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THE INGREDIENTS

Motivation

Three important and challenging problems in modern science:
1 Identifying model parameters
2 Rating competitive models based on measured data
3 Estimating the probability of failure of a system

By solving them we can perform structural system identification,
develop high fidelity models, design robust structures, amongst
many other things.

Two questions:
1 Can a link be established between the Bayesian updating problem

and the engineering reliability problem?
2 If so, can we develop a robust and efficient algorithm?
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THE INGREDIENTS

The Bayesian Updating Problem

Let D be an experimental dataset and θ be the parameters of
modelM.
Let P(θ|M) be the prior distribution of θ.
Aim: to find the posterior distribution of θ given D andM.

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

with P(D|M) =
∫
P(D|θ,M)P(θ|M)dθ.

P(D|M) is immaterial in this inference problem, but it is the main
quantity of interest in model class selection as it provides the
evidence.
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THE INGREDIENTS

The Engineering Reliability Problem

Let G : Rd → R be a system performance function.
Aim: To estimate the probability of failure, i.e. the probability of
demand exceeding the capacity of the system.
Let y∗ be a critical value such that the system fails if
y = G(x1, . . . , xd ) > y∗.
The failure domain F can thus be defined as:

F = {x : G(x) > y∗}

The engineering reliability problem can be formulated as
computing the probability of failure:

pF = P(x ∈ F ) =

∫
F
π(x)dx
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SUBSET SIMULATION

Subset Simulation

Developed by Au and Beck (2001) to simulate rare events and
estimate small probabilities of failure.
The idea is to decompose a rare event F into a sequence of
progressively less rare events as:

F = Fm ⊂ Fm−1 ⊂ . . . ⊂ F1

where F1 is a relatively frequent event.
Given the above sequence of events, the small probability P(F ) of
the rare event can be represented as a product of larger
probabilities as:

P(F ) = P(Fm) = P(F1) · P(F2|F1) · . . . · P(Fm|Fm−1)
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SUBSET SIMULATION

Subset Simulation

Subset simulation explores the input space X by generating a
relatively small number of i.i.d. samples x (1)

0 , . . . , x (n)
0 ∼ π(x) and

computing the corresponding system responses y (1)
0 , . . . , y (n)

0 .

Figure taken from Zuev (2015).
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SUBSET SIMULATION

Subset Simulation

Let p ∈ (0,1) such that np ∈ N. Define the first intermediate failure
domain as:

F1 =

{
x : G(x) > y∗1 =

y (np)
0 + y (np+1)

0
2

}

Figure taken from Zuev (2015).
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SUBSET SIMULATION

Subset Simulation

By construction, x (1)
0 , . . . , x (np)

0 ∈ F1, whilst x (np+1)
0 , . . . , x (n)

0 /∈ F1.
Thus, the Monte Carlo estimate for the probability of F1 is given by

P(F1) ≈ 1
n

n∑
i=1

IF1(x (i)
0 ) = p

F1 provides a rough estimate to the failure domain F .
Since F ⊂ F1, the failure probability can be written as:

pF = P(F1)P(F |F1)

In the next stage, instead of sampling in the whole input space,
SuS populates F1.
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SUBSET SIMULATION

Subset Simulation

We start with x (1)
0 , . . . , x (np)

0 ∼ π(x |F1) and need to draw n − np
samples from π(x |F1).
This is done with an MCMC scheme.

Figure taken from Zuev (2015).
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SUBSET SIMULATION

Subset Simulation

Define the second intermediate failure domain as:

F2 =

{
x : G(x) > y∗2 =

y (np)
1 + y (np+1)

1
2

}

Figure taken from Zuev (2015).
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SUBSET SIMULATION

Subset Simulation

By construction, x (1)
1 , . . . , x (np)

1 ∈ F2, whilst x (np+1)
1 , . . . , x (n)

1 /∈ F2.
Thus, the Monte Carlo estimate for the probability of F2 given F1 is
equal to

P(F2|F1) ≈ 1
n

n∑
i=1

IF2(x (i)
0 ) = p

Since F ⊂ F2 ⊂ F1, the failure probability can be written as:

pF = P(F1)P(F |F1)

= P(F1)P(F2|F1)P(F |F2)

In the next stage, instead of sampling in the whole input space,
SuS populates F2.
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SUBSET SIMULATION

Modified Metropolis Algorithm

Figure taken from Zuev (2015).
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SUBSET SIMULATION

Stopping Criterion

The number of failure samples at the `-th level is given by

nF (`) =
n∑

i=1

IF (x (i)
` ). Observe the following:

It is likely that nF (`) = 0 for the first levels.
In general, nF (`) ≥ nF (`− 1).
pF = P(F1) · P(F2|F1) · . . . · P(F`|F`−1) · P(F |F`)
pF ≈ p`P(F |F`)

The last term is estimated as P(F |F`) ≈ 1
n

n∑
i=1

IF (x (i)
` ) =

nF (`)

n
.

If nF (`)
n ≥ p, then there are at least np failure samples. The current

conditional level becomes the last level and the failure probability
estimate becomes

pF ≈ pSuS
F = p`

nF (`)

n
Otherwise, define the next intermediate failure domain F`+1.
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BUS

Bayesian Updating with Structural reliability methods

BUS (Straub and Papaioannou, 2014) connects the Bayesian
updating and structural reliability problems.

Algorithm 1 Rejection Sampling

Input: Prior distribution π(θ)
Likelihood L(θ) = P(D|θ)
u ∼ U [0,1]
c ∈ R such that cL(θ) < 1

Output: Posterior distribution π(θ|D)

1: Draw θ from π(θ), and u from U [0,1]
2: if u < cL(θ) then
3: Accept θ
4: else
5: Go to Step 1
6: end if
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BUS

Proof

θ ∼ π(θ), u ∼ U [0,1] = I(0 ≤ u ≤ 1)

The joint pdf of θ and u is π(θ)I(0 ≤ u ≤ 1)

The algorithm only accepts if u < cL(θ), and produces

p(u, θ) =
π(θ)I(0 ≤ u ≤ 1)I(u < cL(θ))∫ ∫
π(θ)I(0 ≤ u ≤ 1)I(u < cL(θ))dudθ

= P−1
F π(θ)I(0 ≤ u ≤ 1)I(u < cL(θ))

Thus, the marginal of θ is

p(θ) =

∫ 1

0
p(u,θ)du

= P−1
F π(θ)

∫ 1

0
I(0 ≤ u ≤ 1)I(u < cL(θ))du

= P−1
F π(θ)cL(θ) ∝ π(θ|D)
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BUS

BUS

The acceptance rate is generally low⇒ use subset simulation!
The ‘failure event’ is

F = {u < cL(θ)}
= {cL(θ)− u > 0}
= {Y > 0}

Problem 1: It is not trivial to find an optimal c.
Problem 2: c must be chosen from the beginning.
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BUS

Modified BUS

Instead of

F = {u < cL(θ)}

we could redefine

F =

{
L(θ)

u
>

1
c

}
=

{
Y >

1
c

}

However, Y = L(θ)
u is not a good choice since

E[Y ] = E[L(θ)]E[u−1]

with E[u−1] =
∫ 1

0 u−1du = ln u|10.
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BUS

Modified BUS

Proposal (DiazDelaO et al., 2017): Define

F =

{
ln
[L(θ)

u

]
> − ln c

}
= {Y > b}

Theorem
Let θ ∈ Rn and u ∈ R be independent random variables such that
θ ∼ π(θ) and u ∼ U[0,1]. Let L(θ) be a likelihood function and D a
data set. Let Y ≡ ln

[
L(θ)

u

]
. Thus, for all b > bmin ∈ R:

1 p(θ|Y > b) = π(θ|D)

2 P(D) ≡ PD = ebP(Y > b)
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BUS

Proof

1 p(θ|Y > b) = π(θ|D)
The proof is analogous to the previous rejection proof since

I(Y > b) = I(u < cL(θ))

2 P(D) ≡ PD = ebP(Y > b)
To prove this, note that

P(Y > b) =

∫ ∫
π(θ)I(0 ≤ u ≤ 1)I(ln

[L(θ)

u

]
> b)dudθ

=

∫
π(θ)

∫ 1

0
I(u < e−bL(θ))dudθ

= e−b
∫
π(θ)L(θ)dθ = e−bPD
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BUS

Characteristic Trends
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BUS

Characteristic Trends
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Examples

Example

Consider the following two DOF
shear building model.
The stiffnesses are given by θ1k̄1
and θ2k̄2 for k̄i = 29.7× 106 N/m.
The joint prior distribution for θ1 y
θ2 is assumed to be the product
of two lognormals with modes 1.3
and 0.8 and unit standard
deviation.
Our goal is to identify θ1 and θ2
given modal data.
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Examples

Example

The likelihood is given by

L(θ) ∝ exp

{
−J(θ)

2σ2
ε

}
where

J(θ) =
2∑

j=1

λ2
j

[ f 2
j

f̃ 2
j

− 1
]2

D =
{

f̃1, f̃2
}

= {3.13,9.83}Hz

f1 y f2 are natural frequencies obtained through finite element
modelling.
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Examples

Marginal Distributions

θ1 θ2
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Examples

Marginal Distributions
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Examples

Marginal Distributions

θ1 θ2
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Examples

Parameter Space
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Examples

Parameter Space

DiazDelaO (U. of Liverpool) University of Warwick February 25, 2019 33 / 43



Examples

MBUS
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Examples

MBUS
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Examples

Automatic Stopping Criterion

We know that
PFk = e−bk PD

Let Bk = {θ : L(θ) > ebk} be an inadmissible set. We can prove
that

PFk = Pθ{Bk}+ e−bk PD Pθ|D{Bc
k}

Moreover, we can prove that

∅ ⊂ . . . ⊂ Bk+1 ⊂ Bk ,

By defining ak = Pθ{Bk} we have a monotone decreasing
sequence of values such that ak ↘ 0.
Therefore, we can stop the algorithm for a small enough value of
ak which can be determined with an “outer” SuS run.
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Examples

GPE Hyper-parameters

Build the surrogate with data from training runs

D = {(y1, ~x1), . . . , (yn, ~xn)}.

Assumed structure on the output

η(~x) = h(~x)Tβ︸ ︷︷ ︸
Global trend

+ Z (~x |σ2,φ)︸ ︷︷ ︸
Local variations

Covariance function (kernel)

k(~x , ~x ′|φ) = σ2 exp

{
−1

2

p∑
i=1

(xi − x ′i )2

φi

}
.

Hyper-parameters: θ = {β, σ2,φ}
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Examples

GPE Hyper-parameters
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Examples

GPE Hyper-parameters
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Examples

GPE Hyper-parameters
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Conclusions

Summary

BUS (Straub and Papaioannou, 2014) bridges the gap between
the reliability problem and the Bayesian inference problem.
As it is formulated, BUS requires the choice of a multiplier that,
chosen incorrectly, the performance of the algorithm is affected.
DiazDelaO et al. (2017) redefine the failure event, expressing the
driving variable without the need of the multiplier.
The implementation no longer requires a predetermined value of
the multiplier, thus eliminating the need to rerun the algorithm in
case an inadmissible or inefficient value is chosen.
Different stopping criteria can be implemented.
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Conclusions
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Conclusions

Thank you!
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