Monte Carlo methods for

massively parallel architectures

Martin Weigel
Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom

CSC at Lunch Seminar
Centre for Scientific Computing
University of Warwick, November 5, 2018.

| Coventrv
“Complex Systenis with! Frustration? Unlver ty

CTIONS
%’?ﬁi }‘F: .

Ry
SOINOId

g
MARIE CURIE

M. Weigel (Coventry) Parallel MC CSC2018



Parallel Computing and Monte Carlo

Parallel Computing and Monte Carlo

M. Weigel (Coventry) Parallel MC CSC2018



Parallel Computing and Monte Carlo
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Moore’s law
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Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.
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Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently

sequential process.

What to do it the era of parallel computing?

O use domain decompositions

O moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

O parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)
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Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently
sequential process.

What to do it the era of parallel computing?

O use domain decompositions
P m 0@

O moderately parallel variants such as
parallel tempering

T2
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996) =

O parallel multicanonical
(Zierenberg et al., 2013) e
and Wang-Landau simulations
(Vogel et al., 2013)

O population annealing method
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Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an inherently

sequential process.

What to do it the era of parallel computing?

O use domain decompositions

O moderately parallel variants such as
parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

O parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)

O population annealing method

Which methods work for 10° or 10° cores?

T1

T2

T3

T4
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Canonical Monte Carlo

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.
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Canonical Monte Carlo

Parallel Metropolis

Consider spin models on regular lattices, for instance

H = = _I,'jS,‘Sj — Z h;Si.
) i

(i
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Canonical Monte Carlo

Parallel Metropolis

Consider spin models on regular lattices, for instance
H = = _I,'jS,‘Sj — E h;Si.
(i) b

For short-range interactions, we can use a checkerboard decomposition.

M. Weigel (Co ) Parallel MC CSC2018



Canonical Monte Carlo

NVIDIA architecture
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Canonical Monte Carlo

NVIDIA architecture

Block (1,1)
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Canonical Monte Carlo
Checkerboard decomposition

O (red) large tiles:
thread blocks

O (red) small tiles:
individual
threads
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Canonical Monte Carlo
Checkerboard decomposition

O (red) large tiles:
thread blocks

O (red) small tiles:
individual
threads

O load one large tile
(plus boundary)
into shared
memory

O perform several
spin updates per
tile
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Canonical Monte Carlo

Performance
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For sufficiently large lattices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.
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Canonical Monte Carlo

Performance
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The number of threads is limited by the number of spins.
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Multicanonical simulations

Generalized ensembles
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Multicanonical simulations

Multicanonical simulations

To overcome barriers, we need to broaden P(E), in the extremal case to a constant distribution,
Pruca(E) = Zomea QUE)/ W(E) = Ziea €©7® = const,
where S(E) = In Q(E) is the microcanonical entropy.

Under these assumptions, W(E) = Q(E) is optimal, i.e., we again desire to estimate the density
of states. This is not known a priori, so (again) use histogram estimator

Q(E) = Zmuca I:Imuca(E)/N X e“’(E).

Canonical averages can be recovered at any time by reweighting:

(A)x = > ¢ A(E)PK(E)/ Pnuca(E)
: ZE PK(E)/Pmuca(E)
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Multicanonical simulations

Muca iteration

M. Weigel (Coventry) Parallel MC CSC2018 12/ 44



Multicanonical simulations

Muca iteration

M. Weigel (Coventry) Parallel MC CSC2018 12/ 44



Multicanonical simulations

Muca iteration

M. Weigel (Coventry) Parallel MC CSC2018 12/ 44



Multicanonical simulations

Muca iteration
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Multicanonical simulations

Wang-Landau sampling

M. Weigel (Coventry) Parallel MC CSC2018 12/ 44



Multicanonical simulations

Wang-Landau sampling WL iteration
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Multicanonical simulations

Use and justification WL iteration
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Multicanonical simulations

Parallel muca

Each update requires the value of the current energy to evaluate W(E)/ W(E),
effectively serializing all spin flips!

Intrinsically serial algorithm?

Suggested ways out:
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Multicanonical simulations

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next weight
update,

HO(E) =~ HO(E).
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Multicanonical simulations

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next weight
update,

HO(E) =~ HO(E).

This scheme can be efficiently implemented on MPI clusters (zierenberg et al.,
2013) and on GPUs.

time per spin flip [ns]

0 10000 20000 30000 40000 50000 60000 70000
number of GPU walkers
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Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.
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Multicanonical simulations

[lel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.
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Multicanonical simulations

Parallel muca (cont’d)

Additional walkers lead to a faster convergence of the weight iteration.
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There is super-linear scaling at least up to 70, 000 threads.
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Population annealing
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Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.
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Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.

@ To create an approximately equilibrated sample at 3; > [5;_;, resample
configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/ Q,

where Q = 3 exp(—(B8; — Bi—1)E)).
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Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.
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configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/ Q,
where Q = 3 exp(—(8; — Bi-1)E))-

@ Update each copy (replica) by 6 rounds of an MCMC algorithm at inverse
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Population Annealing
Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.

@ To create an approximately equilibrated sample at 3; > [5;_;, resample
configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/ Q,
where Q = 3 exp(—(8; — Bi-1)E))-

@ Update each copy (replica) by 6 rounds of an MCMC algorithm at inverse
temperature f3;.

@ Calculate estimates for observable quantities O as population averages

Zj OJ/R'
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Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.

@ To create an approximately equilibrated sample at 3; > [5;_;, resample
configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/ Q,

where Q = > exp(—(8; — Bi-1)E))-

@ Update each copy (replica) by 6 rounds of an MCMC algorithm at inverse
temperature ;.

@ Calculate estimates for observable quantities O as population averages

Zj OJ/R'

& Goto step @ until target temperature is reached.
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Population Annealing
Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

@ Set up an equilibrium ensemble of R independent copies of the system at inverse
temperature Sy. Typically 5y = 0, where this can be easily achieved.

@ To create an approximately equilibrated sample at §; > (,_1, resample
configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/ Q,

where Q = > exp(—(8; — Bi-1)E))-
@ Update each copy (replica) by 6 rounds of an MCMC algorithm at inverse
temperature f3;.

@ Calculate estimates for observable quantities O as population averages
Zj OJ/R'

& Goto step @ until target temperature is reached.

The MCMC is not strictly necessary but significant for the overall performance.
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Population Annealing

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

M. Weigel (Coventry) Parallel MC CSC2018 19/ 44



Population Annealing

Population annealing

A sequential annealing of the population from infinite temperature, § = 0, down to

B=1.

population +
average —

M. Weigel (Coventry) Parallel MC CSC2018



Population Annealing

Correct results?

Exact results are available for finite lattices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).
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Population Annealing

Correct results?

Exact results are available for finite lattices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).
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Population Annealing

Not always

3.5 — T T T
Metropolis +——
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Population Annealing

Not always

3.5 T T T T
heatbath ———
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R = 25000, 6 = 2
R = 10000, 60 =5
2.5 R = 5000, 0 = 10 T 1
exact 9
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Population Annealing

Not always

3.5 T N T T I T
Metropolis +—— .
4 [R=50000,0=1 —s— F © |
R = 25000, § = 2 :
R=10000,0=5 Fi
2.5 FR = 5000, 6 = 10 1
exact
2 | |
S
15 b |
1} |
0.5 | |
0
0 1

M. Weigel (Coventry) Parallel MC CSC2018 22/ 44



Population Annealing

Not always

3.5 T N T T I T
Metropolis +—— .
4 [R=50000,0=1 —s— F © |
R = 25000, § = 2 :
R =10000 6 =5 F
2.5 FR = 5000, 6 = 10 1
exact
2 | |
S
15 b |
1} |
0.5 | |
0
0 1

B

Need to understand dependence on parameters, R, 6, AQ.
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Population Annealing

Correlations

The replicas in the population are not independent:
o resampling creates copies, so increases correlations

o MCMC moves decorrelate configurations
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Population Annealing

Correlations

The replicas in the population are not independent:
o resampling creates copies, so increases correlations

o MCMC moves decorrelate configurations

How can the effect be measured?

An upper bound is provided by considering the statistics of families (W. wang et
al., 2015).
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Population annealing
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Population Annealing

Correlations

The replicas in the population are not independent:
o resampling creates copies, so increases correlations

o MCMC moves decorrelate configurations

How can the effect be measured?

An upper bound is provided by considering the statistics of families (W. wang et
al., 2015).

For a better estimate, learn from time-series analysis.

Neff = N/ZTint
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Population Annealing

Correlations

The replicas in the population are not independent:
o resampling creates copies, so increases correlations

o MCMC moves decorrelate configurations

How can the effect be measured?

An upper bound is provided by considering the statistics of families (W. wang et
al., 2015).

For a better estimate, learn from time-series analysis.

= _ oA
Neff ’

Neff = N/ZTint

The effective population size R can be determined from blocking,

a(0")

Re = —=.
= 52(0M)

M. Weigel (Coventry) Parallel MC CSC2018 26/ 44



Population Annealing

Correlations (cont’d)

The effective population size R can be determined from blocking,

a2(0")

Re = .
= 52(0M)
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Correlations (cont’d)

The effective population size R can be determined from blocking,

o2(0")
Reff = m.
O LTI T s 1]
\T\
b DEEEEEEEE | [ SIS
(t—1)N, tNy
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Population Annealing

Correlations (cont’d)

100000 T T
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R = 5000, 0 = 10
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Population Annealing

Correlations (cont’d)

100000 T T

10000
&
55 3
4 x
1000 4o x
d&: heatbath +
F¥ R=95000,0=2 «x
R =10000, 0 =5
R = 5000, 0 = 10
100 1 1 1 1
0 0.2 0.4 0.6 08 1

o Can use regular jackknife with B blocks.
o Alternatively use delete-m jackknife on families.

Parallel MC CSC2018
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Population Annealing

Correlations (cont’d)

100000
10000
L=
55 T
5
1000 0" x
d&: heatbath +
*%¥ R=25000,0=2 «x
R =10000, 6 =35
R = 5000, 6 = 10
100 1 1 1 1
0 0.2 0.4 0.6 0.8 1

o Can use regular jackknife with B blocks.
o Alternatively use delete-m jackknife on families.

Res is central for the further analysis. Self-consistency demands
2Tint K Ny = Reg > B.
Need of the order of B = 100 blocks for reliable estimates, hence R.¢ must be O(10° — 10%),

independent of R.
Parallel MC CSC2018 27
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Population Annealing

Bias and statistical error

We can show that the bias

Aa~ 2B e T,
eff
and

Rer ~ R(1 — ¢ 0/7a),

Hence, increasing 6 is more efficient in reducing bias than increasing R, whenever the
MCMC is efficient.

Statistical errors also depend on Reg:

o(A) ~

1
VR

(Coventry) Parallel MC CSC2018



Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

1.6 |

2.8 r T
26 —— GPU, R=2000 (a) |
—w— GPU, R = 10000
2.4 B\ GPU, R = 50000
. \ GPU, R = 100000
22 | CPU, R = 10000
Bm 2
B
T 18}
42

L. Barash, MW, M. Borovsky, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.
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Population Annealing

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

CPU GPU
SSC MSC
L tg[ns] tp[ns] speedup tp [ns] speedup
16 23.1 0.092 251 0.0096 2406
32 229 0.094 243 0.0095 2410
64 22.6 0.095 238 0.0098 2306
128 22.6 0.098 230 0.0098 2306
256 22.5 0.099 227 0.0098 2295

L. Barash, MW, M. Borovsky, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.
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Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.
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Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have
W o pE+T.
and statistical errors are 1/ﬁ On the other hand, for PA one needs

W o« R.
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Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have
W o pE+T.

and statistical errors are 1/ﬁ On the other hand, for PA one needs

W x R.
The parallel speedup is hence
T L0 P2F 1+ L MeMc,
S= ? = p—00
p p — o0 PA

CSC2018 31/44
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Population Annealing

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have
W o pE+T.
and statistical errors are 1/ﬁ On the other hand, for PA one needs

W o« R.

100 T T T T T T T T T

90 | MCMC —— 4
80 4
70 F 4
60 4
50 4
40 F 4
30 F 4
20 | _
10 F 4

Sp
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Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

(@ Adaptive temperature steps: Efficiency and bias of the resampling depends
on histogram overlap.
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Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

(@ Adaptive temperature steps: Efficiency and bias of the resampling depends
on histogram overlap.

I AB = 0.01 ]
1z AB = 0.02

Pt
0.8 | e (XX E

0.6 R o x*

histogram overlap

0.2 | Xix 1

0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

= choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).
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Population Annealing

Improvements

Three natural extensions that improve the algorithm significantly:

(@ Adaptive temperature steps: Efficiency and bias of the resampling depends
on histogram overlap.
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adaptive stepping
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= . XX XX xxy + x
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x
e
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0 01 02 03 04 05 06 07 08 09 1

= choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).
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Population Annealing

Improvements

@ Adaptive time steps: Number of independent replicas R.g crucially
determines bias as well as statistical errors.
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@ Adaptive time steps: Number of independent replicas R.g crucially
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Population Annealing

Improvements

@ Adaptive time steps: Number of independent replicas R.g crucially
determines bias as well as statistical errors.
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= choose 6 o< R/Reg to effectively decorrelate configurations.
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Improvements

Population Annealing

@ Adaptive time steps: Number of independent replicas R.g crucially
determines bias as well as statistical errors.
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= choose 6 o< R/Reg to effectively decorrelate configurations.
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Population Annealing

Improvements

@ Multi-histogram analysis: Information from neighboring temperatures is also
relevant.
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Population Annealing

Improvements

@ Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

(C - Cexact)/ Cexact

0.004

0.002 H

-0.002

—0.004

—-0.006 -

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.
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Population Annealing

Adaptive scheme performs significantly better than original one.
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Population Annealing

Comparison

Adaptive scheme performs significantly better than original one.
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Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.
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Population Annealing

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

In (g (E)) = In (gexact (E))

In (gexact (E))
0.1

E/N
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Population Annealing

Sampling the density of states (cont’d)

Estimate density of states of Chimera spin-glass samples with planted solutions.

10-6 1074 10-2 100 102
. . . . —#10
107
E 100
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Population Annealing

Population annealing molecular dynamics

Population annealing as a meta algorithm can be combined with other types of
underlying dynamics.

o simulate R systems with NVT %
MD in parallel

o need to use a stochastic b DD
thermostat -

o resampling using the same rule
as before i

O can easily use existing MD code,

T4

for example OpenMM, Gromacs,
NAMD, ... @
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Population Annealing

Population annealing molecular dynamics (cont’d)

Test for met-enkephalin in vacuo, a pentapeptide with sequence
Tyr-Gly-Gly-Phe-Met.

GLY-2 GLY-3 PHE-4

M. Weigel (C y Parallel MC CSC2018



Population Annealing

Population annealing molecular dynamics (cont’d)

So the efficiency of PA for MD is on par with PT given the same computational
resources, but PA scales to a practically arbitrary number of cores!

GLY-3
180

‘PAD
PT o

90+ e

—90

—180 ! ! !
—180 —90 0 90 180
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Summary

Conclusions

Parallel Monte Carlo:
o use domain decomposition for canonical updates of short-range models
o non-local updates possible (Swendsen-Wang and friends)

o very efficient on GPUs
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Summary

Conclusions

Parallel Monte Carlo:
o use domain decomposition for canonical updates of short-range models

o non-local updates possible (Swendsen-Wang and friends)
o very efficient on GPUs

Multicanonical simulations:
o parallelize with multiple walkers
o of particular interest for systems with 1st order transitions
o super-linear speedup observed up to 70k walkers

Population annealing:
o theoretically perfect parallel scaling with R plus can combine independent runs

o free-energy estimator generalizes thermodynamic integration

O can be turned into a fully adaptive algorithm

CSC2018 43/ 44
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