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First-Order Differential Equations

The typical first-order differential equation in one variable x is

ẋ =
dx

dt
= f (x , t)

The equation is autonomous just in case f is independent of t,
so it can be written as ẋ = f (x).

Typically one imposes an initial condition requiring x(s) = x̄s
at time s (not necessarily the earliest time).

Then any solution is a fixed function t 7→ x(t) that satisfies
the corresponding integral equation x(t) = x̄s +

∫ t
s f (x(u), u) du.

Picard’s method of successive approximations starts
with an arbitrary function t 7→ x (0)(t) satisfying x (0)(s) = x̄s .

Then it computes x (n)(t) = x̄s +
∫ t
s f (x (n−1)(u), u) du for n ∈ N.

If convergence occurs, the limit as n→∞ will be a solution.
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Right-Hand Side Independent of x
A special case occurs when the right-hand side f (x , t)
is independent of x .

Then the differential equation can be written as

dx

dt
= g(t)

Its solution can be written as the indefinite integral

x(t) =

∫
g(t)dt

Introducing an initial condition x(s) = x̄s
at a particular start time s
allows the solution to be written as the definite integral

x(t) = x̄s +

∫ t

s
g(τ)dτ

CHECK that this alleged solution
satisfies x(s) = x̄s and ẋ(t) = g(t) for all t ≥ s.
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Leibniz’s Rule for Differentiating an Integral

Consider the function F : R3 → R defined by

F (a, b, u) :=

∫ b

a
f (t, u)dt

Its three first-order partial derivatives are:

(i) F ′a = −f (a, u); (ii) F ′b = f (b, u); (iii) F ′u =

∫ b

a

∂

∂u
f (t, u)dt

Applying the chain rule, the total derivative

of the integral function y 7→ I (y) :=
∫ b(y)
a(y) f (t, y)dt satisfies

I ′(y) =
d

dy
F (a(y), b(y), y) = a′(y)F ′a + b′(y)F ′b + F ′u

= b′(y)f (b(y), y)− a′(y)f (a(y), y) +

∫ b(y)

a(y)

∂

∂y
f (t, y)dt
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Picard’s Method of Successive Approximations
The simplest first-order equation with constant coefficients
takes the form

ẋ(t) = ax(t), with x(0) given

It corresponds to the integral equation

x(t)− x(0) =

∫ t

0
ax(u) du for all t ≥ 0

Starting with even a very crude approximation
such as the constant function x (0)(t) ≡ x(0) for all t ≥ 0,
we can calculate a sequence t 7→ x (n)(t) (n ∈ N)
of successive approximations to a solution [0,∞) 3 t 7→ x(t) ∈ R
using, for all t ≥ 0, the iterative rule

x (n)(t)− x(0) =

∫ t

0
f (x (n−1)(u), u) du =

∫ t

0
ax (n−1)(u) du

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 7 of 94



Initial Three Iterations

Starting from x (0)(t) ≡ x(0), iterating once gives

x (1)(t)− x(0) =

∫ t

0
a x (0)(u) du = a x(0) t

Iterating a second time gives

x (2)(t)− x(0) =

∫ t

0
a x(0)(1 + au) du = a x(0) t + 1

2a
2 x(0) t2

Iterating a third time gives

x (3)(t)− x(0) =
∫ t
0 [a x(0) + a2 x(0) u + 1

2a
3 x(0) u2] du

= a x(0) t + 1
2a

2 x(0) t2 + 1
6a

3 x(0) t3
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Terms of the Sum

Each time we are adding one term to a sum.

So, starting with y (0)(t) ≡ x(0),
define the new incremental variable y (n)(t) := x (n)(t)− x (n−1)(t).

This implies that x (n)(t) = x(0) +
∑n

k=1 y
(k)(t).

Subtract x (n)(t)− x(0) =
∫ t
0 ax (n−1)(u) du

from x (n+1)(t)− x(0) =
∫ t
0 ax (n)(u) du

to obtain y (n+1)(t) =
∫ t
0 ay (n)(u) du.

Now we obtain successively

y (1)(t) =
∫ t
0 a x(0) du = a x(0) t

y (2)(t) =
∫ t
0 a2 x(0) u du = 1

2a
2 x(0) t2

y (3)(t) =
∫ t
0

1
2a

3 x(0) u2 du = 1
6a

3 x(0) t3

This suggests the induction hypothesis y (n)(t) =
1

n!
an x(0) tn.
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Constructing the Sum

The induction hypothesis y (n)(t) =
1

n!
an x(0) tn

and the relation y (n+1)(t) =
∫ t
0 ay (n)(u) du together imply that

y (n+1)(t) =
∫ t
0 a

1

n!
an x(0) un du =

1

n!
an+1 x(0)

∫ t
0 un du

=
1

n!
an+1 x(0)

1

n + 1
tn+1 =

1

(n + 1)!
an+1 x(0) tn+1

This confirms the induction hypothesis with n replaced by n + 1.

It follows that y (n)(t) =
1

n!
an x(0) tn for all n ∈ N

and then that x (n)(t) = x(0) +
∑n

k=1

1

k!
ak x(0) tk .
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Euler’s Number and the Exponential Function

Euler’s number was invented by Jacob Bernoulli in 1683.

Euler chose to denote it by e.

Recall that it is given by

e = 1 +
1

1!
+

1

2!
+

1

3!
+ . . . = lim

n→∞

(
1 +

1

n

)n

≈ 2.718281828

My late co-author Knut Sydsæter, as a cultured Norwegian,
recognized 1828 as the year
when their great playwright Henrik Ibsen was born.

So Knut remembered this 10 digit approximation
as “2.7 Ibsen Ibsen”.
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Full (??) Decimal Expansions of Some Important Numbers

1/3 = 0.333333333333333333333333333333333333333333p
2 = 1.4142135623730950488016887242096980785696718753769

e = 2.71828182845904523536028747135266249775724709369995

⇡ = 3.1415926535897932384626433832795028841971693993751

1
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The Exponential Function and Exponential Solution

The exponential function, which satisfies exp x = ex , satisfies

exp x = 1 +
x

1!
+

x2

2!
+

x3

3!
+ . . . = 1 +

∑∞

n=1

1

n!
xn = ex

As n→∞, the Picard approximate solution x (n)(t)
to the differential equation that we found earlier
converges to the infinite series

x(0) +
∑∞

k=1

1

k!
ak x(0) tk = x(0) exp(at) = x(0) eat
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General First-Order Affine Equation
The general first-order affine equation takes the form

ẋ(t) = a(t)x(t) + b(t)

for arbitrary integrable functions t 7→ a(t) and t 7→ b(t).

In the homogeneous case one has b(t) ≡ 0,
and the equation takes the linear form ẋ(t) = a(t)x(t).

Assuming that x > 0 for all t,
we can take logs and write the equation as

d

dt
ln x =

ẋ

x
= a(t)

After introducing the new variable y(t) := ln x(t),
the equation becomes ẏ = a(t) whose solution is obviously

y(t) = y(s) +

∫ t

s
a(τ)dτ
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Solution in the Homogenenous Case

Because x(t) = exp y(t), the solution for x is

x(t) = exp[y(t)] = exp[y(s)] exp
[∫ t

s a(τ)dτ
]

= x(s)αs(t)

where αs(t) denotes the integrating factor exp
[∫ t

s a(τ)dτ
]
.

In the special case of an autonomous equation
where a(τ) = a constant, one has

∫ t
s a(τ)dτ = a(t − s)

and so αs(t) = ea(t−s).

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 16 of 94



The Non-Homogenenous Case
The solution x(t) = x(s)αs(t)
to the homogeneous equation ẋ(t)− a(t)x(t) = 0
can be used to help solve the corresponding
non-homogeneous equation ẋ(t)− a(t)x(t) = f (t).

Indeed, consider the result of dividing
each side of this non-homogeneous equation

by the integrating factor αs(t) := exp
[∫ t

s a(τ)dτ
]

whose reciprocal is 1/αs(t) := exp
[
−
∫ t
s a(τ)dτ

]
.

Note that
d

dt

[
−
∫ t
s a(τ)dτ

]
= −a(t),

implying that
d

dt
[1/αs(t)] = −a(t)/αs(t) so, by the product rule

d

dt
[x(t)/αs(t)] = [1/αs(t)]ẋ(t)− [a(t)/αs(t)]x(t) = f (t)/αs(t)

for any solution of the equation ẋ(t)− a(t)x(t) = f (t).
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Solving the Non-Homogenenous Equation

Integrating each side of the equation
d

dt
[x(t)/αs(t)] = f (t)/αs(t)

over the interval from s to t gives us

∣∣t
s [x(u)/αs(u)] =

x(t)

αs(t)
− x(s)

αs(s)
=

∫ t

s

f (u)

αs(u)
du

The definition αs(t) = exp
[∫ t

s a(τ)dτ
]

implies that αs(s) = 1 and also αs(t)/αs(u) = αu(t).

Hence, multiplying each side by αs(t) gives the solution

x(t) = αs(t)
[
x(s) +

∫ t
s [1/αs(u)] f (u) du

]
= αs(t)x(s) +

∫ t
s αu(t) f (u) du

= exp
[∫ t

s a(τ)dτ
]
x(s) +

∫ t
s exp

[∫ t
u a(τ)dτ

]
f (u)du
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Linearity in the Forcing Term

Theorem
Suppose that xP(t) and yP(t) are particular solutions
of the two respective differential equations

ẋ(t)− a(t)x(t) = d(t) and ẏ(t)− a(t)y(t) = e(t)

Then, for any scalars α and β,
the equation ż(t)− a(t)z(t) = f (t) = αd(t) + βe(t)
has as a particular solution
the corresponding linear combination zP(t) := αxP(t) + βyP(t).

Consider any equation of the form ẋ(t)− a(t)x(t) = f (t)
where f (t) is a linear combination

∑n
k=1 αk f

k(t)
of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination

∑n
k=1 αkx

Pk(t)
of particular solutions to the n equations ẋ(t)− a(t)x(t) = f k(t).
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First-Order Linear Equation with a Constant Coefficient

Next, consider the equation ẋ(t)− ax(t) = f (t)
where the coefficient a of x(t) has become the constant a 6= 0.

The solution we found for the general case was

x(t) = exp

[∫ t

s
a(τ)dτ

]
x(s) +

∫ t

s
exp

[∫ t

u
a(τ)dτ

]
f (u)du

When a(t) = a, independent of t, this reduces to

x(t) = ea(t−s)x(s) +

∫ t

s
ea(t−u)f (u)du

We simplify further by choosing the initial time s = 0.

Then

x(t) = eatx(0) +

∫ t

0
ea(t−u)f (u)du
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First Special Case
An interesting special case occurs
when the forcing term f (t) is the exponential function t 7→ eµt .

Then the solution is

x(t) = eatx(0) +

∫ t

0
ea(t−u)+µudu = eat

[
x(0) +

∫ t

0
e(µ−a)udu

]

In the degenerate case when µ = a,
one has

∫ t
0 e(µ−a)udu =

∫ t
0 1du = t, so the solution collapses to

x(t) = eat [x(0) + t]

This solution can be written as x(t) = xH(t) + xP(t) where:

1. xH(t) = ξHeat with ξH := x(0) is a complementary solution
of the homogeneous equation ẋ(t)− ax(t) = 0;

2. xP(t) = ξPeatt with ξP := 1 is a particular solution
of the inhomogeneous equation ẋ(t)− ax(t) = eat .
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Non-Degenerate Case When µ 6= a

In the non-degenerate case when µ 6= a, one has

(µ− a)

∫ t

0
e(µ−a)udu = |t0e(µ−a)u = e(µ−a)t − 1

So the solution is

x(t) = eat

[
x(0) +

e(µ−a)t − 1

µ− a

]
= eatx(0) +

eµt − eat

µ− a

Again, this solution can be written as x(t) = xH(t) + xP(t) where:

1. xH(t) = ξHeat with ξH := x(0)− 1/(µ− a) is a solution
of the homogeneous equation ẋ(t)− ax(t) = 0;

2. xP(t) = ξPeµt with ξP := 1/(µ− a) is a particular solution
of the inhomogeneous equation ẋ(t)− ax(t) = eµt .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 23 of 94



Second Special Case
Another interesting special case occurs
when f (t) = treµt for some r ∈ N.

Then the solution x(t) = eatx(0) +
∫ t
0 ea(t−u)f (u)du becomes

x(t) = eatx(0)+

∫ t

0
ea(t−u)ureµudu = eat

[
x(0) +

∫ t

0
ure(µ−a)udu

]
In the degenerate case when µ = a, the solution collapses to

x(t) = eat
[
x(0) + |t0(r + 1)−1ur+1

]
= eat

[
x(0) + (r + 1)−1tr+1

]
This solution can be written as x(t) = xH(t) + xP(t) where:

1. xH(t) = ξHeat with ξH := x(0) is a solution
of the homogeneous equation ẋ(t)− ax(t) = 0;

2. xP(t) = ξPeattr+1 with ξP := (r + 1)−1

is a particular solution
of the inhomogeneous equation ẋ(t)− ax(t) = treat .
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Non-Degenerate Case When µ 6= a

In the non-degenerate case when µ 6= a, the solution is

x(t) = eat
[
x(0) +

∫ t

0
ure(µ−a)udu

]
= eat [x(0) + Ir (t)]

where Ir (t) :=
∫ t
0 ure(µ−a)udu.

In particular, I0(t) =
∫ t
0 e(µ−a)udu = (µ− a)−1[e(µ−a)t − 1].

Integrating by parts gives the first-order linear difference equation

Ir (t) =
∫ t
0 ure(µ−a)udu

= (µ− a)−1|t0ure(µ−a)u − r(µ− a)−1
∫ t
0 ur−1e(µ−a)udu

= (a− µ)−1
[
r Ir−1(t)− tre(µ−a)t

]

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 25 of 94



Solving the First-Order Linear Difference Equation
Let us divide each side of the difference equation

Ir (t) = (a− µ)−1
[
r Ir−1(t)− tre(µ−a)t

]
by the “summing factor”

∏r
k=1 k(a− µ)−1 = r !(a− µ)−r to get

Jr (t) :=
1

r !
(a− µ)r Ir (t)

=
1

r !

[
r(a− µ)r−1Ir−1(t)− (a− µ)−1tre(µ−a)t

]
=

1

(r − 1)!
(a− µ)r−1Ir−1(t)− 1

r !
(a− µ)r−1tre(µ−a)t

= Jr−1(t)− 1

r !
(a− µ)r−1tre(µ−a)t

This obviously implies that

Jr (t) = J0(t)−
∑r

k=1

1

k!
(a− µ)k−1tke(µ−a)t
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Solving the Differential Equation
Because J0(t) = I0(t) = (µ− a)−1[e(µ−a)t − 1], this implies that

Jr (t) = (µ− a)−1[e(µ−a)t − 1]−
∑r

k=1

1

k!
(a− µ)k−1tke(µ−a)t

But Jr (t) =
1

r !
(a− µ)r Ir (t), so

Ir (t) := r !(a− µ)−rJr (t)

= −r !(a− µ)−r−1[e(µ−a)t − 1]

−
∑r

k=1

r !

k!
(a− µ)k−r−1tke(µ−a)t

Then

x(t) = eat [x(0) + Ir (t)]
= eat

[
x(0) + r !(a− µ)−r−1

]
−r !(a− µ)−r−1eµt

[
1 +

∑r

k=1

1

k!
(a− µ)ktk

]
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Particular and General Solution

For the equation ẋ(t)− ax(t) = treµt with µ 6= a, the solution

x(t) = eat
[
x(0) + r !(a− µ)−r−1

]
− r !(a− µ)−r−1eµt

[
1 +

∑r

k=1

1

k!
(a− µ)ktk

]
can be written as x(t) = xH(t) + xP(t) where:

1. xH(t) = ξHeat with ξH := x(0) + r !(a− µ)−r−1

is a solution of the homogeneous equation ẋ(t)− ax(t) = 0;

2. xP(t) = ξP(t)eµt , where the polynomial

t 7→ ξP(t) := −r !(a− µ)−r−1
[

1 +
∑r

k=1

1

k!
(a− µ)ktk

]
of degree r in t is a particular solution
of the inhomogeneous equation ẋ(t)− ax(t) = treµt .
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Method of Undetermined Coefficients

A practical issue is finding what polynomial

t 7→ ξP(t) =
∑r

k=0
ξkt

k

of degree r (the power of t on the right-hand side)
makes ξP(t)eµt a particular solution
of the inhomogeneous differential equation ẋ(t)− ax(t) = treµt .

The coefficients (ξ0, ξ1, . . . , ξr ) of the polynomial
are undetermined
till we choose the associated polynomial t 7→ ξP(t)
to make ξP(t)eµt satisfy the differential equation.
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Determining the Undetermined Coefficients

For xP(t) = eµt
∑r

k=0 ξkt
k to solve ẋ(t)− ax(t) = treµt , we need

treµt = µeµt
∑r

k=0 ξkt
k + eµt

∑r
k=1 ξkkt

k−1 − aeµt
∑r

k=0 ξkt
k

= (µ− a)eµtξr t
r + eµt

∑r−1
k=0 [(µ− a)ξk + ξk+1(k + 1)] tk

First consider the non-degenerate case µ 6= a.

For k = r , this implies that (µ− a)ξr = 1, so ξr = (µ− a)−1.

For k = 0, 1, . . . , r − 1, it implies that (µ− a)ξk + ξk+1(k + 1) = 0
or that ξk = (a− µ)−1(k + 1)ξk+1, and so

ξk =
[∏r−1

j=k (a− µ)−1(j + 1)
]
ξr

=
r !

k!
(a− µ)k−rξr = − r !

k!
(a− µ)k−r+1

This matches our previous answer.
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Degenerate Case

In the degenerate case when µ = a,
the method of undetermined coefficients
explained on the previous slides does not work.

Instead, to solve ẋ(t)− ax(t) = treat ,
we introduce the new variable y(t) = e−atx(t).

Then ẏ(t) = e−at [ẋ(t)− ax(t)] = e−attreat = tr .

The solution to this differential equation
is y(t) = y(0) +

∫ t
0 urdu = y(0) + (r + 1)−1tr+1.

The solution to the original differential equation
is therefore x(t) = eaty(t) = eat

[
x(0) + (r + 1)−1tr+1

]
.

The polynomial in t that occurs in this solution
is now of degree r + 1 rather than r .
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Main Theorem

Theorem
Consider the inhomogeneous first-order linear differential equation

ẋ(t)− ax(t) = treµt , where a 6= 0 and r ∈ Z+.

There exists a particular solution of the form xP(t) = Q(t) eµt

where the function t 7→ Q(t) is a polynomial in t of degree:

I r in the regular case when µ 6= a;

I r + 1 in the degenerate case when µ = a.

The general solution takes the form x(t) = xP(t) + xC (t) where:

I xP(t) is any particular solution;

I xC (t) is any member of the one-dimensional linear space
of complementary solutions
to the corresponding homogeneous equation ẋ(t)− ax(t) = 0.
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The Autonomous Case

The autonomous case occurs
when the first-order affine equation takes the form

ẋ = ax + b

with the right-hand side independent of t.

The steady state at which ẋ(t) = 0 occurs when ax + b = 0,
and so at x∗ := −b/a.

Then the deviation y(t) := x(t)− x∗ of x(t)
from the steady state x∗ satisfies the homogeneous equation

ẏ(t) = ẋ(t) = ax(t) + b = a[y(t) + x∗] + b = ay(t)

Hence y(t) = eaty(0), implying that x(t) = x∗ + eat [x(0)− x∗].
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Stability

The steady state x∗ := −b/a is stable just in case, for all x(0),
the solution x(t) = x∗ + eat [x(0)− x∗]
satisfies x(t)→ x∗ as t →∞.

A necessary and sufficient condition for stability
is obviously that a < 0.
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Second-Order Equations with Constant Coefficients

A general second-order differential equation takes the form

ẍ(t) = F (ẋ(t), x(t), t)

To obtain a unique solution (if any solution exists),
one typically needs two initial conditions
such as x(s) = xs and ẋ(s) = ẋs at an initial time s.

The equation is autonomous just in case
it takes the form ẍ(t) = F (ẋ(t), x(t)), with F independent of t.

The equation is linear just in case
it takes the form ẍ(t) + a(t)ẋ(t) + b(t)x(t) = 0,
with F linear in (ẋ(t), x(t)).

The equation is linear with constant coefficients just in case
it takes the form ẍ(t) + aẋ(t) + bx(t) = 0.
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Characteristic Equation

We know that the first-order equation ẋ(t) + ax(t) = 0
has a solution of the form x(t) = x(0)eλt

where λ solves the characteristic equation λ+ a = 0.

So we look for solutions of the form x(t) = ξeλt

to the second-order equation ẍ(t) + aẋ(t) + bx(t) = 0.

Note that when x(t) = ξeλt ,
then ẋ(t) = λξeλt and ẍ(t) = λ2ξeλt .

So x(t) = ξeλt is a non-trivial solution (with ξ 6= 0) if and only if

0 = λ2ξeλt + aλξeλt + bξeλt = (λ2 + aλ+ b)ξeλt

and so, given that ξeλt 6= 0, if and only if λ is a root
of the characteristic equation λ2 + aλ+ b = 0.
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Characteristic Equation for an Equation of Order n

Definition
A homogeneous linear differential equation of order n
with constant coefficients takes the form∑n

k=0
ak

dk

dtk
x(t) = 0

Choose n so that the coefficient of the n derivative satisfies an 6= 0,
and so can be normalized to take the value an = 1.

Remark
A similar technique based on roots of the characteristic equation
applies to this nth order equation.

It implies that x(t) = ξeλt is a non-trivial solution
if and only if λ is a root of the characteristic equation∑n

k=0
akλ

k = 0
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Characteristic Roots of a Second-Order Equation

Consider the second-order equation ẍ + aẋ + b = 0.

One can factorize the quadratic function q(λ) := λ2 + aλ+ b
as q(λ) := (λ− λ1)(λ− λ2)
where λ1 and λ2 are the two roots of the equation q(λ) = 0.

As with the corresponding discussion
of second-order difference equations, there are three cases:

1. in case a2 > 4b, there are two distinct real roots λ1 and λ2
given by λ1,2 = −1

2a± 1
2

√
a2 − 4b.

2. in case a2 < 4b, there are two complex conjugate roots
given by λ1,2 = −1

2a± 1
2 i
√

4b − a2.

3. in case a2 = 4b, there are two coincident real roots
given by λ = −1

2a =
√
b.
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Case 1: Two Distinct Real Roots

In this case a2 > 4b, when the two characteristic roots
are λ1,2 = −1

2a± 1
2

√
a2 − 4b.

Because λ1 6= λ2, one has∣∣∣∣eλ10 eλ20

eλ11 eλ21

∣∣∣∣ =

∣∣∣∣ 1 1
eλ1 eλ2

∣∣∣∣ = eλ2 − eλ1 6= 0

and so eλ1t and eλ2t are two linearly independent solutions.

So in this case the homogeneous equation ẍ + aẋ + b = 0
has the general solution

x(t) = Aeλ1t + Beλ2t
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Case 2: Two Complex Conjugate Roots, I

In case a2 < 4b the two characteristic roots
are the complex conjugates λ1,2 = −1

2a± iθ,

with θ := 1
2

√
4b − a2.

Then x(t) = eλ1t = e−
1
2
ate iθt = e−

1
2
at(cos θt + i sin θt)

and x(t) = eλ2t = e−
1
2
ate−iθt = e−

1
2
at(cos θt − i sin θt)

are two different solutions, where θ 6= 0.

For any t such that sin θt 6= 0, one has∣∣∣∣eλ10 eλ20

eλ1t eλ2t

∣∣∣∣ =

∣∣∣∣ 1 1
eλ1t eλ2t

∣∣∣∣ = eλ2t − eλ1t = −2e−
1
2
at i sin θt 6= 0

It follows that eλ1t and eλ2t are two linearly independent solutions
in the complex plane C.
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Case 2: Two Complex Conjugate Roots, II

Focusing on solutions in the real line R,

we can consider e−
1
2
at cos θt and e−

1
2
at sin θt.

Again, for any t such that sin θt 6= 0, one has∣∣∣∣∣e−
1
2
a0 cos θ0 e−

1
2
a0 sin θ0

e−
1
2
at cos θt e−

1
2
at sin θt

∣∣∣∣∣ =

∣∣∣∣∣ 1 0

−1
2at cos θt e−

1
2
at sin θt

∣∣∣∣∣
= e−

1
2
at sin θt 6= 0

It follows that e−
1
2
at cos θt and e−

1
2
at sin θt are two linearly

independent real-valued solutions in the complex plane C.

The general solution of the homogeneous equation

is x = e−
1
2
at(A cos θt + B sin θt).
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Case 3: Two Coincident Real Roots
In this case a2 = 4b, and so

q(λ) = λ2 + aλ+ b = (λ+ 1
2a)2 = (λ−

√
b)2

The homogeneous equation ẍ(t) + aẋ(t) + bx(t) = 0
has one solution given by x = eλt where λ = −1

2a =
√
b.

To find a second linearly independent solution,
introduce the new variable y(t) := e−λtx(t).

Then ẏ(t) = e−λt ẋ(t)− λe−λtx(t) and so, when x = eλt , one has

ÿ(t) = e−λt ẍ(t)− 2λe−λt ẋ(t) + λ2e−λtx(t)
= e−λt [ẍ(t)− 2λẋ(t) + λ2x(t)]
= e−λt [λ2eλt − 2λ · λeλt + λ2eλt ] = 0

The obvious general solution to ÿ(t) = 0
satisfies ẏ(t) = constant and so y(t) = A + Bt = e−λtx(t).

Hence x(t) = (A + Bt)eλt is the general solution.
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 44 of 94



Lecture Outline

First-Order Differential Equations in One Variable
Introduction
Picard’s Method
General First-Order Affine Equation
Constant and Undetermined Coefficients
Stability in the Autonomous Case

Second-Order Differential Equations in One Variable
Introduction
The Inhomogeneous Equation
The Method of Undetermined Coefficients
Stability

First-Order Multivariable Differential Equations
Introduction
Prominent Examples and Stability Conditions
Autonomous Nonlinear Equations in Many Variables

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 45 of 94



The Inhomogeneous Equation
Consider next the inhomogeneous equation

ẍ(t) + a(t)ẋ(t) + b(t)x(t) = f (t)

with a non-zero forcing term on the right-hand side.

Suppose that y(t) and z(t) are both solutions, implying that

ÿ(t) + a(t)ẏ(t) + b(t)y(t) = f (t)
and z̈(t) + a(t)ż(t) + b(t)z(t) = f (t)

Subtracting the second equation from the first tells us that the
function xH(t) := y(t)− z(t) is a solution of the corresponding
homogenenous equation ẍ(t) + a(t)ẋ(t) + b(t)x(t) = 0.

So the general solution of ẍ(t) + a(t)ẋ(t) + b(t)x(t) = f (t)
is the sum xG (t) = xP(t) + xH(t) of:

I any particular solution xP(t) of the inhomogeneous equation;

I any function xH(t) in the two dimensional linear space
of solutions to the homogeneous equation.
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Linearity in the Forcing Term, I

Theorem
Suppose that xP(t) and yP(t) are particular solutions
of the two respective differential equations

ẍ(t) + a(t)ẋ(t) + b(t)x(t) = d(t)
and ÿ(t) + a(t)ẏ(t) + b(t)y(t) = e(t)

Then, for any scalars α and β, a particular solution of the equation

z̈(t) + a(t)ż(t) + b(t)z(t) = f (t) = αd(t) + βe(t) (∗)

is the linear combination zP(t) := αxP(t) + βyP(t).

Proof.
Verify the claimed solution
by inserting the specified linear combination zP(t),
together with its first two derivatives żP(t) and z̈P(t),
into the differential equation (∗).
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Linearity in the Forcing Term, II

Consider the equation ẍ(t) + a(t)ẋ(t) + b(t)x(t) = f (t)
whose forcing term f (t) is a linear combination

∑n
k=1 αk f

k(t)
of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination

∑n
k=1 αkx

Pk(t)
of particular solutions xPk(t) to the respective n equations

ẍ(t) + a(t)ẋ(t) + b(t)x(t) = f k(t) (k = 1, 2, . . . , n)
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A Newtonian Example, I
Newton’s law: force = mass × acceleration.

A force of 1 Newton, by definition, accelerates a mass of 1 kilogram
at the rate of 1 metre per second per second.

So we consider the equation ẍ(t) = f (t) whose solution t 7→ x(t)
is the position (in one dimension) of a 1 kilogram weight
that has been subjected to a force function t 7→ f (t).

Integrating once gives us the equation ẋ(t) = ẋ(0) +
∫ t
0 f (u)du.

Integrating a second time gives us the solution

x(t) = x(0) +
∫ t
0 ẋ(v)dv = x(0) +

∫ t
0

[
ẋ(0) +

∫ v
0 f (u)du

]
dv

= x(0) + ẋ(0)t +
∫ t
0

[∫ v
0 f (u)du

]
dv

Note that x(0) + ẋ(0)t solves the homogeneous equation ẍ(t) = 0,

whereas the iterated double integral
∫ t
0

[∫ v
0 f (u)du

]
dv

is a particular solution.
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An Important Theorem on Iterated Double Integrals, I

Theorem
For any integrable function (x , y) 7→ φ(x , y) ∈ R
defined on the square domain [a, b]× [a, b] ⊂ R2, one has∫ b

a

[∫ y

a
φ(x , y)dx

]
dy =

∫ b

a

[∫ b

x
φ(x , y)dy

]
dx

Proof.

Define the indicator function 1x≤y (x , y) :=

{
1 if x ≤ y

0 if x > y
. Then

∫ b
a

[∫ y
a φ(x , y)dx

]
dy =

∫ b
a

[∫ b
a 1x≤y (x , y)φ(x , y)dx

]
dy∫ b

a

[∫ b
x φ(x , y)dy

]
dx =

∫ b
a

[∫ b
a 1x≤y (x , y)φ(x , y)dy

]
dx

But both right-hand sides equal
∫ b
a

∫ b
a 1x≤y (x , y)φ(x , y)dxdy .
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An Important Theorem on Iterated Double Integrals, II

An alternative simple proof involves noticing that the two integrals∫ b

a

[∫ y

a
φ(x , y)dx

]
dy and

∫ b

a

[∫ b

x
φ(x , y)dy

]
dx

are simply two different ways of writing
the integral

∫∫
T φ(x , y)dxdy of the function φ of two variables

over the isosceles right-angled triangle

T := {(x , y) ∈ [a, b]× [a, b] ⊂ R2 | x ≤ y}

Note that T consists of points above and to the left
of the diagonal that joins the two corner points (a, a) and (b, b)
of the square [a, b]× [a, b].

The set T is also the convex hull
of the three points (a, a), (a, b) and (b, b).
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A Newtonian Example, II

Reversing the order of integration allows the particular solution
in the form of the iterated double integral

∫ t
0

[∫ v
0 f (u)du

]
dv

to be rewritten as∫ t

0

[∫ t

u
f (u)dv

]
du =

∫ t

0

[∫ t

u
1dv

]
f (u)du =

∫ t

0
(t − u)f (u)du

Ultimately, then, one has

x(t) = x(0) + ẋ(0)t +

∫ t

0
(t − u)f (u)du
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Linear Equation with Constant Coefficients, I
Next, consider the equation ẍ(t) + aẋ(t) + bx(t) = f (t)
where the coefficients a of ẋ(t) and b of ẋ(t)
have both become constants, with b 6= 0.

Consider the quadratic function q(λ) := λ2 + aλ+ b
that appears in the characteristic equation λ2 + aλ+ b = 0.

One can factorize it as

q(λ) = λ2 + aλ+ b = (λ− λ1)(λ− λ2)

where λ1 and λ2 are the two roots of the equation q(λ) = 0.

Recall that λ1 + λ2 = −a and λ1λ2 = b.

Define the new variable y(t) := ẋ(t)− λ1x(t).

Note that, if we could find the function t 7→ y(t),
then we would have

x(t) = eλ1tx(0) +

∫ t

0
eλ1(t−u)y(u)du
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Linear Equation with Constant Coefficients, II

We are considering the equation ẍ(t) + aẋ(t) + bx(t) = f (t),
with b 6= 0.

We have introduced the new variable y(t) := ẋ(t)− λ1x(t),
implying that x(t) = eλ1tx(0) +

∫ t
0 eλ1(t−u)y(u)du.

But the characteristic roots satisfy λ2 + aλ+ b = (λ−λ1)(λ−λ2),
implying that λ1 + λ2 = −a and λ1λ2 = b, and so

ẏ(t)− λ2y(t) = ẍ(t)− λ1ẋ(t)− λ2ẋ(t) + λ1λ2x(t)
= ẍ(t) + aẋ(t) + bx(t)

Hence y(t) satisfies the first-order equation ẏ(t)− λ2y(t) = f (t)
whose solution is

y(t) = eλ2ty(0) +

∫ t

0
eλ2(t−v)f (v)dv
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Linear Equation with Constant Coefficients, III
Substituting y(t) = eλ2ty(0) +

∫ t
0 eλ2(t−v)f (v)dv

in the expression x(t) = eλ1tx(0) +
∫ t
0 eλ1(t−u)y(u)du gives

x(t) = eλ1tx(0) +
∫ t
0 eλ1(t−u)y(u)du

= eλ1tx(0) +
∫ t
0 eλ1(t−u)

[
eλ2uy(0) +

∫ u
0 eλ2(u−v)f (v)dv

]
du

We split this form of the solution into two parts:

1. the complementary solution

t 7→ xC (t) := eλ1tx(0) + y(0)
∫ t
0 eλ1(t−u)eλ2udu

= eλ1t
[
x(0) + y(0)

∫ t
0 e(λ2−λ1)udu

]
to the homogeneous equation ẍ(t) + aẋ(t) + bx(t) = 0;

2. a particular solution in the form of the iterated double integral

t 7→ xP(t) :=

∫ t

0
eλ1(t−u)

[∫ u

0
eλ2(u−v)f (v)dv

]
du

to the inhomogeneous equation ẍ(t) + aẋ(t) + bx(t) = f (t).
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Degenerate Case
In the degenerate case when λ1 = λ2 = λ,

1. the complementary solution takes the form:

xC (t) = eλtx(0) + y(0)
∫ t
0 eλtdu

= eλt [x(0) + y(0)t]

2. the particular solution takes the form:

xP(t) =
∫ t
0 eλ(t−u)

[∫ u
0 eλ(u−v)f (v)dv

]
du

= eλt
∫ t
0

[∫ u
0 e−λv f (v)dv

]
du

= eλt
∫ t
0

[∫ t
v 1du

]
e−λv f (v)dv

=
∫ t
0 (t − v)eλ(t−v)f (v)dv

The overall solution is therefore

x(t) = eλt
[
x(0) + y(0)t +

∫ t

0
(t − v)e−λv f (v)dv

]
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 57 of 94



Non-Degenerate Case: Complementary Solution
In the non-degenerate case when λ1 6= λ2,
the complementary solution takes the form

xC (t) = eλ1t
[
x(0) + y(0)

∫ t
0 e(λ2−λ1)udu

]
= eλ1tx(0) +

1

λ2 − λ1
eλ1ty(0)

[
e(λ2−λ1)t − 1

]
= x(0)eλ1t + y(0)

eλ2t − eλ1t

λ2 − λ1
After substituting ẋ(0)− λ1x(0) for y(0),
the right-hand side becomes

1

λ2 − λ1

{
(λ2 − λ1)x(0)eλ1t + [ẋ(0)− λ1x(0)](eλ2t − eλ1t)

}
and so

xC (t) =
1

λ2 − λ1

[
x(0)(λ2e

λ1t − λ1eλ2t) + ẋ(0)(eλ2t − eλ1t)
]
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Non-Degenerate Case: Particular Solution

Using our rule for reversing the order of recursive integration,
the particular solution takes the form

xP(t) =
∫ t
0 eλ1(t−u)

[∫ u
0 eλ2(u−v)f (v)dv

]
du

=
∫ t
0

[∫ t
v eλ1(t−u)eλ2(u−v)du

]
f (v)dv

=
∫ t
0 eλ1t−λ2v

[∫ t
v e(λ2−λ1)udu

]
f (v)dv

=
1

λ2 − λ1
∫ t
0 eλ1t−λ2v

[
e(λ2−λ1)t − e(λ2−λ1)v

]
f (v)dv

=
1

λ2 − λ1
∫ t
0

[
eλ2(t−v) − eλ1(t−v)

]
f (v)dv
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First Special Case
An interesting first special case of the particular solution

xP(t) =
1

λ2 − λ1

∫ t

0

[
eλ2(t−v) − eλ1(t−v)

]
f (v)dv

occurs when f (t) is the exponential function eµt , and so

xP(t) =
1

λ2 − λ1

∫ t

0

[
eλ2(t−v) − eλ1(t−v)

]
eµvdv

In the degenerate case when λ2 = µ 6= λ1, this reduces to

xP(t) =
1

λ2 − λ1

[
eλ2tt − eλ1t

∫ t
0 e(µ−λ1)vdv

]
=

eλ2tt

λ2 − λ1
− eλ1t(e(λ2−λ1)t − 1)

(λ2 − λ1)2

=
eλ2tt

λ2 − λ1
− eλ2t − eλ1t

(λ2 − λ1)2
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Non-Degenerate Case

In the non-degenerate case when λ1, λ2 and µ are all different,
one has the particular solution

xP(t) =
eλ2t

λ2 − λ1

∫ t

0
e(µ−λ2)vdv − eλ1t

λ2 − λ1

∫ t

0
e(µ−λ1)vdv

=
eλ2t

[
e(µ−λ2)t − 1

]
(λ2 − λ1)(µ− λ2)

− eλ1t
[
e(µ−λ1)t − 1

]
(λ2 − λ1)(µ− λ1)

=
1

λ2 − λ1

(
eµt − eλ2t

µ− λ2
− eµt − eλ1t

µ− λ1

)
But the multiples of eλ1t and eλ2t can be incorporated
in the complementary solution to the homogeneous equation,
so this particular solution can be reduced to

x̃P(t) =
eµt

λ2 − λ1

(
1

µ− λ2
− 1

µ− λ1

)
=

eµt

(µ− λ1)(µ− λ2)
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Second Special Case
An interesting second special case of the particular solution

xP(t) =
1

λ2 − λ1

∫ t

0

[
eλ2(t−v) − eλ1(t−v)

]
f (v)dv

occurs when f (t) is the exponential function treµt , and so

xP(t) =
1

λ2 − λ1

∫ t

0

[
eλ2(t−v) − eλ1(t−v)

]
v reµvdv

In the non-degenerate case when λ1, λ2 and µ are all different,
this becomes

xP(t) =
1

λ2 − λ1

[
eλ2t

∫ t
0 v re(µ−λ2)vdv − eλ1t

∫ t
0 v re(µ−λ1)vdv

]
= P2(t)eλ2t − P1(t)eλ1t

for polynomials t 7→ P1(t) and t 7→ P2(t) of degree r
whose coefficients are functions of the parameter triple (λ1, λ2, µ).
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The Autonomous Equation

Now consider the autonomous equation

ẍ(t) + aẋ(t) + bx(t) = c

with a constant right-hand side.

There is a constant solution x(t) = x̄
where x̄ = c/b is the unique steady state.

The new variable y(t) := x(t)− x̄ satisfies
the homogeneous equation ẍ(t) + aẋ(t) + bx(t) = 0.

The associated characteristic equation is

λ2 + aλ+ b = (λ− λ1)(λ− λ2) = 0
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A Stability Condition
1. In case there are two real characteristic roots

λ1,2 = −1
2a± 1

2

√
a2 − 4b

the general solution Aeλ1t + Beλ2t → 0 as t →∞
if and only if both λ1 and λ2 are negative.

2. In case there are two complex conjugate characteristic roots

λ1,2 = −1
2a± 1

2 i
√

4b − a2

one has eλt = e−
1
2ate±

1
2 it
√
4b−a2 .

The general solution Aeλ1t + Beλ2t → 0 as t →∞
iff a > 0, or iff both λ1 and λ2 have negative real parts.

3. In case there are two coincident real characteristic roots,
the general solution (A + Bt)eλt → 0 as t →∞ iff λ < 0.

All these conditions can be subsumed into one: stability holds
if and only if each characteristic root has a negative real part.
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Linear Differential Equation in n Variables

A linear differential equation in n variables specifies
the time derivative ẋ(t) of the n-vector x(t)
as an affine function A(t)x(t) + b(t) of x(t).

That is
ẋ(t) = A(t)x(t) + b(t)

where

I t 7→ A(t) ∈ Rn×n is a matrix-valued function of time;

I t 7→ b(t) ∈ Rn is a vector-valued function of time.
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Matrix Differentiation

Consider the m × n matrix function t 7→ A(t)
whose elements (aij(t))m×n are differentiable functions of t.

For all h 6= 0, the Newton quotient matrix 1
h [A(t + h)− A(t)]

has elements equal to
the Newton quotients 1

h (aij(t + h)− aij(t))m×n
of the matrix (aij(t))m×n.

As h→ 0, these converge to the derivatives
(

d
dt aij(t)

)
m×n.

For this reason, the matrix A(t) is said to be differentiable
with derivative Ȧ(t) = d

dt A(t) whose elements are ( d
dt aij(t))m×n.
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Differentiating the Product of Matrices

Suppose that t 7→ A(t) and t 7→ B(t) are differentiable,
where each A(t) is `×m and each B(t) is m × n.

Then t 7→ C(t) = A(t) B(t) is well defined as a matrix product
with elements given by cik(t) =

∑m
j=1 aij(t)bjk(t)

whose time derivatives are

ċik(t) =
∑m

j=1
[ȧij(t)bjk(t) + aij(t)ḃjk(t)]

Hence t 7→ C(t) is differentiable,

with Ċ(t) = Ȧ(t)B(t) + A(t)Ḃ(t).
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Differentiating the Square of a Square Matrix

Suppose that A(t) is an n × n matrix for all t,
and that each element is a differentiable function of t.

Then the square matrix A2(t) is well defined and differentiable,

with derivative d
dt A2(t) = Ȧ(t)A(t) + A(t)Ȧ(t).

Unless the matrices Ȧ(t) and A(t) happen to commute,
in the sense that Ȧ(t)A(t) = A(t)Ȧ(t),
this will not be equal to 2Ȧ(t)A(t) or to 2A(t)Ȧ(t).
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Example

Note that, even if each A(t) is square,
it may not commute with Ȧ(t).

For example, when A(t) =

(
0 1
1 t

)
, then Ȧ(t) =

(
0 0
0 1

)
,

implying that A(t) Ȧ(t) =

(
0 1
0 t

)
6= Ȧ(t) A(t) =

(
0 0
1 t

)
.

Note that in this example A is symmetric; so therefore is Ȧ.

Hence A(t) Ȧ(t) = A(t)> Ȧ>(t) = [Ȧ(t)A(t)]>.

Also A2(t) =

(
1 t
t 1 + t2

)
whose derivative satisfies

d

dt
A2(t) = Ȧ(t)A(t) + A(t) Ȧ(t) =

(
0 1
1 2t

)
This differs from both 2 A(t) Ȧ(t) and 2 Ȧ(t) A(t).
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The Exponential of a Square Matrix
Recall that the exponential function of a scalar is defined
so that the solution of the differential equation ẋ = ax
is x(t) = eatx(0).

Similarly, we define the exponential function of a square matrix
so that the solution of the differential equation system ẋ = Ax
is x(t) = exp(At) x(0).

The function t 7→ exp(At) is often called the resolvent.

Recall that, for a scalar, there is the convergent power series

eat = 1 +
1

1!
at +

1

2!
(at)2 +

1

3!
(at)3 . . . =

∑∞

r=0

1

r !
(at)r

with the convention that 0! = 1.

Similarly, for a square matrix, with the convention that (At)0 = I
one can use a convergent power series to give,

exp(At) = I +
1

1!
At +

1

2!
(At)2 +

1

3!
(At)3 . . . =

∑∞

r=0

1

r !
(At)r
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The Exponential of a Diagonal Matrix
Dropping the time argument, it follows that we define

exp(C) := I +
1

1!
C +

1

2!
(C)2 +

1

3!
(C)3 . . . =

∑∞

r=0

1

r !
(C)r

Suppose that C is the diagonal matrix diag(c1, c2, . . . , cn) = diag c
where c is the vector (c1, c2, . . . , cn).

Now, each matrix power (diag c)r = diag(c r1 , c
r
2 , . . . , c

r
n)

as is readily proved by induction on r .

So, with this notation for the exponential of a matrix, we have

exp(C) =
∑∞

r=0

1

r !
Cr =

∑∞
r=0

1

r !
diag(c r1 , c

r
2 , . . . , c

r
n)

= diag (ec1 , ec2 , . . . , ecn)

Also, suppose matrix C has C = VΛV−1 as a diagonalization.

Then each matrix power Cr = VΛrV−1

implying that exp(C) = V exp(Λ)V−1.
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Integrating and Differentiating an Exponential Matrix
From the definition exp(As) =

∑∞
r=0

1
r !(As)r ,

either post- or premultiplying by A and then integrating gives∫ t

0
exp(As) A ds =

∫ t

0
A exp(As) ds =

∫ t

0

∑∞

r=0

1

r !
Ar+1 sr ds

Next, integrating term by term, the last expression becomes∑∞

r=0

1

r !
Ar+1

∫ t

0
srds =

∑∞

r=0

1

r !
Ar+1 ·

∣∣∣t0 1
r+1s

r+1

Simplifying converts this to∑∞

r=0

1

(r + 1)!
Ar+1tr+1 =

∑∞

r=1

1

r !
Ar tr = exp(At)− I

So
∫ t
0 exp(As) A ds =

∫ t
0 A exp(As) ds = exp(At)− I,

implying that

d

dt
exp(At) = A exp(At) = exp(At) A
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Affine Equation in n Variables
Consider what happens when we multiply each side
of the non-homogeneous affine equation ẋ(t)− Ax(t) = b(t)
by the matrix integrating factor exp(−At).

Because the product rule of differentiation applies to matrices,

d

dt
[exp(−At) x(t)] = exp(−At) ẋ(t) +

d

dt
[exp(−At)] x(t)

= exp(−At) ẋ(t)− exp(−At) A x(t)

= exp(−At) b(t)

if and only if x(t) solves the equation ẋ(t)− Ax(t) = b(t).

Hence exp(−At) x(t)− exp(−As) x(s) =
∫ t
s exp(−Aτ) b(τ) dτ .

Multiplying each side by exp(At) gives the unique solution

x(t) = exp[A(t − s)] x(s) +

∫ t

s
exp[A(t − τ)] b(τ) dτ
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The Diagonal Case

The diagonal case occurs when A = Λ = diag(λ1, . . . , λn).

Then the system ẋ(t)− Ax(t) = b(t) of n coupled equations
reduces to the system of n uncoupled equations

ẋi (t) = aiixi (t) + bi (t) = λixi (t) + bi (t) (i = 1, . . . , n)

one in each variable xi , with respective solutions

xi (t) = eλi t xi (s) +

∫ t

s
eλi (t−τ) bi (τ) dτ
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The Diagonalizable Case

Suppose that A has n distinct eigenvalues
— or if not, then n linearly independent eigenvectors
that make up the columns of the matrix V.

Then A = VΛV−1 and At = V(Λt)V−1

implying that exp(At) = V exp(Λt)V−1.

Hence the solution

x(t) = exp[A(t − s)] x(s) +

∫ t

s
exp[A(t − τ)] b(τ) dτ

simplifies to

x(t) = V exp[Λ(t − s)]V−1 x(s) +

∫ t

s
V exp[Λ(t − τ)]V−1 b(τ) dτ

Of course, the transformation y(t) := V−1 x(t) takes us back
to the diagonal case, with ẏ(t) := Λ y(t) + V−1 b(t).
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A Stability Condition
When Λ = diag(λ1, λ2, . . . , λn),
one has exp(Λ) = diag(eλ1 , eλ2 , . . . , eλn).

Furthermore exp(Λt) = diag(eλ1t , eλ2t , . . . , eλnt).

This converges to the zero matrix as t →∞
if and only if each eλi t → 0,
which is true iff each eigenvalue λi has a negative real part.

Similarly, if A is diagonalizable, with A = VΛV−1,
then consider the new variables y = V−1x.

The differential equation ẋ(t) = Ax(t) becomes transformed to

ẏ(t) = V−1ẋ(t) = V−1Ax(t) = ΛV−1x(t) = Λy(t)

Because V is invertible, one has x(t)→ 0⇐⇒ y(t)→ 0.

Once again, stability holds
iff each eigenvalue of the matrix A has a negative real part.

This is true even when A is not diagonalizable.
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The Schrödinger Equation in Cn

A wave function is a mapping R 3 t 7→ ψ(t) ∈ Cn.

Schrödinger’s wave equation is a linear equation that,
in a simple case, can be written in the form ψ̇(t) = − i Hψ(t)
where H is a Hamiltonian “energy” matrix with complex elements
that is self-adjoint.

Because H is self-adjoint, it can be diagonalized so that,
after a change of variables,
one has ψ̇(t) = − i diag(h1, . . . , hn)ψ(t)
and so ψ̇k(t) = − i hkψk(t) for each k ∈ Nn.

For each possible initial value ψ(0) ∈ Cn, and for each k ∈ Nn,
the unique solution is

ψk(t) = ψk(0)e− i hk t = ψk(0)[cos(−hkt) + i sin(−hkt)]

This is a wave or oscillatory solution with frequency hk .

Generally, the eigenvalues in the spectrum of H, which are all real,
are possible frequencies of oscillatory solutions.
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Autonomous First-Order Equations

Let F : Rn → Rn be a general function
that may be non-linear.

Consider the autonomous differential equation ẋ = F(x).

A solution satisfying the initial condition x(s) = x̄
is a differentiable function [s, t) 3 t 7→ x(t)
that satisfies ẋ(t) = F(x(t)) for almost all t ≥ s.

Equivalently, for almost all t ≥ s, one must have

x(t) = x(s) +

∫ t

s
F(x(τ)) dτ
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Stationary States and Rest Points

A stationary state is a point x∗ ∈ Rn with the property
that if x(s) = x∗ at any time s, then x(t) = x∗ at all times t ≥ s.

A rest point is a state x̄ ∈ Rn with the property that F(x̄) = 0.

Theorem
Any rest point is a stationary state, and conversely.

Proof.
If F(x̄) = 0, then the solution of x(t) = x(s) +

∫ t
s F(x(τ)) dτ

with x(s) = x̄ satisfies x(t) = x(s) = x̄ for all t ≥ s.

Conversely, if that solution satisfies x(t) = x(s) = x∗ for all t ≥ s,
then ẋ(t) = F(x(t)) = F(x∗) = 0 for all t ≥ s.
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Local Stability of a Stationary State

Let F′(x) denote the n × n Jacobian matrix
whose elements are the partial derivatives F′ij(x) = ∂

∂xj
Fi (x)

of the different components (Fi (x))ni=1.

Any particular steady state x∗ is locally asymptotically stable
if and only if all the eigenvalues of F′(x∗) have negative real parts.
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A System with Two Variables

Consider the coupled pair ẋ = f (x , y), ẏ = g(x , y)
of differential equations.

Let (a, b) be any stationary point
satisfying both f (a, b) = 0 and g(a, b) = 0.

The Jacobian matrix at the stationary point takes the form

J(a, b) =


∂f

∂x
(a, b)

∂f

∂y
(a, b)

∂g

∂x
(a, b)

∂g

∂y
(a, b)


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Local Saddle Point with Two Variables

The product of the two eigenvalues λ1, λ2 of J(a, b)
equals its determinant |J(a, b)|.
The two eigenvalues are real and have opposite signs
if and only if |J(a, b)| < 0.

This is a sufficient condition for the steady state to be unstable.

But if (x(0)− a, y(0)− b)> is an eigenvector
corresponding to the negative eigenvalue,
then in the case when the equations are linear and so J is constant,
the solution will converge to the steady state.

This is saddle point stability.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 85 of 94



The Lotka–Volterra Predator–Prey Model

Foxes are predators; their prey includes rabbits.

Let x denote the expected population of rabbits,
and y denote expected population of foxes.

Assume these populations are linked by the differential equations

ẋ = x(k − ay)
ẏ = y(bx − h)

where a, b, h, k are all positive parameters.

Thus:

1. the rabbit population growth rate d
dt ln x = ẋ/x

is a decreasing affine function of the fox population;

2. whereas the fox population growth rate d
dt ln y = ẏ/y

is an increasing affine function of the rabbit population.
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Lotka–Volterra: Phase Plane Analysis
Given the system ẋ = x(k − ay) and ẏ = y(bx − h),
the two nullclines where ẋ = 0 and ẏ = 0
are given by y = k/a and x = h/b respectively.

So the steady state is at (x , y) = (h/b, k/a).

The Jacobian matrix is J(x , y) is
∂ẋ

∂x

∂ẋ

∂y

∂ẏ

∂x

∂ẏ

∂y

 =

(
k − ay −ax
yb bx − h

)

It reduces to

(
0 −ah/b

bk/a 0

)
at the steady state (h/b, k/a).

The characteristic equation is λ2 + hk = 0,
whose roots are ± i

√
hk.

As the following diagram suggests, there can be limit cycles
with x(t) = ξ cos

√
hkt and y(t) = η sin

√
hkt.
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Lotka–Volterra: Phase Plane Diagram
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Saddle Point Example
Consider a macro model where: (i) K denotes capital;
(ii) Y denotes output; and (iii) C denotes consumption.

Suppose that net investment K̇ = Y − C , that Y = aK − bK 2,
and Ċ = w(a− 2bk)C , where a, b, k ,w are positive constants.

This gives the coupled system with

K̇ = aK − bK 2 − C and Ċ = w(a− 2bK )C

The two nullclines are C = aK − bK 2 and K = a/2b.

These intersect at the stationary point (K ∗,C ∗) = (a/2b, a2/4b).
The Jacobian matrix is

J(K ,C ) =


∂K̇

∂K

∂K̇

∂C

∂Ċ

∂K

∂Ċ

∂C

 =

a− 2bK −1

−2wbC w(a− 2bK )


This reduces to

(
0 −1

−1
2a

2w 0

)
at the steady state.
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Phase Diagram I

Further Mathematics for Economic Analysis FM2B_C06.TEX, 14 February 2009, 18:01 Page 249

S E C T I O N 6 . 7 / P H A S E P L A N E A N A L Y S I S 249

In Fig. 5, the direction of motion on a path at a point in each of the four sectors is indicated
by arrows. In accordance with common practice, a separate arrow is drawn for each of the x

and y directions. We usually make all the arrows have the same length. (If they were drawn
with their correct lengths, they would correspond to the vectors (ẋ, 0) and (0, ẏ). It follows
that the actual direction of the path through the point would correspond to the sum of these
two vectors.)

E X A M P L E 3 In a model of economic growth, capital K = K(t) and consumption C = C(t) satisfy
the pair of differential equations

K̇ = aK − bK2 − C

Ċ = w(a − 2bK)C
(∗)

Here a, b, and w are positive constants. Construct a phase diagram for this system, assuming
that K ≥ 0 and C ≥ 0.

Solution: The nullcline K̇ = 0 is the parabola C = aK − bK2, and the nullcline Ċ = 0
consists of the two lines C = 0 and K = a/2b. In Fig. 6 the two nullclines are drawn.
There are three equilibrium points, (0, 0), (a/b, 0), and (a/2b, a2/4b).

C

K
a/2b a/b

Ċ = 0

K̇ = 0(IV)(III)

(II) (I)
a2/4b

C

K
a/2b a/b

a2/4b

Figure 6 Figure 7

In sector (I), C > aK − bK2 and K > a/2b, so K̇ < 0 and Ċ < 0. In sectors (II), (III),
and (IV), we have K̇ < 0, Ċ > 0, then K̇ > 0, Ċ > 0, and K̇ > 0, Ċ < 0, respectively.
The appropriate arrows are drawn in Fig. 7, which indicates some paths consistent with
the arrows.

These examples show how useful information about the solution paths can be obtained
by partitioning the phase plane into regions to indicate whether each of the two variables
is increasing or decreasing. In particular, the partition will often suggest whether or not
a certain equilibrium point is stable, in the sense that paths starting near the equilibrium
point tend to that point as t → ∞. However, to determine whether an equilibrium point
really is stable or not, a phase diagram analysis should be supplemented with tests based on
analytical methods like those set out in the subsequent sections.
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Phase Diagram II

Further Mathematics for Economic Analysis FM2B_C06.TEX, 14 February 2009, 18:01 Page 249

S E C T I O N 6 . 7 / P H A S E P L A N E A N A L Y S I S 249

In Fig. 5, the direction of motion on a path at a point in each of the four sectors is indicated
by arrows. In accordance with common practice, a separate arrow is drawn for each of the x

and y directions. We usually make all the arrows have the same length. (If they were drawn
with their correct lengths, they would correspond to the vectors (ẋ, 0) and (0, ẏ). It follows
that the actual direction of the path through the point would correspond to the sum of these
two vectors.)

E X A M P L E 3 In a model of economic growth, capital K = K(t) and consumption C = C(t) satisfy
the pair of differential equations

K̇ = aK − bK2 − C

Ċ = w(a − 2bK)C
(∗)

Here a, b, and w are positive constants. Construct a phase diagram for this system, assuming
that K ≥ 0 and C ≥ 0.

Solution: The nullcline K̇ = 0 is the parabola C = aK − bK2, and the nullcline Ċ = 0
consists of the two lines C = 0 and K = a/2b. In Fig. 6 the two nullclines are drawn.
There are three equilibrium points, (0, 0), (a/b, 0), and (a/2b, a2/4b).

C

K
a/2b a/b

Ċ = 0

K̇ = 0(IV)(III)

(II) (I)
a2/4b

C

K
a/2b a/b

a2/4b

Figure 6 Figure 7

In sector (I), C > aK − bK2 and K > a/2b, so K̇ < 0 and Ċ < 0. In sectors (II), (III),
and (IV), we have K̇ < 0, Ċ > 0, then K̇ > 0, Ċ > 0, and K̇ > 0, Ċ < 0, respectively.
The appropriate arrows are drawn in Fig. 7, which indicates some paths consistent with
the arrows.

These examples show how useful information about the solution paths can be obtained
by partitioning the phase plane into regions to indicate whether each of the two variables
is increasing or decreasing. In particular, the partition will often suggest whether or not
a certain equilibrium point is stable, in the sense that paths starting near the equilibrium
point tend to that point as t → ∞. However, to determine whether an equilibrium point
really is stable or not, a phase diagram analysis should be supplemented with tests based on
analytical methods like those set out in the subsequent sections.
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Stability Analysis

The Jacobian matrix at the steady state is

(
0 −1

−1
2a

2w 0

)
.

This matrix has trace 0 and negative determinant −1
2a

2w .

So the two eigenvalues have sum 0 and product −1
2a

2w .

It follows that the eigenvalues are ±λ where λ2 = 1
2a

2w

and so λ = a
√

w/2.

The general solution near the steady state takes the form(
K − K ∗

C − C ∗

)
=

(
A1

A2

)
eλt +

(
B1

B2

)
e−λt

for arbitrary constant vectors (A1,A2)> and (B1,B2)>.

This converges to the steady state at (K ∗,C ∗) = (a/2b, a2/4b)
if and only if A1 = A2 = 0.

It follows that the steady state is a saddle point.
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Existence and Uniqueness Theorem, I

Note: In the following,
we use ordinary Roman rather than bold letters
for vectors in the finite-dimensional space Rd .

Extract from pp. 355–356 in ch. 6 of David Applebaum (2009)
Lévy Processses and Stochastic Calculus, 2nd edn. (Cambridge)

Let b : Rd → Rd , so that b = (b1, . . . , bd)
where bi : Rd → R for 1 ≤ i ≤ d .

We study the initial value problem posed
by the vector-valued differential equation d

d t c(t) = b(c(t))

with fixed initial condition c(0) = c0 ∈ Rd ,
whose solution, if it exists, is a curve (c(t), t ∈ R) in Rd .
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Existence and Uniqueness Theorem, II

We say that b is (globally) Lipschitz if there exists K > 0
such that, for all x , y ∈ Rd , ‖b(x)− b(y)‖ ≤ K‖x − y‖.
Exercise 6.1.1 Show that if b is differentiable
with bounded partial derivatives then it is Lipschitz.

Exercise 6.1.2 Deduce that if b is Lipschitz then it satisfies
a linear growth condition ‖b(x)‖ ≤ L(1 + ‖x‖) for all x ∈ Rd ,
where L = max{K , ‖b(0)‖}.
Theorem 6.1.3 If b : Rd → Rd is (globally) Lipschitz,
then there exists a unique solution c : R→ Rd

of the initial value problem.

The proof offered by Applebaum
does not use a contraction mapping theorem.

Rather, it bounds possible solutions within error bands
that are exponential functions that converge to zero.
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