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@ Often governed by rare transitions between metastable states: slow
0O(1-10%)sec

@ time step in MD set by molecular vibrations and collisions: fast
O(107')sec = too many integrations needed!

@ statistical description of dynamics from relatively short simulations?
Markov State Models

[Kube & Weber (2007), Noe, Schutte & Smith (2007), Chodera et al. (2007), Bicout & Szabo (2000)
Buchete & Hummer (2008), Voelz, Bowmanm, Beauchamp, Pande (2010)]
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Markov State Models (MSMs)

P U PR o T
;i dt £ ij Mg Jiri ji 7,1
5 J(F#1) J#i
4
: dp _ 1 _
1 time ar p = pt+7)=Q(T)p(t)
Prinz et al., J. Chem. Phys. (2011) ® Propagator Q(T) Q”( ) (Z 7'|j’ )
@ Maximum Likelihood:
L= HQTU(T d [logﬁfz)\'ﬂ*ZQ D=0 = |Qi(r)= Twi(T)
Qlj i j 7 ! Zk Tk] (T)

Tij(T) = nr transitions j — i in lag-time 7

e State-space: S ={1,...,
o Key assumption: memoryless

n}

o Caveat: aggregation of states may hide barriers

@ need kinetically relevant RC
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Choice of lag-time? Smallest 7 that ensures Markovianity

Chapman-Kolmogorov test:
Q" (1) = Q(n7) [Recall : Q(7) = ¥7]
In practice: t,=—7/In|Xo(7)|=—n7/In|\o(n7)|

|

10°

@ Rather subjective test,
especially when dealing with
finite statistics

Relaxation time [s]

@ necessary but not sufficient:
should also test
eigenvectors..

o if timescale never level-off:
likely poor discretization or
poor choice of RC
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Dimensionality Reduction?

Often coarse-graining needed to gain physical intuition:
S={1,...,4,4,...,n} = S ={1,...,1,J,...,N} N<n

1 00
1 0 0
10
: P=A"p
0 1
0 0 1
Hummer, Szabo, J Phys Chem B. 119(29):9029-37 (2015) :
0 0 1
dp P [ dP
P_kp = S~ | rRt-1P(r) = L ~RP
a P dt /0 TR{t —7)P() dt ff

A? R.g”
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e Transition states key to control the kinetics of the system
@ Have low occupation probability but high flux

@ Usually defined to have 1/2 “committor probability” to reach
products before reactants

Activated

complex Transition

state

@ no straightforward generalization to
complex systems with many
metastable states

o Algorithms to automatically and
reliably detect TSs?

Reactants

Products

Reaction coordinate
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P
— —RP
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Minimal requirement: RP“ =0 for P=3%,,p

Impose detailed balance:

RrjP{* = Ry Pj* = leaves freedom!

e cq o
Local equilibrium: | Ry ;P;" = E Kijp;
icl,jeJ

MSMs defined in discrete time = Markov matrix

CEP(n) =QF (NP = Y Qumipji= > Cy(r)

i€l jed i€l jeg

cy(r) = om0, o0 ={ 5 Dl

exact correlations at chosen lag-time
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@ Occupancy-number connected correlator
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Projection on to some sub-space via operator P (Q=1I,—7P):

d
dit) =Kp u=Pp, v=p—u=0p

C(li—l: = PKu + PKv
dv

L = OKu + OKv

Solve for v (with v(0)=0), and sub into eqn for u:
/ M(t — 7)u(r)dr,

M(t — 7) = PKé(t — 7) + PKe2K(E-" oK

with memory kernel

or  M(s) = sPK(sI — K + PK)~!
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@ Projection corresponding to clustering protocol A7

@ Relation between R(s) and K7

o u="Pp, si(s)—u(0)=M(s)u(s)

o Assume n x N matrix H: u=HP = P =HAT

o Also, P2=P = ATH=Iy = R(s)=ATM(s)H
R(s) = sATK(sI, - K + HATK)"'H

o DB: |R(s)Dy=DyR”(s)|, (Dn)rs=P;%;,

H=D,AD;' with (D,);=p
for s — oo: R(c0) = ATKH
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Retrieve local equilibrium
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o general s: AT(sI, — K)'D,A = (sIy — R(s)) 'Dy
e Subtract off s7!ATD, DI A = s7'DyDY;

1 . 1
AT ((SI” ~-K)"'D,, — DnD§> A= (sIy—R(s)) 'Dy— gDNDﬁ
S

@ Equating Laplace transformed correlations naturally arises!
Sl = CEF) )= [ dese
icl jeJ 0
when projections preserve detailed balance
@ LE and HS correspond to s — oo and s — 0, same
P =D,AD,'AT
e s— 0

R =P1% - Dy[AT(p*1!) - K)"'D,A] ™!
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Variational principle

@ In fact, can build Markovian approximations that preserve
other properties of correlation functions:

ZZ/ Cij (1 dT_/ ces
el jeJ

@ A variational principle applies to the second largest eigenvalue
of R

Ko = X0

> A ith
lua| = [Xa| | wi { ReD — 1y ®D

[Kells, Mihdlka, Annibale, Rosta, J. Chem. Phys. (2019)]
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Second eigenvalue as a variational parameter

@ Second eigenvalue has been shown to decrease with increasing
lag-time and finer discretization
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Variational coarse-graining

@ Idea: choose A that minimizes |ju2]

-Z / W kD
T
\_/]\/ ‘ kA' .S kB ‘
k k.,
: M Kk,

0 2 4 6 8 10 12 14 16

F [keal mol™"]
b o o

[Martini et al., PRX 7, 031060 (2017)]

e Minimization of |usg| correctly identifies key metastable states
& transition states, as one increases the number of clusters

@ Aim: define minimal variationally optimal transition
network consisting of key mestastable & transition states
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Optimal boundary positions
@ Can we understand optimal position of ,2/]\/

the boundaries?

o & width of TS in a quantitative way? _Z/IT\/

o First look at optimal position of first boundary a

F keal mol]

= 2-state clustering:

O, [(001(0)66, (£) _f1 e<a
72(“)*/0 Cll(o)dt/o G M ) {0 r>a

[Chandler, JCP (1978), Skinner & Wolynes, JCP (1978), Perico et al., JCP (1993)]

@ Can expand integral of correlation in terms of potential

0 S dx j‘ 60 e—Bv(y) dy]

[Szabo, Shulten and Shulten, JCP (1980), Bicout & Szabo, JCP (1997)]
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@ mean first passage time to reach barrier at a starting in 2
L‘a2=/a D;l:(x) {/x dpr(y)] , with p2($):jffe_ﬁ;f::)w
@ Use properties of step functions and some algebra
Ta(a) = P a0 + Pytar
o Can explicitely differentiate!
da

[Kells, Mihdlka, Annibale, Rosta, J. Chem. Phys. (2019)]
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@ Use properties of step functions and some algebra
TQ(CL) = Pfqtag + P;qtal
o Can explicitely differentiate!
dra(a)
da
[Kells, Mihdlka, Annibale, Rosta, J. Chem. Phys. (2019)]
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@ mean first passage time to reach barrier at a starting in 2
67'3’0(1’)

< dx >
a2= YRy , ith =
ta2 /a Dps(z) |:»/1; dyp2(y)] wit p2(z) fa o—Bu(®) g

@ Use properties of step functions and some algebra
TQ(CL) = Pfqtag + P;qtal
o Can explicitely differentiate!
dra(a)
da
[Kells, Mihdlka, Annibale, Rosta, J. Chem. Phys. (2019)]
e Combine with DB & 7 =1/(R12+ R21) get effective rates
1 1 1
- , Ry = —
2Pt 4 gy’ 0 g
@ Transparent interpretation: fluxes crossing the boundary in
each direction must equate!
e for 3-state clustering, symmetric potential (boundaries +a)

=0 = | P =P"ta

Rig+ Ry = = Ripp=

Pfqtfaa =t_-a1
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Test on analytical potential
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Chem. Phys. (2019)] 14
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MFPT computed via Meyer method
tj; = TQ]z Z Qk:z jk: + T)



Test on symmetric potentials

Two-state clustering [Kells, Mihalka, Annibale, Rosta, J. Chem. Phys. (2019)]
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Simulations of Alanine Pentapeptide (Alas)

State 2

[HHHHHS]

State 1

%{f w‘ﬁi WW

T Ty

Position

[CYe C3 C4 Gl T Time

[Martini, et al., PRX (2017)] [Kells, Mihalka, Annibale, Rosta, J. Chem. Phys. (2019)]

Estimating MFPT: T7,..., T} crossing times

ka ij J Zk/Q(N +1)N;/2 k crossing events
i N i N Ni=(Tipr =T/




Simulations of Alab
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Error bars are obtained from 4 equal segments of the MD simulation trajectory. [Kells et al., JCP (2019)]
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@ With one boundary, LE and HS give the same result
@ With two boundaries, LE converge to HS at large lag-time
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Boundary position dependence on lag-time

@ With one boundary, LE and HS give the same result
@ With two boundaries, LE converge to HS at large lag-time

—— Reference Free Energy
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[Martini et al., PRX (2017)]

Can we use functional dependence of eigenvalue on the lag-time,
to infer the true relaxation time?
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Test on analytical potential (s amisste, rosta, 1cP (2018)
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Data: four 250ns simulations,
started at different initial
conditions, A = 1ps

Results for ¢3
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Data: four 250ns simulations, € may help discriminate between
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[Kells, Annibale, Rosta, JCP (2018)]
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Conclusion

Suggested Markovian Approximations of Coarse-grained
descriptions based on projections

@ Proved a variational principle for second largest eigenvalue

@ ldentification of the minimum required number of metastable
states and TSs for an optimally coarse grained network

e For 1D diffusion in potential, transparent interpretation in
terms of MFPTs

@ Proposed a method to infer true relaxation time from
(optimal) MSMs
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