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Lecture Outline

First-Order Differential Equations in One Variable
Introduction
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First-Order Differential Equations

The typical first-order differential equation in one variable x is

. dx

X—E:f(x,t)

The equation is autonomous just in case f is independent of t,
so it can be written as x = f(x).

Typically one imposes an initial condition requiring x(s) = Xs

at time s (not necessarily the earliest time).

Then any solution is a fixed function t — x(t) that satisfies

the corresponding integral equation x(t) = Xs + fst f(x(u),u)du.
Picard’s method of successive approximations starts

with an arbitrary function t — x(0)(t) satisfying x(9)(s) = x;.
Then it computes x("(t) = %, + fst f(x("=1(u), u)du for n € N.

If convergence occurs, the limit as n — oo will be a solution.
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Right-Hand Side Independent of x
A special case occurs when the right-hand side f(x, t)
is independent of x.

Then the differential equation can be written as

dx

P g(t)

Its solution can be written as the indefinite integral

Introducing an initial condition x(s) = X,
at a particular start time s
allows the solution to be written as the definite integral

x(t) =X + /stg(T)dT

CHECK that this alleged solution
satisfies x(s) = Xs and x(t) = g(t) for all t > s.
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Leibniz's Rule for Differentiating an Integral
Consider the function F : R3 — R defined by

b
F(a, b,u) = / f(t,u)dt
Its three first-order partial derivatives are:
(i) F. = —f(a,u); (ii) Fb = f(b,u); (iii) F, = / —f t,u)dt

Applying the chain rule, the total derivative
of the integral function y + I(y) := fa(g/y)) f(t,y)dt satisfies

y) = ddyF(a(y),b(y),y) — J(y)F,+ B(y)F+ FL
— V(y)f(b (n)f 0 et
— B)(b(y).y) - 2()F(aly). ) + /(y) 5 ()t
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Lecture Outline

First-Order Differential Equations in One Variable

Picard’s Method
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Picard’'s Method of Successive Approximations
The simplest first-order equation with constant coefficients
takes the form

x(t) = ax(t), with x(0) given

It corresponds to the integral equation
t
x(t) —x(0) = / ax(u)du for all t >0
0

Starting with even a very crude approximation

such as the constant function x(9)(t) = x(0) for all t > 0,

we can calculate a sequence t — x(")(t) (n € N)

of successive approximations to a solution [0,00) 3 t — x(t) € R
using, for all t > 0, the iterative rule

x(£) = x(0) = /t F(x" (1), u) du = /t ax" D (u) du

0 0
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Initial Three Iterations
Starting from x(%)(t) = x(0), iterating once gives

xM(t) — x(0) = /Otax(o)(u)du —ax(0)t

Iterating a second time gives
t
<@ () — x(0) = / ax(0)(1 + au)du = ax(0) ¢ + 1a® x(0)
0

Iterating a third time gives

xO)(t) = x(0) = [;[ax(0) + a?x(0) u + }a° x(0) u?] du
= ax(0)t+ 322 x(0) 2 + £a3 x(0) £3
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Terms of the Sum

Each time we are adding one term to a sum.

So, starting with y(©)(t) = x(0),

define the new incremental variable y("(t) := x("(¢) — x("=1(¢).
This implies that x("(t) = x(0) + >27_; y(¢).

Subtract x("M(t) — (0) Jy axr(u) du

from x(M1(t) — x(0) = [5 ax(")(u) du

to obtain y("D(t) = fot ay("(u) du.

Now we obtain successively

yO() = [yax(0)du = ax(0)t
yA(t) = [i2x(0)udu = 1a2x(0)¢?
y(3)(t) = fot %a3x 0)uv’du = %33 x(0) t3

This suggests the induction hypothesis y(")(t) = =a" x(0) t".
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Constructing the Sum

1
The induction hypothesis y(")(t) = e "x(0) t"
and the relation y("*1(t) = [ ay(" )( ) du together imply that

1 t

ma”“ x(0) Jo u"du

1 1

_ 7an+1 X(O) mt.n+1 —_ manJrl X(O) tn+1

yr (i) =[5 anla”x(O) u"du =

This confirms the induction hypothesis with n replaced by n + 1.
1

It follows that y(")(t) = ma” x(0) t" for all n € N

and then that x("(t) = x(0) + >7_ 1 —a K x(0) tk.
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Euler's Number and the Exponential Function

Euler's number was invented by Jacob Bernoulli in 1683.
Euler chose to denote it by e.
Recall that it is given by

1 1 1 . 1\"
e=1+—+—-4+—-+...=lim (14— A~ 2.718281828
2t 3l n—00 n

My late co-author Knut Sydsaeter, as a cultured Norwegian,
recognized 1828 as the year
when their great playwright Henrik Ibsen was born.

So Knut remembered this 10 digit approximation
as “2.7 Ibsen Ibsen”.
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Full (?7) Decimal Expansions of Some Important Numbers

1 / 3 — O .3 3 3 33333333333333333:;3:%.
\/i — ]. .4 ]_ 42 13562373095085500

6 — 2 . 7 1 8 2 8 1 8284590452555
7-‘- — 3 . 1 4 1 5 9265358979323s4ozmm.
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The Exponential Function and Exponential Solution

The exponential function, which satisfies exp x = e, satisfies

x2 x3

o0 1 n__ X
,+—+—+ =14y xT=e

expx =1+ e

1!

As n — oo, the Picard approximate solution x("(t)
to the differential equation that we found earlier
converges to the infinite series

x(0) + Z —a x(0) t% = x(0) exp(at) = x(0) e
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Lecture Outline

First-Order Differential Equations in One Variable

General First-Order Affine Equation
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General First-Order Affine Equation

The general first-order affine equation takes the form
x(t) = a(t)x(t) + b(t)

for arbitrary integrable functions t — a(t) and t — b(t).

In the homogeneous case one has b(t) = 0,
and the equation takes the linear form x(t) = a(t)x(t).

Assuming that x > 0 for all t,
we can take logs and write the equation as

X
—Inx===a(t
nx =~ a(t)

dt

After introducing the new variable y(t) := In x(t),
the equation becomes y = a(t) whose solution is obviously
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Solution in the Homogenenous Case

Because x(t) = exp y(t), the solution for x is
x(t) = exply(£)] = exply(s)] exp | [ a(r)dr| = x(s) ()

where a(t) denotes the integrating factor exp [fst a(r)dr]

In the special case of an autonomous equation
where a(7T) = a constant, one has fst a(r)dr = a(t — s)
and so as(t) = e(t=9),
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The Non-Homogenenous Case
The solution x(t) = x(s)as(t)
to the homogeneous equation x(t) — a(t)x(t) =0
can be used to help solve the corresponding
non-homogeneous equation x(t) — a(t)x(t) = f(t).

Indeed, consider the result of dividing
each side of this non-homogeneous equation

by the integrating factor as(t) := exp {fst a(T)dT}

whose reciprocal is 1/as(t) := exp [— N a(T)dT]
d t

Note that . [— A a(T)dT] = —a(t),

d
implying that a[l/as(t)] = —a(t)/as(t) so, by the product rule

[X( )/as(t)] = [1/as(t)]x(t) = [a(t)/as(t)]x(t) = £(t)/as(t)

for any solution of the equation x(t) — a(t)x(t) = f(t).

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 17 of 94



Solving the Non-Homogenenous Equation

Integrating each side of the equation —[x( )/ as(t)] = f(t)/as(t)
over the interval from s to t gives us

Hx(u)/as(u)] = x(t) _ x(s) — gRC) u
}s[ (u)/as(u)] as(t)  as(s) /5 as(”)d

The definition as(t) = exp [f dT}
implies that as(s) = 1 and also as(t)/as(u) = ay(t).

Hence, multiplying each side by as(t) gives the solution

x(t) = t[ )+ [/ as(u ]f(u)du]
= as(t)x(s) + [ aw(t) f(u)du
= exp [f a(T) dT]X )+ [Lexp [f ] (u)du
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Linearity in the Forcing Term

Theorem
Suppose that xF(t) and yF(t) are particular solutions
of the two respective differential equations

() — a(t)x(t) = d(t) and y(t) — a(t)y(t) = e(t)

Then, for any scalars o and 3,

the equation z(t) — a(t)z(t) = f(t) = ad(t) + Pe(t)

has as a particular solution

the corresponding linear combination zF(t) := ax®(t) + By (¢).

Consider any equation of the form x(t) — a(t)x(t) = f(t)
where f(t) is a linear combination "7 _; af*(t)
of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination >_7_; axx"*(t)
of particular solutions to the n equations x(t) — a(t)x(t) = f¥(t).
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Lecture Outline

First-Order Differential Equations in One Variable

Constant and Undetermined Coefficients

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 20 of 94



First-Order Linear Equation with a Constant Coefficient

Next, consider the equation x(t) — ax(t) = f(t)
where the coefficient a of x(t) has become the constant a # 0.

The solution we found for the general case was

x(£) = exp [ / t a(T)dT] x(s) + / exp [ / t a(T)dT} F(u)du

When a(t) = a, independent of t, this reduces to
t

x(t) = et3)x(s) + / 2= f(y)du

S
We simplify further by choosing the initial time s = 0.

Then

x(t) = e?'x(0) + /0 (O f (u)du
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First Special Case

An interesting special case occurs
when the forcing term f(t) is the exponential function t — ett.

Then the solution is
t t
x(0) = ex(0) + [ ety = o [X(O)—i- / e(“_a)“du]
0 0

In the degenerate case when y = a,
one has fot elu—a)udqy = fot 1ldu = t, so the solution collapses to

x(t) = e [x(0) + t]

This solution can be written as x(t) = x"(t) + x”(t) where:
1. xH(t) = €Me with €M := x(0) is a complementary solution
of the homogeneous equation x(t) — ax(t) = 0;
2. xP(t) = €Pe?t with €P := 1 is a particular solution
of the inhomogeneous equation x(t) — ax(t) = e.
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Non-Degenerate Case When 1 # a
In the non-degenerate case when p # a, one has

t
(n— a)/ elh=auqy = [feln=a)u — glu—a)t _q
0

So the solution is

p—a
Again, this solution can be written as x(t) = x(t) + x”(t) where:

1. xH(t) = €Me® with ¢H := x(0) — 1/(n — a) is a solution
of the homogeneous equation x(t) — ax(t) = 0;

2. xP(t) = ¢Pert with €P :=1/(p — a) is a particular solution
of the inhomogeneous equation x(t) — ax(t) = e*.
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Second Special Case

Another interesting special case occurs
when f(t) = t"e!t for some r € N.

Then the solution x(t) = e?x(0) + [; €(*~*)f(u)du becomes

t t
x(t) = eatx(0)+/ e(t-u) yrebtg, = gt [X(O) +/ u'e(“_a)”du]
0 0

In the degenerate case when i = a, the solution collapses to

x(t):eat[()+]0r+1 1r+1] [ (+1) r+1]
This solution can be written as x(t) = x"(t) +xP(t) where:
1. xM(t) = ¢Me? with ¢ := x(0) is a solution
of the homogeneous equation x(t) — ax(t) = 0;
2. xP(t) = ePettr ! with ¢P = (r + 1)1
is a particular solution
of the inhomogeneous equation x(t) — ax(t) = t"e".
24 of 94
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Non-Degenerate Case When 1 # a

In the non-degenerate case when p # a, the solution is
t
x(t) = e [X(O) + “re(”")”d“] = & [x(0) + (1)
0

where I,(t) := [ u"el=a)udy.
In particular, lo(t) = [, e(*=¥du = (u — a) et —1].
Integrating by parts gives the first-order linear difference equation

I(t) = fot u"eln=audy
(11— a) Hsu el — (s a) L [ ur- ey
= (a—p)7t[rl_a(t) — trelh=a)]
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Solving the First-Order Linear Difference Equation
Let us divide each side of the difference equation

L(t) = (a—p) 7 |rl_q(t) — t"elra)t

by the “summing factor” [[i_; k(a— )™t =rl(a—p)~" to get

Je(t) = (a—n)h(t)

= % [r(a — H)r—llr_l(t) —(a— M)_ltre(“—a)t}

= (r_l]_)!(a—,u«)fllr_l(t)— %(a_ﬂ)rfltre(“*a)t
= Ja(t) - ! (a— M)r_ltfe(u—a)t

r
This obviously implies that

r 1 _ _
Jo(t) = Jo(t) — Zk:1 e p)k Lk eln—a)t
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Solving the Differential Equation
Because Jo(t) = lo(t) = (p — a)~'[el#=2)t — 1], this implies that

a) r 1 — —a
Jr(t) = (u—a) Ml —1] = 3 (e ) kel

I(t) = rl(a—p) "I (t)
= —rl(a — )_r_l[e(/»‘_a)t — ]_]
B k r—1 .k (n—a)t
Zk G the

Then

x(t) = e [x(0) + I (t)]
= e [x(0)+rl(a—p)!

. ro 1
—rl(a—p) " lemt [1+Zk:1 H(a—,u)ktk
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Particular and General Solution

For the equation x(t) — ax(t) = t"e”* with u # a, the solution
x(t) = e [x(0) + rl(a - m—'-l}

)k ek

—ri(a—p)~ " |:1+Zk 1k| t

can be written as x(t) = x"(t) + xP(t) where:
1. xH(t) = €He® with €M := x(0) + rl(a — p) =1
is a solution of the homogeneous equation x(t) — ax(t) = 0;
2. xP(t) = €P(t)e!t, where the polynomial

t EP(t) = —rl(a—p)™" 1[ +Zk 1k' )<tk

of degree r in t is a particular solution
of the inhomogeneous equation x(t) — ax(t) = t"et*.
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Method of Undetermined Coefficients

A practical issue is finding what polynomial

SIHOED DN T

of degree r (the power of t on the right-hand side)
makes &P (t)ett a particular solution
of the inhomogeneous differential equation x(t) — ax(t) = t"eM*.

The coefficients (&, &1, - .., &) of the polynomial
are undetermined

till we choose the associated polynomial t — £F(t)
to make &P (t)ett satisfy the differential equation.
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Determining the Undetermined Coefficients
For xP(t) = ett 3] _o Extk to solve x(t) — ax(t) = t"e"t, we need
trett = pelt Y Lo Ekth + ety Ekkth Tt —aett YT o Eith
= (n—a)ert &t + e 3Tt (1 — a)6k + Ehpa(k +1)] ¥
First consider the non-degenerate case u # a.
For k = r, this implies that (1 — a)¢, = 1, so &, = (. — a)™L.

For k=0,1,...,r—1, it implies that (1 — a)éx + &k+1(k+1) =0
or that & = (a — 1) 71(k + 1)€k41, and so

& = |IjZ@-mG+D)|&

r! r!
qa-mre = —ga- e

This matches our previous answer.
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Degenerate Case

In the degenerate case when p = a,
the method of undetermined coefficients
explained on the previous slides does not work.

Instead, to solve x(t) — ax(t) = t"e™,
we introduce the new variable y(t) = e=?'x(t).

Then y(t) = e ?'[x(t) — ax(t)] = e 't e = t".

The solution to this differential equation
s y(£) = (0) + 5 wrdu = y(0) + (r + 1)1+

The solution to the original differential equation
is therefore x(t) = ey (t) = e [x(0) + (r + 1)1t *1].

The polynomial in t that occurs in this solution
is now of degree r 4+ 1 rather than r.
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Main Theorem

Theorem
Consider the inhomogeneous first-order linear differential equation

x(t) — ax(t) = t"e't, wherea#0andr € Z,.

There exists a particular solution of the form xP(t) = Q(t) et

where the function t — Q(t) is a polynomial in t of degree:
» r in the regular case when u # a;

» r+ 1 in the degenerate case when p = a.

The general solution takes the form x(t) = xP(t) + x©(t) where:
» xP(t) is any particular solution;

» xC(t) is any member of the one-dimensional linear space
of complementary solutions

to the corresponding homogeneous equation x(t) — ax(t) = 0.
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Lecture Outline

First-Order Differential Equations in One Variable

Stability in the Autonomous Case
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The Autonomous Case
The autonomous case occurs
when the first-order affine equation takes the form
x=ax+b

with the right-hand side independent of t.

The steady state at which x(t) = 0 occurs when ax + b =0,
and so at x* := —b/a.

Then the deviation y(t) := x(t) — x* of x(t)
from the steady state x* satisfies the homogeneous equation

y(t) = x(t) = ax(t) + b= a[y(t) + x*] + b = ay(t)

Hence y(t) = e y(0), implying that x(t) = x* 4+ e®*[x(0) — x*].
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Stability

The steady state x* := —b/a is stable just in case, for all x(0),
the solution x(t) = x* + e®[x(0) — x*]
satisfies x(t) — x* as t — co.

A necessary and sufficient condition for stability
is obviously that a < 0.
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Lecture Outline

Second-Order Differential Equations in One Variable
Introduction
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Second-Order Equations with Constant Coefficients

A general second-order differential equation takes the form

X(t) = F(x(¢), x(t), 1)

To obtain a unique solution (if any solution exists),

one typically needs two initial conditions

such as x(s) = xs and x(s) = xs at an initial time s.

The equation is autonomous just in case

it takes the form x(t) = F(x(t),x(t)), with F independent of t.
The equation is linear just in case

it takes the form x(t) + a(t)x(t) + b(t)x(t) =0,

with F linear in (x(t), x(t)).

The equation is linear with constant coefficients just in case

it takes the form X(t) + ax(t) + bx(t) = 0.
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Characteristic Equation

We know that the first-order equation x(t) + ax(t) =0
has a solution of the form x(t) = x(0)e’
where \ solves the characteristic equation A + a = 0.

So we look for solutions of the form x(t) = et
to the second-order equation X(t) + ax(t) + bx(t) = 0.

Note that when x(t) = £e’t,
then x(t) = AéeM and %(t) = \2¢et.

So x(t) = &e* is a non-trivial solution (with & # 0) if and only if
0= M2¢eM + aée M 4 beet = (A% 4 a) + b)cet

and so, given that £e*t #£ 0, if and only if \ is a root
of the characteristic equation A2 4+ a\ + b = 0.
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Characteristic Equation for an Equation of Order n

Definition
A homogeneous linear differential equation of order n
with constant coefficients takes the form

n dk
Zk:o akwx(t) =0

Choose n so that the coefficient of the n derivative satisfies a, # 0,
and so can be normalized to take the value a, = 1.

Remark
A similar technique based on roots of the characteristic equation
applies to this nth order equation.

It implies that x(t) = £e*t is a non-trivial solution
if and only if \ is a root of the characteristic equation

Z::O ak)\k =0
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Characteristic Roots of a Second-Order Equation

Consider the second-order equation X + ax + b = 0.

One can factorize the quadratic function q()\) := A% + a\ + b
as g(A) = (A= A1)(A— A2)
where A1 and \; are the two roots of the equation g(\) = 0.

As with the corresponding discussion
of second-order difference equations, there are three cases:
1. in case a® > 4b, there are two distinct real roots A\; and A
given by A\1o = —%a + 3va? — 4b.
2. in case a° < 4b, there are two complex conjugate roots
given by A1, = —3a+ 1iv4b— a2
3. in case a® = 4b, there are two coincident real roots
given by A = —%a =b.
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Case 1: Two Distinct Real Roots

In this case a? > 4b, when the two characteristic roots

are A\jp = —%a + %\/32 — 4b.

Because A1 # A2, one has

e)\10 e)\QO _ 1 1 e A 0
Ml ol T M oh| T €T 7€ #
and so et and et are two linearly independent solutions.

So in this case the homogeneous equation X +ax+ b =10
has the general solution

x(t) = AeMt + Be2t
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Case 2: Two Complex Conjugate Roots, |

In case a® < 4b the two characteristic roots

are the complex conjugates 1> = —%a +i0,

with 6 := %m

Then x(t) = eMt = e~ 22tei0t = =32t (cos Ot + i sin Ot)
and x(t) = eMt = e~27te~10t = ¢=29(cos Ot — isin Ot)
are two different solutions, where 6 # 0.

For any t such that sinft # 0, one has

e)\10 e/\20

1 1 by 1
_ _ ot Mt . —s5at:
Mt ghat| T |t ghat| = € eMt = —2e72%jsinft #0
It follows that et and e2t

in the complex plane C.
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Case 2: Two Complex Conjugate Roots, Il

Focusing on solutions in the real line R,
. 1 1., .
we can consider e 22t cos 0t and e~ 2% sin t.

Again, for any t such that sin 6t # 0, one has
1 1.0 .
e 2%0cosA0 e 2%%sin 60 1 0
= 1 )
e 2% cosft e 2% sin Ot —Zlatcosft e 2?'sinft
Lo .
= e 2?sinft #£0
1 1., . .
It follows that e 27" cos @t and e~ 2% sin ft are two linearly
independent real-valued solutions in the complex plane C.

The general solution of the homogeneous equation
1

is x = e 27" (Acos 0t + Bsin 0t).
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Case 3: Two Coincident Real Roots
In this case a2 = 4b, and so

g(\) = X2+ ax+b=(\+3a)? = (A — Vb)?

The homogeneous equation X(t) + ax(t) + bx(t) =0
has one solution given by x = et where \ = —%a =

Vb.

To find a second linearly independent solution,
introduce the new variable y(t) := e x(t).

Then y(t) = e *x(t) — e~ *x(t) and so, when x = e*t, one has
y(t) = e Mx(t) — 2Xe Mx(t) + N2e A x(t)

= e MX(t) — 22x(t) + N2x(1)]
e MAZeM — 21 - AeM + X2eM] =0

The obvious general solution to y(t) =0
satisfies y(t) = constant and so y(t) = A+ Bt = e x(t).

Hence x(t) = (A + Bt)e*t is the general solution.
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Lecture Outline

Second-Order Differential Equations in One Variable

The Inhomogeneous Equation
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The Inhomogeneous Equation
Consider next the inhomogeneous equation

x(t) + a(t)x(t) + b(t)x(t) = £(¢)
with a non-zero forcing term on the right-hand side.

Suppose that y(t) and z(t) are both solutions, implying that

y(t) +a(t)y(t) + b(t)y(t) = f(¢)
and Z(t) + a(t)z(t) + b(t)z(t) = f£(¢)

Subtracting the second equation from the first tells us that the
function xy(t) := y(t) — z(t) is a solution of the corresponding
homogenenous equation X(t) + a(t)x(t) + b(t)x(t) = 0.
So the general solution of X(t) + a(t)x(t) + b(t)x(t) = f(t)
is the sum xg(t) = xp(t) + xy(t) of:

» any particular solution xp(t) of the inhomogeneous equation;

» any function xy(t) in the two dimensional linear space
of solutions to the homogeneous equation.

University of Warwick, EC9OA0 Maths for Economists Peter J. Hammond 46 of 94



Linearity in the Forcing Term, |

Theorem
Suppose that xP(t) and y"(t) are particular solutions
of the two respective differential equations

x(t) + a(t)x(t) + b(t)x(t) = d(t)
and j(t)+a(t)y(t) + b(t)y(t) = e(t)

Then, for any scalars v and 3, a particular solution of the equation
Z(t) + a(t)z(t) + b(t)z(t) = f(t) = ad(t) + Pe(t) (*)
is the linear combination zF(t) := axP(t) + ByF(t).

Proof.

Verify the claimed solution

by inserting the specified linear combination z(t),

together with its first two derivatives z°(t) and 2P(t),

into the differential equation (x). O
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Linearity in the Forcing Term, Il

Consider the equation X(t) + a(t)x(t) + b(t)x(t) = f(t)
whose forcing term f(t) is a linear combination >_7_, axf*(t)
of n forcing terms.

The theorem implies that a particular solution
is the corresponding linear combination S"7_; axx(t)
of particular solutions ka(t) to the respective n equations

X(t) + a(t)x(t) + b(t)x(t) = f&(t) (k=1,2,...,n)
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Lecture Outline

Second-Order Differential Equations in One Variable

The Method of Undetermined Coefficients
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A Newtonian Example, |
Newton's law: force = mass x acceleration.

A force of 1 Newton, by definition, accelerates a mass of 1 kilogram
at the rate of 1 metre per second per second.

So we consider the equation x(t) = f(t) whose solution t — x(t)
is the position (in one dimension) of a 1 kilogram weight

that has been subjected to a force function t — f(t).

Integrating once gives us the equation x(t) = x(0) + fot f(u)du

Integrating a second time gives us the solution

x(t) = x(0) + [y x(v)dv = x(0)+ [; [%(0) + [y f(u)du] dv
= x(0) +x(0)t + [y [Jy' f(u)du] dv

Note that x(0) + x(0)t solves the homogeneous equation X(t) = 0,

whereas the iterated double integral [ [ [y f(u)du] dv

is a particular solution.
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An Important Theorem on lterated Double Integrals, |

Theorem
For any integrable function (x,y) — ¢(x,y) € R
defined on the square domain [a, b] x [a, b] C R?, one has

/ab [/aycb(x,y)dx] dy = /ab [/ngé(x,y)dy] dx

Proof.

1 ifx<
Define the indicator function 1<, (x,y) = { if x<y

0 ifx>y

. Then
J7 [ o0ey)dx] dy = f7|f; ey (x.y)o(x, y)dx| dy
I B oty dx = [2 |7 Lesy (x,1)0(x, y)dy | dx

But both right-hand sides equal [ [© 1<, (x, y)d(x, y)dxdy. O
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An Important Theorem on lterated Double Integrals, Il

An alternative simple proof involves noticing that the two integrals

/ab Uay ¢(x,y)dx} dy and /ab [/Xbcﬁ(X,y)dy} dx

are simply two different ways of writing
the integral ffT &(x, y)dxdy of the function ¢ of two variables
over the isosceles right-angled triangle

T :={(x,y) € [a,b] x [a,b] CR? | x < y}

Note that T consists of points above and to the left
of the diagonal that joins the two corner points (a, a) and (b, b)
of the square [a, b] x [a, b].

The set T is also the convex hull
of the three points (a, a), (a, b) and (b, b).
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A Newtonian Example, Il

Reversing the order of integration allows the particular solution
in the form of the iterated double integral [ [y f(u)du] dv
to be rewritten as

/Ot [/ut f(u)dv} du = /Ot [/ut 1dv] f(u)du = /Ot(t— u)f(u)du

Ultimately, then, one has

x(t) = x(0) + x(0)¢t —|—/0 (t — u)f(u)du
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Linear Equation with Constant Coefficients, |
Next, consider the equation X(t) + ax(t) + bx(t) = f(t)
where the coefficients a of x(t) and b of x(t)
have both become constants, with b # 0.

Consider the quadratic function g(\) :== A2 + a\ + b
that appears in the characteristic equation A2 + a\ + b = 0.

One can factorize it as
g(A) =N +ax+b=(A—A1)(A—X)
where A1 and Ay are the two roots of the equation g(\) = 0.
Recall that A1 + A\» = —a and A\1\» = b.
Define the new variable y(t) := x(t) — A1 x(t).

Note that, if we could find the function t — y(t),
then we would have
t

x(t) = eM*x(0) —i—/ M=y () du
0
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Linear Equation with Constant Coefficients, |l

We are considering the equation X(t) + ax(t) + bx(t) = f(t),
with b # 0.

We have introduced the new variable y(t) := x(t) — A\1x(t),
implying that x(t) = eMtx(0) + [y eM(=y(u)du.

But the characteristic roots satisfy A2 4+aX+b = (A — A1)(A — \2),
implying that A1 + Ao = —a and A1 \» = b, and so

y(t) = Xoy(t) = X(t) — Ax(t) — Aax(t) + A1 Aax(t)
= X(t) + ax(t) + bx(t)

Hence y(t) satisfies the first-order equation y(t) — Aoy (t) = f(t)
whose solution is

t
y(t) = ety (0) + / eV F(v)dv
0
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Linear Equation with Constant Coefficients, Il
Substituting y(t) = e*ty( —|— f e (t=Vf(v)dv
in the expression x(t) = ’\“ )+ ft M=)y (y)du gives

x(t) = eMix(0)+ [ e“(f‘“)y( )du
= eMitx(0) _|_f0t eri(t—u) [eMU _|_f” A2(u—v) )dv] du

We split this form of the solution into two parts:
1. the complementary solution

t xC(t) = eMix( ft M(t—u)ghaugy
et [ (0)—|—y(0) JiE el A1)uG|u]

to the homogeneous equation X(t) + ax(t) + bx(t) = 0;
2. a particular solution in the form of the iterated double integral

t u
t— xP(t) = / eMi(t=u) [/ e)‘Z(”_")f(v)dv] du
0 0

to the inhomogeneous equation X(t) 4+ ax(t) + bx(t) = f(t).
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Degenerate Case
In the degenerate case when A\ = Ay = A,

1. the complementary solution takes the form:
xC(t) = eMx(0)+y(0) [, eMdu
e [x(0) + y(0)t]
2. the particular solution takes the form:
xP(t) — fot A(t—u) Uu A(u— v)f( ) ]du
= /\tfo Uo e Mf(v (v)dv] du

= M|, [fv 1du} e Vf(v)dv
= fot(t —v)eMt=f(v)dv

The overall solution is therefore
t
x(t) = et |:X(O) —}—y(O)t—l—/ (t— v)e_’\"f(v)dv
0
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Non-Degenerate Case: Complementary Solution

In the non-degenerate case when A1 # Ap,
the complementary solution takes the form

XC(8) = Mt [x(0) + y(0) Jy et v

= eMix(0) + eMity(0) [e(’\2_)‘1)t - 1]

X — M
= (0 (o)
- e =

After substituting x(0) — A1x(0) for y(0),
the right-hand side becomes

Ao i A1 {()\2 — )\1)X(0)e>\1t + [%(0) — )\1x(0)](e’\2t . e)\lt)}
and so
0= O e o)
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Non-Degenerate Case: Particular Solution

Using our rule for reversing the order of recursive integration,
the particular solution takes the form

Xp(t) _ ft Ai(t—u) [f“ A2(u—v) )dv] du

_ {fte)\l(tfu)e)\z(“*v)du} f(v)dv

_ ft At—ov |:ft e(>\2—>\1)udui| f(V)dV

_ 1 ft eMt—Xav [ (Aa=A1)t _ g(Re—A1)v ] f(V)dV

A2 — A1

1
= o e - I e
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First Special Case
An interesting first special case of the particular solution

1 t
P — )\2(t—v) _ Al(t—v)
x"(t) o /0 {e e } f(v)dv

occurs when f(t) is the exponential function e**, and so

xP(t) = ! /t {e)‘Z(FV) — e’\l(tf‘/)} e"Vdv
Ao — A1

In the degenerate case when Ay = u 7% A1, this reduces to

xP(t) = 1 [e,\ﬁt ,\1tf (1—M1) vdv}
Ao — A\
B erety e/\lt(e(AQ—Al)t_ )
Ao — A1 (A2 — A1)?
e)\gtt e>\2t _ e/\1t

A=A (Ao —Ap)?
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Non-Degenerate Case

In the non-degenerate case when Aj, A2 and p are all different,
one has the particular solution

P et ") et " (i—n)
X t = EE—— e 2vdV—/e 71VdV
(t) )\2—)\1/0 A2 — A1 Jo

e)\gt [e(,u,f)q)t _ 1:| e)\lt [e(/l*)\l)t _ 1:|

(A2 = A)(p—A2) (A2 — A)(p— A1)
_ 1 <eut o e)\gt eut - e)\1t>

M-M\ p-X p—X\

At Aot

But the multiples of e** and e*2* can be incorporated
in the complementary solution to the homogeneous equation,
so this particular solution can be reduced to

ekt 1 1 ekt
zP(t) = < — ) =
A=A \p—A p—2A\ (= A1) (= A2)
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Second Special Case
An interesting second special case of the particular solution

1 t
P — )\2(t7v) _ )q(tfv)
x"(t) pr— /0 {e e } f(v)dv

occurs when f(t) is the exponential function t"et, and so

1 t
P _ Xo(t—v) _ i(t—v) rpv
t)y= — d
x"(t) N /0 [e e } vietdv

In the non-degenerate case when A1, A and p are all different,
this becomes

XP(t) — ﬁ {e)\zt f()t Vre(,uf)\g)vdv _ Mt fot Vre(‘uf/\l)vdv
2 Al

= Py(t)eMt — Py(t)eM?

for polynomials t +— Pi(t) and t — P»(t) of degree r

whose coefficients are functions of the parameter triple (A1, Az, ).
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Lecture Outline

Second-Order Differential Equations in One Variable

Stability
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The Autonomous Equation

Now consider the autonomous equation
X(t) + ax(t) + bx(t) = ¢

with a constant right-hand side.

There is a constant solution x(t) = X
where X = ¢/b is the unique steady state.

The new variable y(t) := x(t) — X satisfies
the homogeneous equation X(t) + ax(t) + bx(t) = 0.

The associated characteristic equation is

Mrad+b=A-M)A—X2)=0
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A Stability Condition

1. In case there are two real characteristic roots

)\172 = —%aj: %\/ a2 —4b

the general solution Ae*t 4 Be?t — 0 as t — oo
if and only if both A\; and X, are negative.

2. In case there are two complex conjugate characteristic roots
_ 1 1; 2
)\]_’2——§a:l:§/ 4b — a
1 1. s
one has eMt = e 2t itVab—a"
The general solution Ae*t + Be*t — 0 as t — oo
iff a > 0, or iff both A\; and A have negative real parts.

3. In case there are two coincident real characteristic roots,
the general solution (A + Bt)e — 0 as t — oo iff A < 0.

All these conditions can be subsumed into one: stability holds

if and only if each characteristic root has a negative real part.
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Lecture Outline

First-Order Multivariable Differential Equations
Introduction
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Linear Differential Equation in n Variables

A linear differential equation in n variables specifies
the time derivative x(t) of the n-vector x(t)
as an affine function A(t)x(t) + b(t) of x(t).

That is
x(t) = A(t)x(t) + b(t)
where
> t— A(t) € R"™" is a matrix-valued function of time;
> t — b(t) € R" is a vector-valued function of time.
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Matrix Differentiation

Consider the m x n matrix function t — A(t)
whose elements (ajj(t))mxn are differentiable functions of t.

For all h # 0, the Newton quotient matrix +[A(t + h) — A(t)]
has elements equal to

the Newton quotients +(a;i(t + h) — a;j(t))mxn

of the matrix (a;i(t))mxn-

As h — 0, these converge to the derivatives (%a,-j(t))mxn.

For this reason, the matrix A(t) is said to be differentiable

with derivative A(t) = L A(t) whose elements are (a;i(t))mxn.
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Differentiating the Product of Matrices

Suppose that t — A(t) and t — B(t) are differentiable,
where each A(t) is £ x m and each B(t) is m x n.

Then t — C(t) = A(t) B(t) is well defined as a matrix product
with elements given by ci(t) = >, a;(t)bj(t)
whose time derivatives are

Gu(t) = D 13(0)bi() + ay(£) bye(1)]

Hence t — C(t) is differentiable,
with C(t) = A(t)B(t) + A(t)B(t).
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Differentiating the Square of a Square Matrix

Suppose that A(t) is an n x n matrix for all t,
and that each element is a differentiable function of t.

Then the square matrix A2(t) is well defined and differentiable,
with derivative $A2(t) = A(t)A(t) + A(t)A(t).

Unless the matrices A(t) and A(t) happen to commute,
in the sense that A(t)A(t) = A(t)A(t), )
this will not be equal to 2A(t)A(t) or to 2A(t)A(t).
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Example

Note that, even if each A(t) is square,
it may not commute with A(t).

For example, when A(t) = ((1) 1) then A(t) = (8 ?)
implying that A(£) A(£) = (8 1) 2 A(t)A(t) = <‘1) S)

Note that in this example A is symmetric; so therefore is A.
Hence A(t) A(t) = A(t)T AT(t) = [A(t)A(1)]".
Also A2(t) = <1 f 2) whose derivative satisfies

t 14+t

d

. ] 0 1
A0 = A(0)A(t) + A() A(t) = <1 2t>

This differs from both 2 A(t) A(t) and 2 A(t) A(t).
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The Exponential of a Square Matrix
Recall that the exponential function of a scalar is defined
so that the solution of the differential equation x = ax
is x(t) = e?x(0).
Similarly, we define the exponential function of a square matrix
so that the solution of the differential equation system x = Ax

is x(t) = exp(At) x(0).
The function t — exp(At) is often called the resolvent.

Recall that, for a scalar, there is the convergent power series

1 1 2 1 ~ 1
—1+Fat+2l( t)? + 3|(at) —Z, o i@’
with the convention that 0! = 1.

Similarly, for a square matrix, with the convention that (At)0 =1
one can use a convergent power series to give,

exp(AL) = 1+ 1 At+ (At) !(At)3...:zoo: l_(At)f
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The Exponential of a Diagonal Matrix
Dropping the time argument, it follows that we define

_ 1 2 1 3 _ o 1 r
exp(C) =1+ 7 c+ 1€+ 5(C)% .. —Z,:oﬁ(c)
Suppose that C is the diagonal matrix diag(c1, ¢z, . .., c,) = diagc

where c is the vector (ci, ¢, ..., Cp).
Now, each matrix power (diagc)” = diag(c{,cs,...,c})

as is readily proved by induction on r.

So, with this notation for the exponential of a matrix, we have

1
exp(C) = Y%7, HC’ = ESOO dlag(cl,cz,...,c,ﬁ)
= diag(e“,e2,..., ec")

Also, suppose matrix C has C = VAV ™! as a diagonalization.

Then each matrix power C" = VA'V~!
implying that exp(C) = V exp(A)V~1L.
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Integrating and Differentiating an Exponential Matrix
From the definition exp(As) = > L (As)",
either post- or premultiplying by A and then integrating gives

t
/ exp(As)Ads_/ A exp(As) ds—/ Z Or' Als"ds
0 r=

Next, integrating term by term, the last expression becomes

o 1 r+1 r _ o0 l r+1
S A e =Y e

Simplifying converts this to

o0 1 r+1,.r+1 o0 r
Z,:o (r+1)!A t _Zr . rlA t" = exp(At) — |

So [; exp(As)Ads = [ A exp(As)ds = exp(At) — |,
implying that

t 1 _r+l
0rr1°

d
ar exp(At) = Aexp(At) = exp(At) A
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Affine Equation in n Variables

Consider what happens when we multiply each side
of the non-homogeneous affine equation x(t) — Ax(t) = b(t)
by the matrix integrating factor exp(—At).

Because the product rule of differentiation applies to matrices,

& oAl x(1)] = exp(~At) K(t) + = [exp(~A)] x(t)
= exp(—At) (t)—exp( At) Ax(t)
— exp(—At) b(2)
(

if and only if x(t) solves the equation x(t) — Ax(t) = b(t).
Hence exp(—At) x(t) — exp(—As) x(s) = fs exp(—AT) b(7)dT.
Multiplying each side by exp(At) gives the unique solution

x(t) = exp[A(t — s)] x(s) + / exp[A(t — 7)] b(7) dT
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The Diagonal Case

The diagonal case occurs when A = A = diag(A1, ..., Ap).

Then the system x(t) — Ax(t) = b(t) of n coupled equations
reduces to the system of n uncoupled equations

X,‘(l') = a,-,-x,-(t) + b,‘(t) = /\,'X,'(t) + b,’(l’) (i =1,..., n)

one in each variable x;, with respective solutions

t
xi(t) = e)"'tx,-(s) + / eti(t=7) bi(T)dr
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The Diagonalizable Case

Suppose that A has n distinct eigenvalues
— or if not, then n linearly independent eigenvectors
that make up the columns of the matrix V.

Then A =VAV~! and At = V(At)V!
implying that exp(At) = V exp(At)V 1.

Hence the solution

x(t) = exp[A(t — s)] x(s) + /s exp[A(t — 7)] b(7)dT

simplifies to
%(£) = Vexp[A(t — )]V x(s) + / Vexp[A(t — )]V~ b(r) dr

Of course, the transformation y(t) := V™1 x(t) takes us back
to the diagonal case, with y(t) := Ay(t) + V1 b(t).
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A Stability Condition
When A = diag(A1, A2, ..., Ap),
one has exp(N\) = diag(e, e, ..., eM).
Furthermore exp(At) = diag(e™t, e*t, ... e*nt).
This converges to the zero matrix as t — oo

if and only if each et — 0,
which is true iff each eigenvalue \; has a negative real part.

Similarly, if A is diagonalizable, with A = VAV~
then consider the new variables y = V~1x.

The differential equation x(t) = Ax(t) becomes transformed to

y(t) = V7Ik(t) = VT Ax(t) = AV7Ix(t) = Ay(t)
Because V is invertible, one has x(t) — 0 < y(t) — 0.

Once again, stability holds
iff each eigenvalue of the matrix A has a negative real part.

This is true even when A is not diagonalizable.
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The Schrodinger Equation in C”
A wave function is a mapping R 3 t — 1)(t) € C".

Schrodinger’'s wave equation is a linear equation that,

in a simple case, can be written in the form v (t) = — i Hi(t)
where H is a Hamiltonian “energy” matrix with complex elements
that is self-adjoint.

Because H is self-adjoint, it can be diagonalized so that,

after a change of variables,

one has 9(t) = —idiag(hy, ..., hy)(t)

and so ¢ (t) = — i hgabi(t) for each k € N,

For each possible initial value ¥(0) € C", and for each k € N,,,
the unique solution is

r(t) = i(0)e Pt = ¢ (0)cos(—hy ) + isin(—hy )]
This is a wave or oscillatory solution with frequency hy.

Generally, the eigenvalues in the spectrum of H, which are all real,

are possible frequencies of oscillatory solutions.
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Lecture Outline

First-Order Multivariable Differential Equations

Autonomous Nonlinear Equations in Many Variables
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Autonomous First-Order Equations

Let F: R” — R" be a general function
that may be non-linear.

Consider the autonomous differential equation x = F(x).

A solution satisfying the initial condition x(s) = X
is a differentiable function [s, t) > t — x(t)
that satisfies x(t) = F(x(t)) for almost all t > s.

Equivalently, for almost all t > s, one must have

x(t) = x(s) +/ F(x(7))dr
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Stationary States and Rest Points

A stationary state is a point x* € R"” with the property
that if x(s) = x* at any time s, then x(t) = x* at all times t > s.

A rest point is a state X € R” with the property that F(x) = 0.

Theorem

Any rest point is a stationary state, and conversely.

Proof.

If F(X) = 0, then the solution of x( )+ f T))dT

with x(s) = X satisfies x(t) = x(s) =X for aII t>s.

Conversely, if that solution satisfies x(t) = x(s) = x* for all t > s,
then x(t) = F(x(t)) = F(x*) =0 for all t > s. O
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Local Stability of a Stationary State

Let F’(x) denote the n x n Jacobian matrix
whose elements are the partial derivatives Fi;(x) = a—XjF,-(x)

of the different components (F;(x))"_;.

Any particular steady state x* is locally asymptotically stable
if and only if all the eigenvalues of F/(x*) have negative real parts.
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A System with Two Variables

Consider the coupled pair x = f(x,y), vy = g(x,y)
of differential equations.

Let (a, b) be any stationary point
satisfying both f(a, b) = 0 and g(a, b) = 0.

The Jacobian matrix at the stationary point takes the form

O apy 2L

Ja, b) = Ox
0= o, Sa.b)

x
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Local Saddle Point with Two Variables

The product of the two eigenvalues A1, A2 of J(a, b)
equals its determinant |J(a, b)|.

The two eigenvalues are real and have opposite signs
if and only if [J(a, b)| < 0.

This is a sufficient condition for the steady state to be unstable.

But if (x(0) — a,y(0) — b) " is an eigenvector

corresponding to the negative eigenvalue,

then in the case when the equations are linear and so J is constant,
the solution will converge to the steady state.

This is saddle point stability.
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The Lotka—Volterra Predator-Prey Model

Foxes are predators; their prey includes rabbits.

Let x denote the expected population of rabbits,
and y denote expected population of foxes.

Assume these populations are linked by the differential equations
x = x(k—ay)
y = y(bx—h)

where a, b, h, k are all positive parameters.

Thus:

1. the rabbit population growth rate % Inx = x/x
is a decreasing affine function of the fox population;

2. whereas the fox population growth rate % Iny=y/y
is an increasing affine function of the rabbit population.
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Lotka—Volterra: Phase Plane Analysis
Given the system x = x(k — ay) and y = y(bx — h),
the two nullclines where x =0 and y =0
are given by y = k/a and x = h/b respectively.
So the steady state is at (x,y) = (h/b, k/a).

The Jacobian matrix is J(x,y) is

Ox Oy _ (k— ay —ax >
dy dy yb  bx—h
Ox Oy
0 —ah/b
It reduces to <bk/a 0 ) at the steady state (h/b, k/a).

The characteristic equation is A2+ hk =0,
whose roots are +i+v/ hk.

As the following diagram suggests, there can be limit cycles
with x(t) = £ cos v hkt and y(t) = nsin+/ hkt.
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Lotka—Volterra: Phase Plane Diagram
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Saddle Point Example

Consider a macro model where: (i) K denotes capital;
(i) Y denotes output; and (iii) C denotes consumption.

Suppose that net investment K=Y — C, that Y = aK — bK2,
and C = w(a — 2bk)C, where a, b, k, w are positive constants.

This gives the coupled system with
K = aK — bK? — C and C = w(a — 2bK)C
The two nullclines are C = aK — bK? and K = a/2b.

These intersect at the stationary point (K*, C*) = (a/2b, a®/4b).
The Jacobian matrix is

0K 0K
JK.C) = 37 % _ a—2bK -1
oCc 0ocC —2wbC  w(a — 2bK)
oK aC
This reduces to ( 102 _1> at the steady state.
—§a w 0
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Phase Diagram |
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Phase Diagram Il
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Stability Analysis

The Jacobian matrix at the steady state is < 102 1).
—§a w 0

This matrix has trace 0 and negative determinant —%azw.

So the two eigenvalues have sum 0 and product —%azw.
It follows that the eigenvalues are £\ where \? = %a2w

and so A = a\/w/2.

The general solution near the steady state takes the form

K—=K*\ _ (A1) e, (B1) -
(c2e)= () (a)s
for arbitrary constant vectors (A1, A2) " and (By, B2) .

This converges to the steady state at (K*, C*) = (a/2b, a°/4b)
if and only if A; = A, =0.

It follows that the steady state is a saddle point.
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Existence and Uniqueness Theorem, |

Note: In the following,
we use ordinary Roman rather than bold letters
for vectors in the finite-dimensional space RY.

Extract from pp. 355-356 in ch. 6 of David Applebaum (2009)
Lévy Processses and Stochastic Calculus, 2nd edn. (Cambridge)

Let b: R?Y — RY, so that b= (b*,..., b%)
where b : R 5 R for 1 </ <d.

We study the initial value problem posed
by the vector-valued differential equation %c(t) = b(c(t))

with fixed initial condition c(0) = ¢ € RY,
whose solution, if it exists, is a curve (c(t),t € R) in R€.
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Existence and Uniqueness Theorem, I

We say that b is (globally) Lipschitz if there exists K > 0
such that, for all x,y € R9, ||b(x) — b(y)| < K|Ix — y||.

Exercise 6.1.1 Show that if b is differentiable
with bounded partial derivatives then it is Lipschitz.

Exercise 6.1.2 Deduce that if b is Lipschitz then it satisfies
a linear growth condition ||b(x)| < L(1 + ||x]|) for all x € RY,
where L = max{K, |b(0)|}.

Theorem 6.1.3 If b: RY — R? is (globally) Lipschitz,
then there exists a unique solution ¢ : R — R¢
of the initial value problem.

The proof offered by Applebaum
does not use a contraction mapping theorem.

Rather, it bounds possible solutions within error bands
that are exponential functions that converge to zero.
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