudinal
measurements are discrete in time and can be irregularly spaced
or on different time scales for different variables. Other realistic
shortcomings of the data are that time course measurements
may not correspond to the same biological sample, or data on
different variables may not be matched in time which would be
preferable for fitting a multivariate dynamical model. As the quality
and quantity of such data sets supports more or less complex
modeling approaches we consider both stochastic and ordinary
differential equations with measurement noise. Information on
rate constants may be incorporated through prior distributions
in a Bayesian approach. We first describe the models and the
statistical methods used for its inference. Then we present three
case studies each with the aim of reconstructing transcription and
inferring any identifiable degradation rates from reporter gene data
using available heterogeneous sources of data. These case studies
serve to demonstrate the adaption of the methodology to different
experimental scenarios.

MODELS AND INFERENCE
It is now well understood that, because of the stochastic nature
of reaction events and the presence of internal noise due to the
fluctuations in the molecular environment of the cell, regulatory
and signalling systems are intrinsically stochastic. To develop a
stochastic model one can attempt to model the individual stochastic
events involved such as binding of the transcription factors,
the assembly and initiation of the polymerase and transcription.
Although an exact simulation algorithm of the corresponding
stochastic processes is provided by (Gillespie 1977, 1992) such
models are too detailed for there to be any hope of fitting to current
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data with its limitations. Stochastic differential equations (SDEs)
provide a good approximation of molecular population systems
when one can assume that there is a macroscopic time scale for
which (a) the event rates can be regarded as constant and (b)
there are many events of each type. An example of formulating
and fitting an autoregulatory feedback system with transcriptional
delay as a system of SDEs can be found in (Heron et al. 2007).
However, if the data are too sparsely sampled in time to reveal
information about the volatility process, or if measurements are
not realizations of the same continuous stochastic process in a cell,
then the assumption of SDEs can be problematic in estimation.
Simpler modeling approaches based on ODEs to represent the
mean process with an additional stochastic error may provide a
useful vehicle for estimation purposes at least in systems that
have relatively regular and stable dynamics. The formulation of
ODEs to model the dynamics of molecular population processes
has become a widespread tool in systems biology (see, for example,
systems studied in (Goldbeter 2002; Jensen et al. 2003; Locke et al.
2005a,b)), and early statistically less rigorous attempts in obtaining
kinetic parameters from GFP reporter data can be found in (Ronen
et al. 2002) and (Kalir and Alon 2004).

Here we consider the following dynamic model as the
mechanistic backbone for the reconstruction of transcription profiles
from reporter protein data

dM/dt = τ(t)− δMM(t), dP/dt = αM(t)− δPP (t), (1)

where M denotes the abundance of mRNA molecules and P
denotes the abundance of the corresponding protein. The first
equation describes the dynamics of mRNA molecules where
transcription is given by a non-negative function τ(t). The second
equation states that the protein is synthesized at a rate proportional
to the abundance of mRNA. The mRNA and the protein are
degraded (or leave their molecular compartment otherwise) at
time scales with mean 1/δm and 1/δp, respectively. The aim
is to infer the transcription function τ(t) and possibly other rate
constants of the system given time series data proportional to
one or both variables of the system. Suppose that we measure
M,P proportionally to their population size, sMM(t) for the
mRNA and sPP (t) for the reporter protein. Re-parameterizing
(1) gives a scaled model which is identical to (1) with scaled
terms for α and τ (see SI). However, degradation rates are not
affected by scaling. Let Y = {yi}Ti=1 = {M(ti), P (ti)}Ti=1

denote experimental time series data observed at discrete time
points. In order to obtain a likelihood function that incorporates the
mechanistic rules in (1) we consider two approaches. One is the
SDE approach where (1) is formulated as an appropriate system
of stochastic differential equations. This approach is rigorously
modeling the volatility of the stochastic dynamics of the kinetic
processes provided that the assumptions of the SDE approximation
itself are valid. It is very challenging to incorporate additional
measurement error unless its variance is known or assumed. The
second is the mean ODE approach where we assume that a solution
path to (1) represents the mean of a stochastic process whilst the
modeler makes assumptions about the probability distribution of
the residual process. This approach is less exact than the SDE
approach in modeling the volatility of the underlying stochastic
interaction between molecules. On the other hand it naturally deals
with measurement error and might also be useful for fitting to data

sets which do not comply with the SDE assumption, for example,
if data points are averages over replicates, come from different
samples and/or represent a population of cells. We now introduce
the two approaches and their likelihood derivation in more detail.

SDE approach: Here, M and P are random variables of
molecular population sizes and the rates of increase and decrease in
model (1) are event probabilities of birth and death processes at the
individual molecular level. One can derive the following Itô SDEs
(see SI)

dM = ζM (t, θ)dt+ σM (t, θ)dWM

dP = ζP (t, θ)dt+ σP (t, θ)dWP , (2)

where ζM (t, θ) = τ(t)−δmM(t), ζP (t, θ) = αM(t)−δPP (t),

and σM (t) = s
1/2
M (τ(t) + δmM(t))1/2, σP (t) = s

1/2
P (αM(t) +

δPP (t))1/2 are drift and volatility functions, respectively and WM

and WP are independent Wiener processes 1. Here and throughout
the paper θ is used to denote a vector of model parameters. If
M and P are indirect measurements of molecular populations in
the sense that they are proportional to molecular abundance with
factors sM , sP then these factors arise as additional parameters in
the volatility functions and their estimation will be extremely useful
allowing us to calibrate the model to the population level. Given
data Y the likelihood function for the diffusion process is

LSDE(θ; Y) =

T−1∏
i=1

f(yi+1|yi; θ) (3)

where f(yi+1|yi; θ) denotes the transition density of yi+1 given
yi, that is the joint probability distribution ofM(ti+1) and P (ti+1)
given present values, under parameter vector θ. The exact transition
density function for solutions of SDEs is rarely available in
analytical form and usually approximations have to be considered.
If the time-step ∆ti = ti+1− ti is small then a good approximation
is given by assuming that, conditional on past values,

(*) Increments y(ti+1) − y(ti) are bivariate normal with mean
vector ζ(ti)∆ti and variance matrix Σ(ti)∆ti where ζ(ti) =
(ζM (ti), ζP (ti)), Σ(ti) = diag(σ2

M (ti), σ
2
P (ti)) are the drift

and volatility functions as defined above.

Thus, for sufficiently small sampling intervals ∆ti the likelihood
function can be approximated by a product of the form

LSDE(θ; Y) =

T−1∏
i=1

Φ(y(ti+1)− y(ti); ζ(ti)∆ti,Σ(ti)∆ti) (4)

where Φ(x;µ,Σ) denotes the bivariate normal density function
with mean vector µ and variance matrix Σ. Justifications for this
approximation are given in (Kloeden and Platen 1999).

Mean ODE approach: Suppose there is a solution path µ(t; θ) =
(M(t), P (t); θ) to the system in (1) from unknown initial
conditions (M0, P0). Then a natural probabilistic model is to
assume that Y has a joint distribution with mean function µ(t; θ)
and a variance function σ2(t; θ). The distribution function and

1 The Wiener process, or Brownian motion, is a continuous-time stochastic
process that has independent normally distributed increments.
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variance are specified according to assumptions that the modeler
makes about the residual process and measurement error. If the error
process is assumed independent then the likelihood in the mean
ODE approach is

LODE(θ; Y) =

T∏
i=1

g(yi|µ(ti), σ
2(ti), θ), (5)

where θ now incorporates initial conditions (M0, P0) and g is a
suitably chosen probability distribution.

Inference: By Bayes’ theorem the posterior distribution is

π(θ|Y) ∝ L(θ|Y)π(θ), (6)

where L is the likelihood function, derived for either the ODE or
SDE approach, and π(θ) are prior densities of model parameters.
Sampling from the posterior distribution is usually achieved using
Markov chain Monte Carlo (MCMC), where each element of
θ is updated by using an appropriately constructed Metropolis-
Hastings acceptance/rejection scheme based on either random walk
or independence proposals (Gamerman and Lopes 2006). The
reason for choosing a Bayesian approach combined with a MCMC
algorithm is twofold: Firstly, the Bayesian methodology is flexible
allowing for portability of inference results between different
experimental studies in a well defined way and this is highly relevant
to studies in systems biology. Secondly, the probabilistic imputation
of missing data and/or unobserved variables can be implemented in
a straightforward way as part of an MCMC sampler.

Discrete data and unobserved variables: Molecular time series
data are discretely measured and it cannot be guaranteed that the
sampling interval is small enough for the approximation (*) to work
well. A remedy suggested in econometric applications of SDEs
(Elerian et al. 2001; Durham and Gallant 2002) is to augment the
observed data by introducing a number of latent or unobserved data
points, called a bridge, in-between the measurements with the aim
of creating a virtual fine discrete time grid for which the assumption
in (*) is valid. The bridges are treated as missing or latent data.
Let Y ∗ denote the collection of all latent data. We wish to sample
from the joint posterior f(θ, Y ∗|Y ) of the parameters θ and the
latent variables Y ∗ given the data Y , using the fact that, by Bayes’
theorem,

π(θ, Y ∗|Y ) ∝ L(Y ∗, Y |θ)π(θ) (7)

where L(Y ∗, Y |θ) is the approximated augmented likelihood. This
is achieved by sampling in turn from the full conditional densities
of θ|Y ∗, Y and Y ∗|θ, Y (Tanner and Wong 1987). Thus, in
the framework of an MCMC, one can generate proposal bridge
processes and accept these with an appropriately constructed
acceptance probability. In practice we have used (see (Heron
et al. 2007)) a bridging method based on an independence sampler
suggested by (Elerian et al. 2001)(see SI). The treatment of other
forms of missing data such as unobserved variables as part of the
inference algorithm is theoretically the same. In practise, this is
challenging as the dimension of the posterior density in (7) can
become very large. We present applications of bridge building
and stochastic reconstruction of unobserved processes in our case
studies. One also needs to decide upon the size of a virtual sampling
interval for which one can safely assume that (*) holds. Since there
are no analytical results we base our choice on Monte Carlo studies
of simulated systems.

CASE STUDIES

Case study 1: Red light pulse Experiment
The Arabidopsis thaliana gene Chlorophyll A/B binding Protein 2 CAB2
is regulated by light and the circadian clock (Millar and Kay 1996). The
aim here is to estimate degradation rate of CAB2 mRNA and to reconstruct
the transcriptional dynamics of the CAB2:LUC reporter gene as a result
of a 20 min red-light induction. At subjective dawn on the 6th day of the
experiment (see SI for a description of experiment), the grown Arabidopsis
seedlings were given a 20 min red light pulse to induce CAB2 expression.
Samples were harvested at the indicated time-points and total-RNA and -
protein was extracted. Steady state levels of LUC mRNA were measured by
Quantitative PCR (Q-PCR) and an in vitro LUC assay was used to measure
LUC activity in the protein samples. Concurrently, red light pulsed seedlings
were also imaged for LUC activity using light sensitive cameras (Millar
et al. 1995). This allows the measurement of LUC activity within the same
seedlings throughout the entire experiment, whereas the in vitro LUC assays
and Q-PCR experiments necessarily sacrificed different samples for each
time-point. All data are probes from whole leaves (plots of all time series
in SI) representing cell populations and the activity of the clock gene can
be assumed to be synchronized between cells by the light pulse. There are
three replicates of each measurement variable sampled every half hour for a
length of seven hours. Matching control replicates that have not been subject
to light induction were sampled for the same time length albeit more sparsely
for the Q-PCR and in vitro assay data. Assuming that molecular populations

Fig. 1. This figure shows mean ODE fit for average data (data points given
by big dots) of red light pulse experiment. LUC mRNA (top left), LUC
activity in vitro (bottom left) and imaging the luminescence from LUC
protein (top right) under two experimental conditions: with and without red
light pulse. Solid lines give the mean ODE fit using mean posterior estimates
for the parameters. The 95 % credible intervals (dashed lines) are shown
for the control experiments. The reconstructed transcription profile τ(t) is
shown in the bottom right panel (the area between dashed lines gives 95 %
central values of the transcription profile for 10,000 iterations of Markov
chain).

all scale differently with the Q-PCR, in vitro and in vivo imaging data we
use (1) to describe the dynamics of mRNA and imaged LUC protein and add
a third equation

dPv/dt = αPvM(t)− δPPv(t), (8)

which represents the protein dynamics measured by the in vitro LUC
protein assays (see SI for full model statement). The two protein equations
are identical except for differently scaled translation rates αP and αPv .
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Furthermore a constant cP is added to the imaging data to represent some
threshold level at which the camera is able to detect a signal. To specify
a form for the transcription τ(t) consider an indicator function L(t) = 1

for the time of the red light pulse, and L(t) = 0 otherwise (L(t) = 0

for all control experiments). The response of mRNA transcription to the
stimulus can then be modeled as a convolution of L(t) and d(u) which is a
probability density for the waiting time u between the pulse and the initiation
of transcription i.e. ,

τ(t) = αM

(∫ ∞
0

d(u)L(t− u)du+ τ

)
, (9)

where τ represents a baseline transcription. We take d(u) to be a Gamma
density with mean µΓ and standard deviation σΓ to be estimated. The
specification in (9) is motivated by the fact that it successfully reproduced
the qualitative features observed in the data in preliminary model simulations
and because d is flexible. Since data are from aggregated cell populations,
the imaged protein data is very smooth and successive data points of
the Q-PCR and in vitro time series come from different samples of cell
populations, we choose to fit the model using the mean ODE approach with
independent error. To ensure all variables are strictly non-negative we used
an independent Gamma distribution for g in the likelihood (5) for each of the
three variables where parameters were specified to have mean process equal
to an ODE solution and time constant variance σ2

M , σ2
P , σ

2
Pv . Applying (5)

the likelihood of replicate r = 1, 2, 3 is

Lr(θr|Yr) =

T R∏
i=1

g(yr,R
i |µ(ti), θ

r)

T C∏
j=1

g(yr,C
j |µ(tj), θr), (10)

where yr,R
i is the vector of observed data points i = 1, ..., TR for

variables M,P, Pv for replicate r under the red light experiment, yr,C
j

denotes observed data points j = 1, ..., TC for the corresponding control
experiment and g is a product of Gamma densities. The ODE model was
fitted to each of the replicates r = 1, 2, 3 and to the average of the
replicates where prior distributions for all parameters were chosen to be
uninformative. Results of posterior estimates are summarized in table (1)
and the model fit can be seen in Fig. (1). The mean delay time between
light induction and transcription is about 2h with almost all transcription
happening between 0.8h and 3.2h after the pulse. Convergence of the Markov
chains for parameters associated with the Gamma delay is relatively quick
and precise. Chains for αM and δM are correlated and convergence for
these is slower. The half-life of LUC mRNA is estimated to be around 0.5
hours with some small variation between replicates. In contrast the chains for
δL converged quickly due to the abundance and smoothness of the imaging
data. Protein half-life was estimated to be around 2 to 2.5 hours. Although
the control data do not seem very dynamic they are useful in inferring the
base rates of transcription and translation. If the control series are omitted
from the analysis these rates were estimated with considerably less precision
and slower convergence due to correlations.

Case study 2: A Switch model for CCA1
The Circadian Clock Associated 1 (CCA1) gene in Arabidopsis thaliana has
been identified as one of the core genes of the circadian clock (Wang and
Tobin 1998). In this case study we show results for the reconstruction of an
ON/OFF switching transcription profile from the following two experimental
data sets:
(1) Native mRNA Q-PCR data: Q-PCR measurements were taken at 2 h
intervals over 72 h on CCA1 mRNA entrained under a photoperiod of 18
hours before being released into constant light. The data used are an average
of concentrations relative to the start of two biological replicates.
(2) Protein imaging: High resolution imaging data for a different experiment
with identical conditions as for data (1) was sampled at 1.5h intervals over
a length of 91.5 h on LUC protein activity resulting from LUC reporter
constructs fused to the CCA1 promoter. Similar to case study 1 all data
come from whole leaves and thus represent a population of cells where the

Table 1. Case 1: Posterior results for selected parameters.

Parameter average r1 r2 r3

δM 1.542 (0.019) 1.726 (0.044) 1.417 (0.121) 3.526 (0.315)
(half-life) 0.45 h 0.4 h 0.49 h 0.2 h
µΓ 2.008 (0.011 ) 2.101 (0.014) 1.902 (0.045) 2.362 (0.0289)
σΓ 0.631 (0.013) 0.692 (0.014) 0.686 (0.039) 0.723 (0.0217)
τ 0.012 (0.001) 0.014 (0.001) 0.014 (0.002) 0.013 (0.002)
δP 0.305 (0.0045) 0.286 (0.0040) 0.272 (0.010) 0.365 (0.0093)
(half-life) 2.27 h 2.42 h 2.5 h 1.9 h

Posterior means and standard deviations of selected estimated parameters ( See
SI for all parameters), where the red light pulse model was fitted to average
data and to single replicate data sets denoted by r1, r2, r3. Estimated rates are
per hour. Degradation rates are translated into half-lives as follows: half-life (in
hours)=ln(2)/degradation rate (per hour).

activity of the clock gene is synchronized between cells during the exposure
to dark, light cycles during the entrainment period (see SI for further details
of experiment). The data used are an average of concentrations relative to
the start of 20 replicates2.
No data were available for the CCA1:LUC mRNA. However, if we assume
that CCA1:LUC and CCA1 mRNA have the same transcriptional dynamics,
then the available two time series are connected in a dynamic model with 3
variables where LUC mRNA and LUC protein dynamics are described by
(1) and a further equation

dMg/dt = τ(t)− δMgMg(t) (11)

is added for the native CCA1 mRNA. We assume that observed variables are
proportional to Mg and P populations with scaling factors sMg and sP ,
while M is unobserved. To describe the oscillatory nature of the data we
consider an ON/OFF switching function for the transcription τ(t) = τon if
transcription is active at time t, and τ(t) = τoff if transcription is inactive.
This function has the advantage of being interpretable and parsimonious.
If it produces realistic oscillations then its simple structure makes it an
interesting ingredient to models of larger networks. Let Sw = (s1, ..., sR)

where s1 < s2 < ... < sR are the times at which a switching between
an ON and OFF state occurs. They are estimated as part of the MCMC
algorithm where we assume that here the number of switches and the initial
state are known3. To set the phase of the clock both data series experienced
a light-dark (LD) cycle of 18 h of L and 6 h of D at the beginning of the
sampling period and this seems to generate a higher amplitude. We allow for
this by setting the transcription on-rate to pdτon during the first 35 hours
(allowing also for some delayed effect of the dark period). For purpose of
estimation, the mean ODE approach will be appropriate for similar reasons
as case study 1. However, an SDE approach is a superior theoretical model
that should be considered even if data do not (yet) strictly comply with its
underlying assumptions. We use this case study to show the application of
both approaches.

SDE approach: Consider a system of SDEs formulated analogously to
(2). Since M is unobserved it can be imputed stochastically as realizations
of the SDE but the cost of computation is high. Simulation studies suggested
that the more practicable way of imputing M as solution to an ODE from
an initial condition M0 to be estimated had no discernable impact on our

2 For computational precision we amplified the mRNA concentrations by
factor 105 and the protein concentrations by 104.
3 The number of switches and initial state are fairly obvious here. The
inference algorithm can however be generalized to allow for an arbitrary
number of switches and where the initial state is estimated. We will describe
work on this elsewhere.
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inference results here. In order to fit an SDE model to discrete data points
for Mg and P we augment the coarse grid to a virtually fine grid (for which
assumption (*) is valid) by imputing auxiliary data in the form of bridges. Let
θ = (Sw, τon, τoff , δMg ,M0, δM , SMg , α, δP , SP ) denote the vector
of unknown parameters and let M∗g and P ∗ be the auxiliary data for Mg

and P , respectively. Then according to (7) the posterior distribution for the
unknown Θ,M∗g , P

∗ is given by

π(θ,M∗g , P
∗|Mg , P ) ∝ L(Mg , P,M

∗
g , P

∗|θ)π(θ),

where we approximate L(Mg , P,M∗g , P
∗|θ) with the augmented

likelihood in (4) for small sampling intervals for all observed and auxiliary
data, i.e. y = (Mg , P,M∗g , P

∗). More details of the SDE inference
algorithm are provided in the SI.

Mean ODE approach: Here the likelihood is given by (5) where the
unobserved variable M is reconstructed as a solution of an ODE from an
initial condition M0 to be estimated. The density g was specified to be
the product of two independent normal distributions with mean equal to the
joint ODE solutions for Mg and P and with variance parameters σ2

Mg
and

σ2
P . We have set τoff = 0 for the off-time as initial estimations showed

that it was not different from zero4. As the variables are concentrations
relative to initial conditions the ODE solutions are assumed to start at
one. Thus, the parameter vector for the mean ODE approach is θ =

(Sw, τon, τoff, δMg ,M0, δM , α, δP , σMg , σP ).
To ensure identifiability in both estimation approaches the prior

distribution for CCA1:LUC mRNA degradation δM has to be informative.
We hence used a Gamma distribution with mean 1.542 and standard
deviation 0.019, corresponding to the results in Table (1). All other priors
were taken independently uniform in an attempt to estimate all remaining
parameters only from the experimental data at hand. Posterior estimates
are given in Table (2). Fig. (2) shows the transcription profiles and model
fits for both approaches. The plots suggest that the switch model is
remarkably able at reproducing the observed oscillations. The main feature
of the reconstructed profiles is that the inactive times (around 15-18) hours
are at least twice as long as the active times (around 7 hours) and this
produces the pronounced asymmetric cycles in the protein and mRNA time
series. The estimates also suggest that there is a shorter but larger burst
of transcription during the dark period. Both approaches deliver similar
posterior rates for degradation. Our results for CCA1 mRNA degradation
are in remarkable agreement with the analysis in (Yakir et al. 2007) whose
estimates correspond to 0.23 in darkness to 0.46 in light for δMg . Both
approaches reliably estimate the half-life of the LUC protein to be around
9.5 h. This is surprisingly long and is probably due to a lack in provision
of luciferin. The most notable difference between the two approaches lies in
the variance estimation. The SDE approach has to deal with the estimation
of the two scaling parameters, sP and sMg . We find that their identification
from the experimental data is problematic as convergence could not achieved
although this did not affect convergence of all other parameters. The two
scaling parameters were thus sampled within some chosen bounded region
of parameter space. In particular in order for the bridge sampling to remain
numerically stable for low values of the mRNA series, the sampling of sMg

had to be bounded to artificially low values. The identifiability problem
of the scaling parameters leads to problems in realistically quantifying the
volatility. The estimated intervals in Fig. (2) illustrate this for the mRNA
series. For the mean ODE approach variability is measured by the posterior
standard error of the fit similar to a regression and the graph shows that
predictions can be made more precisely about the protein dynamics than
about the native mRNA. This is reflecting the fact that the protein data is a
more aggregated and smoother time series than the mRNA series.

4 We could not set τoff = 0 in the SDE case for the practical problem that
the bridge building algorithm becomes numerically unstable for values of
the mRNA too close to zero.
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Fig. 2. Results of fitting SDEs (left) and ODEs (right) in case study 2.
Top panel shows the mean reconstructed transcription profile τ(t) using the
switch approximation. Middle panel shows results for Mg . Bottom panel
gives results for P . Big dots are experimental data for Mg (middle panel)
and P (bottom panel). The variation is shown as follows: For SDE approach
(left): solid lines in middle and bottom panel give the 5 % , mean and 95 %
values computed from 10,000 simulations of the SDE (using mean posterior
parameter estimates). For ODE approach (right): Solid lines corresponds to
the mean ODE fit (using mean posterior parameter estimates) plus/minus
twice the mean posterior standard error.

Table 2. Case 2: Posterior results for selected parameters

δMg δM δP

SDE 0.426 (0.0043) 1.54 (0.019) 0.072 (0.0057)
ODE 0.313 (0.0273) 1.42 (0.101) 0.075 (0.0018)

Posterior mean and standard error estimates of selected
parameters of model in case 2 using the SDE and mean
ODE approach. All rates are per hour. Estimates for all
parameters and switch-times are provided in SI.

Case study 3: Stochastic transcription for single cell data
In this experiment protein activity was imaged from GH3 rat pituitary cells
stably transfected with a construct comprising a 5kb human prolactin gene
promoter fragment linked to a destabilized EGFP reporter gene (hPRL-
d2EGFP) (see SI for details of experiment). Images were taken 108 times
in 15 minutes intervals giving a total of 27 hours of data for a single cell
(see Figure (3)). We assume that the dynamics are described by the SDE
model in (2). Since M is not observed we cannot identify the degradation
rates (δM , δP ) and a strongly informative prior density is needed. Here we
assume that they each have an independent Gamma distribution with mean
0.4 for δM and 0.5 for δP 5. The prior variance was arbitrarily chosen to be
small at 0.02 for both parameters. Since M is unobserved we can arbitrarily
fix sM = 1. Given the particular form of an experiment, where transcription
is induced and afterwards comes back to its initial level, we have specified

5 These rates were motivated by preliminary estimation using a small data
set from other experiments. They are used here only to demonstrate the case
as their estimates may change if more data were available.
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τ(t) as follows

τ(t) =

{
b0 exp(− (t−b3)2

b1
) + b4 t ≤ b3

b0 exp(− (t−b3)2

b2
) + b4 t > b3,

(12)

where the parameters bi are to be estimated. Priors for parameters different
than degradation rates were intended to be uninformative. Here we used
exponential prior with means given in Table (3). The challenge for inference
here is to integrate over a fully unobserved process M whilst sampling
bridges to augment the discretely observed P . Let P ∗ denote the vector
of bridges augmenting the P process and M∗ denote the latent M variable
(we chose a grid-size of 1 min for which we assume that (*) holds). The
vector of unknown parameters is θ = (δM , δP , α, sP , b0, b1, b2, b3, b4).
The posterior distribution takes the form

π(Θ,M∗, P ∗|P ) ∝ L(M∗, P ∗, P |Θ)π(Θ) (13)

where we approximate L(M∗, P ∗, P |Θ) with the likelihood (4) for the
augmented data case, i.e. y = (M∗, P ∗, P ). In practice this is a challenging
sampling problem as the dimension of the posterior is very large and
traces were highly autocorrelated. Faster convergence is achieved by re-
parameterizing the model (details of this and the algorithm are given in the
SI). The algorithm was first tested on simulated data from the SDE model
with chosen parameters (see Table (3)). Artificial data are simulated on a
fine scale of 15/51 minutes and coarse data are extracted for P at 15 min
intervals. The simulated and observed time series, and the reconstructed
τ(t) are shown in Fig. (3). Posterior inference results are given in Table
(3). Note that since M is not scaled the transcription profile corresponds
to molecular population sizes which here are about 150 mRNA molecules
per hour. This case study demonstrates that for high frequency single cell
data the SDE approach can be extremely powerful as it allows estimation
of absolute transcription rates in terms of molecule numbers and since sP

can be estimated it is possible to calculate back to molecular levels of protein
and translation rate. The need for precise prior information about degradation
rates is irrespective of either SDE or ODE approach. The problem of non-
identifiability of these parameters is due to not observingM as one can infer
both degradation rates in either approach if both M and P are observed.
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Fig. 3. Left: Time series of fluorescence intensity used in case study 3. Solid
and dashed lines represent experimental and simulated data, respectively.
The variation of the SDE fit to the real data is shown by the 5 % and 95 %
values computed from 1,000 simulations of the SDE (using mean posterior
parameter estimates). Right: Box-plot representing transcription profile in
molecules per hour inferred from experimental data presented in the top
figure. Each box represents 50% credibility interval and median of posterior
distribution of the reconstructed transcription rate at particular time point.

DISCUSSION
In this study we suggest a dynamical model relating protein and
corresponding mRNA dynamics via transcription and translation

Table 3. Case 3: Posterior inference results.

value prior Simulation Experiment

δM 0.44 Γ(0.44,0.02) 0.56 ( 0.36 - 0.92 ) 0.45(0.26 - 0.82 )
δP 0.52 Γ(0.52,0.02) 0.59 (0.38 - 0.89) 0.71 ( 0.45 - 1.09 )
α 20 Exp(100) 16.97 ( 6.54 - 78.98 ) 0.46 ( 0.14 - 1.51 )
sP 0.2 Exp(1) 0.17 ( 0.09 - 0.3 ) 2.11 ( 1.24 - 3.56 )

Parameter values used in simulation study. Priors, posterior medians and
95% credibility intervals inferred from both simulated and experimental data.
Rates are per hour. Γ(µ, σ2) denotes gamma distribution with mean µ and
variance σ2. Full list of all parameter estimates is provided in SI.

and suggest methods for model fitting. The applications here were
motivated by the availability of gene reporter data but the model and
methodology apply to many other scenarios where it is of interest to
link protein and mRNA dynamics. While a stochastic model such
as (2) applies to single cell data, caution needs to be exercised in
formulating an ODE model such as (1) for multi-cell data. In order
to reasonably assume such a joint mechanistic model it is essential
that the individual cell activities are synchronized with respect to
the gene of interest. Rate constants associated with processes of
degradation, transcription and translation arise as model parameters
and it is an important question whether these can be identified. In
addition to a functional kind of non-identifiability of parameters
in complex dynamic models as considered in (Hengl et al. 2007)
here, we find that practical or statistical non-identifiability of model
parameters may result from unobserved variables. Case study 1
demonstrates that one can estimate all rate constants in systems
of equations of the type given in (1) if all model variables - albeit
coarse - are observed over time. Inference precision increases with
the frequency at which the processes are sampled. In contrast,
Cases 2 and 3 have latent variables and model inference is only
feasible with informative prior knowledge of some parameters.
Simulation studies of the model (using artificial parameters) help
in identifying which sets of parameters need to be informed from
other experiments. In case 3 prior knowledge of both degradation
rates was needed as with M unobserved, parameters can trade-off
giving rise to protein dynamics that is virtually indistinguishable
via likelihood from the observed protein process. The specification
of the functional form for the transcription profile also plays
a role in practical identification. Even if M is observed the
parameter estimates associated with transcription and degradation
are correlated for obvious reasons. Such correlations affect precision
of estimates and convergence of the Markov chain but can be
alleviated by sampling more frequently, choosing a parsimonious
functional form for transcription, and by technical aids such as the
construction of independence samplers and re-parameterization of
the model. We believe that the functional specifications for τ(t)
suggested in our case studies are useful in conjunction with gene
transcription. A theoretical application of the switch function in
clock modeling can be found in (Aase and Ruoff 2008). Although
the estimation of the switch model seems too high dimensional for
data sets with many switches this could be overcome by assigning
probability distributions to the on- and off times in the framework
of a Bayesian hierarchical model.

6



Reconstruction of transcriptional dynamics

Our results demonstrate that MCMC methods for ODEs and
SDEs provide practical algorithms for reconstruction transcription
profiles whilst estimating some of the rate parameters involved. As
the real population dynamics are naturally stochastic SDEs provide
the superior theoretical model. However the mean ODE approach
can be useful as a vehicle for estimation when the data are not
fully compatible with the SDE assumptions. Whilst they usually
describe the same model in the mean, their difference lies in the
specification of the variance. The SDE model provides a rigid
description of the volatility process which is rigorously derived
for the stochastic dynamics of the molecular processes. In theory
it is straightforward to allow for additive measurement error (see
(Heron et al. 2007) for estimation of SDEs with measurement
error). However, identification of an unknown measurement error
variance is difficult and - to our knowledge - is not possible
when the data are coarse and indirectly measured with unknown
scaling factors. The variance process of the mean ODE approach
is not rigorously derived and can be specified by the modeler in
an attempt to capture anything known about the residual process
and measurement error. Estimation algorithms for the mean ODE
approach are straightforward to implement although for higher
dimensional or less stable systems more difficulties may occur.
The algorithm for SDE estimation can be challenging to implement
due to bridge sampling and is computationally expensive. Case 2
shows a problem that we have also encountered in (Heron et al.
2007), namely if molecular populations are measured indirectly
then the estimation of unknown scaling parameters can be difficult
in practise. This may happen as a consequence of observing data
that are too coarse, in the sense that too little information about
the volatility process is revealed, or that are otherwise not directly
compatible with the SDE assumption. However, drawbacks of the
SDE approach are associated with the current quality, quantity
and availability of the data. Case study 3 exemplifies that SDE
estimation constitutes a very informative approach in calibrating
all processes back to the molecular population levels as the scaling
parameters can be identified. Under suitable assumptions the SDE
model provides a theoretically well founded modeling approach
for describing the dynamics of molecular populations in a single
cell. Estimation of SDEs is well studied and feasible and is highly
informative when relatively frequent and clean (i.e. with little
measurement error) single cell data are available on all model
variables.
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