
SUPPLEMENTARY NOTES FOR ”DESIGN PRINCIPLES
UNDERLYING CIRCADIAN CLOCKS”

D. A. RAND, B. V. SHULGIN, D. SALAZAR & A. J. MILLAR

Throughout this note we refer to the main paper Design principles underlying
circadian clocks by Rand, Shulgin, Salazar & Millar as I. A further preprint (3)
that explains the mathematics behind our arguments is available from the web-
site www.maths.warwick.ac.uk/ipcr/. The software tool mentioned below is also
available from this site.

1. Approximating the singular value decomposition of M∗.

The linear mapping M∗ relates the parameter change δk to the change (δγ̃, δτ)
in the reparameterised limit cycle and period. It is therefore is from s-dimensional
space to an infinite-dimensional space. To estimate the singular spectrum of M∗

we must approximate it by a finite-dimensional operator i.e. by a matrix.
We do this by approximating the curve δγ̃(t) by a vector. We fix a large integer

N and approximate δγ̃ = δγ̃(t) by the vector δγ whose jth entry is δγ̃(j/N) and
approximate M∗ by MN : δk → (δγ, δτ) which is given by δγ =

∑
i θ̄i · δki where

θ̄i is the vector whose jth entry is θi(j/N) and where

θi(t) =
∂

∂ki

∣∣∣∣
k=k0

γ̃k(t).

This gives a matrix representation for M (N) in terms of the basis vectors θ̄i. We
have developed a software tool that rapidly calculates the quantities θi(t). Using the
above results this enables us to compute M∗ and its singular value decomposition
to arbitrary accuracy.

2. Infinitesimal Response Curves

2.1. Unforced case i.e. DD or LL. We consider the differential equation

(1) ẏ = g(y, k)

where y = (y1, . . . , yn) ∈ Rn and k = (k1, . . . , ks) is the vector of parameters. We
assume that (1) has a attracting periodic solution y = σ0(t) with period p0 when
k = k0.

0
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We consider how this solution changes as k is varied. To do this we fix a point
y0 = g0(0) on the periodic solution and consider a small (n − 1)-dimensional hy-
perplane Σ which meets the periodic solution at the point y0 and is transversal to
the solution. For example, one could take Σ to be the plane normal to the tan-
gent vector to the periodic solution at y0. Near to y0 there is a coordinate system
x = (x1, . . . , xn) such that (a) x ∈ Σ if and only if x1 = 0, (b) y0 = 0 = (0, . . . , 0)
and g(y0, k0) = (1, 0, . . . , 0) in this coordinate system. Let the differential equation
(1) in the new coordinate sysyem be given by

(2) ẋ = f(x, k)

and the periodic orbit be given by x = γ0(t).
We consider solutions Y (t) = Y (t, x0, k) of the matrix variational equation

(3) ẋ = f(x, k), Ẏ = A(t) · Y, x(0) = x0, Y (0) = I.

Here Y (t) = Y (t, x0, k) is a n×n matrix and A(t) = A(t, x, k) is the Jacobian matrix
of partial derivatives (∂fi/∂xj) evaluated at x and k and the initial condition for
this solution is that Y (0) is the identity matrix I. If the matrix Y (p0) has exactly
one eigenvalue equal to 1 then, for k near k0, the system (3) has a unique periodic
orbit x = γk(t) near x = γ0(t).

The changes δQ caused to key output variables Q by variations δk in the pa-
rameters are linear functions of the change δp in the period p = p(k) (not relevant
for entrained forced systems) and the change δγ(t) of the limit cycle. Let us write
this relationship δQ = LQ · (δγ, δp). Now consider

fki,γ,t(s) = −Y (t) · π2 (Y (p0)− diag[0, In−1])
−1

Y (p0)Y (s)−1bi(s)(4)

+p−1
0 Y (t) ·

t∫
0

Y (σ)−1bi(σ) dσ.

and

(5) fki,period(s) = π1 (Y (p0)− diag[0, In−1])
−1

Y (p0)Y (s)−1bi(s) ds

where p0 = p(k0). Here the vector bi(s) is ∂f/∂ki evaluated at y = γ0(t) and
k = k0, π1(x1, . . . , xn) = x1 and π1(x1, . . . , xn) = (x2, . . . , xn)

If k is changed by an amount δk = (δk1, . . . , δks) only when the phase is between
s1 and s2 then

δγ(t) =
∑

i

δki ·
s2∫

s1

fki,γ,t(s)ds + O(‖δk‖2)

and

δp =
∑

i

δki ·
s2∫

s1

fki,period(s)ds + O(‖δk‖2).
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Substituting these relationships into δQ = LQ · (δσ, δp) gives the required re-
lationship: if ki is changed to ki + δki when the phase s is between s1 and s2

then

δQ =
∑

i

δki ·
s2∫

s1

fki,Q(s)ds + O(‖δk‖2).

The expressions in (4) and (5) can be very rapidly computed although accurate
computation requires some careful numerical analysis to avoid the problems asso-
ciate with the fact that Y (t)−1 blows up as t gets large and even as t ∼ p. The
linear relation LQ between δγ and δp and δQ is easy to find. Therefore the IRCs
can be rapidly computed.

2.2. Entrained forced case e.g. LD. This is more straightforword. We can
ignore changes in the period since we are only concerned with entrained systems.
Thus we only consider fki,γ,t(s) which in this case is given by

fki,γ,t(s) = −Y (t)
(
π2 (Y (p0)− I)−1

Y (p0)Y (s)−1bi(s)

+p−1
0

t∫
0

Y (σ)−1b(σ) dσ

 .

where ẏ = g(t, y, k) is the system under consideration and Y (t) = Y (t, x0, k) is the
solution of the matrix variational equation

(6) ẏ = g(t, y, k), Ẏ = A(t) · Y, y(0) = x0, Y (0) = I

with x0 a point on the limit cycle. Here Y (t) = Y (t, x0, k) is a n × n matrix and
A(t) = A(t, x, k) is the Jacobian matrix of partial derivatives (∂gi/∂xj) evaluated
at t, x and k and the initial condition for this solution is that Y (0) is the identity
matrix I. The rest of the discussion proceeds as in the unforced case.

3. Output pathways amplitudes and phases

We consider a particular output pathway is driven by the molecular species whose
level is given by xi(t). The change in the level of xi(t) at t = t0 produced by a
small change in the parameters can be calculated directly from the IRCs fki,Qj

where Qj = xi(t0) via Equation (1) of the main paper I.
If we want to track the phase s of the minimum or maximum of xi(t) we

can proceed as follows. The phase s = s(k) satisfies ẋi(s) = 0 or equivalently
gi(s, x(s), k0) = 0 where ẋ` = g`(t, x, k), ` = 1, . . . , n is the system under consid-
eration. Differentiating this relationship with respect to kj and solving for ∂s/∂kj
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gives

(7)
∂s

∂kj
=

(∑
`

∂gi

∂x`
· g`

)−1(
∂gi

∂t
+
∑

`

∂gi

∂x`
·
[

∂x`

∂x0
`

∂x0
`

∂kj
+

∂x`

∂kj

]
+

∂gi

∂kj

)
.

where x0 is the point on the limit cycle that is the initial condition. In this ex-
pression derivatives of gi and g` are evaluated at x = x(s0, k0), s = s0 and k = k0,
derivatives of x` are evaluated at x = x0, s = s0 and k = k0, and the derivatives of
x0

` at k = k0.
The derivatives of g are calculated directly. The derivatives ∂x`/∂x0

` are given
by the matrix solution Y (t) of either (3) or (6) above and those of ∂x0

`/∂kj are
given by integrating the IRC fk`,x0 where x0 is the point on the limit cycle at the
starting phase.

4. Derivation of equation (3) of I.

We consider the situation where light of intensity I acts for a time interval of
duration S from dawn to dusk. We suppose that this light acts by changing the
parameter ki to ki + δki(I). If the phase at dawn of the nth day is φn then at dusk
it is φn + S + V (φn) where

(8) V (φ) = −δki(I)
∫ S+φ

φ

fki,period(t)dt

provided that the linear approximation is valid. Therefore at the end of the day
the phase is given by

(9) φn+1 = F (φn) = φn + V (φn) + (L− p).

If there are multiple input pathways then one can combine them. For each
parameter ki affected by light one obtains a function Vi as in Equation (8) and
then just adds them to get V =

∑
i Vi.

5. Mammalian model tracking dawn and dusk

We have added a new PER2-CRY2 loop to the mammalian model of reference
(1). This has a different structure from the original PER-CRY loop. The structure
of the new loop is based upon the PER-TIM loop of the model for Drosophila given
in reference (2). For the new loop light activates transcription by increasing the
maximum transcription rate. This rate is given by a Hill function which involves
PER:CRY dimers as a negative transcription factor.

The different structure of the new loop is chosen because the original mammalian
model of (1) tracks dusk and the new loop has been chosen to track dawn. It is
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necessary to mix systems tracking dawn and dusk because coupling two systems
that track dusk would again give a system that tracks just dusk.

The new loop is linked into the original PER-CRY-CLOCK-BMAL model by
the fact that PER2-CRY2 complexes with CLOCK-BMAL. Thus there is also an
extra term in the equation for y14 the amount of CLOCK-BMAL. Otherwise, the
equations for y1 . . . y16 are as in reference (1). The new equations are given below
and the modification of the structure is shown in Figure 1. The term f(t) represents
forcing by light.
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(CLK:BMAL)
dy14

dt
= v3b

y14

(kp + y14)
+ v4b

y15

(kdp + y15)
+k5y12 − k6y14 − k7y14y9 + k8y16 − kdny14

+k84 y27 − k74y14y26

(per mRNA)
dy17

dt
= (νsp4 + amp4f(t))

kn4
ip4

(yn4
26 + kn4

ip4)
− νmp4

y17

(y17 + kmp4)
− kd4y17

(PER)
dy18

dt
= ksp4y17 − ν1p4

y18

(y18 + k1p4)
+ ν2p4

y19

(y19 + k2p4)
− kd4y18

(PER-p1)
dy19

dt
= ν1p4

y18

(y18 + k1p4)
− ν2p4

y19

(y19 + k2p4)

−ν3p4
y19

(y19 + k3p4)
+ ν4p4

y20

(y20 + k4p4)
− kd4y19

(PER-p2)
dy20

dt
= ν3p4

y19

(y19 + k3p4)
− ν4p4

y20

(y20 + k4p4)

−k34y20y24 + k44y25 − pνdp4
y20

(y20 + kdp4)
− kd4y20

(cry mRNA)
dy21

dt
= νst4

kn4
it4

(yn4
26 + kit4

n4)
− νmt4

y21

(y21 + kmt4)
− kd4y21

(CRY)
dy22

dt
= kst4y21 − ν1t4

y22

(y22 + k1t4)
+ ν2t4

y23

(y23 + k2t4)
− kd4y22

(CRY-p1)
dy23

dt
= ν1t4

y22

(y22 + k1t4)
− ν2t4

y23

(y23 + k2t4)

−ν3t4
y23

(y23 + k3t4)
+ ν4t4

y24

(y24 + k4t4)
− kd4y23

(CRY-p2)
dy24

dt
= ν3t4

y23

(y23 + k3t4)
− ν4t4

y24

(y24 + k4t4)

−k34y20y24 + k44y25 − νdt4
y24

(y24 + kdp4)
− kd4y24

(PER:CRY)
dy25

dt
= k34y20y24 − k44y25 − k14y25 + k24y26 − kdc4y25

(nucl. PER:CRY)
dy26

dt
= k14y25 − k24y26 − kdn4y26

+k84y27 − k74y14y26

(P:CR:CL:B)
dy27

dt
= −k84y27 + k74y14y26 − νdin

y27

(kd + y27)
− kdny27;
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Figure 1. Schematic diagram showing the structure of the new
loop and the way in which it is coupled into the original model.

parameter vsp4 vst4 vmp4 vmt4 pvdp4 ksp4 kst4
value 0.7059 1.3594 0.3873 0.6862 0.6003 1.0500 1.3000

k14 k24 k34 k44 kmp4 kmt4 kip4 kit4
0.5000 0.0931 1.2284 0.5466 0.1387 0.2000 1.6047 1.7371

kdp4 kdt4 kd4 kdc4 kdn4 vdt4 k1p4 k1t4
0.1937 0.2000 0.0100 0.0800 0.0100 2.0812 2.5947 1.9672

k2p4 k2t4 k3p4 k3t4 k4p4 k4t4 v1p4 v1t4
2.0 2.0 1.9034 2.3447 2.0000 2.0000 7.7346 7.3086

v2p4 v2t4 v3p4 v3t4 v4p4 v4t4 n4 amp4
1.0000 1.0000 6.3956 7.6755 1.0 1.0 3.3950 0.4

k74 k84
0.05 0.01
Table 1. The values of the parameters used in the new loop.
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