
UBERMAG: INTERACTIVE MICROMAGNETIC
SIMULATIONS IN JUPYTER

MARIJAN BEG1*

1University of Southampton, Highfield, SO17 1BJ Southampton, United Kingdom
*m.beg@soton.ac.uk

Warwick Seminar Series, 19 October 2020

!"#$%&'
This is a PDF of the presentation and does not contain animations. If you require a full MacOS Keynote version, please ask Marijan.

OUTLINE
PART 0

PART 0 - OUTLINE

OUTLINE

1.Micromagnetics basics

2.OOMMF

3.Typical computational workflow

4.Ubermag

5.Demo

6.Discussion and Summary
!"#$%&'

MICROMAGNETICS
PART 1

PART 1 - MICROMAGNETICS

MICROMAGNETICS

“… is a field of physics dealing with the
prediction of magnetic behaviours at

sub-micrometer length scales.”
Source: Wikipedia

PART 1 - MICROMAGNETICS

WHY IS IT INTERESTING?
▸ Micromagnetics deals with complex systems with tuneable

parameters.

▸ It is used to explain experiments as well as to design experiments.

▸ Real applications, including
▸ magnetic data storage,
▸ cancer therapy,
▸ low-energy magnetic logic (spintronics).

PART 1 - MICROMAGNETICS

MAGNETISATION FIELD

▸ Magnetisation field is the main “unknown”

▸ In continuum approximation, magnetisation is considered to be a continuous vector field.

▸ Magnetisation M(r, t) is a function of both space r and time t.

M = M(r, t)

PART 1 - MICROMAGNETICS

MICROMAGNETIC ASSUMPTIONS
1. Magnetisation field M(r, t) is differentiable (continuous and slowly changing) with respect

to both space r and time t.

2. The magnetisation field norm is constant (time invariant).

‣ Constant norm |M| is represented by saturation magnetisation Ms.

‣ Very often, magnetisation is represented by a normalised magnetisation field m(r, t).

Ms = |M | = const.

m(r, t) =
M(r, t)

Ms

|m | = mx2 + my2 + mz2 = 1

PART 1 - MICROMAGNETICS

DISCRETISATION
‣ In order to solve the magnetisation field numerically, we

have to divide it into smaller “chunks”.

‣ There are two main ways how we can discretise the field:

‣ finite-differences

‣ finite-elements

‣ The discretisation must be:

‣ large enough to ignore the crystal structure of the
material (the continuum approximation).

‣ small enough to spatially resolve different
magnetisation configurations

?

PART 1 - MICROMAGNETICS

FINITE-DIFFERENCE DISCRETISATION

M

µi

M =
∑i∈V μi

V
M(r)

magnetic sample discretisation cell lattice unit cell

volume V

discretisation cell
coordinate

magnetisation
field

PART 1 - MICROMAGNETICS

ENERGY EQUATION (HAMILTONIAN)

▸ … is a mapping of magnetisation field m=m(r, t) to energy density (scalar) field.

▸ By integrating w(m) over the entire sample volume V, the energy functional is

vector
field

user-defined

∑
i

wi(m) ∫V
w(m)dV

w(m) Em

w(m) = w1(m) + w2(m) + w3(m) + … = ∑
i

wi(m)

E[m] = ∫V
w(m)dV

scalar
field

scalar

PART 1 - MICROMAGNETICS

ZEEMAN
‣ Aligns m parallel to H.

‣ Parameter: H (A/m)

H

m

H

m

wz = −M ⋅ B
= − μ0Msm ⋅ H

(B = μ0H, M = Msm)

H

PART 1 - MICROMAGNETICS

UNIAXIAL ANISOTROPY

u

m m

u
‣ Aligns m parallel or antiparallel to u.

‣ Parameters: K>0 (J/m3), u

wua = −K(m ⋅ u)2 (|m | = 1, |u | = 1)

u

K>0

PART 1 - MICROMAGNETICS

(FERROMAGNETIC) EXCHANGE
‣ Aligns all magnetic moments (in m) parallel to each other.

‣ Parameter: A (J/m)

m1
m2

m1 m2
wex = −A m ⋅ ∇2m

= A[(∇mx)2 + (∇my)2 + (∇mz)2]

(=) A(∇m)2 just a convention

(∇2m = ∇2mxx̂ + ∇2myŷ + ∇2mz ̂z)
vector Laplacian

‣ Aligns neighbouring magnetic moments (in m)
perpendicular to each other.

‣ Parameter: D (J/m2)

PART 1 - MICROMAGNETICS

DZYALOSHINSKII-MORIYA m1
m2

D=Dr12

m1

m2

m1

m2

D>0 D>0

D D

wdmi = (±)Dm ⋅ (∇ × m) (D = Drij)

D

PART 1 - MICROMAGNETICS

EXCHANGE AND ZEEMAN H

m

H

mm1
m2

m1 m2

All magnetic moments
parallel to each other?

No compromise is
needed.

All magnetic moments
parallel to H?

H

PART 1 - MICROMAGNETICS

EXCHANGE AND DMI
m1

m2
m1 m2

All magnetic moments
parallel to each other?

Energies have to
compete and reach

a compromise.

m1
m2

m1

m2
(D>0)

DAll magnetic moments
perpendicular to each

other?

D

PART 1 - MICROMAGNETICS

MORE COMPLICATED CASE IN A 2D SAMPLE (1/2)

H

m

H

m
u

m m

u

K>0

m1
m2

m1 m2 m1
m2

m1

m2
(D>0)

D

Energies have to
compete and reach

a compromise.

PART 1 - MICROMAGNETICS

MORE COMPLICATED CASE IN A 2D SAMPLE (2/2)

PART 1 - MICROMAGNETICS

DYNAMICS EQUATION
▸ …tells us how magnetisation m wants to change in order to minimise its energy.

user-defined

dm
dt

= f1(m, Heff, …) + f1(m, Heff, …) + … = ∑
i

fi(m, Heff, …)

Heff = −
1

μ0Ms

δw(m)
δm

▸ Effective field is computed as the first variational derivative of energy density:

−
1

μ0Ms

δw(m)
δm

dm
dt

= f(Heff, m)
Heff dm

dt
w(m)

m

+

+=

=

PART 1 - MICROMAGNETICS

LANDAU-LIFSCHITZ-GILBERT EQUATION
dm
dt

= −γ0m × Heff + α (m ×
dm
dt)

dm
dt

= −
γ0

1 + α2
m × Heff −

γ0α
1 + α2

m × (m × Heff)

Heff

Heff

Heff Heff

Heff
Heff

PART 1 - MICROMAGNETICS

(OVERSIMPLIFIED) MICROMAGNETIC SIMULATOR

−
1

μ0Ms

δw(m)
δm

dm
dt

= f(Heff, m)
Heff

dm
dt

∑
i

wi(m) ∫V
w(m)dV

w(m) E

dm
dt

Δt

m

Δm

OOMMF
PART 2

PART 2 - OOMMF

OOMMF
▸ Probably the most widely used micromagnetic

simulation tool

▸Developed at NIST, US, since ~1998 by Michael
Donahue & Don Porter

▸ Cited over 2200 times in scientific publications

▸Written in C++ & Tcl

▸ Finite-difference code

▸ Very often used for comparisons between codes

▸ https://math.nist.gov/oommf/

https://math.nist.gov/oommf/

COMPUTATIONAL
WORKFLOW

PART 3

PART 3 - COMPUTATIONAL WORKFLOW

CASE STUDY: STANDARD PROBLEM 3

?

vortex

flower

L

Research question: For
what cube edge length L,
vortex and flower states
have the same energy?

PART 3 - COMPUTATIONAL WORKFLOW

STEP 1: WRITE CONFIGURATION FILE

PART 3 - COMPUTATIONAL WORKFLOW

STEP 2: RUN SIMULATION

1. configuration file
2. run OOMMF

3. output file

PART 3 - COMPUTATIONAL WORKFLOW

STEP 3: READ RESULTS

vortex energy

PART 3 - COMPUTATIONAL WORKFLOW

LOOP THROUGH STEPS 1, 2, 3…

L flower vortex
8.0 ? 3.23x10-16

8.1 ? ?
8.2 ? ?
8.3 ? ?
8.4 ? ?
8.5 ? ?
8.6 ? ?
8.7 ? ?
8.8 ? ?
8.9 ? ?
9.0 ? ?

PART 3 - COMPUTATIONAL WORKFLOW

LAST STEP: POSTPROCESSING
▸ After we obtained all data points, we plot the results and find crossing.

▸ For this step, we often use separate plotting scripts or graphical user interface (GUI).

very often using
“eye-norm”

PART 3 - COMPUTATIONAL WORKFLOW

WORKFLOW SUMMARY
write configuration file

run simulation

read results

postprocessing

PART 3 - COMPUTATIONAL WORKFLOW

WHAT COULD BE THE PROBLEMS WITH THIS WORKFLOW?
1. Time consuming

‣ It requires a lot of user input - many manual steps

2. Keeping log of all steps that were run and in what order

‣ I clicked here, then I changed that, then I fixed that…

3. Difficult to re-execute automatically

4. Separate postprocessing scripts

‣ Every group has their own scripts with different dependencies

5. Sharing the exact workflow

6. Reproducibility

7. Very difficult to automate

8. Very steep learning curve

UBERMAG
PART 4!"#$%&'

PART 4 - UBERMAG

UBERMAG

“… provides Python interface to OOMMF
and mumax3 (for now), exposes

micromagnetic simulations to Python’s
scientific ecosystem, and embeds them into

Jupyter notebook.”

PART 4 - UBERMAG

WHY DID WE CHOOSE PYTHON?
▸Modern programming language

▸ The language core is easy to read and easy
to learn

▸ Increasingly popular in software engineering

▸ The most popular in computational and data
science

▸ Very well documented and well supported

▸ Interpreted language

▸ www.python.org Source: https://towardsdatascience.com

Python

http://www.python.org
https://towardsdatascience.com

PART 4 - UBERMAG

SCIENTIFIC PYTHON ECOSYSTEM
▸ numpy: linear algebra

▸ scipy: numerical analysis

▸matplotlib: 2d (and some 3d) plotting

▸ pandas: big data for Python

▸ scikit-learn: machine learning

▸ Jupyter Notebook

▸No need to reinvent the wheel.

PART 4 - UBERMAG

JUPYTER
▸Executable document

▸Text, equations, images, code, and results in a single document

▸Easily shared

▸Easily reproducible

▸Hosted in web browser

▸Can be run in the cloud (Binder)

▸www.jupyter.org

http://www.jupyter.org

DEMO
PART 5!"#$%&'

SUMMARY
PART 6!"#$%&'

PART 6 - SUMMARY

WHAT ARE THE BENEFITS OF USING UBERMAG?
▸ Ability to drive micromagnetic simulations from Python

▸ Scriptability of computational studies

▸ Use of the Python ecosystem for computational and data science (numpy, scipy,
pandas, …)

▸ Integration with Jupyter Notebook

▸ Rich media representation of equations, meshes, fields

▸Widgets to explore data sets interactively in notebook

▸ Easier reproducibility: Notebook contains complete simulation study

▸ Sharing of interactive documents through MyBinder

PART 6 - SUMMARY

COMPUTER SCIENCE PERSPECTIVE ON THE USER INTERFACE
▸ Python libraries created are a Domain Specific Language (DSL) for micromagnetic

science

▸ This DSL is embedded in general purpose programming language (Python)

▸More powerful than (i) hard coded parameters, or (ii) config files

▸ But also high complexity: users can combine library functions in all possible ways

▸ Framework to include more micromagnetic computational solvers (for example
mumax3, micromagnum, fidimag)

▸ Publication: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational
science: A domain specific language for OOMMF embedded in Python. AIP
Advances 7, 56025 (2017). https://doi.org/10.1063/1.4977225

http://mumax.github.io
http://micromagnum.informatik.uni-hamburg.de
http://computationalmodelling.github.io/fidimag/
https://doi.org/10.1063/1.4977225

PART 6 - SUMMARY

WORKSHOPS
▸ Generally well received

▸ Scientists without programming experience struggle with Python in Notebook
setup: many new concepts at the same time

▸ Ubermag in the cloud (JupyterHub, MyBinder) very effective for workshop delivery

PART 6 - SUMMARY

RESOURCES
▸Website: ubermag.github.io

▸ How to start:

▸ Ubermag YouTube channel

▸Workshop repository: https://github.com/ubermag/workshop

▸ Publication: M. Beg, R. A. Pepper, and H. Fangohr. User interfaces for computational
science: A domain specific language for OOMMF embedded in Python. AIP
Advances 7, 56025 (2017). https://doi.org/10.1063/1.4977225

!"#$%&'

http://ubermag.github.io
https://github.com/ubermag/workshop
https://doi.org/10.1063/1.4977225

PART 6 - SUMMARY

ACKNOWLEDGEMENTS
▸ Contributors: Marijan Beg, Martin Lang, Sergii Mamedov, Ryan A. Pepper, David Cortés-Ortuño, Thomas

Kluyver, Hans Fangohr

▸ Financial support:

▸OpenDreamKit Horizon 2020, European Research Infrastructures project (#676541),

▸ EPSRC’s Skyrmion Programme Grant (EP/N032128/1),

▸ EPSRC's Centre for Doctoral Training in Next Generation Computational Modelling, (#EP/L015382/1), and

▸ The Gordon and Betty Moore Foundation through Grant GBMF #4856, by the Alfred P. Sloan Foundation
and by the Helmsley Trust.

