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Theorem of the Maximum and Envelope Theorem

By Pablo F. Beker

1 The Theorem of the Maximum

Economic theory has many “comparative statics” results. These describe what happens to an optimal
solution in response to changes in exogenous parameters such as prices. In particular, will small
changes in these parameters lead to only small changes in the objective function? And to small
changes in the optimal solution? The purpose of this section is to establish some of those results.

Example 1 (Utility Maximisation).

Example 2 (Profit Maximisation).

Let X ⊂ RL and Y ⊂ RK . The set X is the set of exogenous parameters of the problem live and
the set Y is the set of choice variables. Suppose f : X × Y 7→ R is a function and Γ : X 7→ Y is a
non-empty correspondence. We are interested in the following problem:

sup
y
f(x, y)

s.t. y ∈ Γ(x)

where the correspondence Γ : X 7→ Y describe the feasibility constraints.

If Γ(x) is nonempty and compact valued, then Weirstrass theorem implies v : X 7→ R

v(x) ≡ sup
y∈Γ(x)

f(x, y) (1)

is well defined. Moreover, G : X 7→ Y defined by

G(x) = {y ∈ Γ(x) : f(x, y) = v(x)} (2)

is the set of values of y that solve the problem for each x.

In this section, we seek restrictions on the correspondence Γ and the objective function f which
ensures that v : X 7→ R is a continuous function of x and that the correspondence G varies continu-
ously with x.

Definition 1. A correspondence Γ : X 7→ Y is lower hemi-continuous (l.h.c.) at x if Γ(x) is
nonempty and if, for every sequence xn → x and for every y ∈ Γ(x), there exists N ≥ 1 and a
sequence {yn}∞n=N such that yn → y and yn ∈ Γ(xn), all n ≥ N .

Definition 2. A correspondence Γ : X 7→ Y is upper hemi-continuous (u.h.c.) at x if Γ(x) is
nonempty and if, for every sequence xn → x and every sequence {yn}∞n=1 such that yn ∈ Γ(xn), all
n, there exists a convergent subsequence of {yn}∞n=N whose limit point y is in Γ(x).

Definition 3. A correspondence Γ : X 7→ Y is continuous at x ∈ X if it is both u.h.c. and l.h.c. at
x.
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A correspondence Γ : X → Y is called l.h.c, u.h.c., or continuous if it has that property at every
point x ∈ X.

In Figure 1, the correspondence is l.h.c but not u.h.c at x1 and u.h.c but not l.h.c at x2.

Figure 1: Lower- and hemi - continuity

Exercise 1. Show that:
a. if Γ is single valued and u.h.c., then it is continuous.

b. if Γ is single valued and l.h.c., then it is continuous.

The next exercise shows some of the relationship between constraints stated in terms of inequal-
ities involving continuous functions and those stated in terms of continuous correspondences. These
relationships are extremely important for many problems in economics where constraints are often
stated in terms of productions functions, budget constraints, and so on.

Exercise 2.
a. Let Γ : R+ 7→ R+ be defined by Γ(x) = [0, x]. Show that Γ is continuous.

b. Let fi : RK+ 7→ R+, be a continuous functions and define the correspondence Γ : RK+ 7→ R+ by
Γ(x) = [0, f(x)]. Show that Γ is continuous.

We are now ready to answer under what conditions do the function v(x) defined in (1) and the
associated set of maximising values G(x) defined in (2) varies continuously with x.

Theorem 1 (Theorem of the Maximum). Let X ⊂ RL and Y ⊂ RK , let f : X × Y 7→ R be a
continuous function and Γ : X 7→ Y be a compact-valued and continuous correspondence. Then the
function v : X 7→ R defined in (1) is continuous, and the correspondence G : X 7→ Y defined in (2)
is nonempty, compact valued, and u.h.c.

Proof: Q.E.D.

Example 3. Let X = R and Γ(x) = Y = [−1, 1], all x ∈ X. Define f : X×Y 7→ R by f(x, y) = xy2.
Then,

G(x) =


{−1, 1} if x > 0
[−1, 1] if x = 0
{0} if x < 0

We show G(x) is u.h.c. at x = 0. First note that Γ(0) is nonempty and compact valued. Let xn → 0
be arbitrary. Let yn ∈ Γ(xn). Suppose there is a subsequence {xnk

}∞k=1 such that xnk
< 0 for all k.

Then ynk
= 0 for all k and so there exists a subsequence of {yn} that converges to 0 ∈ Γ(0). Suppose

there is a subsequence {xnk
}∞k=1 such that xnk

> 0 for all k. It follows that there exists a convergent
subsequence of {ynk

}∞k=1 that converges to either 1 ∈ Γ(0) or −1 ∈ Γ(0). We conclude G(x) is u.h.c.
at x = 0.
To see G(x) is not l.h.c choose y = 0.5 ∈ Γ(0). Let xn → 0 be a sequence such that xn < 0 for all
n ∈ N. Hence, yn = 0 for all n ∈ N. Hence it cannot be the case that yn → y = 0.5.
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2 Envelope Theorem

Suppose now that both sets Y ⊆ RK and X ⊆ RL are open. Suppose that f : X × Y → R and
g : X × Y → RJ , and consider the following (simplified) parametric problem: given x ∈ X, let

v(x) = max
y∈Y

f(x, y) : g(x, y) = 0.

Suppose that the differentiability and second-order conditions are given, so that a point y∗ solves
this maximisation problem if and only if there is a λ∗ ∈ RJ such that DL(x, y∗, λ∗) = 0.

Suppose furthermore that we can define functions h : X → Y and λ : X → RJ , given by the
solution of the problem and the associated multiplier, for every x. Then, it follows directly from the
Implicit Function Theorem that if, for a given x̄ ∈ X,

rank

(
0J×J Dxg(x̄, y∗)

Dxg(x̄, y∗)> D2
x,xL(x̄, y∗, λ∗)

)
= J +K,

then there exists some ε > 0 such that on Bε(x̄) the functions x and λ are differentiable and(
Dλ(x̄)
Dx(x̄)

)
= −

(
0J×J Dxg(x̄, y∗)

Dxg(x̄, y∗)> D2
x,xL(x̄, y∗, λ∗)

)−1(
Dxg(x̄, h(x̄))

D2
x,xL(x̄, h(x̄), λ(x))

)
.

It is then immediate that v is differentiable at x̄ and

Dv(x̄) = Dxf(x̄, h(x̄))Dx(x̄).

A simpler method, however, is given by the following theorem

Theorem 2 (The Envelope Theorem). If v is continuously differentiable at x̄, then Dv(x̄) =
DxL(x̄, h(x̄), λ(x̄)).

Proof: One just needs to use the Chain Rule: by assumption,

Dxf(x, h(x)) +Dxg(x, h(x))>λ(x) = 0,

whereas g(x, h(x)) = 0, so

Dxg(x, h(x))Dh(x) +Dxg(x, h(x)) = 0;

meanwhile,

Dv(x) = Dh(x)>Dxf(x, h(x)) +Dxf(x, h(x))

= −Dh(x)>Dxg(x, h(x))>λ(x) +Dxf(x, h(x))

and

DxL(x, h(x), λ(x)) = Dxf(x, h(x)) +Dxg(x, h(x))>λ(x)

= Dxf(x, h(x))−Dh(x)>Dxg(x, h(x))>λ(x),

which gives the result. Q.E.D.

Exercise 3. Let f : RK → R, g : RK → RJ ∈ C2, with J ≤ K ∈ N. Suppose that for all x ∈ Rm,
the problem

max f(y) : g(y) = x

has a solution, which is characterised by the first order conditions of the Lagrangean defined by
L(x, y, λ) = f(y) + λ · (x − g(y)). Suppose furthermore that these conditions define differentiable
functions h : RL → RK and λ : RL → RL. Prove that Dv(x) = λ(x), for all x, where v : RL → R is
the value function of the problem.
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