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Who am I
I am an applied mathematician with interests in modelling and controlling the
dynamics of certain phenomena appearing in real-life situations.

I usually work with partial differential equations or interacting particle systems
and consider applications which have a multi-scale nature or can be described
using a hierarchy of models.

Falling liquid films

Control development using a hierarchy
of models. (today’s talk)
Developing models with efficient
control as a goal.

Pedestrian dynamics

Inference and control considering the
interplay between agent based models
(experimental data) and PDE models
crowds
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Outline of this talk

Motivation and hierarchy of models

Control of weakly nonlinear models

Controlling long-wave models

Application of control strategies to the full model

Discussion
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Falling liquid films
Thin films flowing down an inclined plane are an everyday phenomenon

Industrial applications:

- Coating: prefer smooth interface

- Heat transfer: enhanced by waves

Images from Falling Liquid Films, Kalliadasis et al. 2012, Springer
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Falling liquid films
Thin films flowing down an inclined plane are an everyday phenomenon

Under certain circumstances, the flat
solution is unstable and travelling waves
appear:

Images from Falling Liquid Films, Kalliadasis et al. 2012, Springer
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Falling liquid films
Thin films flowing down an inclined plane are an everyday phenomenon

...And the film can evolve into a chaotic
solution:

Images from Falling Liquid Films, Kalliadasis et al. 2012, Springer
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Our goal

Use reduced order models to develop controls that suppress chaotic
behaviour and drive the system to any desired state.
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Control methodology and
hierarchy of models
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Models and control methodology

Thin film flows are modelled using the Navier–Stokes equations:

R (ut + uux + vuy ) = −px + 2 + ∆u,

R (vt + uvx + vvy ) = −py − 2 cot θ + ∆v ,

ux + vy = 0,

with appropriate boundary conditions at the interface y = h(x , t).

The controls are applied via same-fluid
suction and injection at the wall y = 0

u = 0 and v = F (x , t).

v = F (x , t)

x

y

y = h(x , t)

Problem:

Computationally expensive: parameter exploration and/or control design is
prohibitively time consuming.
⇒ Explore reduced order models!
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Exploring the long-wave nature of the problem

The thickness h∗0 of a falling liquid film is usually small when compared to the
domain length L.

⇒ Can define a small parameter ε =
h∗0
L , with which we

rescale the equations and derive1 two long-wave models by:

- asymptotic expansions (Benney equation)

- Galerkin expansion of u (weighted-residual system).

Both are good low-order approximations of falling liquid films and agree with
the Navier–Stokes equations regarding the critical parameters for instability.

Long-wave models are highly nonlinear PDEs

- complex dynamics - impossible to obtain analytical results
- very stiff PDEs in certain parameter regimes

1
For details on the derivation of the long-wave models, see [Thompson et al, JFM, 2016].
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Weakly nonlinear analysis

Further asymptotic analysis leads to weakly nonlinear models. These describe
the evolution of a small perturbation u to a flat interface, h(x , t) = 1, close to
the critical value for instabilities:

h(x , t) = 1 + εu(x , t), F (x , t) = ε2f (x , t).

After changing to a moving frame and rescaling to a periodic x ∈ [0, 2π] do-
main, we obtain the controlled Kuramoto-Sivashinsky (KS) equation:

ut + νuxxxx + uxx + uux = f (x , t),

which lives in a periodic domain x ∈ [0, 2π] and where ν =
( 2π

L

)2.

The KS equation is a “simple" PDE

Perfect environment for analytical results: I develop the control methodology
as best as possible here, and propagate it back through the hierarchy.
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Summary

Navier Stokes equations h(x , t), u(x , y , t), F (x , t)

Weighted residual model h(x , t), q(x , t), F (x , t)

asymptotic expansions

Benney equation h(x , t), F (x , t)

Kuramoto–Sivashinsky equation
u(x , t), f (x , t),

h(x , t) = 1 + εu(x , t)

weakly nonlinear analysis

Question:

Can we design controls for the simplest models and build up on these to
create efficient controls for the full system?
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Summary
KS: O(seconds) WR: O(minutes) DNS: O(800 CPU hours)

See R. Cimpeanu, SNG, D.T. Papageorgiou, arXiv:2008.12746 (2020)

Question:

Can we design controls for the simplest models and build up on these to
create efficient controls for the full system?
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Control of the KS equation

Navier–Stokes
equations

Long-wave
models

Weakly nonlinear
models

SNG, M. Pradas, S. Kalliadasis, D.T. Papageorgiou, G.A. Pavliotis, Phys Rev E 92:022912 (2015)
SNG, D.T. Papageorgiou, G.A. Pavliotis, IMA J. Appl. Math. 82, 158-194 (2017)
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The Kuramoto-Sivashinsky equation

The uncontrolled KS equation in a periodic domain x ∈ [0, 2π] is

ut + uux + νuxxxx + uxx = 0, ν =
2π
L
.

2
Tadmor 1986, Kevrekidis et al 1990, Otto 2009
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The Kuramoto-Sivashinsky equation

The uncontrolled KS equation in a periodic domain x ∈ [0, 2π] is

ut + uux + νuxxxx + uxx = 0, ν =
2π
L
.

The zero solution is linearly unstable:

ut + uux + νuxxxx + uxx = 0

u(x , t) ∼ eikx+λt ⇒ λ(k) = −νk4 + k2

0 2 4 6 8 10 12
−100

−50

0

50

k

λ
(k
)

decreasing ν

So, without the nonlinear term, the solutions would grow exponentially!

2
Tadmor 1986, Kevrekidis et al 1990, Otto 2009
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The Kuramoto-Sivashinsky equation

The uncontrolled KS equation in a periodic domain x ∈ [0, 2π] is

ut + uux + νuxxxx + uxx = 0, ν =
2π
L
.

Nonlinear term guarantees bounds on the energy of solutions2

⇒ existence of steady states and travelling wave solutions
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Steady state
ν = 0.1, µ = δ = 0

Travelling wave
ν = 0.01, µ = δ = 0
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,
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Chaotic solution
ν ≈ 9× 10−4

2
Tadmor 1986, Kevrekidis et al 1990, Otto 2009
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The Kuramoto-Sivashinsky equation

The uncontrolled KS equation in a periodic domain x ∈ [0, 2π] is

ut + uux + νuxxxx + uxx = 0, ν =
2π
L
.
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Red: Travelling waves, Blue: Steady states

2
Tadmor 1986, Kevrekidis et al 1990, Otto 2009
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Controlled KS equation

We use point actuated controls:

ut + ν∂4
x u + ∂2

x u + uux =
m∑

i=1

bi (x)fi (t) v = F (x , t)

x

y

y = h(x , t)

where bi (x) = δ(x − xi ), fi (t) are the control rules to be determined and m is
the number of control actuators.
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Controlled KS equation

And discretise using spectral methods:

ut − Au + N(u, u) = BF
v = F (x , t)

x

y

y = h(x , t)

where A = diag(−νk4 + k2), Bkl =
∫ 2π

0 bl (x)eikx dx , and where N and F
discretise the nonlinear term and the controls.
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x

y

y = h(x , t)

where A = diag(−νk4 + k2), Bkl =
∫ 2π

0 bl (x)eikx dx , and where N and F
discretise the nonlinear term and the controls.

Proposition [Gomes et al, IMA J. Appl. Math., 2016]

Let ū be a linearly unstable steady state or travelling wave solution of the KS
equation and let 2l + 1 be the number of unstable eigenvalues of the system
ut = Au, i.e.,

l + 1 ≥ 1√
ν
> l.

If m = 2l + 1 and there exists a matrix K ∈ Rm×m such that all of the
eigenvalues of the matrix A + BK have negative real part, then the state
feedback controls F = K (u − ū) stabilise ū.
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Sketch of the proof

- Write u = ū − v and obtain controlled equation for v :

vt + νvxxxx + vxx + vvx + (ūv)x =
m∑

i=1

bi (x)fi (t)

- Stabilise zero solution of equation for v :

? Discretise this equation

dv
dt

= Av + N(v , v) + G(ū, v) + BF ,

? Stabilise the linear operator: choose F = Kv = K (u − ū) where K
is such that the eigenvalues of A + BK have negative real part.
in fact, eigenvalues need to be smaller than − inf |ūx |

2

? Use a Lyapunov argument and bounds of the solutions to show
these controls stabilise the full equation.
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Results and discussion
The KS equation is solved using spectral methods in space and a second
order BDF (IMEX) scheme to time-step.

- Flat solution for ν = 0.001 zero

- Steady state for ν = 0.1115: uncontrolled solution (left), controlled to a
chosen steady state (middle) and controls applied (right).

0 1 2 3 4 5
−5

0

5

t

f
i(
t)

- Travelling wave for ν = 0.01 Travelling wave

- The controls are robust to uncertainty in the parameters

? wrong number of unstable modes/controls Video
? wrong value of ν Video

For the videos in this slide please see this link.
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Control of long-wave models

Navier–Stokes
equations

Long-wave
models

Weakly nonlinear
models

A.B. Thompson, SNG, G.A. Pavliotis, D.T. Papageorgiou, Phys Fluids 28:012107 (2016)
For videos in this section please contact me
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Long-wave models

Long-wave models consist of a mass
conservation equation

ht + qx = F (x , t),

coupled to an equation for q(x , t):

v = F (x , t)

x

y

y = h(x , t)

- Benney equation

q(x , t) = h3

3

(
2− 2hx cot θ − hxxx

C

)
+ R

(
8h6hx

15 −
2h4F

3

)
- weighted-residual model

2
5 Rh2qt + q = h3

3

(
2− 2hx cot θ − hxxx

C

)
+ R

(
18q2hx−34hqqx

35 + hqF
5

)
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From KS to long-wave models

From the previous results, controls should be of the form

F (x , t) = F(h(x , t)− H(x , t))

where H is the desired state and F is some function.

I consider 3 types of controls:

Case 1: Observe h everywhere and apply controls everywhere

Case 2: Observe h everywhere and apply controls at finite number of points

- Note that in the weighted residuals model, this requires
observation of h and q everywhere.

Case 3: Observe h and apply controls at a finite number of points

Numerical considerations

Case 1 is easy, although it already exhibits a stiff behaviour.
Cases 2 and 3 involve approximations of δ-functions and the numerical
discretisation is no longer sparse.
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Numerical interlude

Both long-wave models are highly nonlinear and stiff. The numerical solu-
tions presented here were solved by
[-] either spectral discretisation or finite differences in space
[-] 2nd order BDF scheme (IMEX) in time (this section) or adaptive time-stepping
using MATLAB’s ode15s (next section)
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⇒ Developed adaptive grid methods to overcome this:

Location of control actuators
requires small spatial grid.

Similar level of accuracy with
computational work focused
only on important regions.
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gridpoints to achieve
error of 2× 10−2.

5-fold improvement in
CPU time
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Stability of the uniform state - Case 1
We use proportional controls

F (x , t) = −α [h(x , t)− 1] , α ≥ 0,

and it is possible to perform linear stability analysis.

From the Benney equation, we deduce that we need α ≥ αB =
16C(R− 5

4 cot θ)2

75 .
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The weighted-residual model has two eigenvalues:
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α = 0, α = αB Video
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Case 2 - Pole placement with full observations
This is equivalent to the controls employed in the KS equation. We use

F (x , t) =
M∑

m=1

bm(x)fm(t),

with the fm proportional to h − 1: F = BK (h − 1).

To guarantee linear stability
we employ the LQR algorithm, which computes K while minimising a given
cost functional.

For the Benney equation, we compute K directly. Video
(Controls sometimes work in the weighted-residual model.)

LQR for the weighted-residual model requires observations of both h and q.

Estimate for q Maximum eigenvalue
Observe q −5.62× 10−2

Estimate q = 2
3 −5.09× 10−3

Estimate q = 2h3

3 −5.64× 10−2
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Stability of the uniform state - Case 3

We now consider controls of the form

F (x , t) =
M∑

m=1

bm(x)fm(t),

where fm(t) are to be determined from P observations of h(x , t):

yp(t) = (h(xp, t)− 1) dx , p = 1, . . . ,P.

If P = M, we choose xp = xm − φ, i.e., fm(t) = −α(h(xm − φ, t) − 1). When
bm(x) = δ(x − xm), we can write an eigenvalue problem analogous to Case 1.

Benney equation Weighted residual model
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Control of the full model

Navier–Stokes
equations

Long-wave
models

Weakly nonlinear
models

R. Cimpeanu, SNG, D.T. Papageorgiou, Active control of liquid film flows: beyond reduced-order models,
arXiv:2008.12746 (2020)
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Linear stability of the full system
Linear stability of the flat solution in the 2D Navier–Stokes equations (Orr–
Sommerfeld problem) indicates that when

F (x , t) = −α[h(x , t)− 1], α ≥ 0,

are applied to the full system...

R
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√

α

Benney

Weighted-residual
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20

40
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... the values of α that stabilise the flat solution for the long wave models will
do so for the full system too.
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Direct Numerical Simulations

To validate the theoretical results and for nonlinear computations, we use the
Gerris Flow Solver, a highly versatile volume-of-fluid package, designed with
multiphisics problem solving capabilities.
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Effect of controls in the full model

Direct application of the controls developed for the long-wave models in the
Navier–Stokes equations is not feasible.

Controls applied to an aqueous-glycerol solution.

Left: stability regions for two values of h∗0 and different number of controls.
Right: Controlled solution for h∗0 = 150µm: R ≈ 28, C = 0.0018, θ = π

3 ,
M = 5 and α = 0.7.

25 / 30



Effect of controls in the full model

Direct application of the controls developed for the long-wave models in the
Navier–Stokes equations is not feasible.

Controls applied to an aqueous-glycerol solution.

Left: stability regions for two values of h∗0 and different number of controls.
Right: Controlled solution for h∗0 = 150µm: R ≈ 28, C = 0.0018, θ = π

3 ,
M = 5 and α = 0.7.

25 / 30



Effect of controls in the full model

Comparison of the effect of controls in the model and DNS.

Top: Horizontal velocity and bottom: vertical velocity, for
Left: model, middle: DNS, and right: difference between the two.

Full control Point actuated Steady Pattern Travelling pattern 1
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Final remarks
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Summary

I presented a feedback control methodology applicable to a hierarchy of mod-
els for falling liquid films.

- Theoretical results proved for weakly nonlinear models

- Validity of the results is shown via extensive numerical simulations
across the whole hierarchy of models.

- Controls can be applied everywhere or at discrete locations, and can
stabilise any desired state.
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Some extensions
Similar results can be obtained in the lowest rung of the hierarchy2:

- when including other physical effects
such as electric fields or dispersion

- for the two-dimensional KS equation

Current work includes connections between long-wave models and DNS,

- using temperature as the control3

- using electric fields

- Incorporating data from higher order models into controls developed on
lower rungs

- Use the above to incorporate observations from experiments into
real-time control.

2
R.J. Tomlin, SNG, et al, SIAM J Appl Dyn Sys 2019, R.J. Tomlin, SNG, IMA J. Appl. Math. 2019

3
A.B.Thompson, SNG, F. Denner, M.C. Dallaston, S. Kalliadasis, J. Fluid Mech 2019
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Thank you for your attention!

Susana N. Gomes

https://warwick.ac.uk/fac/sci/maths/people/staff/gomes

susana.gomes@warwick.ac.uk
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