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=MetOfice The real world is complex...

« Computer
models used for
weather
forecasts and
climate
simulations need
to represent all of
this complexity.

« BUT, they need
to do so in a very
efficient
manner...
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The forecast problem a—p+V.(pu)=O
{
« Core of the model solves the Navier-Stokes equations D_<9 N
* Must discretise these onto a finite-difference grid to solve Dt
p=pRT

» Weather forecasts take 30-60 minutes (of computer time)

* Anything shorter, you may as well do things better
» Anything longer ceases to be a forecast

 Current global forecast model runs on 4752 processors
* New supercomputer (Cray XC40) installed in 2016

* So to fit a 7-day forecast into those resources, we can afford 2560 x 1920
x 70 grid points — approx 10km horizontal resolution!
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The parametrization problem Do e)
Dt
« Many processes exist on a scale <10km, but have an important influence on
the weather or climate:

» Clouds and precipitation
« Turbulence
* Radiation

* Orography (hills and valleys)
» Surface characteristics (trees, grassland, buildings, ocean)

» The “bulk” effect of these processes, at the grid-scale, needs to be included
in the governing equations via source/sink terms

« Parametrizations compute these source/sink terms

« Some processes (e.g. Turbulence) only need parametrizing because of the
resolution of the model, whilst others (e.g. Radiation) will always be needed
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1. Very high-resolution modelling for aviation at
Heathrow airport
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Heathrow and fog

« Heathrow is one of the busiest airports in the world — runs at ~99%
capacity

* When visibility is low, space between aircraft must be increased -> lower
capacity -> cancelled flights

« 75% of delays are weather related, half of this is due to low visibility

* Very expensive + lots of grumpy passengers
« With accurate forecasts, can plan ahead to mitigate the effects

« How can we improve our forecast accuracy?
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Model hierarchy
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* Don’t just run 10km
global model

* Region of interest
Is UK, so nest a
1.5km model inside
this

« HUGE benefit in
detail and accuracy

 What if we added
another level?




Z= Met Office  Enhanced detail in terrain features,
land-surface characteristics

The LOndOn MOdel » Better resolution of atmosphere

» Less reliance on parametrizations

1.5km UKV Orography
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London Visibility
Sunday 06157 22/01/2017 (t+00h15)
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Met Office
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Not just an HD picture

(a)

60 km

LM Visibility at 1.5m: 2013/10/18 07:00Z (T+4)
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* The enhanced resolution
genuinely alters the evolution of
the fog

* Why?

(d) UKV Visibility at 1.5m: 2013/10/18 07:00Z (T+4)
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== Met Office » Use the lower resolution
orography field from the UKV in
Smoothed terrain the LM, gives big change in fog

evolution

(b) LM Visibility at 1.5m: 2013/10/18 07:00Z (T+4) (d) UKV Visibility at 1.5m: 2013/10/18 07:00Z (T+4)
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A turbulence feedback

* Rougher terrain strongly affects the

Wind Spd at 10m difference: 2013/10/18 06:00Z near su rface W|nd f|e|d

NN g T Y S

60 km}

 This extra variability in the wind-
shear affects the structure of the
atmosphere:
* More turbulent

» Extra turbulence mixes warmer air down
from aloft

« Warmer air prevents fog formation

40 km BN e
.

20 km} *©

LM difference — (rough — smooth) * A genu.ine benefit of higher
B resolution, but could we

-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0 parametrize |t at IOWGr resolution?

ms !

Bouitle et al. (2016, QJRMS)
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2. Cloud parametrization improvements for the
latest climate model
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Clouds and climate
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 Clouds represent the single biggest
uncertainty in climate models

* How they respond to a warming
climate could EITHER significantly
reduce the amount of warming OR
significantly increase it!

* Hence a strong requirement to
improve their modelling
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Existence and effect in the climate system

Shortwave (global mi =-473 Wm?)

December—January—February June—July-August

. g, Low clouds are the
y=g most prevalent cloud
type on the planet

(b) Longwave (global mean = 26.2 W m?)

They provide a
cooling to the climate
system

Whether there are
more (wetter) orless &
(warmer) of them could %’
A | create a negative or -
. positive feedback e

0 0.2 04 0.6 0.8 1 -100 -50 0 50 100




== Met Office « Combination of many different
physical processes

Why IS modelling low * Most of which are parametrized
. e  Fundamental physics of many is
clouds so difficult? boorly Undersiood d
Longwave
cooling  Solar
heating
Evaporatlve coollng Latent heatlng g o
Turbulent | |
mixing | Brigs f BOUNDARY LAYER
Sea surface Surface fluxes

energy & moisture Wood (2012, MWR)



=z MetOffice Dreary” state of precipitation in climate
models

» CloudSat sees the cloud and precipitation falling below it
 Higher reflectivity -> bigger drops
Californian Stratocumulus - DJF 2006

(b) MetUM N320L50

CloudSat

level (km)
level (km)

Continuous : : Two distinct

transition : modes —

from cloud : one for

to rain - . | . - cloud, one
0 " Reflectivity (@B2) 2 0 " Reflectivity (@B2) »for rain

T 20092 Saaaa. T 2092 aaaa.
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

[ ] . '
Not unique to our model! Bodas-Salcedo et al, (2008, JGR)



2DC Image Strip 100 of 9690, B667, 22/1/2012 10:35:24.
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2 K . . « Equations for droplet growth are well known

104 \ and understood — easy to solve

=S N [~ Each grid-box contains a spectrum of particles

10° of different sizes
| 5, « Could model each different sized particle
. S explicitly — bin scheme (too expensive ~30+
100 1000 10000

Diameter (um)

prognostic variables)

Abel & Boutle (2012, QIRMS)
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Rain drop size distribution

(@)

10°

10°F

E — Fit to data

@ === Narshall & Palmer (1948)-
e —'— Thompson etal. (2008)
" MetUM GA3 0
s New DSD

.
L ]
[
-y

''''''

 Hence have to assume a size distribution of
particles and integrate over it — bulk scheme (2
prognostic variables, cloud water & rain water)

« Assume the number of rain-drops (N) is related
to their diameter (D) by:

N(D) =N, exp(=4D)

Diameter (um)

A |}
100 1000 10000

~+ Most models use Marshall & Palmer (1948):
N, =8x10°

* Doesn’t appear to match reality very well...

Abel & Boutle (2012, QURMS)
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Relationship between N, and rain-rate

Rain rate (mm day™")

e S ==2Jd ¢ «Many in-situ aircraft observations +
| o canEmm Qw98 0 i surface radar/lidar/distrometer
10" _ <© Waldvogel (1974) P o _‘ b t
= O Tokay et al. (2001) £ ot °F observatlions
L O Field . .
_10°F « Arcrtcamee) |« Suggests a relationship between N,
TE v Aircraft data (Cu) 1 and )\:
C?E 1095 « Lidar data (St) ; /’ _\ B %)
z ook L% ; ] NO — 0221
. Alis a physical quantity, related to the
T 2 A, | total mass of rain
o VS S T~ _ 6
103 104 105 NO _8X10

Abel & Boutle (2012, QURMS)



Evaporation rate (kg kg™ s™)
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How precipitation physics depends on this

« Evaporation of rain-drops

10'55 T T u T I

New-method
-greatly
limproves this

10—9 tanl I tonl L sl L | Lo
10° 10’ 10? 10° 10*

10" 1/1 R (mm day™)
Old-method under-estimated the

evaporation rate

 Fall-speed of rain-drops
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speed improves this

Abel & Boutle (2012, QURMS)



Tripoli and Cotton
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Rain creation processes
 Conversion of cloud to rain treated by a simple g . o} e’
- . ; //
power-law: I OLD
O(grain 5 1012l 2 e piseie i
(q ) = C(QCI)A(NQ,)B < 1072 10" 1019 102 108 107
a t AUTOCONVERSION (SCE) [kgm”s]
i ) Khairoutdinov and Kogan
* gx=mass of cloud/rain, Nd=number of cloud I .
droplets e NEW
. . = 8| s
« A, B & C are empirically determined constants & "
. . . £ 199
* Old scheme (TC) over estimated rain-creation &
1 1 &g 10 = X5 maximum ]
compared to observations — replace with new = ”'ﬂ o s ﬁ% araging
O 1,114 / ias i
scheme (KK) 3 1°12 x -l
< 1012 10T 1010 109 108 107

AUTOCONVERSION (SCE) [kgm®s7]

Wood (2005, JAS)



= MetOffice 5 we understand this?
Californian Stratocumulus - DJF 2006

(a) CloudSat (b) MetUM N320L50

Continuous : Two distinct

transition  : £ modes —

from cloud : one for

to rain - - | | - cloud, one
0 _ZOReﬂectivity (dBZ) ’ 2 0 _ZoReﬂectivity (dBZ) ’ »for rain

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

* Model over-estimates rain creation, over-estimates rain fall-speed, under-
estimates rain evaporation...

» Un-surprising that there is excessive rain and two distinct modes.
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Zoom in on the low cloud

(b) 03 UTC 13 November 2008
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== Met Office » Slower rain-creation lowers the
peak reflectivity produced as

Zoom in on the low cloud ranisforming

(b) 03 UTC, 13 November 2008 (f) 03 UTC, 13 November 2008
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 Slower fall-speed and more _evaporat_io_h stops fast falling to the
surface and gives reduction in reflectivity below cloud

Boutle & Abel (2012, ACP)
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But...
There's a
problem

Low resolution — Intermediate High resolution
climate model
 Old climate model actually gave the correct mean surface rain-rate

» Cloud processes are highly nonlinear, so increasing model resolution
increases the surface rain-rate (to excessive amounts)
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But...
There's a
problem

Low resolution — Intermediate
climate model

* What I've just showed you was fixing the high-
resolution version

* Applying the same thing at low resolution would
significantly under-estimate the rain-rate!
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Back to rain creation

 Already showed earlier that rain creation is parametrized as:

a(qg?ln):C(qcl)A(Nd)B OR M p— a,qb For simplicity

* In a climate model, we want the grid-box averaged process rate (M), but
only have the grid-box averaged g

 Hence for b#1:

M =aq" #ag’

 This introduces a systematic bias into the model
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Analytically correcting the process rates

» Suppose we have some information about the sub-grid distribution of g, e.g.
that it can be represented by a log-normal distribution:

P = oo (-0

 Then we can integrate over the PDF to obtain:

M = E(f,b)ag"
=7 B = (14 2704

 We can improve our estimate of M by just knowing f and the PDF shape
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Parameterizing the variability (f) * Variability
_ ' e | . ~increases
' ; o' g —g]oudeat 7 . with scale
: 7 —Cllgctjgr\tlet-ARM o Biggest
. 9 char?lge at
~. smallest
| —— scales
W/»/jm::ﬂ Lo —— « Variability
11 ~also
! ~ effected by
’ | -~ cloud size
& ° - (smaller ->
more
oo variable)
40 60 80 100

Grid-box size (km)

Boutle et al. (2014, QJRMS)



Autoconversion rate bias
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Process rate bias

°| :'gg;gr;:?iéz,%‘iigg:m;jézfd'f | «<Atagiven scale (here ~50km),
G e ‘ | compute the exact process rate
| from high-resolution data, and
the process rate based on mean
y \ inputs
| » Exact rate is under-estimated by
2 S
| L | a factor of ~4
/| \é{t\/ﬁ /\/\_ » Correction is almost exact using
| e PDF method and observed f
0L o o '« And very good using
0.0 0.2 0.4 0.6 0.8 1.0 .
Cloud fraction parametrized f

Boutle et al. (2014, QJRMS)
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Jkm

Problem
solved!

=

10km 0 10km 0
Cloud base rain rate (mmday") Cloud base rain rate (mmday")

 Now the rain
rate is
approximately
constant,
regardless of
resolution!

[ 0.125 0.25 05 1 2 4 8 o 0.125 0.25 0.5 1 2 4 8 o 0.125 0.25 05 1 2 4 8

| L Al
) 10km 0 10km 0
Cloud base rain rate (mmday) Cloud base rain rate (mmday) Cloud base rain rate (mmday™)
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New climate model

18 GA6+#13f1.5 ‘
* Include these changes in the new climate model 1 M
gn Model-
* Transition of cloud to rain is significantly improved e i
° " " ] [ = 4
Greater confidence that model is doing the right 5

thing for the right reason S TR

Equivalent reflectivity factor

. . | i i
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Walters et al. (2017, GMD)
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3. Beyond Earth — adapting the model for exoplanet
atmospheres
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Diversity of the universe

* In the early 1990’s, the first planet orbiting a star other than the sun was
found

 Since then, 3584 such planets have been found:
* 1418 Neptune-like
* 1205 Gas giant (Jupiter-like)
» 883 Terrestrial (Earth-like)
» 53 Super-earth (somewhere between Earth and Neptune)

* Modelling provides a method of interpreting the (limited) observations,
understanding the planetary universe, and hunting for life...
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Hot Jupiters

» Best observed — large gas giants orbiting very
close to parent star — tidally locked — same side
always facing the star

« Some observations of temperature (~1000 K)
and wind-speed (~5000 m/s) - oo ”

« Change the stellar-spectra and planetary i
parameters (orbit, mass, radius, ...) and the Temp -
model can produce a credible simulation of this ;
environment!

» Raises all sorts of further questions about
structure of the atmosphere - at this
temperature metal species (e.g. TiO,) will
condense

PRI T
300

Lines et al. (2018, A&A)
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Cloudy exoplanets

» Couple model to metallic cloud
formation code developed at St
Andrews University

 Produce simulated observations from .,
model and compare to actual R
observations

* Cloudy model is better fit than clear

“0GC 20C 3C0
e

0.122 -

0.121 r

—  Clear Sky (Active) [x° = 524] ]
e  Singetal 2016

sky, but differences suggest the >
physics is still incomplete N
* Role of chemistry? = Ew————

Lines et al. (2018, A&A) Wavelength (um)
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Terrestrial planets

* The holy-grail, but observations currently
limited to “it's this big, in this orbit” — nothing
about structure or composition of
atmosphere

* Doesn’t stop us speculating!

* E.g. Proxima Centuari B - ~Earth mass
planet orbiting our nearest star

 Given an Earth-like atmosphere (N,, CO,,
H,0), modelling suggests planet would
have temperate climate and liquid water

Boutle et al. (2017, AGA)

Nitrogen dominated

Surféce Témp

205 225 245 265
Surface Temperature / K

Nitrogen dominated

S TN

50m/s

= Cloud

no cloud low  medium low+med high hi+low hi+med all
Total Cloud Amount
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=Z Met Office EX ETER Phase = 90

— Phase = 180°
— Phase = 270°

How might we know? ¢l
< R T 1 Faa
- Plenty of interesting science that can be done | i/ &1 |
studying the climate of such a planet \‘rnm m
- Key question though is how would we ever A L A
know? Wavelength luml
O — Phase =0°
« Again, can produce simulated observables Xygen _ phasemsY
(the kind that could be possible with future T Pheses2r0
telescopes). -

» Small changes to the atmosphere can show
up the signals of important gases, e.g. Ozone
and Oxygen g

i
I
1
|
1
'
Yy
[
[
10

i

05 1.0 15 2.0 25 3.0 35 4.0

Boutle et al. (2017, A&A) Wavelength [um]
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Conclusions

The same (very large) code can be used for highly detailed simulations of small
parts of this planet, to planetary scale simulations of gas-giants many light years

away

Efficiency is a key driver — we're always doing the best we can with the computer
time we have available

© Crown Copyright 2018, MetOfﬂ(i’




