

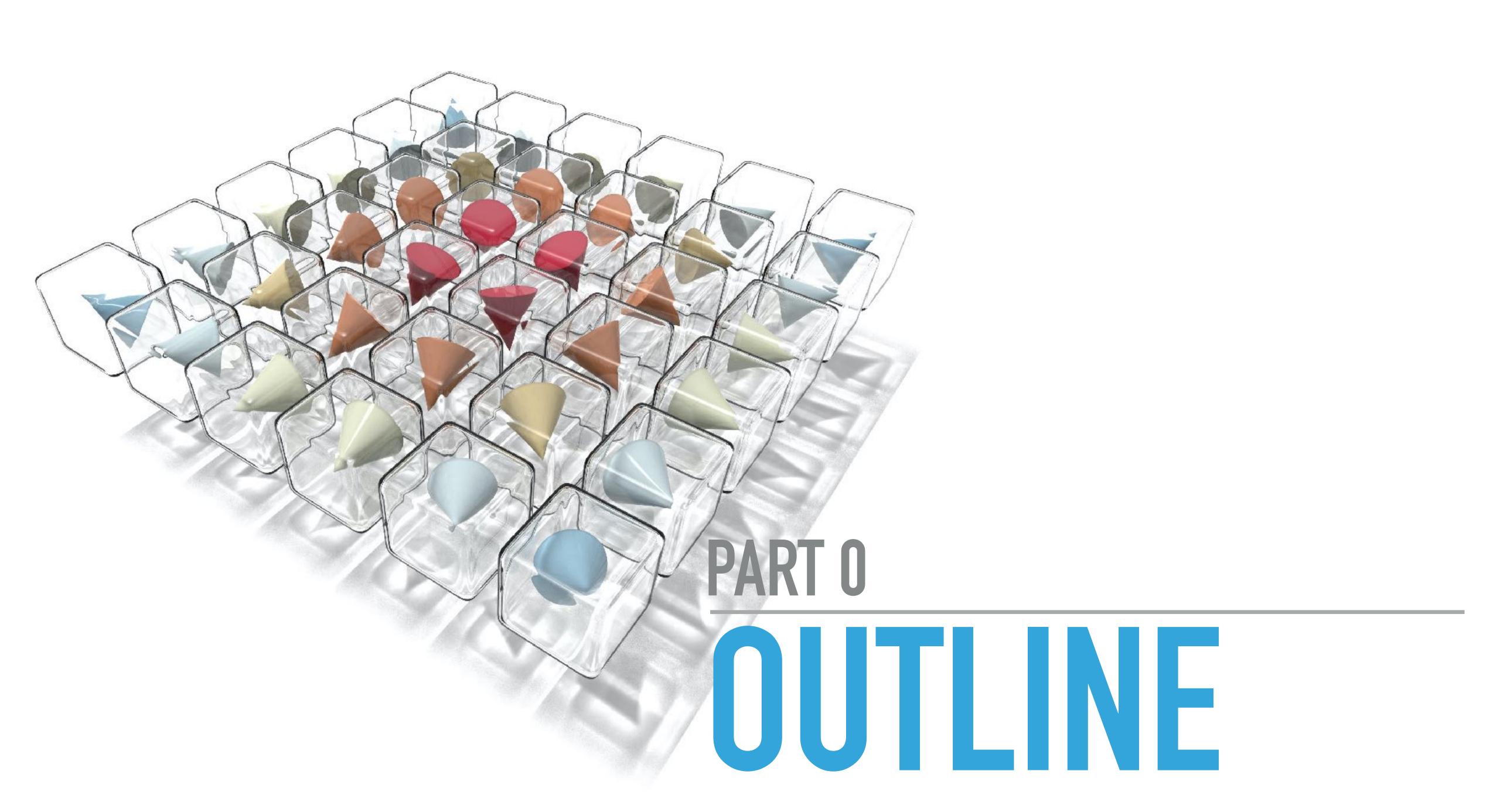
Southampton

This is a PDF of the presentation and does not contain animations. If you require a full MacOS Keynote version, please ask Marijan.

MARIJAN BEG^{1*}

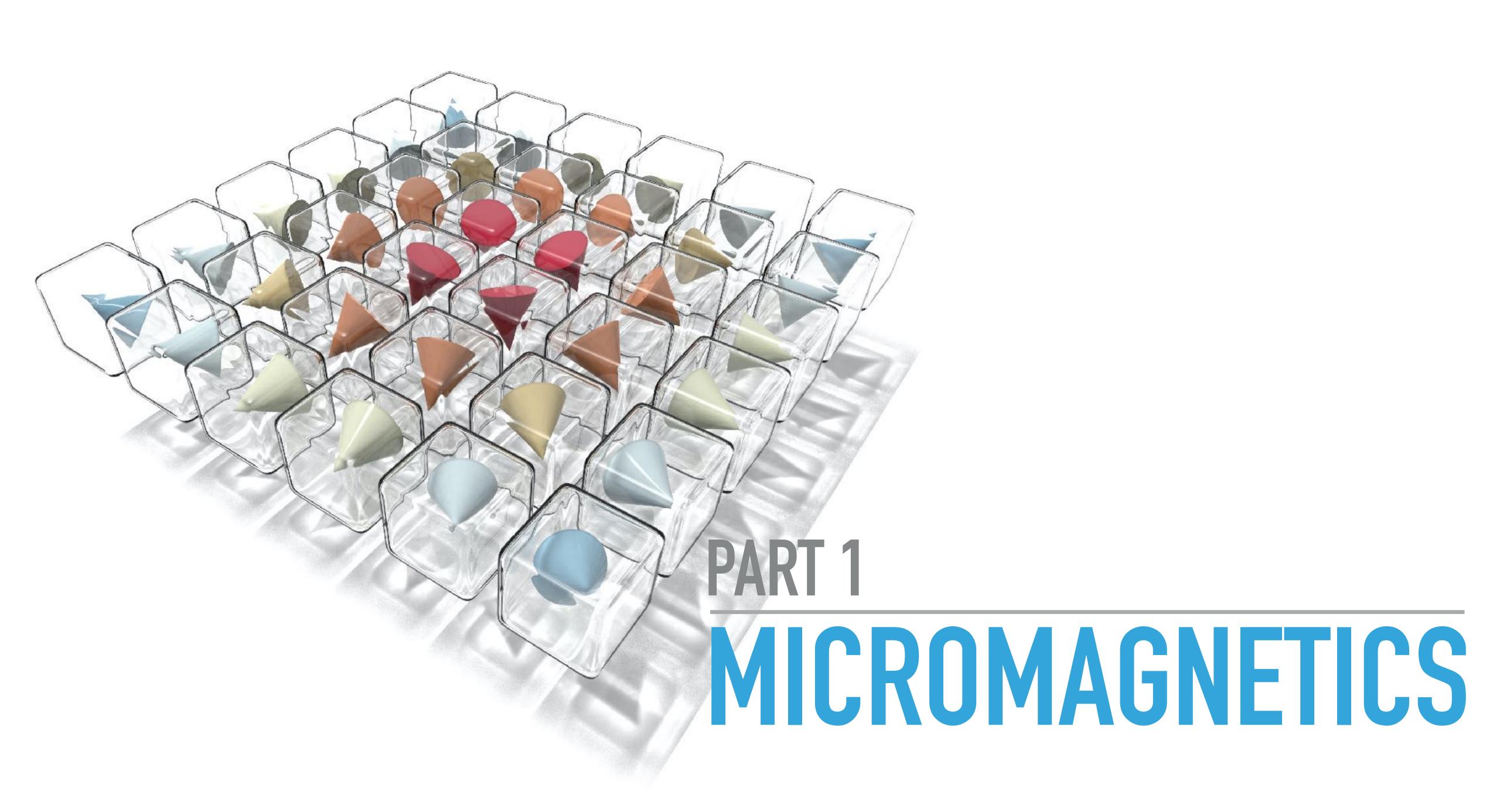
UBERMAG: INTERACTIVE MICROMAGNETIC SIMULATIONS IN JUPYTER

¹University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom *m.beg@soton.ac.uk



OUTLINE

- 1. Micromagnetics basics
- 2.OOMMF
- 3. Typical computational workflow
- 4. Ubermag
- 5. Demo
- 6. Discussion and Summary



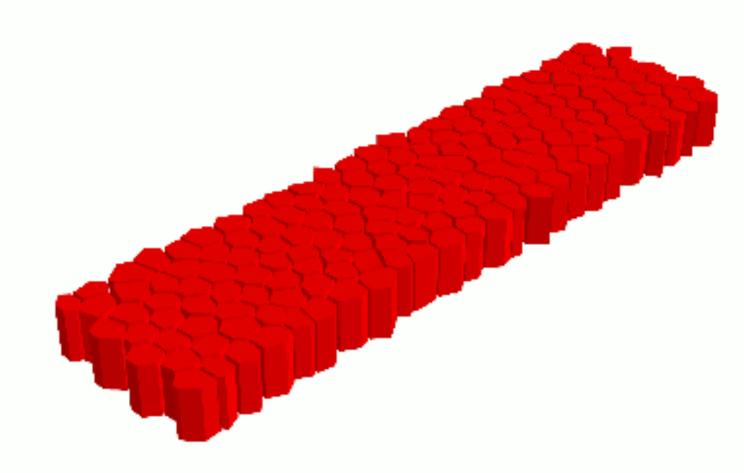
MICROMAGNETICS

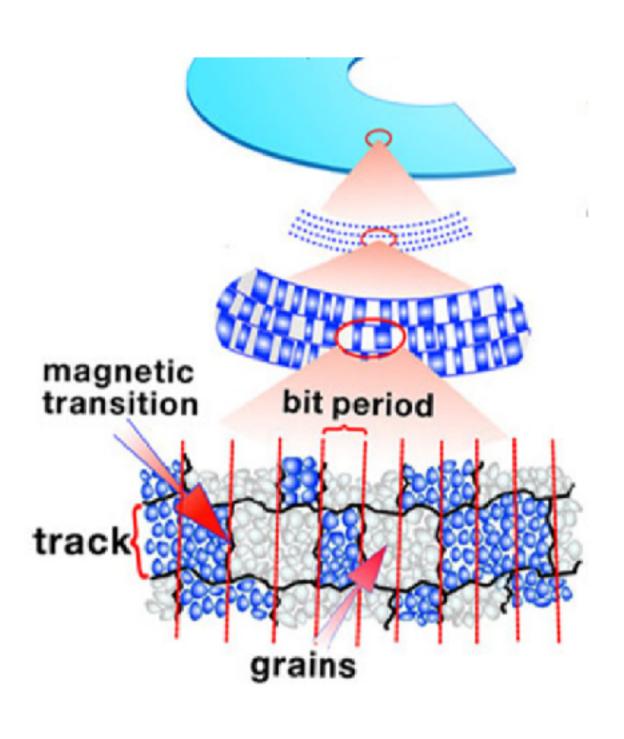
"... is a field of physics dealing with the prediction of magnetic behaviours at sub-micrometer length scales."

Source: Wikipedia

WHY IS IT INTERESTING?

- Micromagnetics deals with complex systems with tuneable parameters.
- It is used to explain experiments as well as to design experiments.
- Real applications, including
 - magnetic data storage,
 - cancer therapy,
 - low-energy magnetic logic (spintronics).





MAGNETISATION FIELD

- Magnetisation field is the main "unknown"
- In continuum approximation, magnetisation is considered to be a continuous vector field.
- Magnetisation $M(\mathbf{r}, t)$ is a function of both space \mathbf{r} and time t.

$$\mathbf{M} = \mathbf{M}(\mathbf{r}, t)$$

MICROMAGNETIC ASSUMPTIONS

- 1. Magnetisation field M(r, t) is differentiable (continuous and slowly changing) with respect to both space r and time t.
- 2. The magnetisation field **norm is constant** (time invariant).
 - Constant norm $|\mathbf{M}|$ is represented by saturation magnetisation M_s .

$$M_{\rm s} = |\mathbf{M}| = {\rm const.}$$

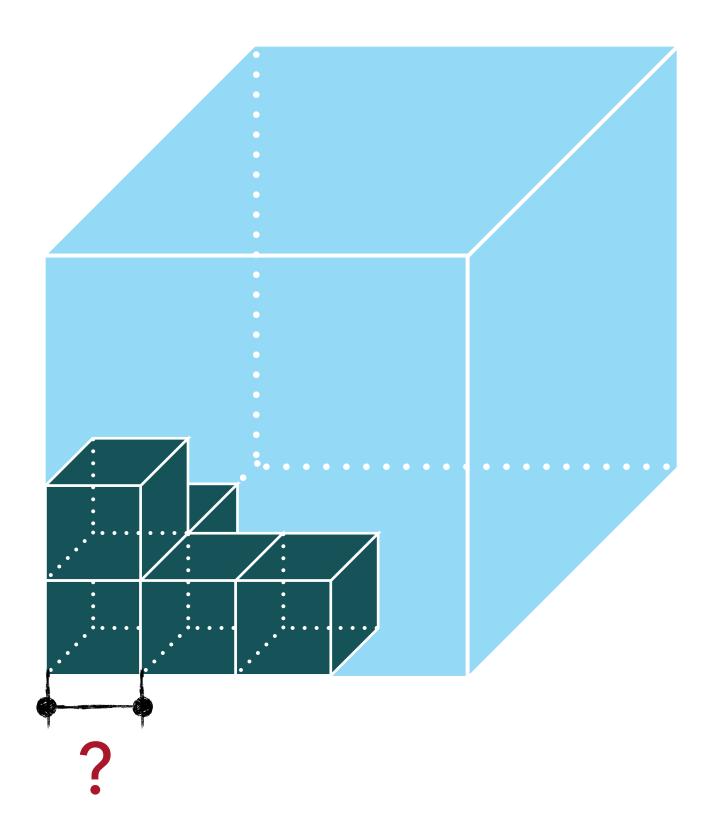
 \blacktriangleright Very often, magnetisation is represented by a normalised magnetisation field $\mathbf{m}(\mathbf{r}, t)$.

$$\mathbf{m}(\mathbf{r},t) = \frac{\mathbf{M}(\mathbf{r},t)}{M_{\rm S}}$$

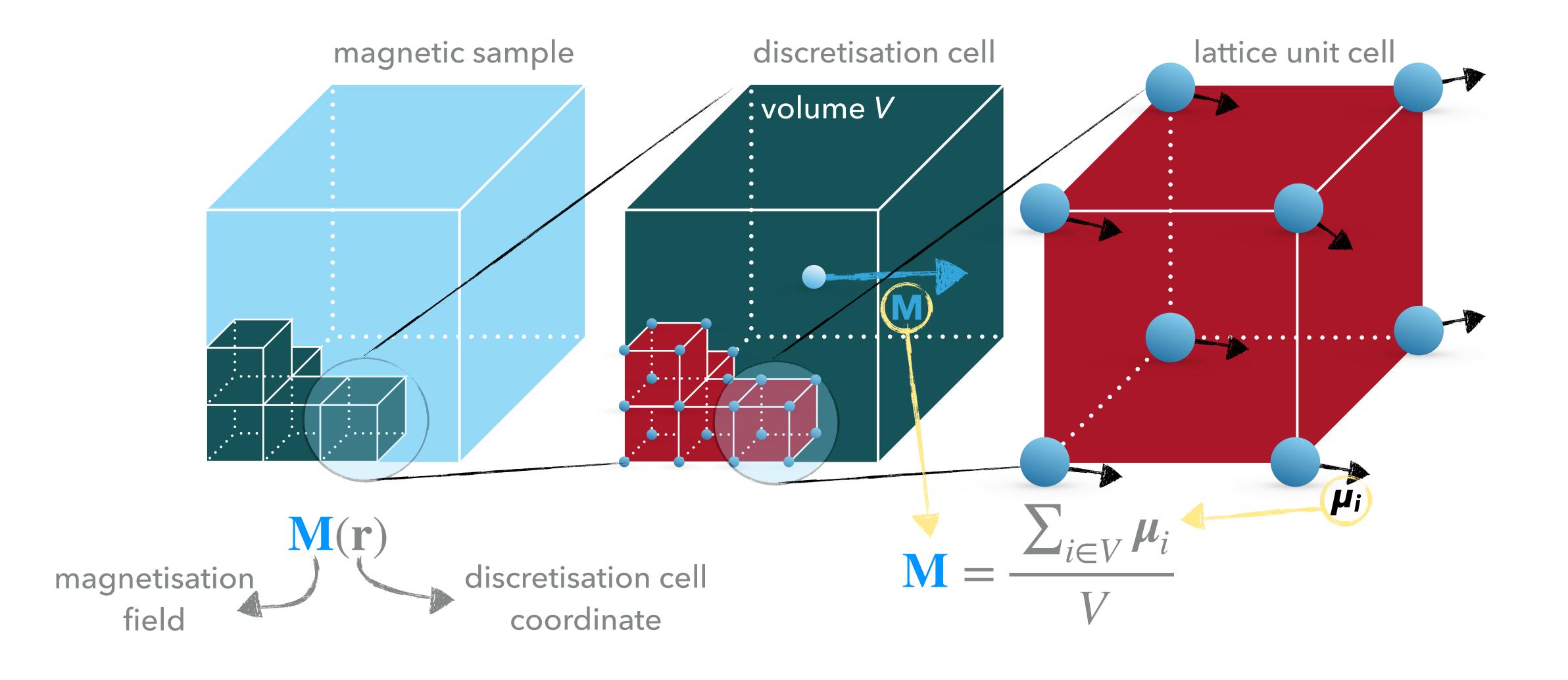
$$|\mathbf{m}| = m_x^2 + m_y^2 + m_z^2 = 1$$

DISCRETISATION

- In order to solve the magnetisation field numerically, we have to divide it into smaller "chunks".
- There are two main ways how we can discretise the field:
 - finite-differences
 - finite-elements
- The discretisation must be:
 - large enough to ignore the crystal structure of the material (the continuum approximation).
 - small enough to spatially resolve different magnetisation configurations



FINITE-DIFFERENCE DISCRETISATION



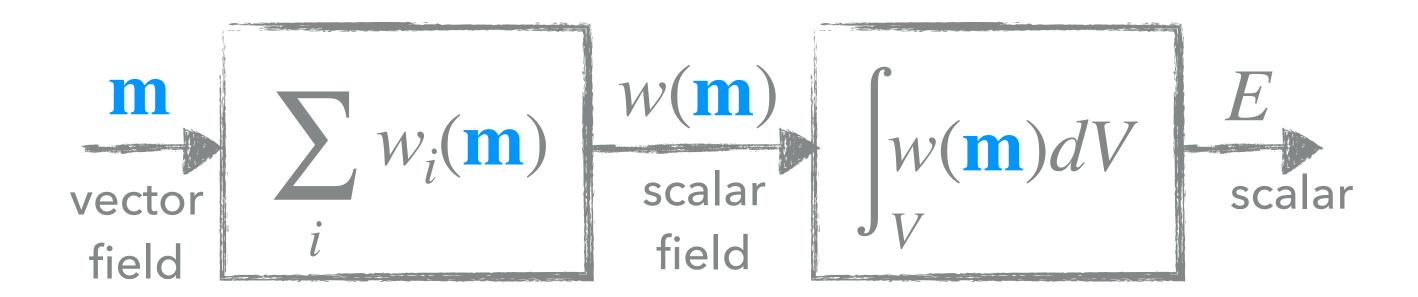
ENERGY EQUATION (HAMILTONIAN)

) ... is a mapping of magnetisation field m=m(r,t) to energy density (scalar) field.

$$w(\mathbf{m}) = w_1(\mathbf{m}) + w_2(\mathbf{m}) + w_3(\mathbf{m}) + \dots = \sum_{i} w_i(\mathbf{m})$$
 user-defined

 \triangleright By integrating w(m) over the entire sample volume V, the energy functional is

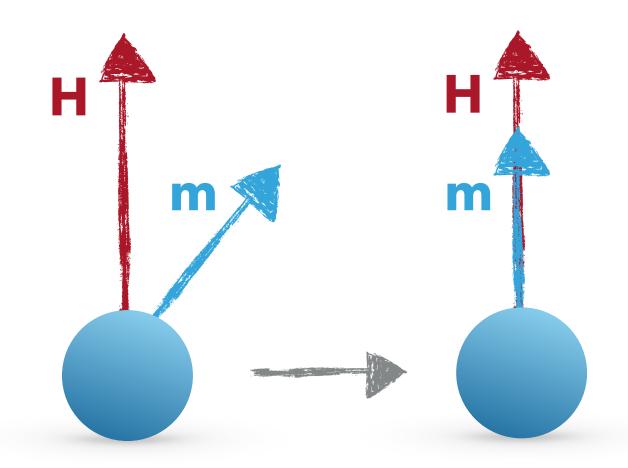
$$E[\mathbf{m}] = \int_{V} w(\mathbf{m}) dV$$

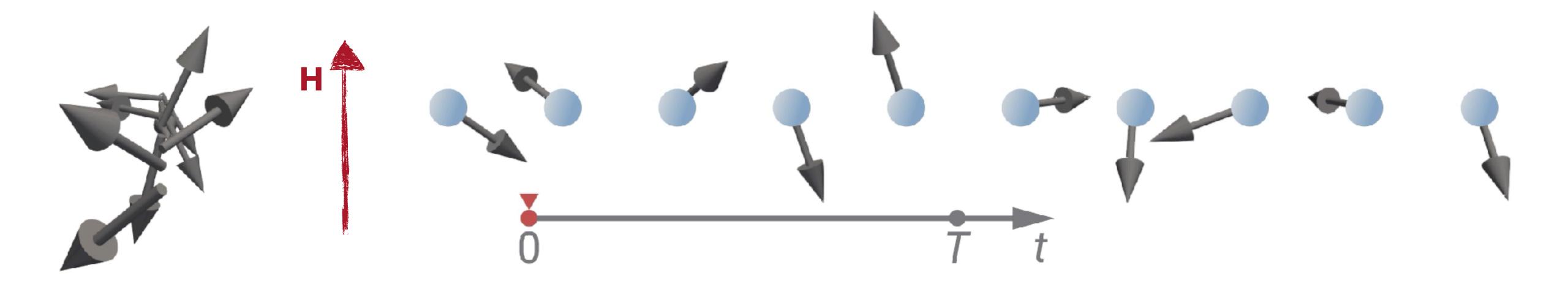


ZEEMAN

- Aligns m parallel to H.
- Parameter: H (A/m)

$$w_{\rm z} = -\mathbf{M} \cdot \mathbf{B}$$
 $(\mathbf{B} = \mu_0 \mathbf{H}, \mathbf{M} = M_{\rm s} \mathbf{m})$
= $-\mu_0 M_{\rm s} \mathbf{m} \cdot \mathbf{H}$

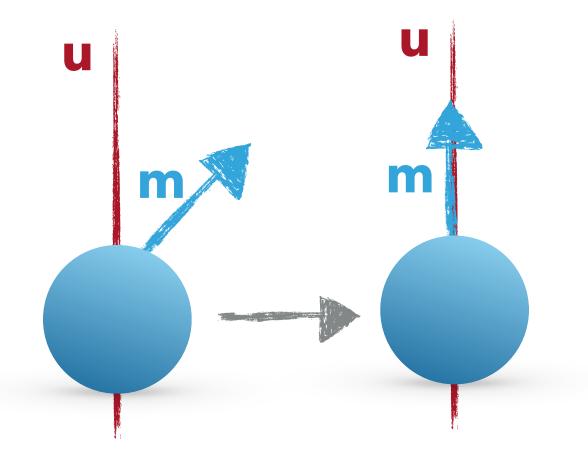


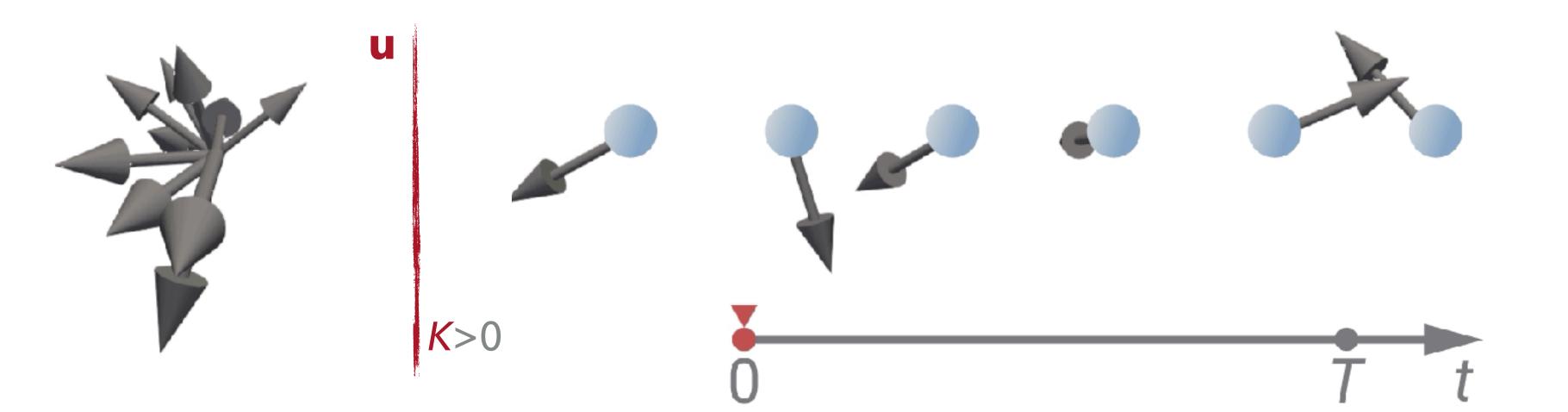


UNIAXIAL ANISOTROPY

- Aligns m parallel or antiparallel to u.
- Parameters: K>0 (J/m³), u

$$w_{\text{ua}} = -K(\mathbf{m} \cdot \mathbf{u})^2 \qquad (|\mathbf{m}| = 1, |\mathbf{u}| = 1)$$







(FERROMAGNETIC) EXCHANGE

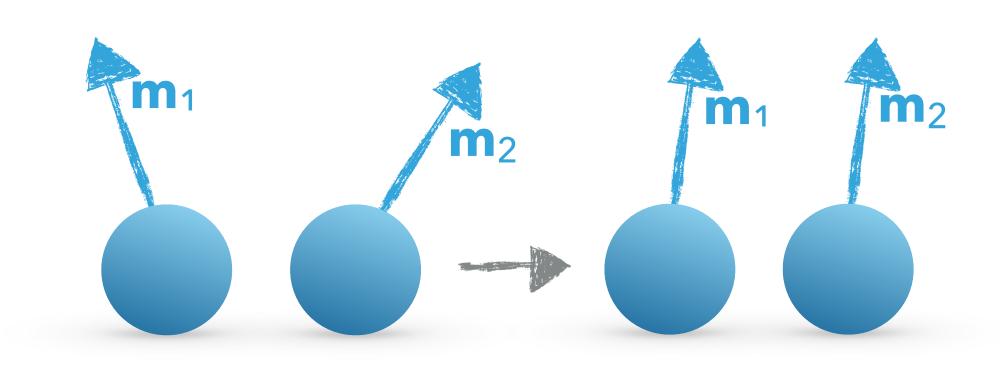
- Aligns all magnetic moments (in m) parallel to each other.
- Parameter: A (J/m)

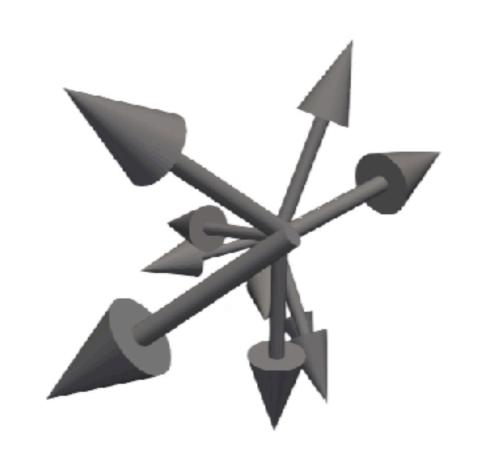
vector Laplacian

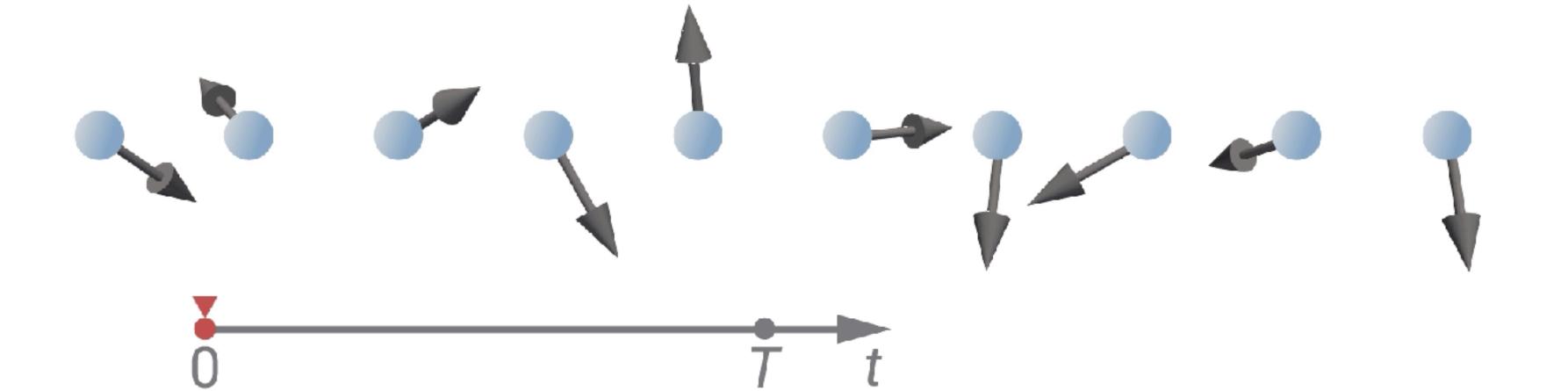
$$w_{\text{ex}} = -\mathbf{A} \,\mathbf{m} \cdot \nabla^2 \mathbf{m} \, \left(\nabla^2 \mathbf{m} = \nabla^2 m_x \hat{\mathbf{x}} + \nabla^2 m_y \hat{\mathbf{y}} + \nabla^2 m_z \hat{\mathbf{z}} \right)$$

$$= \mathbf{A} \left[(\nabla m_x)^2 + (\nabla m_y)^2 + (\nabla m_z)^2 \right]$$

$$= \mathbf{A} \left[(\nabla \mathbf{m}_x)^2 + (\nabla m_y)^2 + (\nabla m_z)^2 \right]$$
just a convention



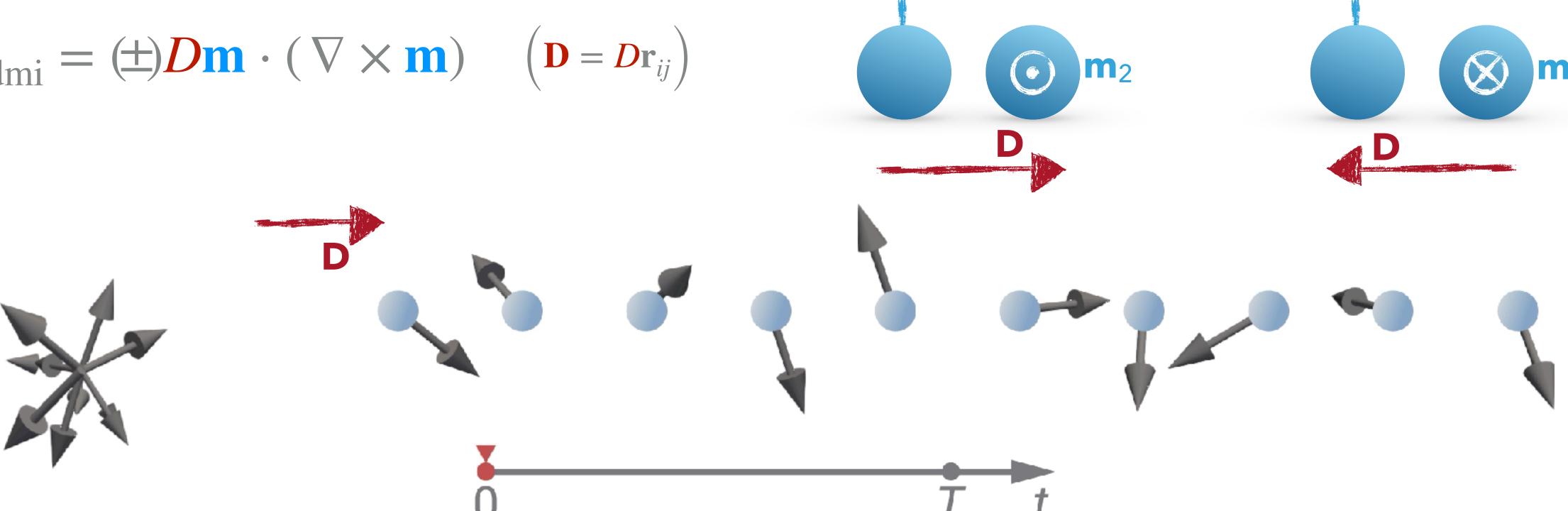




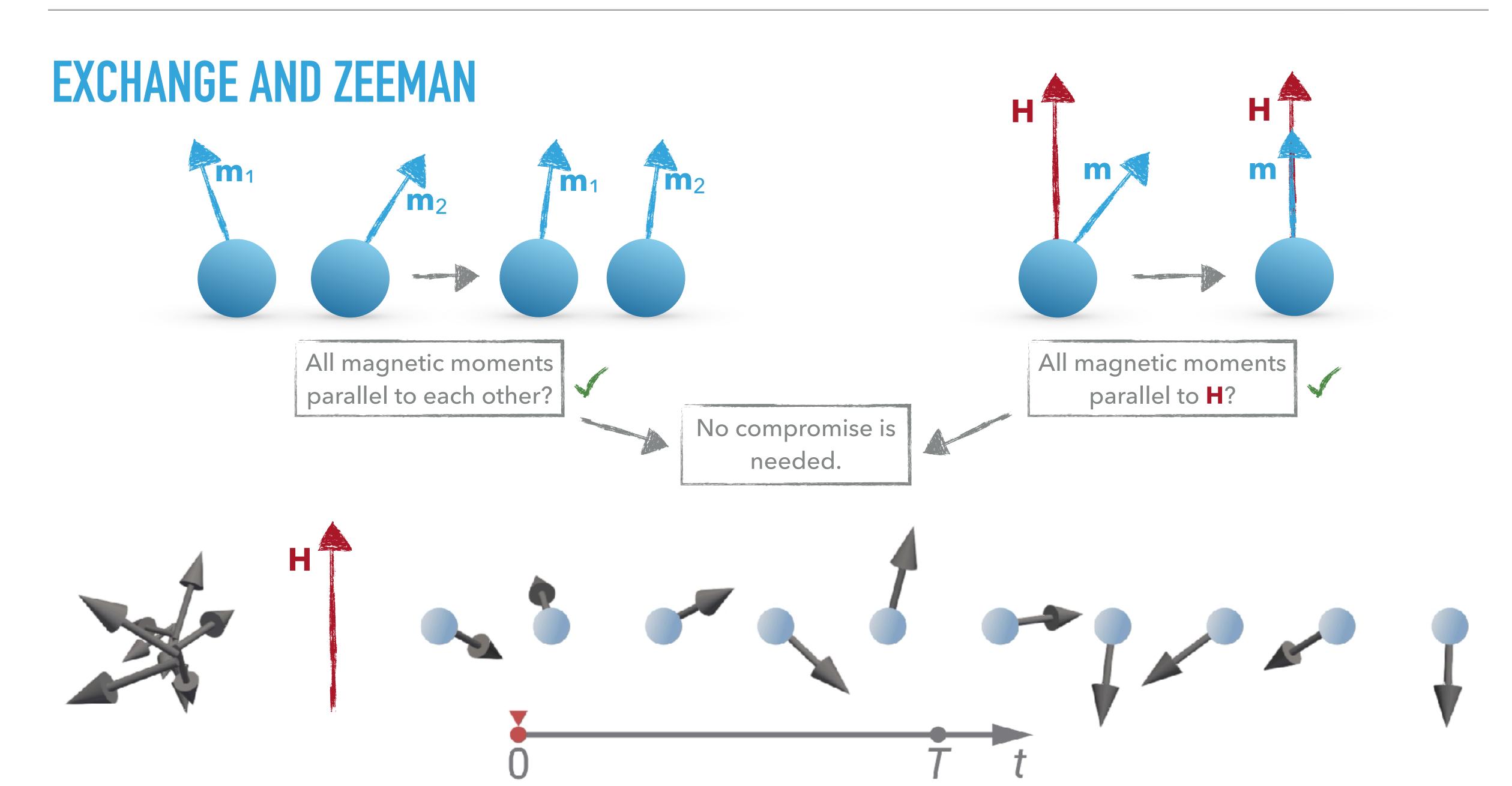
DZYALOSHINSKII-MORIYA

- Aligns neighbouring magnetic moments (in m) perpendicular to each other.
- Parameter: D (J/m²)

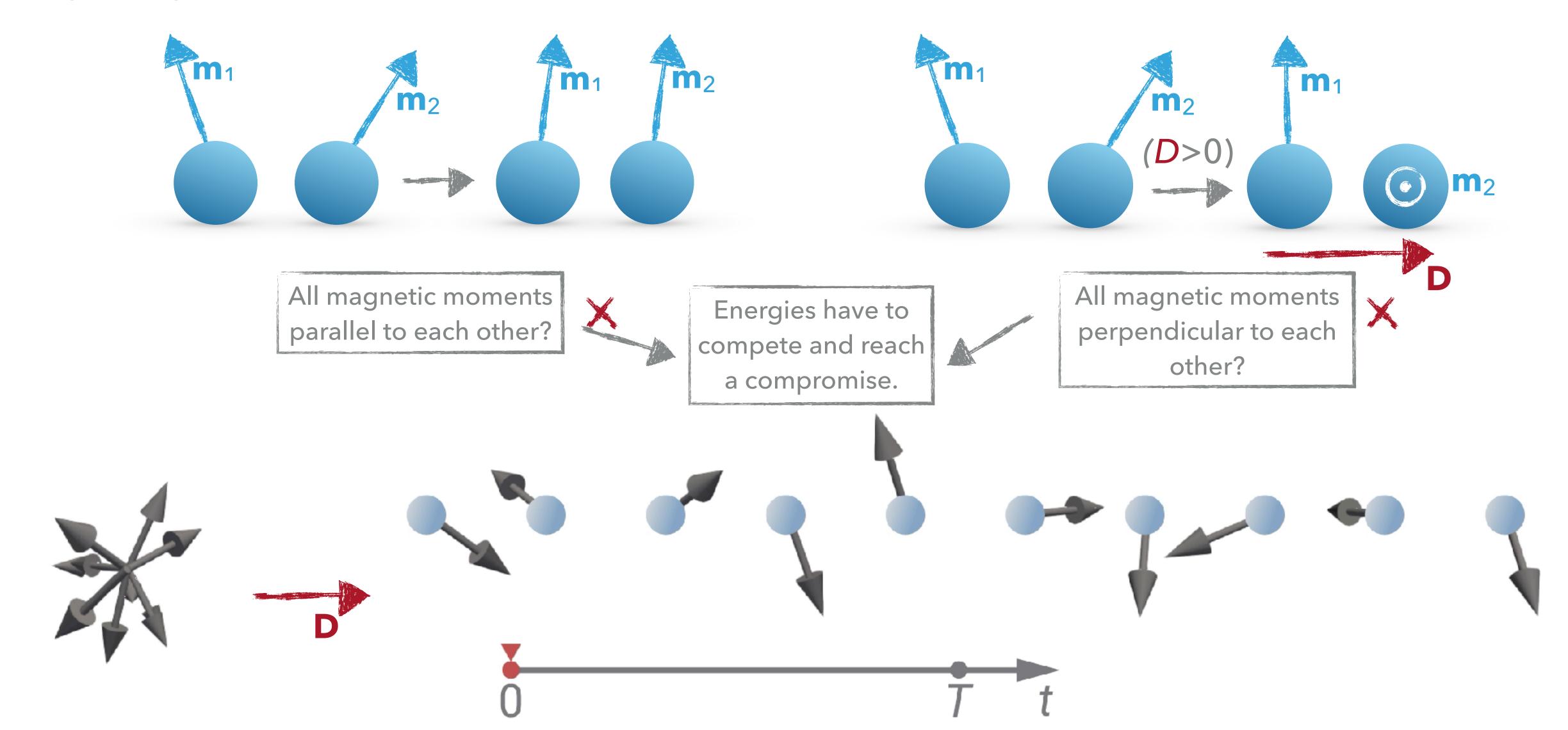
$$w_{\text{dmi}} = (\pm) D\mathbf{m} \cdot (\nabla \times \mathbf{m}) \quad (\mathbf{D} = D\mathbf{r}_{ij})$$



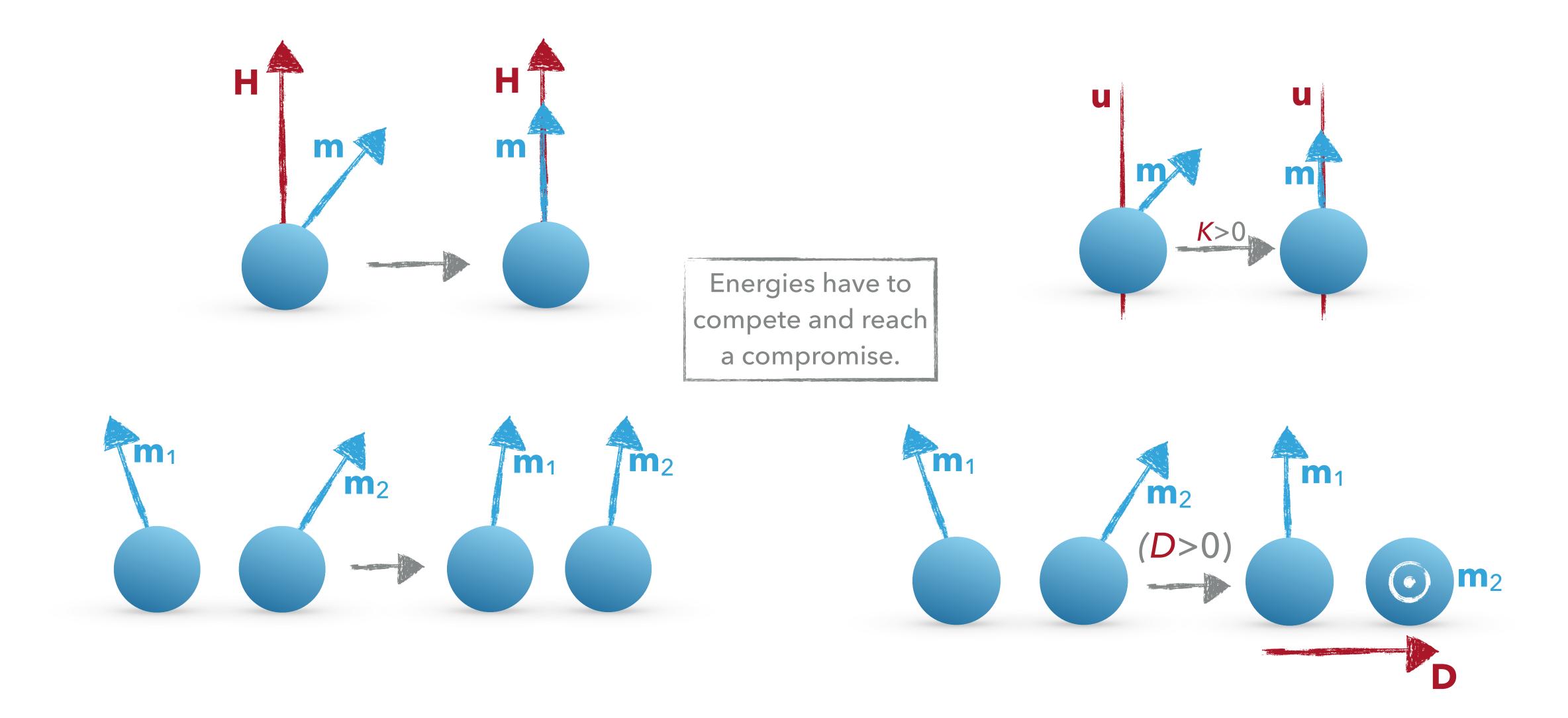
 $D=Dr_{12}$



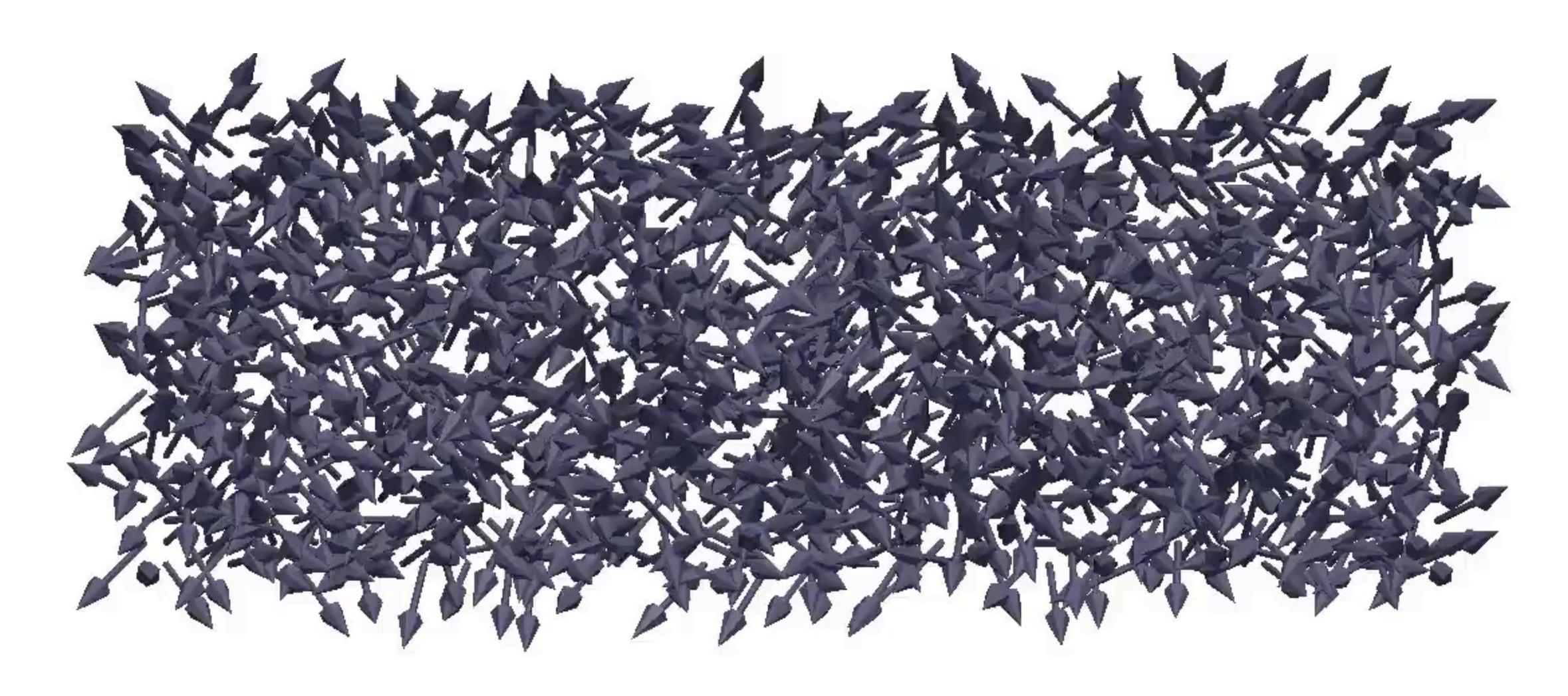
EXCHANGE AND DMI



MORE COMPLICATED CASE IN A 2D SAMPLE (1/2)



MORE COMPLICATED CASE IN A 2D SAMPLE (2/2)



DYNAMICS EQUATION

...tells us how magnetisation m wants to change in order to minimise its energy.

$$\frac{d\mathbf{m}}{dt} = f_1(\mathbf{m}, \mathbf{H}_{\text{eff}}, \dots) + f_1(\mathbf{m}, \mathbf{H}_{\text{eff}}, \dots) + \dots = \sum_{i} f_i(\mathbf{m}, \mathbf{H}_{\text{eff}}, \dots)$$
user-defined

▶ Effective field is computed as the first variational derivative of energy density:

$$\mathbf{H}_{\text{eff}} = -\frac{1}{\mu_0 M_s} \frac{\delta w(\mathbf{m})}{\delta \mathbf{m}}$$

$$\mathbf{m}$$

$$w(\mathbf{m}) - \frac{1}{\mu_0 M_s} \frac{\delta w(\mathbf{m})}{\delta \mathbf{m}}$$

$$\mathbf{H}_{\text{eff}} \searrow \frac{d\mathbf{m}}{dt} = f(\mathbf{H}_{\text{eff}}, \mathbf{m}) \longrightarrow \frac{d\mathbf{m}}{dt}$$

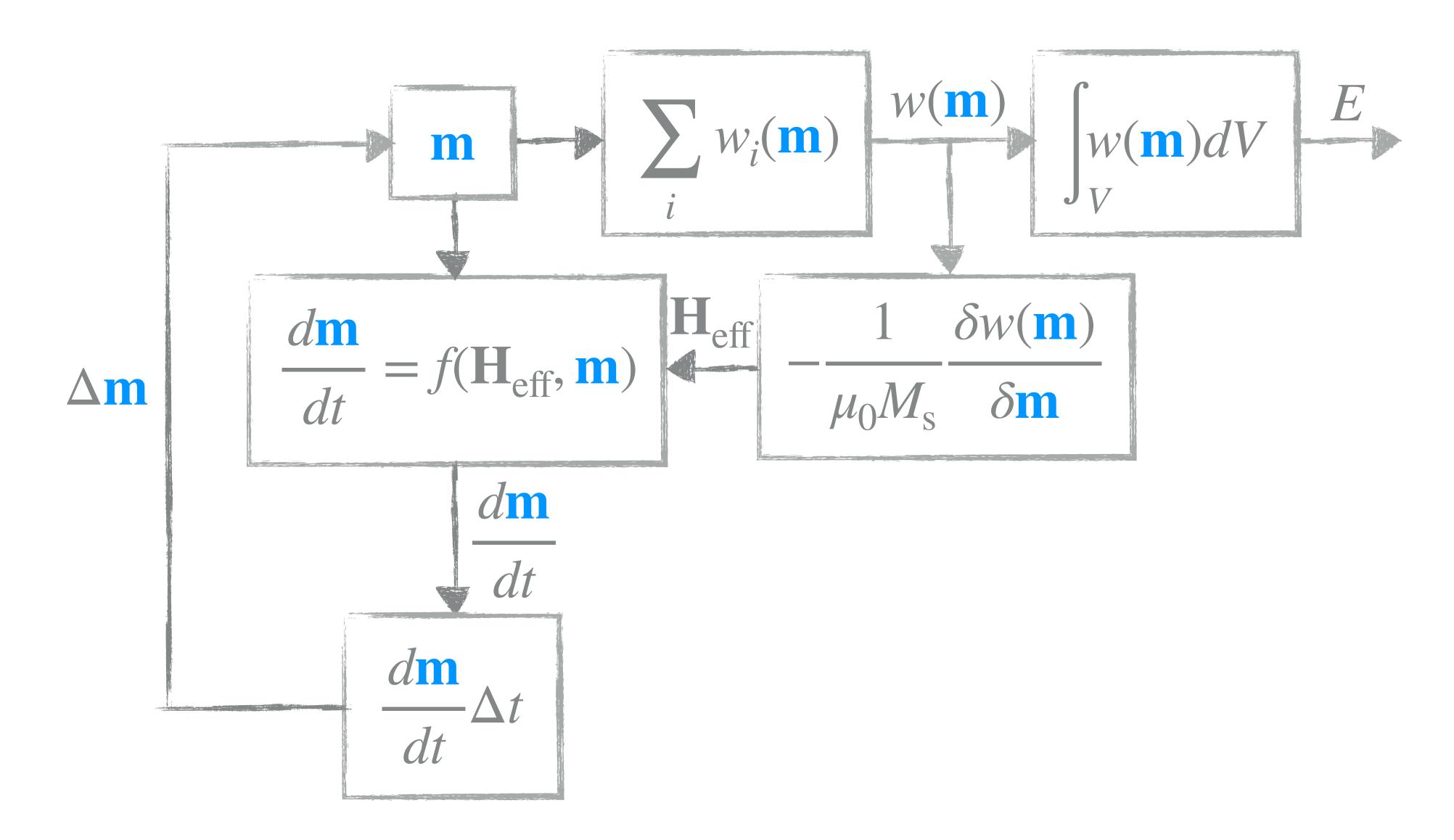
LANDAU-LIFSCHITZ-GILBERT EQUATION

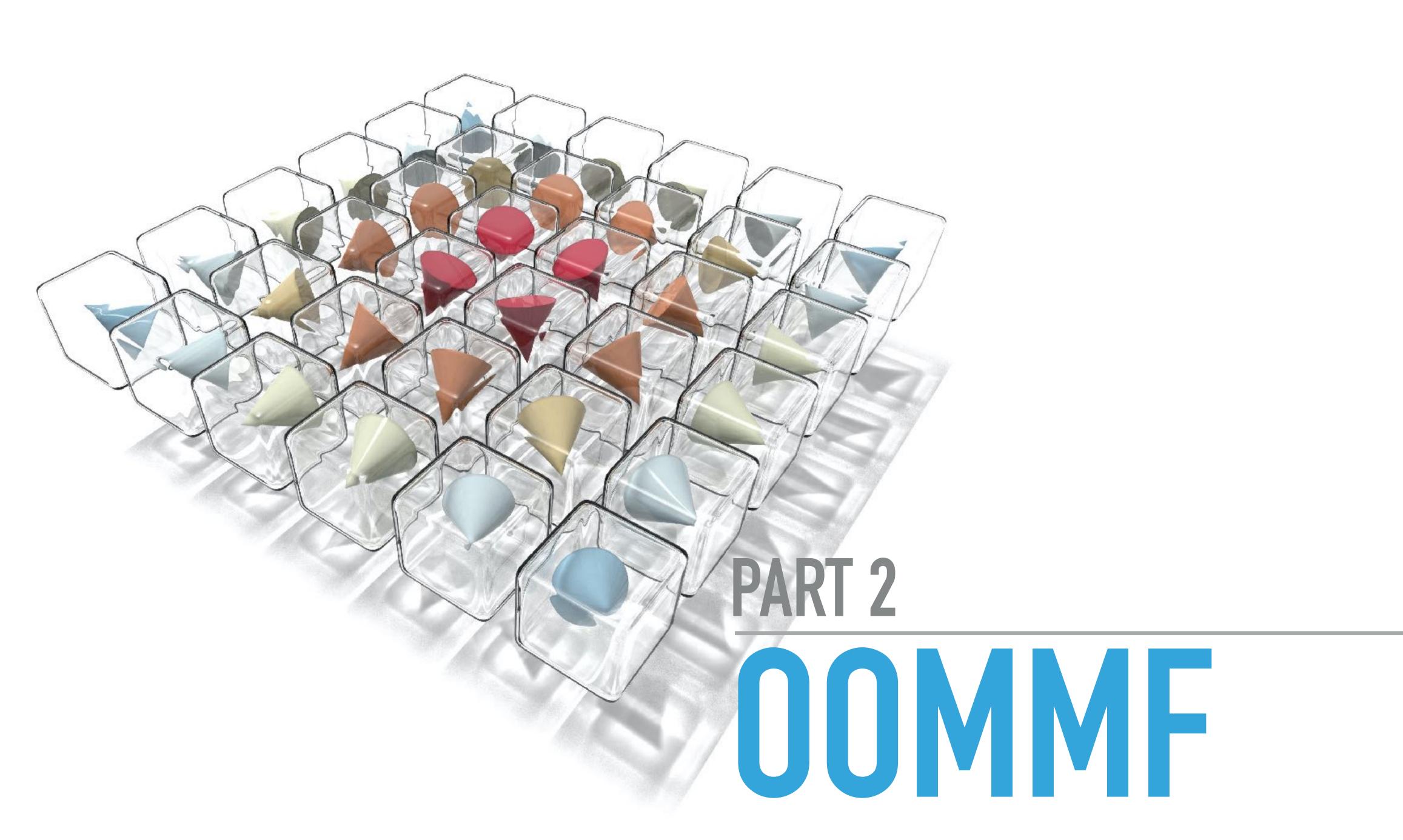
$$\frac{d\mathbf{m}}{dt} = -\gamma_0 \mathbf{m} \times \mathbf{H}_{\text{eff}} + \alpha \left(\mathbf{m} \times \frac{d\mathbf{m}}{dt} \right)$$

$$\frac{d\mathbf{m}}{dt} = -\frac{\gamma_0}{1 + \alpha^2} \mathbf{m} \times \mathbf{H}_{\text{eff}} - \frac{\gamma_0 \alpha}{1 + \alpha^2} \mathbf{m} \times (\mathbf{m} \times \mathbf{H}_{\text{eff}})$$

$$\mathbf{H}_{\text{eff}} = \mathbf{H}_{\text{eff}} + \mathbf{H}_{\text{eff}}$$

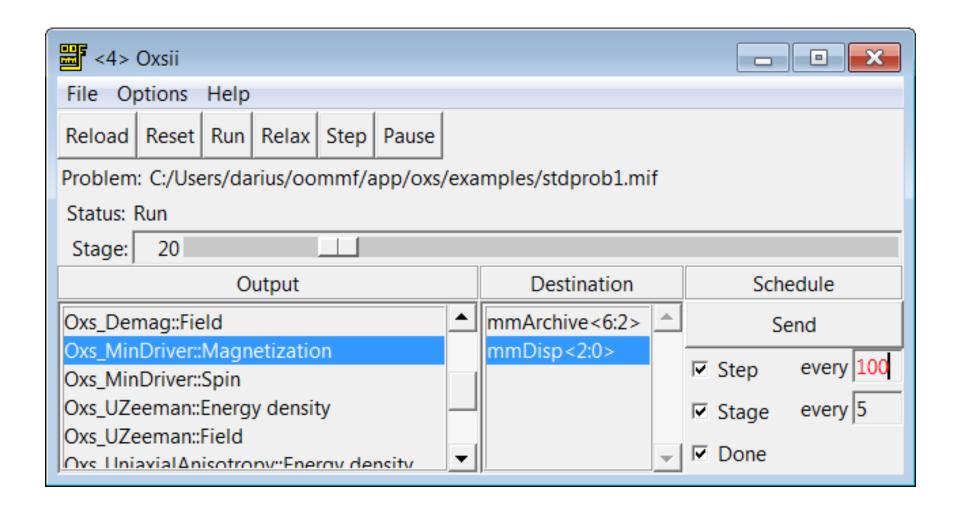
(OVERSIMPLIFIED) MICROMAGNETIC SIMULATOR



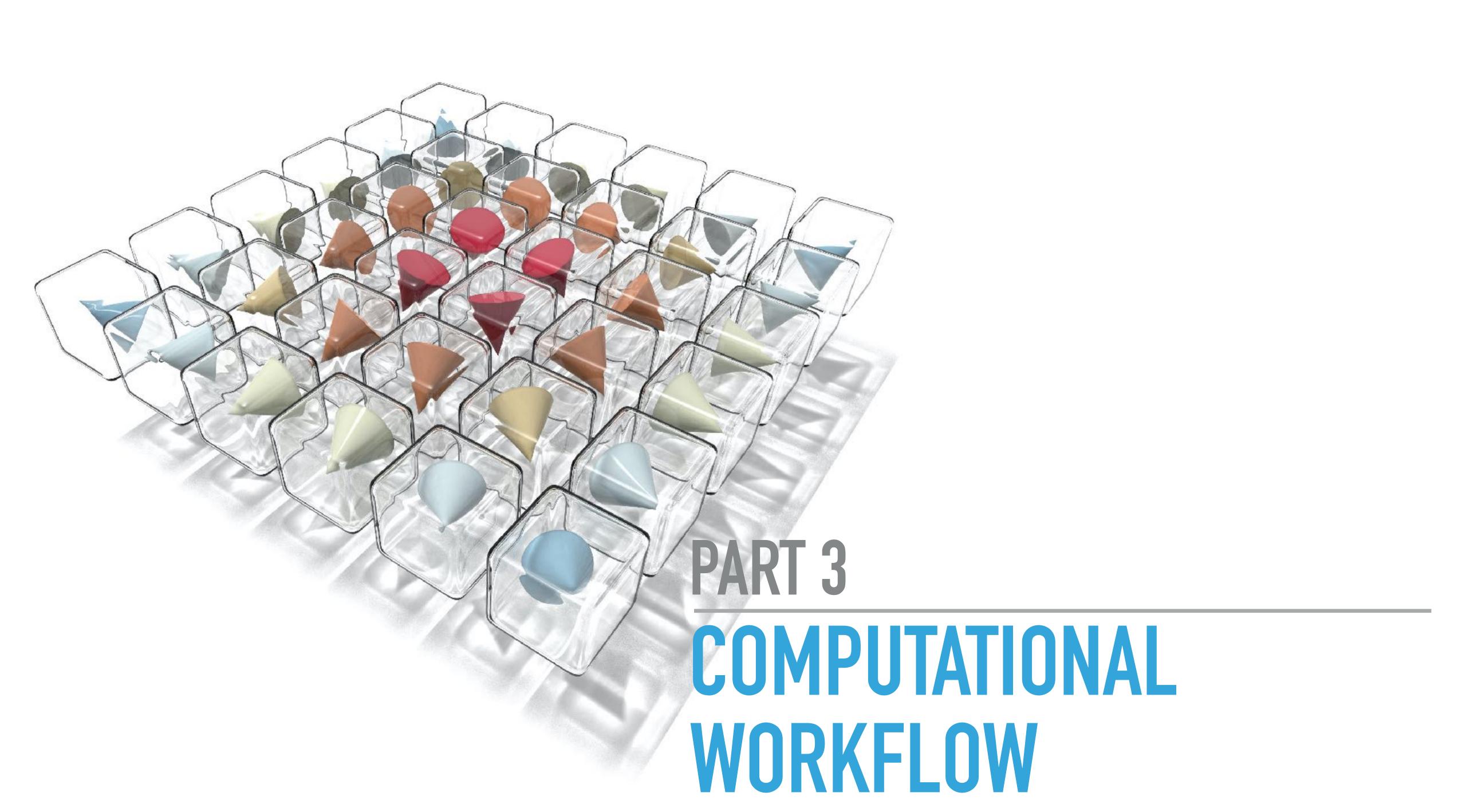


OOMMF

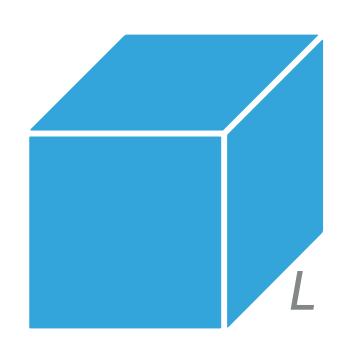
- Probably the most widely used micromagnetic simulation tool
- Developed at NIST, US, since ~1998 by Michael Donahue & Don Porter
- Cited over 2200 times in scientific publications
- Written in C++ & Tc
- > Finite-difference code
- Very often used for comparisons between codes
- https://math.nist.gov/oommf/



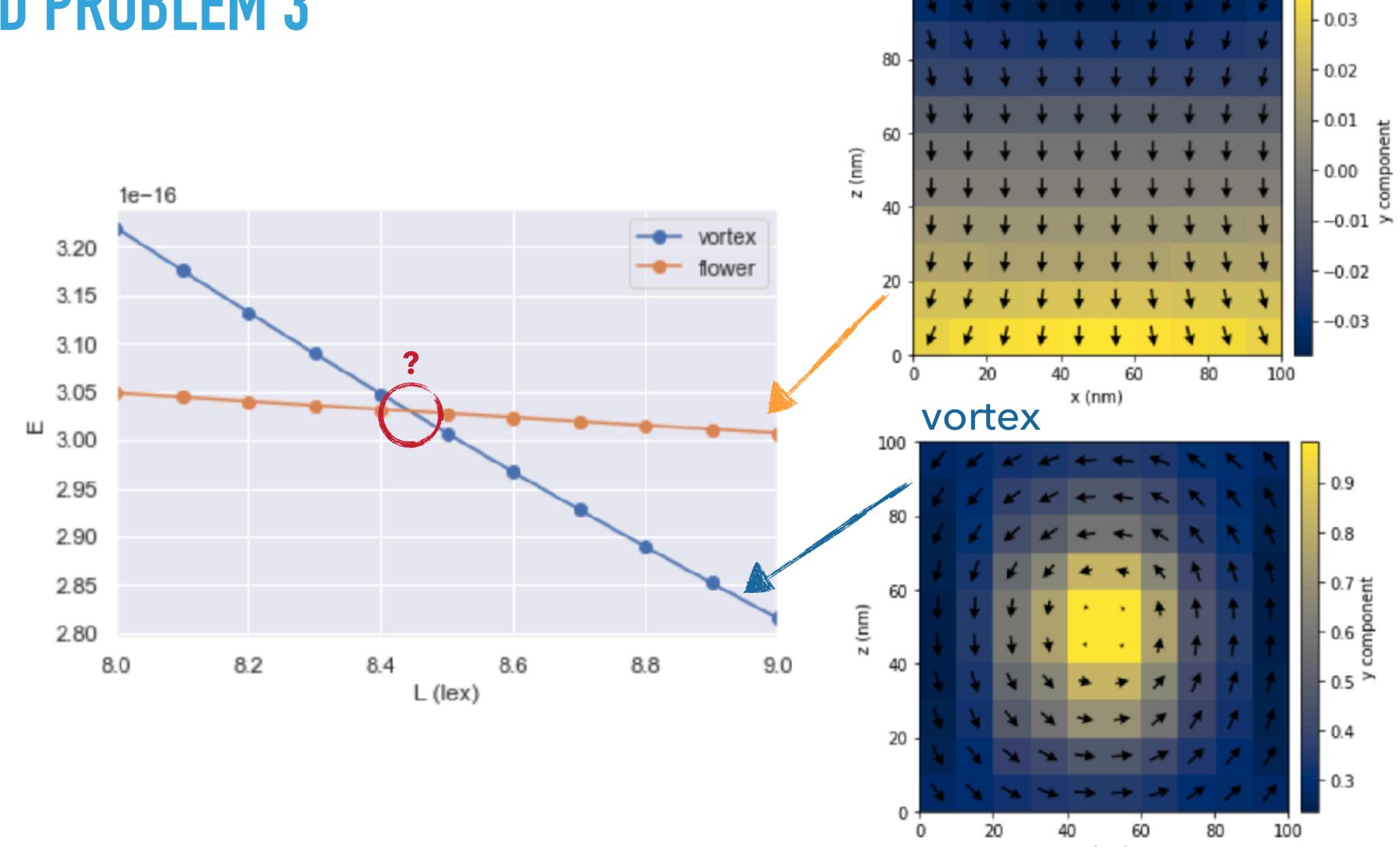
```
29 # Work out Ms so magnetostatic energy density, Km=0.5*mu0*Ms^2,
   set Ms [expr {sqrt(2*$Km/$mu0)}]
   set lex [expr {$cubesize/$L}] ;# exchange length
    Compute A so that cubesize is requested number of exchange lengths
    et A [expr {0.5*$mu0*$Ms*$Ms*$lex*$lex}] :# Exchange coefficient, J/m
   Report "A=$A, K1=$K1, Ms=$Ms, lex=$lex, L=$L, seed=$seed"
51 # Tcl script for CantedVortex proc
53 # Coordinate transform to select initial vortex orientation:
54 proc CantedVortexInit { vec } {
   proc Mag { v } {
      set v0 [lindex 5v 0]
       set v1 [lindex Sv 1]
       set v2 [lindex Sv 2]
t branch, master, index: 907, working: 1 + 907. Line 1, Column 1
```



CASE STUDY: STANDARD PROBLEM 3

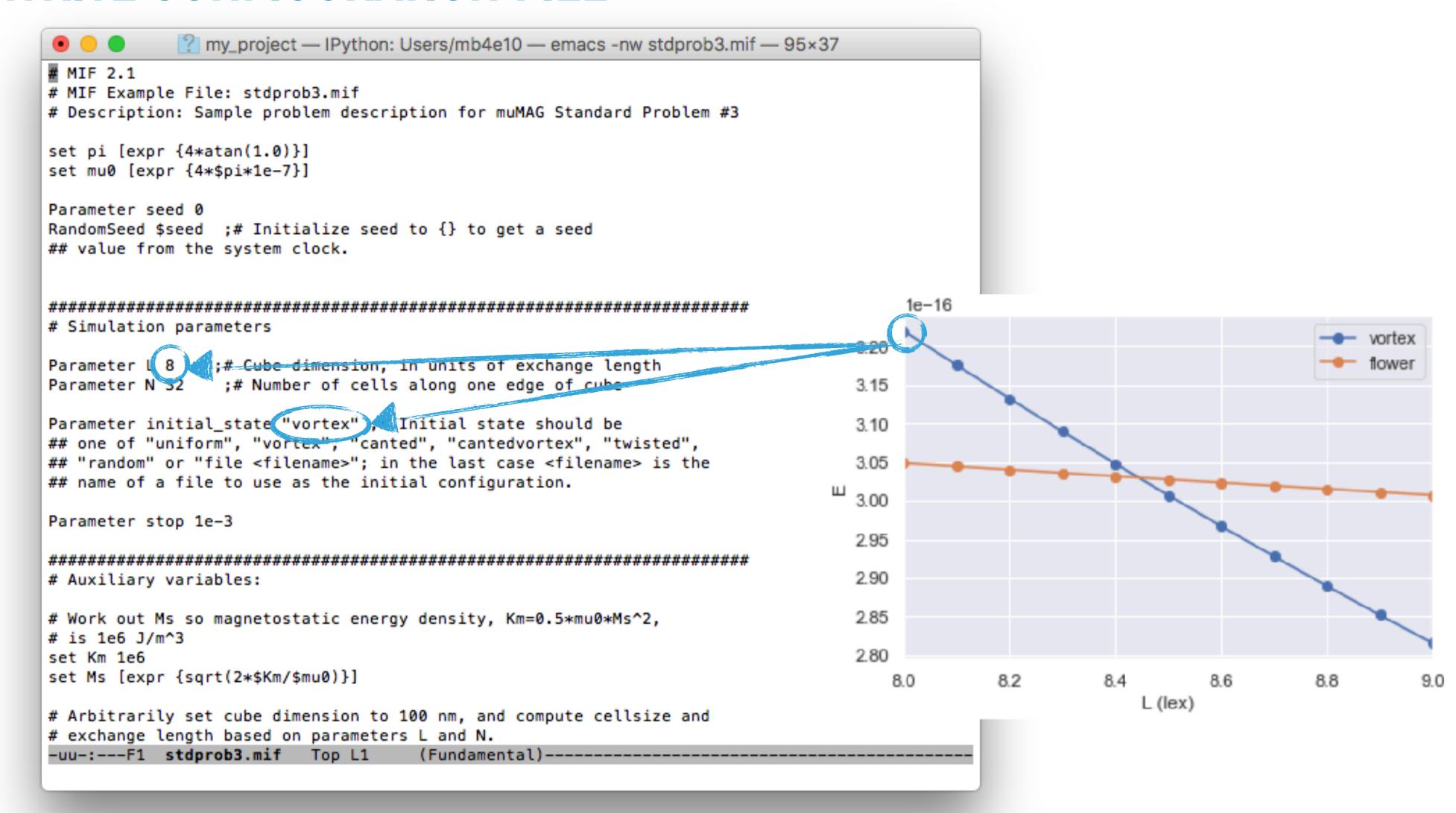


Research question: For what cube edge length *L*, vortex and flower states have the same energy?



flower

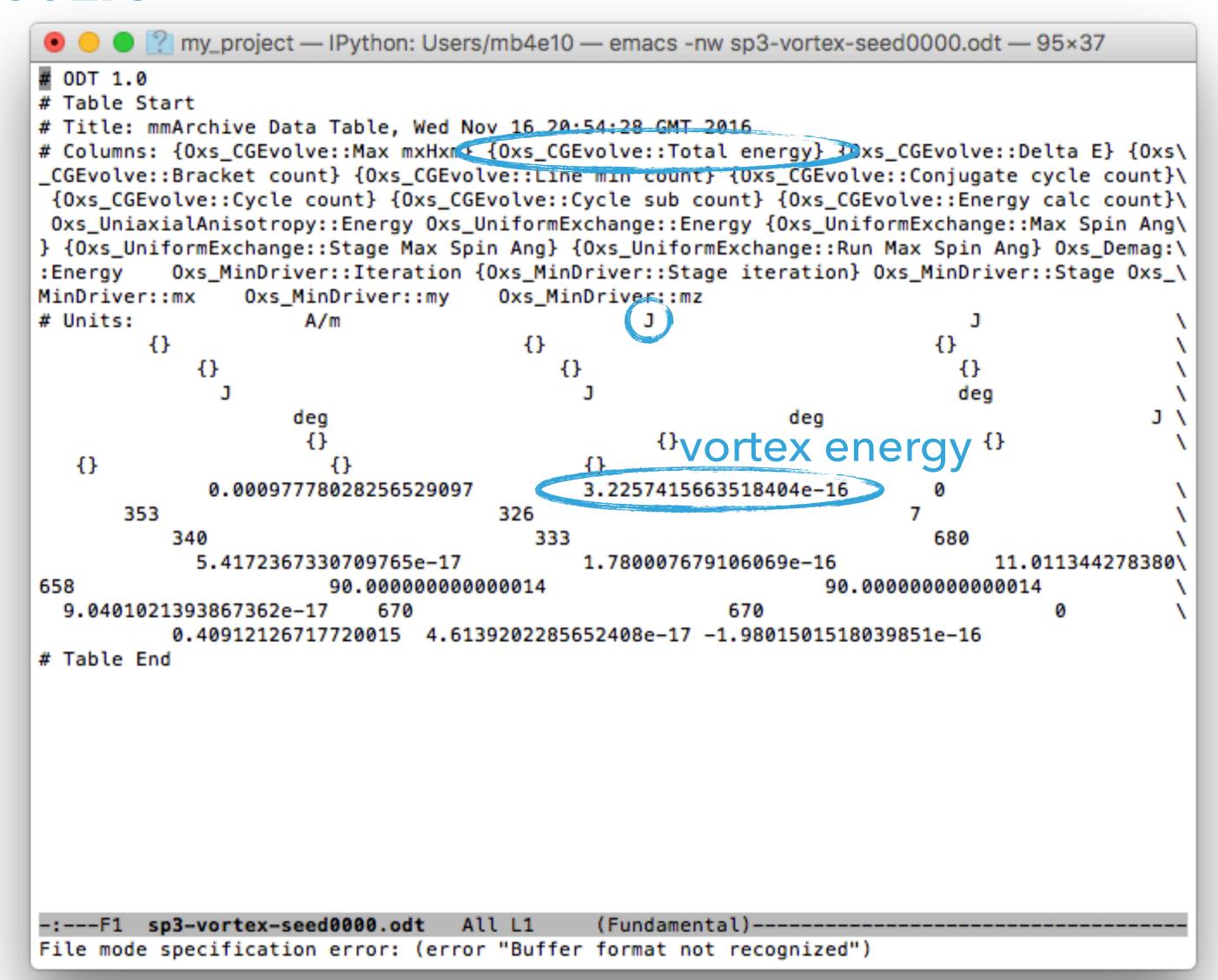
STEP 1: WRITE CONFIGURATION FILE



STEP 2: RUN SIMULATION

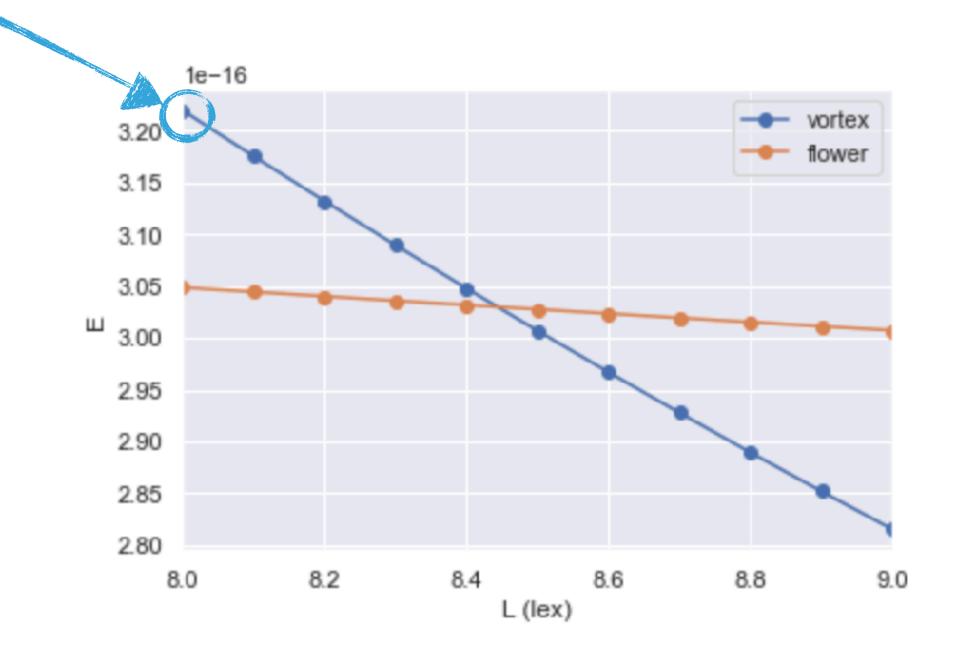
my_project — IPython: Users/mb4e10 — -bash • python — 95×37 Marijans-MBP:my_project mb4e10\$ ls 1. configuration file (stdprob3.mif) Marijans-MBP:my_project mb4e1∞s tclsh \$00MMFTCL boxsi +fg stdprob3.mif -exitondone 1 Start: "/Users/mb4e10/my_project/stdprob3.mii" Options: -exitondone 1 -threads 2 2. run OOMMF Boxsi version 1.2.1.0 Running on: marijans-macbook-pro.local OS/machine: Darwin/x86_64 User: mb4e10 PID: 72176 Number of threads: 2 Mesh geometry: $32 \times 32 \times 32 = 32 \cdot 768$ cells Checkpoint file: /Users/mb4e10/my_project/sp3-vortex-seed0000.restart Boxsi run end. [Marijans MBP:my_project mb4e10\$ ls 3. output file < sp3-vortex-seed0000.odt stoprob3.mif Marijans-nor.my_project mb4e10\$

STEP 3: READ RESULTS



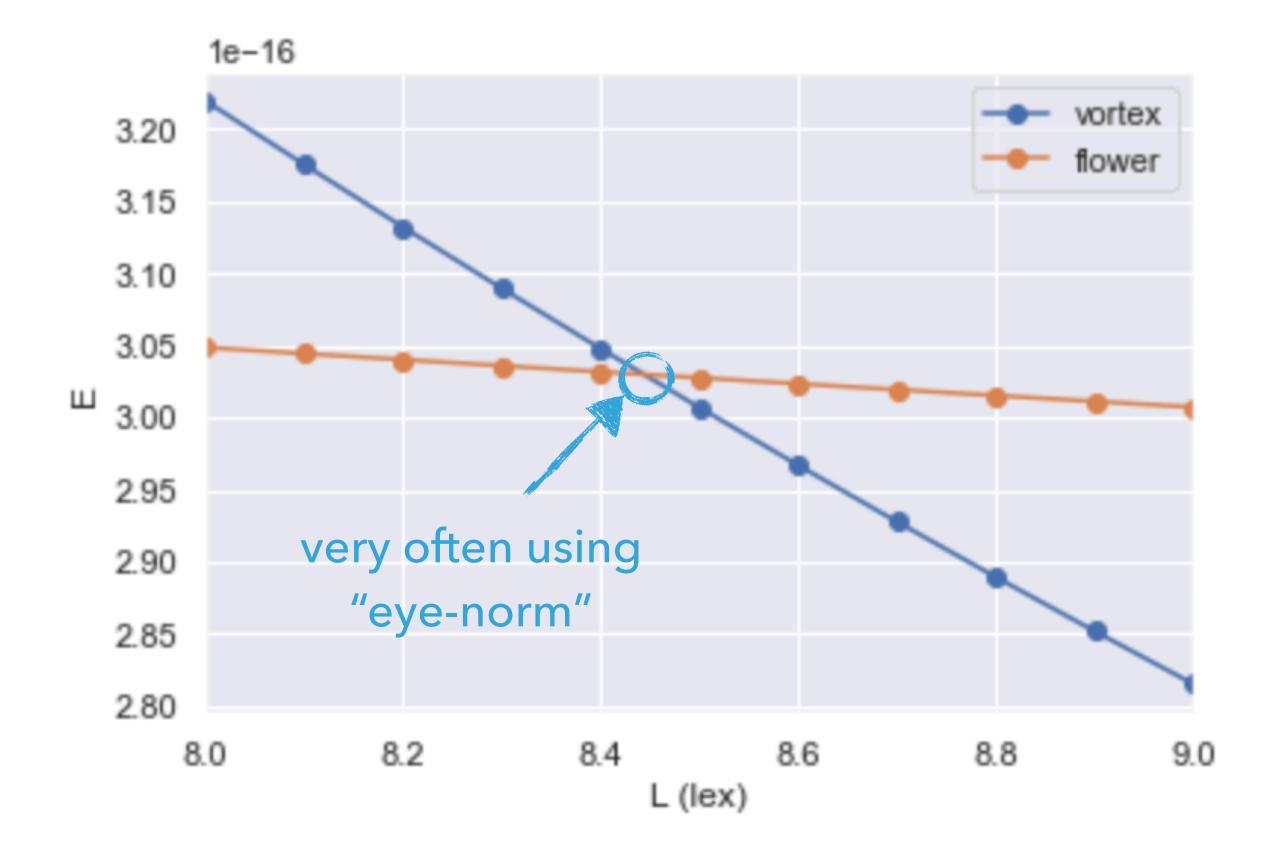
LOOP THROUGH STEPS 1, 2, 3...

L	flower	vortex
8.0	?	3.23x10-16
8.1	?	?
8.2	?	?
8.3	?	?
8.4	?	?
8.5	?	?
8.6	?	?
8.7	?	?
8.8	?	?
8.9	?	?
9.0	?	?

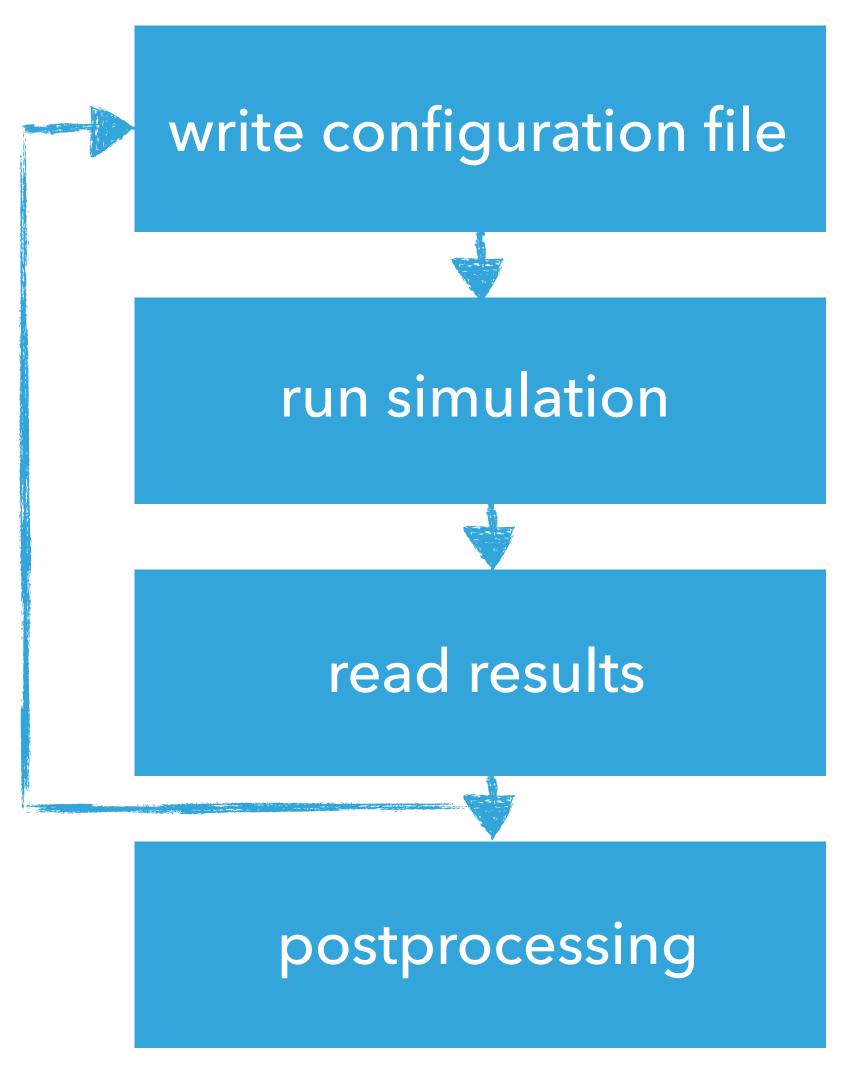


LAST STEP: POSTPROCESSING

- After we obtained all data points, we plot the results and find crossing.
- For this step, we often use separate plotting scripts or graphical user interface (GUI).



WORKFLOW SUMMARY



WHAT COULD BE THE PROBLEMS WITH THIS WORKFLOW?

- 1. Time consuming
 - It requires a lot of user input many manual steps
- 2. Keeping log of all steps that were run and in what order
 - I clicked here, then I changed that, then I fixed that...
- 3. Difficult to re-execute automatically
- 4. Separate postprocessing scripts
 - Every group has their own scripts with different dependencies
- 5. Sharing the exact workflow
- 6. Reproducibility
- 7. Very difficult to automate
- 8. Very steep learning curve

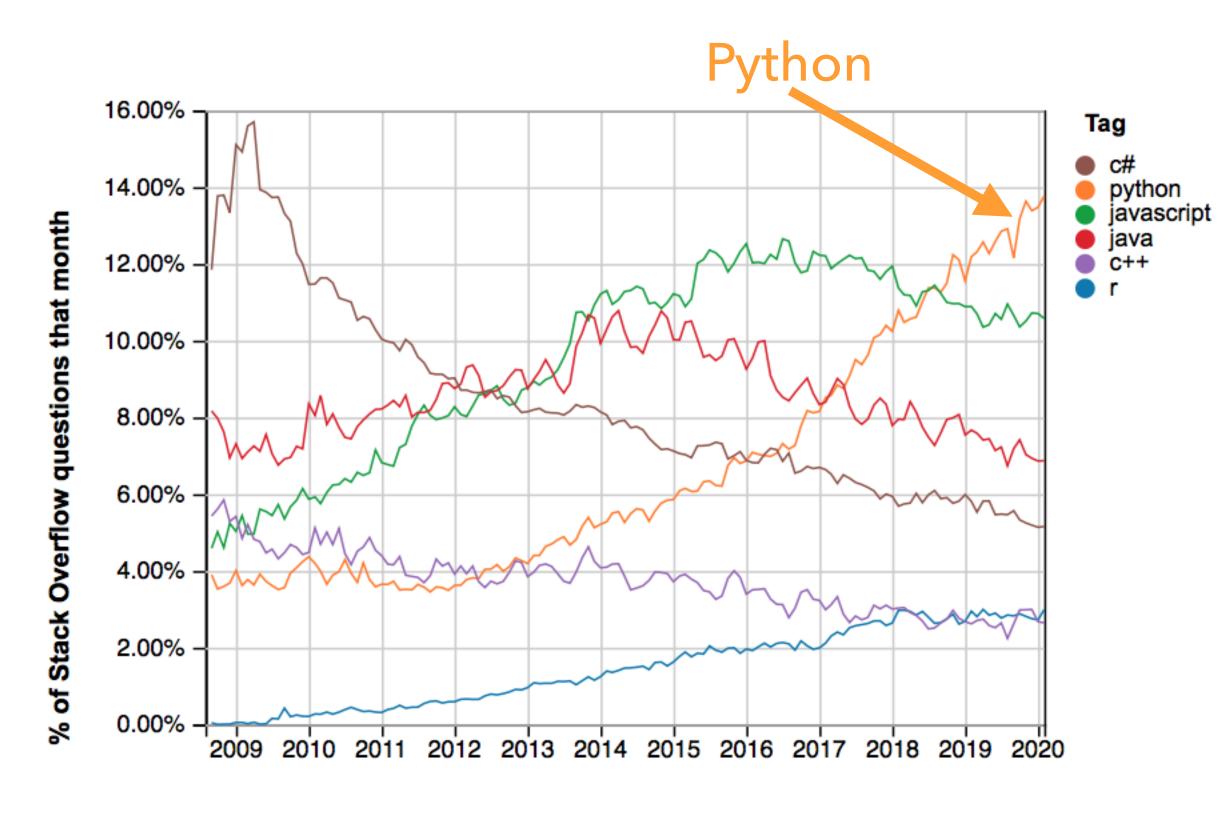
PART 4
UBERMAG

UBERMAG

"... provides Python interface to OOMMF and mumax3 (for now), exposes micromagnetic simulations to Python's scientific ecosystem, and embeds them into Jupyter notebook."

WHY DID WE CHOOSE PYTHON?

- Modern programming language
- The language core is easy to read and easy to learn
- Increasingly popular in software engineering
- The most popular in computational and data science
- Very well documented and well supported
- Interpreted language
- www.python.org



Year

Source: https://towardsdatascience.com

SCIENTIFIC PYTHON ECOSYSTEM

- numpy: linear algebra
- > scipy: numerical analysis
- matplotlib: 2d (and some 3d) plotting
- pandas: big data for Python
- > scikit-learn: machine learning
- Jupyter Notebook

No need to reinvent the wheel.

JUPYTER

- Executable document
- Text, equations, images, code, and results in a single document
- Easily shared
- **Easily reproducible**
- Hosted in web browser
- Can be run in the cloud (Binder)
- www.jupyter.org

PART5
DEMO

PART 6
SUMMARY

WHAT ARE THE BENEFITS OF USING UBERMAG?

- Ability to drive micromagnetic simulations from Python
 - Scriptability of computational studies
 - Use of the Python ecosystem for computational and data science (numpy, scipy, pandas, ...)
- Integration with Jupyter Notebook
 - Rich media representation of equations, meshes, fields
 - Widgets to explore data sets interactively in notebook
 - Easier reproducibility: Notebook contains complete simulation study
 - ▶ Sharing of interactive documents through MyBinder

COMPUTER SCIENCE PERSPECTIVE ON THE USER INTERFACE

- Python libraries created are a Domain Specific Language (DSL) for micromagnetic science
- This DSL is embedded in general purpose programming language (Python)
 - More powerful than (i) hard coded parameters, or (ii) config files
 - But also high complexity: users can combine library functions in all possible ways
- Framework to include more micromagnetic computational solvers (for example mumax3, micromagnum, fidimag)
- ▶ **Publication**: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational science: A domain specific language for OOMMF embedded in Python. *AIP Advances* **7**, 56025 (2017). https://doi.org/10.1063/1.4977225

WORKSHOPS

- Generally well received
- Scientists without programming experience struggle with Python in Notebook setup: many new concepts at the same time
- ▶ Ubermag in the cloud (JupyterHub, MyBinder) very effective for workshop delivery

RESOURCES

- ▶ Website: <u>ubermag.github.io</u>
- ▶ How to start:
 - Ubermag YouTube channel
 - Workshop repository: https://github.com/ubermag/workshop
- ▶ **Publication**: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational science: A domain specific language for OOMMF embedded in Python. AIP Advances 7, 56025 (2017). https://doi.org/10.1063/1.4977225

ACKNOWLEDGEMENTS

- ▶ **Contributors**: Marijan Beg, Martin Lang, Sergii Mamedov, Ryan A. Pepper, David Cortés-Ortuño, Thomas Kluyver, Hans Fangohr
- Financial support:
 - ▶ OpenDreamKit Horizon 2020, European Research Infrastructures project (#676541),
 - ▶ EPSRC's **Skyrmion Programme Grant** (EP/N032128/1),
 - ▶ EPSRC's Centre for Doctoral Training in Next Generation Computational Modelling, (#EP/L015382/1), and
 - ▶ The Gordon and Betty Moore Foundation through Grant GBMF #4856, by the Alfred P. Sloan Foundation and by the Helmsley Trust.

