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Lecture Outline

Systems of Linear Difference Equations
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Systems of Linear Difference Equations

Many empirical economic models involve
simultaneous time series for several different variables.

Consider a first-order linear difference equation
Xe+1 — Aexe = i

for an n-dimensional process T > t — x; € R”,
where each matrix A; is n x n.

We will prove by induction on t that for t =0,1,2,...

there exist suitable n x n matrices P; (k=0,1,2,...,t)
such that, given any possible value of the initial state vector xq
and of the forcing terms f; (t =0,1,2,...),

the unique solution can be expressed as

t
xt = Pt oxp + Zk_l L PE)

The proof, of course, will also involve

deriving a recurrence relation for these matrices.
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Early Terms of the Matrix Solution

Because xg = P 0xg = Xo,
the first term is obviously Pg g = | when t = 0.

Next x; = Agxg + fop when t =1
implies that P o = Ag, P11 =L

Next, the solution for t = 2 is
x2 = A1xy + f1 = AjAgxg + Asfp + f;
This formula matches the formula
t
xt = Pt oxo + Zk:l % D)

when t = 2 provided that:

> P> o= AjA;
> Py =Ay;
> Poo=1.
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Matrix Solution

Now, substituting the two expansions
t
xt = Peoxo+ D 1 Peafi1
t+1
and xer1 = Prrioxo + e Periafet
into both sides of the original equation x;11 = A;x; + f; gives

t+1

P:i10x0 + Zk_l Peir1fe1

t
=A; (Pt,oxo =+ Zk:l Pt,kfk—l) + f;

Equating the matrix coefficients of xg and of each f;_;
in this equation implies that for general t one has

Pt+1’k = Atpt,k for k = 0, 1, .ot with Pt+17t+1 =1
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Matrix Solution, Il
The equation Py, = APy for k =0,1,...,t implies that

Pio = Ai—1-Ai2---Ag when k=0
P:x = Ar1-Aro---Ar when k=1,2,...,t

or, after defining the product of the empty set of matrices as |

t—k
Pew=1]_, Acs

Inserting these into our formula

t
x: = Pt oxo + Zk_l Pifi_1

implies that
( t A ) t t—k A f
o= (T, Ao+ 0 (T A 6
t s—p S 0 k=1 e—1 tTS k—1
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Complementary Solutions to the Homogeneous Equation

We are considering the general first-order linear difference equation
Xer1 — Aexe = i

in R", where each A; is an n X n matrix.

The associated homogeneous equation takes the form
Xt — Atxt_]_ =0 (for all t € N)

Its general solution is the n-dimensional linear subspace
of functions N > t — x; € R" satisfying

Xy = (H:Zl As> xo (for all t € N)

where xg € R” is an arbitrary constant vector.
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From Particular to General Solutions
The homogeneous equation takes the form

X¢41 — At‘xt =0
An associated inhomogeneous equation takes the form
Xe+1 — Aexe = f;

for a general vector forcing term f; € R”.

Let xP denote a particular solution of the inhomogeneous equation
and x@ any alternative general solution of the same equation.

Our assumptions imply that, for each t = 1,2,..., one has
xt+1 AxxP =f, and xf+1 —AxC =T,
Subtracting the first equation from the second implies that
XtG+1 —Xf+1 Ac(x{ —x;) =0

This shows that x! := x& — x? solves the homogeneous equation.
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Characterizing the General Solution

So the general solution x¢

of the inhomogeneous equation x;1 — Ax; = f;
with forcing term f; is the sum x + x! of

> any particular solution xF of the inhomogeneous equation;

> the general complementary solution x}/

of the homogeneous equation x;y1 — Aix: = 0.
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Linearity in the Forcing Term

Theorem
Suppose that xf and yf are particular solutions
of the two respective difference equations

Xty1 — Aexe—1 =dy and  yrp1 — Aryro1 = e

Then, for any scalars o and 3,
the linear combination zf = axf + Byf is a particular solution
of the equation z;11 — Az;—1 = ad; + fe;.

This can be proved by routine algebra.

Consider any equation of the form x;y; — Aix;—1 = f;
whose right-hand side is a linear combination f; = >~} _; akff
of the n forcing vectors (fi, ..., f}).

The theorem implies that a particular solution
is the corresponding linear combination x£ = Y7 a,xFk
of particular solutions to the n equations x;11 — Atxs—1 = fé‘.
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Constant Coefficient Matrix
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The Autonomous Case

The general first-order equation in R”
can be written as x¢11 = F¢(X¢)
where T x R" 3 (t,x) — F(x) € R".

In the autonomous case, the function (t,x) — F:(x)
reduces to x — F(x), independent of t.

In the linear case with constant coefficients,
the function x — F(x) takes the affine form F(x) = Ax + f.

That is, x¢y1 = Axy + f.

In our previous formula, products like H At s
reduce to powers At—K,

Specifically, Py = A~ k where A® = 1.
The solution to x;11 = Ax; + f is therefore

_ At t t—k
_Axo+zk:1A f
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Summing the Geometric Series
Recall the trick for finding s; ;=1+a+a*>+---+at !
is to multiply each side by 1 — a.

Because all terms except the first and last cancel,
this trick yields the equation (1 — a)s; = 1 — a*.

Hence s; = (1 — a)~ (1 — a*) provided that a # 1.

Applying the same trick to S; ;=1 + A + A% 4 ... 4 A1
yields the two matrix equations (I — A)S; =1 — A" = S;(1 — A).

Provided that (I — A)~! exists,

we can pre-multiply (I — A)S; =1 — A?

and post-multiply I — Af = S;(1 — A)

on each side by this inverse to get the two equations
Se=(1-A)"11-A)=(1-AH1-A)"!

So the previous solution x; = Afxg + >} _; AT"¥f reduces to
x: = Afxg + S:f = Afxg + (I — A (1 — A)f
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Some Particular Solutions
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First-Order Linear Equation with a Constant Matrix
Recall that the solution
to the general first-order linear equation x; — Ayx;—1 = f;
takes the form

Xe = (H::1 At_5> Xo + 22:1 (H:_: At—s) i1

From now on, we restrict attention
to a constant coefficient matrix A; = A, independent of t.

Then the solution reduces to
t
xe=A%o+) AT
Indeed, this is easily verified by induction.

One particular solution, of course, comes from taking xg = 0,

implying that ,
Xy = Zs:l Atisfs_]_

Now we will start to analyse this particular solution

for some special forcing terms f;.
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Special Case

The special case we consider is when there exists
a fixed vector fo € R" \ {0} such that x; — Ayxe—1 = fr = u'f
for the discrete exponential or power function Zy > t — uf € R.

Then the particular solution satisfying xg = 0
is x; = S;fo where S; := "} _; pk"IAtK,

Note that
_ t k—1pt—k+1 kpt—ky _ At t
Se(A—pl) =3 (W TTATI kAR = AT -
We ignore the degenerate case when p is an eigenvalue of A.

Otherwise, when g is not an eigenvalue of A,
so A — ul is non-singular, it follows that

Se = (A" — ')A — )™
Then the particular solution we are looking for takes the form
xi = (A" — pf)f*

for the particular fixed vector f* := (A — ul)~1fo.
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Diagonalizing a Non-Symmetric Matrix
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Characteristic Roots and Eigenvalues

Recall the characteristic equation |A — Al| = 0.
It is a polynomial equation of degree n in the unknown scalar .

By the fundamental theorem of algebra,
it has a set {A1, \2,..., Ap} of n characteristic roots,
some of which may be repeated.

These roots may be real,
or appear in conjugate pairs A = a £ i € C where o, 8 € R.

Because the \; are characteristic roots, one has
n
A -\l = Ai— A
A-a=TT0, 00 -

When X solves |[A — Al| = 0, there is a non-trivial eigenspace E)
of eigenvectors x # 0 that solve the equation Ax = Ax.

Then X is an eigenvalue.
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Linearly Independent Eigenvectors

In the matrix algebra lectures, we proved this result:

Theorem

Let A be an n x n matrix,

with a collection A1, A2, ..., Am of m < n distinct eigenvalues.
Suppose the non-zero vectors ui, uy, ..., Uy in C"

are corresponding eigenvectors satisfying
Auk:)\kuk for k = ].,2,...,!7’7

Then the set {u1,uy,...,un} must be linearly independent.

We also discussed similar and diagonalizable matrices.
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An Eigenvector Matrix

Suppose the n x n matrix A has the maximum possible number
of n linearly independent eigenvectors, namely {uj}J'-’Zl.

A sufficient, but not necessary, condition for this
is that |[A — Al| = 0 has n distinct characteristic roots.

Define the n x n eigenvector matrix V = (u;)7_;

whose columns are the linearly independent eigenvectors.

By definition of eigenvalue and eigenvector,

for j =1,2,...,n one has Au; = \ju;.

The j column of the n x n matrix AV is Au;, which equals Aju;.

But with A := diag(\1, Ao, ..., An),
the elements of A satisfy (), = djA;.

So the elements of VA satisfy

(VA); =D (V)dighy = (V)ids = Ai(wy); = (Auwy);

It follows that AV = VA because all the elements are all equal.
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Diagonalization

Recall the hypothesis that the n x n matrix A
has n linearly independent eigenvectors{uj}le.

So the eigenvector matrix V is invertible.
We proved on the last slide that AV = VA.
Pre-multiplying this equation by V™1 yields V"*AV = A,
which gives a diagonalization of A.
Furthermore, post-multiplying AV = VA by the inverse matrix V!
yields A = VAV,
This is a decomposition of A into the product of:
1. the eigenvector matrix V,
2. the diagonal eigenvalue matrix A;

3. the inverse eigenvector matrix V1.
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A Non-Diagonalizable 2 x 2 Matrix

Example
The non-symmetric matrix A = <8 (1)> cannot be diagonalized.

-2 1

— )2
AR

Its characteristic equation is 0 = |A — \l| = ’

It follows that A = 0 is the unique eigenvalue.

. . x1\ (0 1\ /x1) [x
The eigenvalue equation is 0 <x2> = <0 0) <x2> = <0>
or xp = 0, whose only solutions take the form x, (1,0)".

Thus, every eigenvector is a non-zero multiple
of the column vector (1,0)".

This makes it impossible to find
any set of two linearly independent eigenvectors.
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A Non-Diagonalizable n x n Matrix: Specification
The following n x n matrix also has a unique eigenvalue,
whose eigenspace is of dimension 1.

Example

Consider the non-symmetric n x n matrix A
whose elements in the first n — 1 rows satisfy a;; = d; j_1
fori=1,2,...,n—1 but whose last row is 0.

Such a matrix is upper triangular, and takes the special form

010 0
0 01 0 0 |
_ . _ n—1 n—1
A=l : _< 0 03-1)
0 0O 1
0 0O 0

in which the elements in the first n — 1 rows and last n — 1 columns
make up the identity matrix.
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A Non-Diagonalizable n x n Matrix: Analysis

Because A — Al is also upper triangular,
its characteristic equation is 0 = |A — Al| = (=\)".

This has A = 0 as an n-fold repeated root.
So A = 0 is the unique eigenvalue.

The eigenvalue equation Ax = Ax with A =0
takes the form Ax = 0 or

n .
ozzjzlé,-l,-_lxj:x,-ﬂ (i=1,2,...,n—1)

with an extra nth equation of the form 0 = 0.

The only solutions take the form x; =0 for j =2,...,n,
with x; arbitrary.

So all the eigenvectors of A are non-zero multiples
of the first canonical basis vector e; = (1,0,...,0)".

This implies that there is just one eigenspace, of dimension 1.
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Lecture Outline

Uncoupling via Diagonalization
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Uncoupling via Diagonalization
Consider the matrix difference equation x; = Ax;_1 + f;
fort =1,2,..., with xqo given.
The extra forcing term f; makes the equation inhomogeneous
(unless f; = 0 for all t).

Consider the case when the n x n matrix A

has n distinct eigenvalues,

or at least a set of n linearly independent eigenvectors
making up the columns of an invertible eigenvector matrix V.

Define a new vector y; = V~x; for each t.

This new vector satisfies the transformed matrix difference equation
y: =V ix, =V (Ax, 1 +f:) = VTIAVY, | +e;

where e; denotes the transformed forcing term V~1f,.
The diagonalization V™AV = A reduces this equation
to the uncoupled matrix difference equation y; = Ay;_1 + e;

with initial condition yo = V™ 1xo.
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Transforming the Uncoupled Equations

Consider the uncoupled matrix difference equation y; = Ay;_1 + e;
where A = diag(A1, ..., Ap).

Note that, if there is any i for which \; =0,
then the solution y; = (y+)7_,
must satisfy y;; = e forall t =1,2,.. ..

So we eliminate all i such that A\; = 0,
and assume from now on that \; # 0 for all /.

This assumption ensures that A~ exists.

This allows us to define the transformed vector z; := A~ ty; where
At = [diag(\1, ..., \n)] = diag(\[ %, .. 0T = (MY)E

With this transformation, evidently

2 =Nty =N*(Ayr14+e) =Ny, 1+ A ter =201 +wy

where w; is the transformed forcing term A~ te;.
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The Decoupled Solution

The solution of z; = z;_1 + wy is obviously

t
Zy =29+ E W
s=1

Inverting the previous transformation z; = A~ y;, we see that

t
Yy = /\tZt =N (ZO + Zs:l W5>

But zg = yg and ws = A" ®eg, so one has
Y ¥ t t—s
Yt—/\yo—l-ZS:lA e

Now, each power A is the diagonal matrix diag(\, ..., \X).

So, for each separate component y;; of y;
and corresponding component wg; of wg,
this solution can be written in the obviously uncoupled form

_ Ay, ¢ Nt—S,,, . P —
Vi = (Ai) yoi + Zszl()\,) wsi (fori=1,2,...n)
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The Recoupled Solution

Finally, inverting also the previous transformation y; = V" 1x;,
while noting that e; = V~1f,, one has

xi = Vy; = VAtV 1xg + Z:Zl VAV,

as the solution of the original equation x; = VAV 1x, 1 + f;.
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Lecture Outline

Stability of Linear Systems
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Stationary States

Given an autonomous equation x¢+1 = F(X¢),
a stationary state is a fixed point x* € R”
of the mapping R” 5 x — F(x) € R".

It earns its name because if xs = x* for any finite s,
then x; =x* forall t =s,5+1,....

Wherever it exists, the solution of the autonomous equation
can be written as a function x; = ®;_s(xs) (t=s,s+1,...)
of the state xs at time s,

as well as of the number of periods t — s that the function F
must be iterated in order to determine the state x; at time t.

Indeed, the sequence of functions @4 : R” — R" (k € N)
is defined iteratively by ®x(x) = F(®x_1(x)) for all x.

Note that any stationary state x* is a fixed point
of each mapping ® in the sequence, as well as of ;1 = F.
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Local and Global Stability

The stationary state x* is:

» globally stable if ®4(xq) — x* as k — oo,
regardless of the initial state xq;
» locally stable if there is
an (open) neighbourhood N C R” of x*
such that whenever xg € N
one has ®,(xp) — x* as k — co.
We begin by studying linear systems,
for which local stability is equivalent to global stability.

Later, we will consider the local stability of non-linear systems.
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Stability in the Linear Case

Recall that the autonomous linear equation
takes the form x;11 = Ax; +d.

The vector x* € R” is a stationary state

if and only if x; = x* = x4y = x¥,

which is true if and only if x* = Ax* +d,

or iff x* solves the linear equation (I — A)x = d.

Of course, if the matrix | — A is singular,
then there could either be no stationary state,
or a continuum of stationary states.

For simplicity, we assume that | — A has an inverse.

Then there is a unique stationary state x* = (I — A)~d.
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Homogenizing the Linear Equation

Given the equation x;+1 = Ax; +d

and the stationary state x* = (I — A)~1d,

define the new state as the deviation y := x — x*
of the state x from the stationary state x*.

This transforms the original equation x;11 = Ax; +d to
Yer1 + X" =A(y: +x*) +d = Ay, + Ax* +d

Because the stationary state satisfies x* = Ax* +d,
this reduces the original equation x;11 = Ax; +d
to the homogeneous equation y¢+1 = Ayy,

whose obvious solution is y; = Atlyg.
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Stability in the Diagonal Case
Suppose that A is the diagonal matrix A = diag(\1, A2, ..., Ap).

Then the powers are easy:

n

At = AT =diag(\], )5, .. ML)

The “homogenized” vector equation y; = Ay;_1
can be expressed component by component as the set
yi,t:)\iyi,tfl (I: 1,27"'5,7)

of n uncoupled difference equations in one variable.

The solution of y; = Ay;_1 with yo =z = (z1,22,...,2s)
is then y; = (\Lz1, \ozo, ..., AL zp).

Hence y; — 0 holds for all yg if and only if, for i =1,2,...,n,
the modulus |\;| of each diagonal element \; satisfies |\;| < 1.

Recall that when A\ = o £ i3, the modulus is |\ := y/a? + 32.
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First Warning Example

1
Consider the 2 x 2 matrix A = <(2) 2)

The solution of the difference equation y; = Ay;_1
with yo = z = (21, z2) is then

(L o\ (@ (27t 0\ [(a\ _ (27'z
Ye=l0 2) \») "o 2t)\n) "\ 2
Then y; — 0 as t — oo provided that z, = 0.
But the norm ||y¢|| — +oo whenever z, # 0.
In this case one says that the solution y; = (272, 22)
exhibits saddle point stability because
> starting with z, = 0 allows convergence;

> starting with z # 0 ensures divergence.

This explains why one says that the n x n matrix A is stable
just in case Aty — 0 for all y € R".
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Second Example: The Fibonacci Equation

Consider the Fibonacci equation x;11 = x¢ + X¢—1.

This has a general solution of the form x; = AX] + B}
for arbitrary constants A B eR,
where \; = (1 ++5) and Xy = %( —5).

Because |A1| > 1 and |[\2] < 1,
this general solution also exhibits saddle point stability.
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A Condition for Stability

The solution y; = A'yg of the homogeneous equation y;1 = Ay,
is globally stable just in case Atyg — 0
or ||Atyp| — 0 as t — oo, regardless of yq.

This holds if and only if A* — 0,x,
in the sense that all n? elements of the n x n matrix At
converge to 0 as n — oo.

In case the matrix A
is the diagonal matrix A = diag(A1, A2, ..., Ap),
stability holds if and only if |\;| <1 fori=1,2,...,n.

Suppose the matrix A is the diagonalizable matrix VAV ™1,
where V is a matrix of linearly independent eigenvectors,
and the diagonal elements of the diagonal matrix A

are eigenvalues.

Then At = VA*'V~! — 0 if and only if At — 0,
which is true if and only if [\;| <1 fori=1,2,...,n.
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The Classic Stability Condition
Definition
The n x n matrix A is stable just in case, as t — o0, so
1. A! converges element by element to the zero matrix 0, ;

2. or equivalently, y; = Alyg — 0 for all yo € R".

Theorem
The n x n matrix A is stable if and only if
each of its eigenvalues \ (real or complex) has modulus |A| < 1.

We have already proved this result in case A is diagonalizable.

But the same stability condition applies
for a general n x n matrix A, even one that is not diagonalizable.

For such a general matrix we will only prove necessity — “only if".

Let \* denote the eigenvalue A\ whose modulus || is largest,
and let x* # 0 be an associated eigenvector.

In case [\*| > 1, the solution x; = Afx* = \*! x*

satisfies ||x¢| = |\*[]|x*|| > ||x*|| # 0, so A is unstable. O
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Lecture Outline

Stability of Non-Linear Systems

University of Warwick, ECO9A0 Maths for Economists, Day 7 Peter J. Hammond 41 of 46



Local Stability

Consider the autonomous non-linear system x¢11 = F(x;)
with steady state x*.

Let

Jx') = F(x) = (aF’)U (x')

9xj
denote the n x n Jacobian matrix of partial derivatives
evaluated at the steady state x*.

Theorem
Suppose that the elements of the Jacobian matrix J(x*)
are continuous in a neighbourhood of the steady state x*.

Let X denote the eigenvalue of J(x*) whose modulus is largest.

The system is locally stable about the steady state x*:

if I\ < 1; onlyif|\ <1.

In case |A| = 1, the system may or may not be locally stable.
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Complete Metric Spaces
Let (X, d) denote any metric space.
Definition
A Cauchy sequence (x,)pen in X is a sequence for which,

given any € > 0, there exists N, € N
such that m,n > N, = d(xm, xn) < €.

Definition
A metric space (X, d) is complete
just in case all its Cauchy sequences converge.

Example

Recall that one definition of the real line R

is as the completion of the metric space (Q, dp),

where QQ is the set of rational numbers,

equipped with the metric dy(r,r’) = |r — r/| for all r,r' € Q.

That is, (R, dr) is the smallest complete metric space
which includes the metric space (Q, dp).

University of Warwick, ECOA0 Maths for Economists, Day 7 Peter J. Hammond 43 of 46



Global Stability: Contraction Mapping Theorem

Definition

The function X 2 x — F(x) € X

is a contraction mapping on the metric space (X, d)
just in case there is a positive contraction factor K < 1
such that d(F(x), F(y)) < Kd(x,y) for all x,y € X.

Theorem
Suppose that X 3 x — F(x) € X is a contraction mapping
on the complete metric space (X, d).

Then for any xg € X
the process defined by x; = F(xt—1) for all t € N
has a unique steady state x* € X that is globally stable.
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lteration Yields a Cauchy Sequence

Because F : X — X is a contraction mapping
with contraction factor K, and x; = F(x;—1) for all t € N,
one has d(Xt+]_,Xt) = (:I(F(Xt-)7 F(Xt_]_)) < Kd(Xt,Xt_]_).

It follows by induction on t that d(x¢y1,x:) < K'd(x1, xp).

If n > m, then repeated application of the triangle inequality gives

d(Xm7Xn) < Zf;{nd(xm—‘rr—laxm—‘rr)
< YT K™ (xa, x0)
= %d(XhXo) < 15 Kd(Xl,XO)

Hence d(xm, xn) < € provided that K < ¢(1 — K)/d(x1, xo) or,
since InK <0, if m> (1/InK)[Ine(1 — K) — Ind(x1, x0)].

This proves that (x;):cy is a Cauchy sequence.
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Completing the Proof

Because (xt)ten is a Cauchy sequence,

the hypothesis that (X, d) is a complete metric space
implies that there is a limit point x* € X

such that x; — x* as t — oo.

Then, by the triangle inequality and the contraction property,

d(F(x*),x*) < d(F(x"), xe41) + d(xe41,x")
< Kd(x*,x¢) + d(xt41,x*) = 0

as t — oo, implying that d(F(x*),x*) = 0.

*

Because (X, d) is a metric space, it follows that F(x*) = x*,
so the limit point x* € X is a steady state.

On the other hand, if x € X is any steady state,

then d(x*,x) = d(F(x*), F(x)) < Kd(x*, X).

Hence (1 — K)d(x*,x) < 0 which, because K < 1,

implies that d(x*,x) < 0 and so X = x*. O
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