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MICROMAGNETICS

“… is a field of physics dealing with the 
prediction of magnetic behaviours at 

sub-micrometer length scales.”
Source: Wikipedia
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WHY IS IT INTERESTING?
▸ Micromagnetics deals with complex systems with tuneable 

parameters. 

▸ It is used to explain experiments as well as to design experiments. 

▸ Real applications, including 
▸ magnetic data storage, 
▸ cancer therapy, 
▸ low-energy magnetic logic (spintronics).
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MAGNETISATION FIELD

▸ Magnetisation field is the main “unknown” 

▸ In continuum approximation, magnetisation is considered to be a continuous vector field. 

▸ Magnetisation M(r, t) is a function of both space r and time t.

M = M(r, t)
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MICROMAGNETIC ASSUMPTIONS
1. Magnetisation field M(r, t) is differentiable (continuous and slowly changing) with respect 

to both space r and time t. 

2. The magnetisation field norm is constant (time invariant). 

‣ Constant norm |M| is represented by saturation magnetisation Ms. 

‣ Very often, magnetisation is represented by a normalised magnetisation field m(r, t).

Ms = |M | = const.

m(r, t) =
M(r, t)

Ms

|m | = mx2 + my2 + mz2 = 1
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DISCRETISATION
‣ In order to solve the magnetisation field numerically, we 

have to divide it into smaller “chunks”. 

‣ There are two main ways how we can discretise the field: 

‣ finite-differences 

‣ finite-elements  

‣ The discretisation must be: 

‣ large enough to ignore the crystal structure of the 
material (the continuum approximation). 

‣ small enough to spatially resolve different 
magnetisation configurations

?
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FINITE-DIFFERENCE DISCRETISATION

M

µi

M =
∑i∈V μi

V
M(r)

magnetic sample discretisation cell lattice unit cell

volume V

discretisation cell 
coordinate

magnetisation 
field
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ENERGY EQUATION (HAMILTONIAN)

▸ … is a mapping of magnetisation field m=m(r, t) to energy density (scalar) field. 

▸ By integrating w(m) over the entire sample volume V, the energy functional is

vector 
field

user-defined

∑
i

wi(m) ∫V
w(m)dV

w(m) Em

w(m) = w1(m) + w2(m) + w3(m) + … = ∑
i

wi(m)

E[m] = ∫V
w(m)dV

scalar 
field

scalar
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ZEEMAN
‣ Aligns m parallel to H. 

‣ Parameter: H (A/m)

H

m

H

m

wz = −M ⋅ B
= − μ0Msm ⋅ H

(B = μ0H, M = Msm)

H
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UNIAXIAL ANISOTROPY

u

m m

u
‣ Aligns m parallel or antiparallel to u. 

‣ Parameters: K>0 (J/m3), u

wua = −K(m ⋅ u)2 ( |m | = 1, |u | = 1)

u

K>0
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(FERROMAGNETIC) EXCHANGE
‣ Aligns all magnetic moments (in m) parallel to each other. 

‣ Parameter: A (J/m)

m1
m2

m1 m2
wex = −A m ⋅ ∇2m

= A[(∇mx)2 + (∇my)2 + (∇mz)2]

(=) A(∇m)2 just a convention

(∇2m = ∇2mxx̂ + ∇2myŷ + ∇2mz ̂z)
vector Laplacian



‣ Aligns neighbouring magnetic moments (in m) 
perpendicular to each other. 

‣ Parameter: D (J/m2)
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DZYALOSHINSKII-MORIYA m1
m2

D=Dr12

m1

m2

m1

m2

D>0 D>0

D D

wdmi = (±)Dm ⋅ (∇ × m) (D = Drij)

D
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EXCHANGE AND ZEEMAN H

m

H

mm1
m2

m1 m2

All magnetic moments 
parallel to each other?

No compromise is 
needed.

All magnetic moments 
parallel to H?

H
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EXCHANGE AND DMI
m1

m2
m1 m2

All magnetic moments 
parallel to each other?

Energies have to 
compete and reach 

a compromise.

m1
m2

m1

m2
(D>0)

DAll magnetic moments 
perpendicular to each 

other?

D
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MORE COMPLICATED CASE IN A 2D SAMPLE (1/2)

H

m

H

m
u

m m

u

K>0

m1
m2

m1 m2 m1
m2

m1

m2
(D>0)

D

Energies have to 
compete and reach 

a compromise.
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MORE COMPLICATED CASE IN A 2D SAMPLE (2/2)
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DYNAMICS EQUATION
▸ …tells us how magnetisation m wants to change in order to minimise its energy.

user-defined

dm
dt

= f1(m, Heff, …) + f1(m, Heff, …) + … = ∑
i

fi(m, Heff, …)

Heff = −
1

μ0Ms

δw(m)
δm

▸ Effective field is computed as the first variational derivative of energy density:

−
1

μ0Ms

δw(m)
δm

dm
dt

= f(Heff, m)
Heff dm

dt
w(m)

m



+

+=

=
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LANDAU-LIFSCHITZ-GILBERT EQUATION
dm
dt

= −γ0m × Heff + α (m ×
dm
dt )

dm
dt

= −
γ0

1 + α2
m × Heff −

γ0α
1 + α2

m × (m × Heff)

Heff

Heff

Heff Heff

Heff
Heff
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(OVERSIMPLIFIED) MICROMAGNETIC SIMULATOR

−
1

μ0Ms

δw(m)
δm

dm
dt

= f(Heff, m)
Heff

dm
dt

∑
i

wi(m) ∫V
w(m)dV

w(m) E

dm
dt

Δt

m

Δm
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OOMMF
▸ Probably the most widely used micromagnetic 

simulation tool 

▸Developed at NIST, US, since ~1998 by Michael 
Donahue & Don Porter 

▸ Cited over 2200 times in scientific publications 

▸Written in C++ & Tcl 

▸ Finite-difference code 

▸ Very often used for comparisons between codes 

▸ https://math.nist.gov/oommf/ 

https://math.nist.gov/oommf/


COMPUTATIONAL 
WORKFLOW

PART 3



PART 3 - COMPUTATIONAL WORKFLOW

CASE STUDY: STANDARD PROBLEM 3

?

vortex

flower

L

Research question: For 
what cube edge length L, 
vortex and flower states 
have the same energy?
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STEP 1: WRITE CONFIGURATION FILE
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STEP 2: RUN SIMULATION

1. configuration file
2. run OOMMF

3. output file
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STEP 3: READ RESULTS

vortex energy
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LOOP THROUGH STEPS 1, 2, 3…

L flower vortex
8.0 ? 3.23x10-16

8.1 ? ?
8.2 ? ?
8.3 ? ?
8.4 ? ?
8.5 ? ?
8.6 ? ?
8.7 ? ?
8.8 ? ?
8.9 ? ?
9.0 ? ?
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LAST STEP: POSTPROCESSING
▸ After we obtained all data points, we plot the results and find crossing. 

▸ For this step, we often use separate plotting scripts or graphical user interface (GUI).

very often using 
“eye-norm”
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WORKFLOW SUMMARY
write configuration file

run simulation

read results

postprocessing
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WHAT COULD BE THE PROBLEMS WITH THIS WORKFLOW?
1. Time consuming 

‣ It requires a lot of user input - many manual steps 

2. Keeping log of all steps that were run and in what order 

‣ I clicked here, then I changed that, then I fixed that… 

3. Difficult to re-execute automatically 

4. Separate postprocessing scripts 

‣ Every group has their own scripts with different dependencies 

5. Sharing the exact workflow 

6. Reproducibility 

7. Very difficult to automate 

8. Very steep learning curve 
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UBERMAG

“… provides Python interface to OOMMF 
and mumax3 (for now), exposes 

micromagnetic simulations to Python’s 
scientific ecosystem, and embeds them into 

Jupyter notebook.”
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WHY DID WE CHOOSE PYTHON?
▸Modern programming language 

▸ The language core is easy to read and easy 
to learn 

▸ Increasingly popular in software engineering 

▸ The most popular in computational and data 
science 

▸ Very well documented and well supported 

▸ Interpreted language 

▸ www.python.org Source: https://towardsdatascience.com

Python

http://www.python.org
https://towardsdatascience.com
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SCIENTIFIC PYTHON ECOSYSTEM
▸ numpy: linear algebra 

▸ scipy: numerical analysis 

▸matplotlib: 2d (and some 3d) plotting 

▸ pandas: big data for Python 

▸ scikit-learn: machine learning 

▸ Jupyter Notebook 

▸No need to reinvent the wheel.
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JUPYTER
▸Executable document 

▸Text, equations, images, code, and results in a single document 

▸Easily shared 

▸Easily reproducible 

▸Hosted in web browser 

▸Can be run in the cloud (Binder) 

▸www.jupyter.org

http://www.jupyter.org
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WHAT ARE THE BENEFITS OF USING UBERMAG?
▸ Ability to drive micromagnetic simulations from Python 

▸ Scriptability of computational studies 

▸ Use of the Python ecosystem for computational and data science (numpy, scipy, 
pandas, …) 

▸ Integration with Jupyter Notebook 

▸ Rich media representation of equations, meshes, fields 

▸Widgets to explore data sets interactively in notebook 

▸ Easier reproducibility: Notebook contains complete simulation study 

▸ Sharing of interactive documents through MyBinder



PART 6 - SUMMARY

COMPUTER SCIENCE PERSPECTIVE ON THE USER INTERFACE
▸ Python libraries created are a Domain Specific Language (DSL) for micromagnetic 

science 

▸ This DSL is embedded in general purpose programming language (Python) 

▸More powerful than (i) hard coded parameters, or (ii) config files 

▸ But also high complexity: users can combine library functions in all possible ways 

▸ Framework to include more micromagnetic computational solvers (for example 
mumax3, micromagnum, fidimag) 

▸ Publication: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational 
science: A domain specific language for OOMMF embedded in Python. AIP 
Advances 7, 56025 (2017). https://doi.org/10.1063/1.4977225

http://mumax.github.io
http://micromagnum.informatik.uni-hamburg.de
http://computationalmodelling.github.io/fidimag/
https://doi.org/10.1063/1.4977225


PART 6 - SUMMARY

WORKSHOPS
▸ Generally well received 

▸ Scientists without programming experience struggle with Python in Notebook 
setup: many new concepts at the same time 

▸ Ubermag in the cloud (JupyterHub, MyBinder) very effective for workshop delivery
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RESOURCES
▸Website: ubermag.github.io 

▸ How to start: 

▸ Ubermag YouTube channel 

▸Workshop repository: https://github.com/ubermag/workshop 

▸ Publication: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational 
science: A domain specific language for OOMMF embedded in Python. AIP 
Advances 7, 56025 (2017). https://doi.org/10.1063/1.4977225 
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http://ubermag.github.io
https://github.com/ubermag/workshop
https://doi.org/10.1063/1.4977225
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