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1 Preliminaries

Let N := {1, 2, . . .} denote the countably infinite set of natural numbers. For any natural
number K ∈ N, the K-dimensional real (Euclidean) space is the K-fold Cartesian product of
R. We denote this space by RK , so that x ∈ RK is (x1, x2, . . . , xK) = (xi)

K
i=1. Sometimes we

abuse notation by letting K denote the set {1, 2, . . . , K}. Then the typical member of RK

can be denoted by (xi)i∈K .
The origin of RK is the vector 0 whose components (0, 0, . . . , 0) are all zero. Given any

pair a, b ∈ R there are four different possible inequalities, namely: a > b, a ≥ b, a ≤ b and
a < b. If a 6= b, exactly one of these holds. But if a = b, then both a ≥ b and a ≤ b.

Given any pair x, y ∈ RK where K ≥ 2, there are six different possible inequalities, namely:
x � y, x > y, x = y, x 5 y, x < y, and x � y. The first three inequalities are defined so
that:

1. x� y iff xi > yi for all i ∈ K;

2. x > y iff x 6= y and xi ≥ yi for all i ∈ K;

3. x = y iff xi ≥ yi for all i ∈ K.

Clearly x 5 y iff y = x, etc. Given any pair x, y ∈ R1, of course, one has x � y iff x > y.
But in RK when K ≥ 2, none of the six inequalities may hold, as happens when x = (1, 0)
and y = (0, 1) in R2.

Yet more notation: the non-negative orthant in RK is the set RK
+ := {x ∈ RK | x = 0},

whereas the positive orthant is RK
++ := {x ∈ RK | x� 0}. When K = 2 these are quadrants,

and when K = 3 these are octants. There is no special notation for the set RK
+ \ {0} = {x ∈

RK | x > 0}.
Define vector addition by x + y = (x1 + y1 x2 + y2 . . . xK + yK) and for any scalar α ∈ R

scalar multiplication is defined by αx = (αx1 αx2 . . . αxK).

2 Correspondences and Functions

Definition 1. Let X and Y be two nonempty sets. A correspondence f from a set X into a
set Y , denoted f : X → Y , is a rule that assigns to each x ∈ X a set f(x) ⊂ Y

For the moment, we are going to work with a particular type of correspondences where
the set f(x) is a singleton.

Definition 2. Let X and Y be two nonempty sets. A function f from a set X into a set Y ,
denoted f : X → Y , is a rule that assigns to each x ∈ X a unique f(x) ∈ Y

1Based on notes by Andrés Carvajal
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Here, set X is said to be the domain of f , and Y its target set or co-domain. If f : X → Y
and A ⊆ X, the image of A under f , denoted by f [A], is the set

f [A] ≡ {y ∈ Y |f(x) = y for some x ∈ A}.

In particular, the image f [X] of the whole domain is called the range of f .

Definition 3. Function f : X → Y is said to be:

• onto, or surjective, if f [X] = Y ; it is said to be one-to-one, or injective, if

f(x1) = f(x2)⇒ x1 = x2.

• a one-to-one correspondence, or bijective, if it is both onto and one-to-one.

Example 1. The function f : R2 7→ R defined by f(x1, x2) = x2
1 +x2

2 is neither one-to-one nor
onto. It is not one-to-one because f(1, 0) = f(0, 1) = 1. It is not onto because [R] = R+ 6= R.

Example 2. The function f(x) : R \ {0} 7→ R defined by f(x) = 1
x

is one-to-one but not
onto. It is one-to-one since 1

x
= 1

y
⇔ x = y. Graphically, any horizontal line that intersects

the graph, it does it at only one point. The function is not onto as f [R] = R \ {0}.

Example 3. The function f : R2 7→ R defined by f(x1, x2) = x1 + x2 is onto but not
one-to-one. It is onto because for any y ∈ R, f(0, y) = y. It is not one-to-one because
f(1, 0) = f(0, 1) = 1.

Example 4. The function f(x) : R 7→ R defined by f(x) = x is one-to-one and onto.

If f : X → Y , and B ⊆ Y , the inverse image of B under f , denoted f−1[B], is the set

f−1[B] ≡ {x ∈ X|f(x) ∈ B}.

If f : X → Y is a one-to-one correspondence, the inverse function f−1 : Y → X is implicitly
defined by f−1(y) = f−1[{y}]. Notice that this would not have been be a bona fide definition,
had we forgotten to say that f is a one-to-one correspondence (what could have gone wrong?).

The proof of the following theorem is left as an exercise.

Theorem 1. The function f : X 7→ Y is onto iff f−1[B] 6= ∅ for all non-empty B ⊆ Y .

Proof: (⇒) Suppose f : X 7→ Y is onto. Let B ⊆ Y . We need to show that f−1[B] ≡ {x ∈
X|f(x) ∈ B} 6= ∅. Let ỹ ∈ B. Since f is onto, {y ∈ Y |f(x) = y for some x ∈ X} = Y .
Then, there exists x ∈ X such that f(x) = ỹ. Thus, f−1[B] 6= ∅.

(⇐) Suppose f−1[B] 6= ∅ for all non-empty B ⊆ Y . We need to show that f [X] ≡ {y ∈
Y |f(x) = y for some x ∈ X} = Y . Since f [X] ⊆ Y , it suffices to show that Y ⊆ f [X]. Let
ỹ ∈ Y . By hypothesis, f−1({ỹ}) 6= ∅. Hence, there is x ∈ X such that f(x) = ỹ which means
that ỹ ∈ {y ∈ Y |f(x) = y for some x ∈ X} ≡ f [X]. Thus, Y ⊆ f [X]. Q.E.D.
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3 Vector Spaces

Much of economics, especially at the undergraduate level, relies only on vectors in a finite-
dimensional Euclidean space RK . But this is a prominent example of the much more ex-
tensive class of real linear spaces, some of them infinite-dimensional, which arise naturally
when economists consider difference and differential equations, optimal control problems, and
dynamic programming.

Definition 4. A set F is said to be a field if there are two binary operations (x, y) 7→ x⊕ y
from F × F to F and (x, y) 7→ x ⊗ y from F × F to F called addition and multiplication,
respectively, such that for all x, y, z ∈ F:

1. x⊕ y = y ⊕ x (addition commutes);

2. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (addition is associative);

3. There exists an element 0 ∈ F, such that x⊕ 0 = x (additive identity);

4. For each x ∈ F, there is a unique element in F, denoted -x, such that x ⊕ (−x) = 0
(negative);

5. x⊗ y = y ⊗ x (multiplication is commutative);

6. (x⊗ y)⊗ z = z ⊗ (y ⊗ z) (multiplication is associative);

7. There exists and element 1 ∈ F such that 1 6= 0 and 1⊗ x = x (multiplicative unit);

8. If x ∈ F and x 6= 0, there is an element 1
x
∈ F such that x⊗ ( 1

x
) = 1 (reciprocal)

9. x⊗ (y ⊕ z) = x⊗ y ⊕ x⊗ z (distributive law);

Definition 5. A set L is said to be a vector (or linear) space over the scalar field F (with
operations + and ·) if there are two binary operations (x, y) 7→ x ⊕ y from L × L to L and
(λ, x) 7→ λ⊗ x from F× L to L called addition and scalar multiplication, respectively, and a
unique null vector θ ∈ L, such that for all x, y, z ∈ L and λ, µ ∈ F:

1. x⊕ y = y ⊕ x (addition commutes);

2. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (addition is associative);

3. x⊕ θ = x (additive identity);

4. for each x ∈ L, there is a unique −x such that x⊕ (−x) = θ; (negative)

5. λ⊗ (µ⊗ x) = (λ · µ)⊗ x (scalar multip. is associative);

6. 0⊗ x = θ;

7. 1⊗ x = x;

8. (λ+ µ)⊗ x = λ⊗ x ⊕ µ⊗ x (first distributive law);

9. λ⊗ (x⊕ y) = λ⊗ x ⊕ λ⊗ y (second distributive law).

3



Exercise 1 (Stokey and Lucas, exercise 3.2). Show that the following are vector spaces:

1. any finite-dimensional Euclidean space RK.

2. the set X consisting of al infinite sequences {x0, x1, x2, ...} where xi ∈ R.

3. the set of all continuous functions on the interval [a, b]

Show that the following are not vector spaces:

4. the unit circle in R2

5. the set of all integers, Z = {...,−1, 0, 1, ....}.

6. the set of all nonnegative functions on [a, b]

4 Metric Spaces and Normed Vector Spaces

From now on, we only concentrate on definitions and concepts in Euclidean spaces and main-
tain the assumption that K ∈ N.

4.1 Distance Function

The vector space structure of RK is not enough –on its own– to allow us to express geometric
concepts. In R1 the distance d(a, b) between a and b is |a − b|. In R2, Pythagoras’ theorem
implies that the distance d(x, y) between x = (x1, x2) and y = (y1, y2) is the positive solution
to the equation d2 = (x1 − y1)2 + (x2 − y2)2. Even in R3, the distance d(x, y) between
x = (x1, x2, x3) and y = (y1, y2, y3) is the positive solution to the equation d2 = (x1 −
y1)2 + (x2 − y2)2 + (x3 − y3)2. All of these three cases are covered by the single formula

d(x, y) =
√(∑

i∈K(xi − yi)2
)
.

More generally, any function that satisfies three intuitive properties is called a metric or
distance function.

Definition 6. Given any set X, a metric or distance function on X is a function d : X×X 7→
R that satisfies three basic conditions:

1. d(x, y) ≥ 0 , with equality if and only if x = y (positivity).

2. d(x, y) = d(y, x) (symmetry).

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Example 5. The Euclidean distance d(x, y) between any two points x, y ∈ RK is

d(x, y) =

(∑
i∈K

(xi − yi)2

)1/2

.
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4.2 Norms

For vector spaces, metrics are usually defined in such a way that the distance between any
two points is equal to the distance of their difference from the zero point. That is, since for
any points x and y in a vector space X, the point x− y is also in X, the metric on a vector
space is usually defined in such a way that d(x, y) = d(x − y, 0). To define such a metric we
need the concept of a norm.

Definition 7. Given any vector space X, a norm on X is a function ‖·‖ : X 7→ R such that
for all x, y ∈ X and α ∈ R:

1. ‖x‖ ≥ 0, with equality if and only if x = θ (i.e., x is the null vector);

2. ‖αx‖ = |α| ‖x‖ ; and

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality)

In order to measure how far from 0 an element x of RK is, we use the Euclidean norm
which is defined as2

‖x‖ =

(
K∑
k=1

x2
k

)1/2

.

It is obvious that when K = 1 the Euclidean norm corresponds to the absolute value.
The space X = RK equipped with its Euclidean distance d : X ×X → R is a prominent

example meeting the next definition.

Definition 8. A metric space is a pair (X, d) where X is a set and d : X × X 7→ R is a
metric (or distance function).

Example 6. Let p ∈ R+ be a positive real parameter. Define dp : RK × RK → R by

dp(x, y) =

(∑
i∈K

|xi − yi|p
) 1

p

.

Then (RK , dp) is a metric space if p ≥ 1, but not if 0 < p < 1

Exercise 2 (Stokey and Lucas, exercise 3.3). Show that the following are metric spaces:

a. the set of integers with d(x, y) = |x− y|.

b. the set of integers with d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y.

c. the set of all continuous, strictly increasing functions on [a, b], with d(x, y) = maxa≤t≤b|x(t)−
y(t)|.

d. R with d(x, y) = f(|x − y|), where f : R+ → R+ is continuous, strictly increasing, and
strictly concave, with f(0) = 0.

2 To avoid confusion, you can be explicit about the dimension for which the norm is being used, by adopting
the notation ‖ · ‖K instead. Also, we will simplify the notation by not always writing the limits in the index of

a summation, when it is obvious what these limits are; for instance, we may write
(∑

k x
2
k

)1/2
for the definition

that follows.
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Definition 9. A normed vector space is a pair (X, ‖·‖) where X is a set and ‖·‖) : X 7→ R
is a norm.

It is standard to view any normed vector space (X, ‖·‖) as a metric space where the metric
is taken to be d(x, y) = ‖x− y‖ for all x, y ∈ X.

Exercise 3 (Stokey and Lucas, exercise 3.4). Show that the following are normed vector
spaces:

a. Let X = RK, with ‖x‖ =
[∑K

k=1 x
2
k

] 1
2

(Euclidean Space)

b. Let X = RK, with ‖x‖ = maxi|xi|.

c. Let X = RK, with ‖x‖ =
∑K

k=1 |xk|.

d. Let X be the set of all bounded infinite sequences {xn}∞k=1 with ‖x‖ = supn |xk|. (This space
is called l∞)

5 Sequences

A sequence in RK is a function f : N → RK . If no confusion is likely, the space in which a
sequence lies is omitted. Following usual notation in mathematics, we can express sequences
as (a1, a2, . . .) or (an)∞n=1, where an = f(n), for n ∈ N.

Example 7. Suppose that f(n) = (
√
n, 1/n, 3) ∈ R3, for all n ∈ N. Then we can express the

sequence as ((1, 1, 3), (
√

2, 1/2, 3), (
√

3, 1/3, 3), . . .) or (
√
n, 1/n, 3)∞n=1.

It is very important to notice that a sequence has more structure than a set (i.e., it is more
complicated). Remember that a set is completely defined by its elements, no matter how
they are described. For example, the set {0, 3, 8, 15, 24} is the same as the set {24, 15, 8, 3, 0}.
However, the sequences (0, 3, 8, 15, 24, . . .) and (24, 15, 8, 3, 0, . . .) are clearly different: in a
sequence, the order matters!

Using the structure that a sequence has, (an)∞n=1 is nondecreasing if for all n ∈ N, an+1 ≥ an
and nonincreasing if for all n, an+1 ≤ an. If all the inequalities in the first definition are strict,
the sequence is increasing, while if all the inequalities in the second definition are strict, the
sequence is decreasing.

Definition 10. The sequence (an)∞n=1 in RK is bounded above if there exists ā ∈ RK such
that an ≤ ā for all n. It is bounded below if there exists ā ∈ RK such that an ≥ ā for all n,
and it is bounded if it is bounded both above and below.

Obviously, a sequence (an)∞n=1 in RK is nothing but an array of K sequences in R: sequence
(ak,n)∞n=1 for each k = 1, . . . , K. So, it should not come as no surprise that some relations
exist between these objects.

Theorem 2. (an)∞n=1 in RK is bounded if and only if (ak,n)∞n=1 in R is bounded for all k =
1, . . . , K.

Definition 11. Given a sequence (an)∞n=1 in RK, a sequence (bk)
∞
k=1 in RK is a subsequence

of (an)∞n=1 if there exists an increasing sequence (nk)
∞
k=1 such that nk ∈ N and bk = ank

for all
k ∈ N.
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That is, a subsequence is a selection of some (possibly all) members of the original sequence
that preserves the original order.

Example 8. Consider the sequence (1/
√
n)∞n=1, and note that (1/

√
2n+ 5)∞n=1 is a subse-

quence of the former. To see why, consider the sequence (nm)∞m=1 = (2m+ 5)∞m=1.

Exercise 4. Is (1/
√
n)∞n=1 a subsequence of (1/n)∞n=1? How about the other way around?

5.1 Limits of sequences

Definition 12. The point a ∈ RK is a limit of the sequence (an)∞n=1 if for every ε > 0 there
exists some n∗ ∈ N such that d(an, a) < ε for all n ≥ n∗. Sequence (an)∞n=1 in RK is said to
be convergent if it has a limit a ∈ RK.

When (an)∞n=1 converges to a, the following notation is also sometimes used: an → a, or
limn→∞ an = a.

Exercise 5. Does ((−1)n)∞n=1 converge? Does (−1/n)∞n=1?

The following Theorem shows that limits are unique.

Theorem 3. If an → x and an → y, then x = y.

Proof: Suppose x 6= y. Then d(x, y) > 0. Let ε = d(x, y) > 0. Since an → x, there exists Nx

such that d(an, x) < ε
4

for all n > Nx and there exists Ny such that d(an, y) < ε
4

for all n > Ny.
Thus for any n > max {Nx, Ny}, d(x, y) ≤ d(x, an) + d(an, y) ≤ ε

2
< d(x, y), a contradiction.

Q.E.D. Q.E.D.

This Theorem simplifies the search for limits of vectors as it tell us that the limit of the
vector is equal to the vector of limits of its components.

Theorem 4. (an)∞n=1 in RK converges to a ∈ RK if and only if (ak,n)∞n=1 in R converges to
ak for all k = 1, . . . , K.

Proof: Let us prove sufficiency first. Given any ε > 0, for each k there is some n∗k ∈ N such
that |ak,n − ak| < ε/

√
K whenever n ≥ n∗k. Letting n∗ = max{n∗1, . . . , n∗K} ∈ N and n ≥ n∗,

by construction,

‖an − a‖ = (
∑
k

(ak,n − ak)2)1/2 < (
∑
k

ε2/K)1/2 = ε.

For necessity, fix k and let ε > 0. By assumption, there is n∗ ∈ N after which ‖an − a‖ < ε,
which suffices to imply that |ak,n − ak| < ε. Q.E.D.

Theorem 5. A sequence (an)∞n=1 in RK converges to a ∈ RK if and only if every subsequence
of (an)∞n=1 converges to a.

Proof: (⇐) is trivial. To show (⇒), let (bk)
∞
k=1 be a subsequence of (an)∞n=1. Then, there

is {nk}∞k=1 such that bk = ank
. Let ε > 0. Since (an)∞n=1 converges to a ∈ RK , there exists

n∗ ∈ N such that d(an, a) < ε. Since nk ≥ k, then k ≥ n∗ implies nk ≥ n∗ and, therefore,
d(bk, a) = d(ank

, a) < ε. Q.E.D.

7



It is convenient to allow +∞ and −∞ to be limits of sequences. Thus, we extend the
definition as follows: for a sequence (an)∞n=1 in R, we say that limn→∞ an = ∞ when for
all ∆ > 0 there exists some n∗ ∈ N such that an > ∆ for all n ≥ n∗; we also say that
limn→∞ an = −∞ when limn→∞(−an) =∞.

Exercise 6. Does the sequence ( 3n√
n
)∞n=1 have a limit? Does it converge?

A very useful property of limits (for both sequences and functions) is that they preserve
weak inequalities.

Theorem 6. Consider a sequence (an)∞n=1 in R and a number a ∈ R. If an ≤ α for all n ∈ N
and limn→∞ an = a, then a ≤ α. Similarly, if an ≥ α, for all n ∈ N, and limn→∞ an = a, then
a ≥ α.

Proof: Let’s show that an ≤ α for all n ∈ N and limn→∞ an = a, then a ≤ α. The other
result follows by an analogous reasoning. Suppose a > α. Let ε = a − α > 0. Since an → a,
there exists N such that |an − a| < ε

2
for all n ≥ N . But then, an > a− ε

2
≥ α for all n ≥ N ,

a contradiction. Q.E.D.

Exercise 7. Can we strengthen our results to say: “Consider a sequence (an)∞n=1 in R and a
number a ∈ R. If an < α, for all n ∈ N, and limn→∞ an = a, then a < α.”?

The following theorem is also very useful:

Theorem 7. For sequences (an)∞n=1 in R such that an > 0 for all n ∈ N, the following
equivalence holds:

lim
n→∞

an =∞⇔ lim
n→∞

1

an
= 0.

Proof: Let us prove the sufficiency statement, leaving necessity as an exercise. Suppose that
limn→∞(1/an) = 0 and fix ∆ > 0. Then, for some n∗ ∈ N one has that |1/an−0| < 1/∆ when
n ≥ n∗; since each an > 0, it follows that an > ∆. Q.E.D.

Exercise 8. Show that

lim
n→∞

(
15n5 + 73n4 − 118n2 − 98

30n5 + 19n3

)
=

1

2
.

Theorem 8. Let (an)∞n=1 and (bn)∞n=1 be two sequences in R. Suppose that for numbers
a, b ∈ R, we have that limn→∞ an = a and limn→∞ bn = b. Then,

1. limn→∞(an + bn) = a+ b;

2. limn→∞(αan) = αa, for all α ∈ R;

3. limn→∞(an · bn) = a · b; and

4. if b 6= 0 and bn 6= 0 for all n ∈ N, then limn→∞(an/bn) = a/b.
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Proof: To show 1., let ε > 0 be arbitrary. We need to show that there exists N ∈ N such
that |an + bn − a − b| < ε for all n ≥ N . Since an → a and bn → b, there exists Na ∈ N and
Nb ∈ N such that |an − a| < ε

2
for all n ≥ Na and |bn − b| < ε

2
for all n ≥ Nb. But then, by

the triangle inequality:

|an + bn − a− b| ≤ |an − a|+ |bn − b| ≤
ε

2
+
ε

2
= ε.

Q.E.D.

Theorem 9. Every sequence (an)∞n=1 has a monotone subsequence.

Proof: Given a sequence (an)∞n=1, integer n is called a peak of the sequence if an > am for every
m > n. Suppose the sequence (an)∞n=1 has infinitely many peaks {n1, n2, ..., nk, ...}. Then, the
subsequence consisting of the value of the original sequence at the peaks, i.e (ank

)∞k=1, is a
monotone decresing sequence as ank

> an′k for every k′ > k. Suppose, instead, that the
sequence (an)∞n=1 has finitely many peaks and let N be the last peak. Let n1 = N + 1. Since
n1 > N , then it is not a peak. Thus there exists n2 > n1 such that an2 ≥ an1 . Suppose you
have found k ≥ 1 elements of the original sequence such that nk > nk−1 > ...n2 > n1 > N and
an1 ≤ an2 ≤ ... ≤ ank

. Since nk > N , then it is not a peak. Thus there exists nk+1 > nk such
that ank+1

≥ ank
. This inductive procedure shows there exists a nondecreasing subsequence

of (ank
)∞k=1. Q.E.D.

Theorem 10. If sequence (an)∞n=1 in R is convergent, then it is bounded.

Proof: Suppose (an)∞n=1 converges to a ∈ R. Then there exists N ∈ N such that |an − a| ≤ 1
for all n ≥ N . Note that

|an| = |an − a+ a| = |an − a|+ |a| ≤ 1 + |a|

where the last inequality follows by triangle inequality. Let

b = max {|a1| , |a2| , ..., |aN | , 1 + |a|} .

Hence |an| ≤ b for all n ∈ N. Q.E.D.

Theorem 11. If a sequence (an)∞n=1 in R is monotone and bounded, then it is convergent.

Proof: Suppose (an)∞n=1 is monotone and bounded. Without loss in generality, assume it is
increasing. Then it has a supremum, say c. Let ε > 0 be arbitrarily chosen. By definition of
supremum, there exists N ∈ N such that aN > c − ε. Since (an)∞n=1 is monotone, it follows
that 0 < c− an < c− aN < ε. Thus, |an − c| < ε for all n ≥ N. Q.E.D.

Theorem 12 (Bolzano-Weierstrass). If a sequence (an)∞n=1 ∈ R is bounded, then it has a
convergent subsequence.
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An informal argument for the Bolzano-Weierstrass Theorem for sequences defined into R
is as follows: if (an)∞n=1 is bounded, then it lies in some bounded interval I1. Slice that interval
in halves. At least one of the halves will contain infinitely many terms of the sequence. Call
that interval I2, slice it in halves, and let I3 be a half that contains infinitely many elements...
By doing this indefinitely, we construct intervals I1, I2, ... such that each In contains infinitely
many terms of the sequence and In+1 ⊆ In. By construction, we can find a subsequence
(xnm)∞m=1 such that for all m ∈ N, anm ∈ Im. This subsequence will have the property that
their elements get arbitrarily close to one another as we move along the sequence (because,
by construction, our “sequence” of intervals is in fact shrinking to zero diameter as m goes
to ∞). Sequences with this property are said to be Cauchy and, in Euclidean spaces, are
guaranteed to converge. This formal argument can be formalised appropriately. Here I offer
another proof that uses the Theorems we proved above:

Proof: Suppose (an)∞n=1 ∈ R is bounded. By Theorem 9, there exists a monotone subse-
quence. Since the original sequence was bounded, then the monotone subsequence is also
bounded. By Theorem 11, such subsequence converges. Q.E.D.

5.2 Cauchy Sequences

Definition 13. A sequence {an}∞n=1 in RK is a Cauchy sequence (or satisfies the Cauchy
criterion) if for each ε > 0, there exists Nε such that

d(an, am) < ε, for all n,m ≥ Nε.

Exercise 9. Does the sequence (1/
√
n)∞n=1 have a limit? Is it Cauchy? How about ( 3n

n+
√
n
)∞n=1?

Exercise 10. Repeat the last part of Exercise 9, using Theorem 7. Is it easier?

Theorem 13. If a sequence {an}∞n=1 in RK is convergent, then it is a Cauchy sequence.

Proof: Suppose a sequence {an}∞n=1 in RK converges to a ∈ RK . Let ε > 0 be arbitrary.
Since the sequence converges, there exists N such that d(an, a) < ε

2
for all n ≥ N . Let m ≥ n.

Then, d(an, am) ≤ d(an, a) + d(a, am) ≤ ε
2

+ ε
2

= ε. We conclude there exists Nε such that
d(an, am) < ε for any n,m ≥ Nε, as desired. Q.E.D.

Theorem 14. If a sequence {an}∞n=1 ∈ R is Cauchy, then it is bounded.

Proof: Suppose a sequence {an}∞n=1 is Cauchy. Let ε = 1. Then there exists N such that
|an − am| < 1 for all n,m ≥ N . Let B = max {a1, ..., aN}. Now let’s show that |an| ≤ 1 + B
for all n ∈ N. This is obvious for n ≤ N . For n > N , |an − aN | < 1. Hence,

|an| = |an − aN + aN | ≤ |an − aN |+ |aN | ≤ 1 + |aN | ≤ 1 +B

Q.E.D.

Definition 14. A metric space (X, d) is complete if every Cauchy sequence in X converges
to an element of X.

10



Verifying the completeness of particular spaces can take some work. We take as given the
following:

Fact: R with d(x, y) = |x− y| is a complete metric space.

Exercise 11. Show that:

1. the set of integers with d(x, y) = |x− y| is a complete metric space.

2. The set of continuous, strictly increasing functions on [a, b], with

d(x, y) = maxa≤t≤b|x(t)− y(t)|.

is not a complete metric space.

Definition 15. A complete normed vector space is called a Banach space.

6 Topology of RK

From now on, we deal only with subsets of RK , for a finite number K; that is, whenever we
introduce sets X or Y , we assume that X, Y ⊆ RK and use all the algebraic structure of
RK . We also use the structure induced in RK by the Euclidean norm. Whenever we take
complements, they are relative to RK .

6.1 Open sets

The two key concepts are those of open and closed sets.

Definition 16. Set X is open if for every x ∈ X, there is some ε > 0 such that Bε(x) ⊆ X.

Example 9 (Open intervals are open sets in R). We define an open interval, denoted (a, b),3

where a, b ∈ R, as {x ∈ R|a < x < b}. To see that these are open sets (in R), take x ∈ (a, b),
and define ε = min{x − a, b − x}/2 > 0. By construction, Bε(x) ⊆ X. As a consequence,
notice that open balls are open sets in R. The same is true in RK, for any K.

It is easy to see that if we extend the definition of the open interval (a, b) to {x ∈ R|a <
x < b} where a, b ∈ R ∪ {+∞,−∞}, then it continuous to be true that open intervals are
open sets. The following theorem is a specific instance of a more general principle: in any
space, the empty set and the universe are open sets.

Theorem 15. The empty set and RK are open.

Proof: A set X fails to be open if one can find x ∈ X such that for all ε > 0 one has that
Bε(x) ∩Xc 6= ∅. Clearly, ∅ cannot exhibit such property. The argument that RK is open is
left as an exercise. Q.E.D.

Theorem 16. The union of any collection of open sets is an open set. The intersection of
any finite collection of open sets is an open set.

3 Sometimes open intervals are denoted by ]a, b[ rather that (a, b) in order to distinguish them from two-
element sequences. We will, however, follow the more standard notation.
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Proof: For the first statement, suppose that Z is the union of a given collection of open sets
(whether finite or infinite doesn’t matter), and suppose that x ∈ Z. By definition, then, there
exists a member X of the collection of sets such that x ∈ X. By assumption, X is open, so
that ∃ε > 0 for which Bε(x) ⊆ X, and it follows, then, that Bε(x) ⊆ Z.

For the second part, suppose that Z is the intersection of a finite collection of open sets,
say {X1, X2, . . . , Xn∗}, and suppose that x ∈ Z. By definition, then, for each n = 1, 2, . . . , n∗,
it is true that x ∈ Xn. By assumption, each Xn is open, so that there exists εn > 0 such that
Bεn(x) ⊆ Xn. Let ε = min{ε1, ε2, . . . , εn∗} > 0. By construction, for each n, we have that
Bε(x) ⊆ Bεn(x) ⊆ Xn and therefore Bε(x) ⊆ Z. Q.E.D.

Definition 17. We say that point x is an interior point of the set X, if there is some ε > 0
for which Bε(x) ⊆ X.

The set of all the interior points of X is called the interior of X, and is usually denoted
int(X).4 Note that int(X) ⊆ X.

Exercise 12. Show that for every X, int(X) is open and that X is open if and only if
int(X) = X.

Exercise 13. Is the following statement true? “If x ∈ int(X), then x is a limit point of X.”

Exercise 14. Did we really need finiteness in the second part of Theorem 16? Consider the
following infinite collection of open intervals: for all n ∈ N, define In = (− 1

n
, 1
n
). Find the

intersection of all those intervals, denoted ∩∞n=1In. Is it an open set?

6.2 Closed sets

Definition 18. Set X is closed if for every sequence (xn)∞n=1 ∈ X that converges to x̄ ∈ RK,
then x̄ ∈ X.

Given a set X ⊆ RK , we define its closure, denoted by cl(X), as the set5

cl(X) = {x ∈ RK |∀ε > 0, Bε(x) ∩X 6= ∅}.

As before, the empty set and the universe are closed sets. In RK these are the only two
sets that have both properties, but this principle does not generalize to other spaces.

Theorem 17. The empty set and RK are closed.

Proof: In order for set X to fail to be closed, there has to exist (xn)∞n=1 satisfying that all
xn ∈ X, and that xn → x̄, yet x̄ /∈ X. Clearly, one cannot find such sequence if X = ∅. The
argument that RK is left as an exercise. Q.E.D.

Exercise 15. If a, b ∈ R∪{−∞,∞}, a < b, is (a, b) closed? We define the half-closed interval
(a, b], where a ∈ R∪{−∞}, b ∈ R, a < b, as (a, b] = {x ∈ R|a < x ≤ b}. Similarly, we define
the half-closed interval [a, b) where a ∈ R, b ∈ R∪{∞}, a < b, as [a, b) = {x ∈ R | a ≤ x < b}.
Are half-closed intervals closed sets? Are they open? If x ∈ RK, is {x} an open set, a closed
set or neither?

4 Alternative, but usual, notation is Xo.
5 Alternative notation is X̄.
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Theorem 18. A set X is closed if and only if Xc is open.

Proof: Suppose that Xc is open, and consider any sequence (xn)∞n=1 satisfying that all xn ∈ X
and converging to some x̄; we need to show that x̄ ∈ X. In order to argue by contradiction,
suppose that x̄ ∈ Xc. Since Xc is open, there is some ε > 0 for which Bε(x̄) ⊆ Xc. Since
xn → x̄, there is n∗ ∈ N such that ‖xn − x̄‖ < ε when n ≥ n∗. Then, for any n ≥ n∗, we have
that xn ∈ Bε(x̄) ⊆ Xc, which is impossible.

Suppose now that X is closed, and fix x ∈ Xc. We need to show that for some ε > 0
one has that Bε(x) ⊆ Xc. Again, suppose not: for all ε > 0, it is true that Bε(x) ∩X 6= ∅.
Clearly, then, for all n ∈ N we can pick xn ∈ B1/n(x) ∩X. Construct a sequence (xn)∞n=1 of
such elements. Since 1/n → 0 it follows that xn → x, and all xn ∈ X and X is closed, then
x ∈ X, contradicting the fact that x ∈ Xc. Q.E.D.

Theorem 19. The intersection of any collection of closed sets is closed. The union of any
finite collection of closed sets is closed.

Proof: Left as an exercise. (Hint: do you remember DeMorgan’s Laws?) Q.E.D.

Exercise 16. Prove the following: “Given a set X ⊆ RK, one has x ∈ cl(X) if and only if
there exists a sequence (xn)∞n=1 in X such that xn → x.”

Exercise 17. Prove the following: “For every set X ⊆ RK, X ⊆ cl(X), and X is closed if
and only if X = cl(X).”

Example 10. Closed intervals are closed sets. We define an closed interval, denoted [a, b],
where a, b ∈ R and a ≤ b as {x ∈ R|a ≤ x ≤ b}. To see that these are closed sets, notice that
[a, b]c = (−∞, a) ∪ (b,∞), and conclude based on previous results.

Exercise 18. Did we really need finiteness in the second part of Theorem 19? Consider the
following infinite collection of closed intervals: for all n ∈ N, define Jn = [1 + 1

n
, 3− 1

n
]. Find

the union of all those intervals, denoted ∪∞n=1Jn. Is it a closed set?

Exercise 19. Given X ⊆ RK, define the boundary of X as bd(X) = cl(X) \ int(X). Prove
the following statements: “X is closed if and only if bd(X) ⊆ X. It is open if and only if
bd(X) ∩X = ∅.” Also, prove that

bd(X) = {x ∈ RK |∀ε > 0, Bε(x) ∩X 6= ∅ and Bε(x) ∩Xc 6= ∅}.

6.3 Compact sets

A set X ⊆ RK is said to be bounded above if there exists α ∈ RK such that x ≤ α for all
x ∈ X; it is said to be bounded below if for some β ∈ RK one has that x ≥ β is true for all
x ∈ X; and it is said to be bounded if it is bounded above and below.

Exercise 20. Show that a set X is bounded if and only if there exists α ∈ R+ such that
‖x‖ ≤ α for all x ∈ X.

Definition 19. A set X ⊆ RK is said to be compact if it is closed and bounded.

Exercise 21. Prove the following statement: if (xn)∞n=1 is a sequence defined on a compact
set X, then it has a subsequence that converges to a point in X.
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Actually the converse to the previous statement is also true. It leads to an alternative
characterisation of compact sets.

Theorem 20. A set X ⊂ <K is compact if and only if every sequence in X has a subsequence
that converges to a point in X.

Proof: Suppose X ⊂ <K is compact. Let (an)∞n=1 be a sequence in X. Since X is com-
pact, the Bolzano-Weierstrass Theorem (see Theorem 12) implies there exists a subsequence
(ank

)∞k=1 that converges to some a ∈ <. Since X is closed, it follows that a ∈ X.
Suppose now that every sequence in X has a subsequence that converges to a point in X. If
the set X were not bounded, then there would exist a sequence that diverges which contradicts
the hypothesis. Let (an)∞n=1 be a sequence in X that converges to some a. Then, a ∈ X and
we conclude X is closed. Q.E.D.

7 Limits of functions

Let x ∈ RK and δ > 0. The open ball of radius δ around x, denoted Bδ(x), is the set

Bδ(x) = {y ∈ R|d(y, x) < δ}

The punctured open ball of radius δ around x, denoted B′δ(x), is the set B′δ(x) = Bδ(x) \ {x}.

Definition 20. A point x̄ ∈ RK is a limit point of X ⊆ RK if for every ε > 0, B′ε(x̄)∩X 6= ∅

Exercise 22. Prove the following: Let X ⊆ R. A point x̄ ∈ R is a limit point of X iff there
exists a sequence (xn)∞n=1 in X \ {x̄} that converges to x̄.

Another type of limit has to do with functions, although not directly with sequences.

Definition 21. Consider a function f : X → R, where X ⊆ RK. Suppose that x̄ ∈ RK is a
limit point of X and that ȳ ∈ R. We say that limx→x̄ f(x) = ȳ if for every ε there exists δ > 0
such that d(f(x), ȳ) < ε for all x ∈ B′δ(x̄) ∩X.

It is important to notice that we do not require x̄ ∈ X in our previous definition, so that
f(x̄) need not be defined. Also, one should notice that even if x̄ ∈ X, x̄ is not always a limit
point of X, in which case the definition does not apply. Finally, notice that even if x̄ ∈ X
and x̄ is a limit point of X, it need not be the case that limx→x̄ f(x) = f(x̄).

Definition 22. Consider a function f : X → R, where X ⊆ RK. Suppose that x̄ ∈ RK is a
limit point of X. We say that limx→x̄ f(x) =∞ if for every ∆ > 0, there exists δ > 0 such that
f(x) ≥ ∆ for all x ∈ B′δ(x̄) ∩X. We say that limx→x̄ f(x) = −∞ when limx→x̄(−f)(x) =∞.

Exercise 23. Suppose that X = R and f(x) = x+ a for some a ∈ R. What is limx→0 f(x)?

Exercise 24. Suppose that X = R and f : X → R is defined by

f(x) =

{
1/x, if x 6= 0,
0, otherwise.

What is limx→5 f(x)? What is limx→0 f(x)?

14



Example 11. Let X = R \ {0} and f : X → R is defined by

f(x) =

{
1, if x > 0,
−1, otherwise.

In this case, we claim that limx→0 f(x) does not exist. To see why, fix 0 < ε < 1, and notice
that for all δ > 0, there are x1, x2 ∈ Bδ(0) such that f(x1) = 1 and f(x2) = −1, and, hence,
|f(x1) − f(x2)| = 2 > 2ε. Because of triangle inequality, it is thus impossible that for some
ȳ ∈ R, we have |f(x1)− ȳ| < ε and |f(x2)− ȳ| < ε. Also, it is obvious that limx→0 f(x) =∞
and limx→0 f(x) = −∞ are both impossible.

There exists a tight relationship between limits of functions and limits of sequences, which
is explored in the following theorem.

Theorem 21. Consider a function f : X → R, where X ⊆ RK. Suppose that x̄ ∈ RK is
a limit point of X and that ȳ ∈ R. Then, limx→x̄ f(x) = ȳ if and only if for every sequence
(xn)∞n=1 in X \ {x̄} that converges to x̄, limn→∞ f(xn) = ȳ.

Proof: (⇐) Suppose that for every sequence (xn)∞n=1 inX\{x̄} that converges to x̄, limn→∞ f(xn) =
ȳ but limx→x̄ f(x) 6= ȳ. Then, there must exist some ε > 0 such that for every δ > 0, there
exists x ∈ B′δ(x̄) ∩X satisfying

|f(x)− ȳ| ≥ ε.

Thus, for each n ∈ N there is xn ∈ B′1/n(x̄) ∩ X for which |f(xn) − ȳ| ≥ ε. So, we can

construct a sequence (xn)∞n=1 in X \ {x̄} and limn→∞ xn = x̄. But then limn→∞ f(xn) 6= ȳ,
which contradicts the initial hypothesis.

(⇒) Consider any sequence (xn)∞n=1 in X \ {x̄} that converges to x̄. Fix ε > 0. Since
limx→x̄ f(x) = ȳ ∈ R, then, there is some δ > 0 such that |f(x)− ȳ| < ε for all x ∈ B′δ(x̄)∩X.
Since limn→∞ xn = x̄, there is N ∈ N such that xn ∈ Bδ(x̄) for all n ≥ N . Moreover, since
each xn ∈ X \{x̄}, we have that xn ∈ B′δ(x̄)∩X and, therefore, |f(xn)− ȳ| < ε for all n ≥ N .
Since ε > 0 was arbitrarily chosen, this implies that limn→∞ f(xn) = ȳ. Q.E.D.

7.1 Properties of limits

Given the relationship found in Theorem 21, it comes as no surprise that a theorem analogous
to Theorem 8 holds for functions.

Theorem 22. Let f : X → R and g : X → R. Let x̄ be a limit point of X. Suppose that for
number ȳ1, ȳ2 ∈ R one has that limx→x̄ f(x) = ȳ1 and limx→x̄ g(x) = ȳ2. Then,6

1. limx→x̄(f + g)(x) = ȳ1 + ȳ2;

2. limx→x̄(αf)(x) = αȳ1, for all α ∈ R;

3. limx→x̄(f.g)(x) = ȳ1.ȳ2; and

4. if ȳ2 6= 0, then limx→x̄(f/g)(x) = ȳ1/ȳ2.

6 The following notation is introduced. We define (f + g) : X → R by (f + g)(x) = f(x) + g(x). We define
(f.g) and (αf), for α ∈ R, accordingly. Now, define X∗

g = {x ∈ X|g(x) 6= 0}. Then, we define ( f
g ) : X∗

g → R
by ( f

g )(x) = f(x)
g(x) .
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Proof: Let us prove only the first two statements of the theorem. The proof of the last two
parts is left as an exercise. For the first statement, we have that for all ε > 0, there exist
δ1, δ2 > 0 such that |f(x) − ȳ1| < ε/2 for all x ∈ B′δ1(x̄) ∩ X, and |g(x) − ȳ2| < ε/2 for all
x ∈ B′δ2(x̄) ∩ X. Let δ = min{δ1, δ2} > 0. Then, by construction, for all x ∈ B′δ(x̄) ∩ X we
have that |f(x)− ȳ1| < ε/2 and |g(x)− ȳ2| < ε/2, which implies, by triangle inequality, that

|(f + g)(x)− (ȳ1 + ȳ2)| ≤ |f(x)− ȳ1|+ |g(x)− ȳ2| < ε.

For the second statement, note first that if α = 0 the proof is trivial. Then, consider
α 6= 0. Since limx→x̄ f(x) = ȳ1 ∈ R, then for all ε > 0, there is some δ > 0 such that, for all
x ∈ B′δ(x̄) ∩X, |f(x)− ȳ1| < ε/|α|. This implies that

|(αf)(x)− αȳ1| = |α(f(x)− ȳ1)| = |α||f(x)− ȳ1| < ε,

and, therefore, that limx→x̄(αf)(x) = αȳ1. Q.E.D.

The next result is the counterpart of Theorem 6, that “weak inequalities are preserved
under limits” for sequences, for limits of functions; again, the proof is left as an exercise.

Theorem 23. Consider f : X → R and ȳ ∈ R, and let x̄ ∈ RK be a limit point of X. If
f(x) ≤ γ for all x ∈ X, and limx→x̄ f(x) = ȳ, then ȳ ≤ γ. Similarly, if f(x) ≥ γ for all
x ∈ X, and limx→x̄ f(x) = ȳ, then ȳ ≥ γ.

Exercise 25. The previous theorem can be proved by two different arguments. Can you give
them both? (Hint: one argument is by contradiction; the other one uses Theorem 6 directly.)

Corollary 1. Consider f : X → R and g : X → R, let ȳ1, ȳ2 ∈ R, and let x̄ ∈ RK be a
limit point of X. If f(x) ≥ g(x) for all x ∈ X, limx→x̄ f(x) = ȳ1 and limx→x̄ g(x) = ȳ2, then
ȳ1 ≥ ȳ2.

8 Continuity

8.1 Continuous functions

Definition 23. Function f : X → R is continuous at x̄ ∈ X if for all ε > 0, there exists
δ > 0 such that |f(x) − f(x̄)| < ε for all x ∈ Bδ(x̄) ∩X. It is continuous if it is continuous
at all x̄ ∈ X.

Note that continuity at x̄ is a local concept. Second, note that x̄ in the definition may
but need not be a limit point of X. Therefore, two points are worth noticing: if x̄ is not a
limit point of X, then any f : X → R is continuous at x̄ (why?); and if, on the other hand,
x̄ is a limit point of X, then f : X → R is continuous at x̄ if and only if limx→x̄ f(x) = f(x̄).
Intuitively, this occurs when a function is such that in order to get arbitrarily close to f(x̄)
in the range, all we need to do is to get close enough to x̄ in the domain. By Theorem 21, it
follows that when x̄ ∈ X is a limit point of X, f is continuous at x̄ if and only if whenever
we take a sequence of points in the domain that converges to x̄, the sequence formed by their
images converges to f(x̄) (that in this case the concept is not vacuous follows from Exercise
22).

Exercise 26. Consider the function introduced in Exercise 24. Is it continuous?
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Exercise 27. Consider the function introduced in Example 11. Is it continuous? What if we
change the function, slightly, as follows: f : R→ R, defined as

f(x) =


1, if x > 0;
0, if x = 0;
−1, if x < 0.

Is it continuous?

8.2 Properties of Continuous Functions

The following properties of continuous functions are derived from the properties of limits.
They are all very useful in economics.

Theorem 24. Suppose that f : X → R and g : X → R are continuous at x̄ ∈ X, and let
α ∈ R. Then, the functions f + g, αf and f · g are continuous at x̄. Moreover, if g(x̄) 6= 0,

then
f

g
is continuous at x̄.

The following property will be important to prove Weierstrass Theorem.

Theorem 25. The image of a compact set under a continuous function is compact.

Proof: Suppose X ⊂ <K is compact. We want to show that f [X] is compact. By Theorem
20 it suffices to show that every sequence in f [X] has a subsequence that converges to some
point in f [X]. Let {yn}∞n=1 be a sequence in f [X]. Then there exists a sequence {xn}∞n=1 in X
such that yn = f(xn) for all n ≥ 1. Since X is compact, there exists a subsequence {xnk

}∞k=1

such that xnk
→ x for some x ∈ X by Theorem 20. Then, by Theorem 21 and the continuity

of f , the subsequence ynk
= f(xnk

) converges to f(x) which is in f [X]. Q.E.D.

Theorem 26. Function f : RK → R is continuous if and only if, for every open set U ⊆ R,
the set f−1[U ] is open.

Proof: Fix x̄ ∈ RK and ε > 0. By Example 9, we know that Bε(f(x̄)) is open and, therefore,
so is f−1[Bε(f(x̄))]. Since x̄ ∈ f−1[Bε(f(x̄))], we have that there exists some δ > 0 for which
Bδ(x̄) ⊆ f−1[Bε(f(x̄))]. For such δ, the latter means that that for all x ∈ Bδ(x̄) one has that
|f(x)− f(x̄)| < ε.

Now, let U ⊆ R be an open set, and let x̄ ∈ f−1[U ]. By definition, f(x̄) ∈ U , and since U
is open, there is some ε > 0 for which Bε(f(x̄)) ⊆ U . Since f is continuous, there exists δ > 0
such that |f(x)− f(x̄)| < ε for all x ∈ Bδ(x̄). The latter implies Bδ(x̄) ⊆ f−1[U ]. Q.E.D.

8.3 The Intermediate Value Theorem

Theorem 27 (The Intermediate Value Theorem in R). If function f : [a, b]→ R is continuous,
then for every number γ between f(a) and f(b) there exists an x ∈ [a, b] for which f(x) = γ.7

7 It does not matter whether f(a) ≥ f(b) or f(a) < f(b) – we could simply have written that γ ∈
[f(a), f(b)] ∪ [f(b), f(a)].
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8.4 Left- and Right-continuity

Consider a function f : X → R, where X ⊆ R. Suppose that x̄ is a limit point of X, and let
` ∈ R.

Definition 24. One says that limx↘x̄ f(x) = `, when for every ε > 0 there is a number δ > 0
such that |f(x) − `| < ε for all x ∈ X ∩ Bδ(x̄) satisfying x > x̄. In such case, function f
is said to converge to ` as x tends to x̄ from above. Similarly, limx↗x̄ f(x) = `, if for every
ε > 0 there is δ > 0 such that |f(x) − `| < ε for all x ∈ X ∩ Bδ(x̄) satisfying that x > x̄. In
this case, f is said to converge to ` as x tends to x̄ from below.

Definition 25. Function f : X → R is right-continuous at x̄ ∈ X, where x̄ is a limit point
of X, if limx↘x̄ f(x) = f(x̄). It is right-continuous if it is right-countinuous at every x̄ ∈ X
that is a limit point of X. Similarly, f : X → R is left-continuous at x̄ if limx↗x̄ f(x) = f(x̄),
and one says that f is left-continuous if it is left-continuous at all limit point x̄ ∈ X.

Exercise 28. Consider the function introduced in Exercise 27. Is it right-continuous? Left-
continuous? What if, keeping the rest of the function unchanged, we redefine f(0) = −1? Is
it left- or right-continuous? What if f(0) = 1.

8.5 Derivatives

Definition 26. Let f : R 7→ R be a function defined in a neighbourhood of x0. Then f is
said to be differentiable at x0 with derivative equal to the real number f ′(x0) if for every ε > 0
there exists δ > 0 such that |x− x0| < δ implies∣∣∣∣f(x)− f(x0)

x− x0

− f ′(x0)

∣∣∣∣ ≤ ε

Now observe that since x − x0 6= 0, we can multiply the inequality above by |x − x0| to
obtain

|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ ε |x− x0|

This new inequality admits and interesting interpretation. We think of f(x) − f(x0) −
f ′(x0)(x− x0) as the difference of two functions – the original function f(x) and the function
f(x0) + f ′(x0)(x − x0). Here x0 is thought of as a constant, as are f(x0) and f ′(x0), so this
second function is simply and affine function ax+b, where a = f ′(x0) and b = f(x0)−x0f

′(x0)..
Now the existence of the derivative of f at x0 is a statement about the difference between the
original function and the affine function g(x) = f(x0) + f ′(x0)(x − x0) which we will think
of as a statement of how well g(x) approximates f . However, there are many affine functions
whose graph crosses the graph of f at the point (x0, f(x0)). These functions have the form
f(x0) + a(x−x0) for any real constant a. The property that f(x)− g(x) tends to 0 as x→ x0

is not what distinguish g(x) from other affine functions as that would have happened with
any choice of a. The important difference is that f(x)− g(x) goes to zero faster than for any
other choice of a in the sense that it goes faster than |x− x0|.

8.6 Mean Value Theorem

Theorem 28 (Mean Value Theorem). Let f be a continuous function on [a, b] that is differ-

entiable in (a, b). Then there exists x0 ∈ (a, b) such that f ′(x0) = f(b)−f(a)
b−a .
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8.7 Taylor’s Theorem

Let Cn denote the set of functions that are n times continuously differentiable.

Theorem 29 (Taylor’s Theorem). Let f be Cn in a neighborhood of x0, and let

Tn(x0, x)=f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + ...+

1

n!
fn(x0)(x− x0)n.

Then for any ε > 0, there exists δ such that |x− x0| ≤ δ implies

|f(x)− Tn(x0, x)| ≤ ε |x− x0|n .

Theorem 30 (Lagrange Remainder Theorem). Suppose f is Cn+1 in a neighborhood of x0.
Then for every x in the neighbourhood there exists x1 between x0 and x such that

f(x) = Tn(x0, x) +
1

(n+ 1)!
fn+1(x1)(x− x0)n+1
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