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Determinants of Order 2: Definition
Consider again the pair of linear equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

with its associated coefficient matrix

A =

(
a11 a12

a21 a22

)
Let us define the number D := a11a22 − a21a12.

We saw earlier that, provided that D 6= 0,
the two simultaneous equations have a unique solution given by

x1 =
1

D
(b1a22 − b2a12), x2 =

1

D
(b2a11 − b1a21)

This number D is called the determinant of the matrix A.

It is denoted by either det(A), or more concisely, by |A|.
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Determinants of Order 2: Simple Rule

Thus, for any 2× 2 matrix A, its determinant D is

|A| =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

For this special case of order 2 determinants, a simple rule is:

1. multiply the diagonal elements together;

2. multiply the off-diagonal elements together;

3. subtract the product of the off-diagonal elements
from the product of the diagonal elements.

Exercise
Show that the determinant satisfies

|A| = a11a22

∣∣∣∣1 0
0 1

∣∣∣∣+ a21a12

∣∣∣∣0 1
1 0

∣∣∣∣
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Transposing the Rows or Columns

Example

Consider the two 2× 2 matrices A =

(
a b
c d

)
, T =

(
0 1
1 0

)
.

Note that T is orthogonal.

Also, one has AT =

(
b a
d c

)
and TA =

(
c d
a b

)
.

Here T is a transposition matrix which interchanges:
(i) the columns of A in AT;
(ii) the rows of A in TA.

Evidently |T| = −1 and |TA| = |AT| = (bc − ad) = −|A|.
So interchanging the two rows or columns of A
changes the sign of |A|.
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Sign Adjusted Transpositions

Example

Next, consider the following three 2× 2 matrices:

A =

(
a b
c d

)
, T =

(
0 1
1 0

)
, T̂ =

(
0 −1
1 0

)
Note that, like T, the matrix T̂ is orthogonal.

Here one has AT̂ =

(
b −a
d −c

)
and T̂A =

(
−c −d
a b

)
.

Evidently |T̂| = 1 and |T̂A| = |AT̂| = (ad − bc) = |A|.

The same is true of its transpose (and inverse) T̂> =

(
0 1
−1 0

)
.

This key property makes both T̂ and T̂>

sign adjusted versions of the transposition matrix T.
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Cramer’s Rule in the 2× 2 Case
Using determinant notation, the solution to the equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

can be written in the alternative form

x1 =
1

D

∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , x2 =
1

D

∣∣∣∣a11 b1

a21 b2

∣∣∣∣
This accords with Cramer’s rule,
which says that the solution to Ax = b is the vector x = (xi )

n
i=1

each of whose components xi is the fraction with:

1. denominator equal to the determinant D
of the coefficient matrix A (provided, of course, that D 6= 0);

2. numerator equal to the determinant of the matrix [A−i/b]
formed from A by excluding its ith column,
then replacing it with the b vector of right-hand side elements,
while keeping all the columns in their original order.
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Determinants of Order 3: Definition

Determinants of order 3 can be calculated
from those of order 2 according to the formula

|A| = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
=
∑3

j=1
(−1)1+ja1j |C1j |

where, for j = 1, 2, 3, the 2× 2 matrix C1j is the (1, j)-cofactor
obtained by removing both row 1 and column j from the matrix A.

The result is the following sum

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

of 3! = 6 terms, each the product of 3 elements chosen
so that each row and each column is represented just once.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 8 of 73



Determinants of Order 3: Cofactor Expansion
The determinant expansion

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is very symmetric, suggesting (correctly)
that the cofactor expansion along the first row (a11, a12, a13)

|A| =
∑3

j=1
(−1)1+ja1j |C1j |

gives the same answer as the other cofactor expansions

|A| =
∑3

j=1
(−1)r+jarj |Crj | =

∑3

i=1
(−1)i+sais |Cis |

along, respectively:

I the r th row (ar1, ar2, ar3)

I the sth column (a1s , a2s , a3s)
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Determinants of Order 3: Alternative Expressions
One way of condensing the notation

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is to reduce it to |A| =
∑

π∈Π3
sgn(π)

∏3
i=1 aiπ(i)

for the sign function Π3 3 π 7→ sgn(π) ∈ {−1,+1}.

The six values of sgn(π) can be read off as

sgn(π123) = +1; sgn(π132) = −1; sgn(π231) = +1;
sgn(π213) = −1; sgn(π312) = +1; sgn(π321) = −1.

Exercise
Verify these values for each of the six π ∈ Π3 by:

1. calculating the number of inversions directly;

2. expressing each π as the product of transpositions,
and then counting these.
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Sarrus’s Rule: Diagram

An alternative way to evaluate determinants only of order 3
is to add two new columns
that repeat the first and second columns:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Then add lines/arrows going up to the right or down to the right,
as shown below

a11 a12 a13 a11 a12

↘ ↘↗ ↘↗ ↗
a21 a22 a23 a21 a22

↗ ↘↗ ↘↗ ↘
a31 a32 a33 a31 a32

Note that some pairs of arrows in the middle cross each other.
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Sarrus’s Rule Defined

Now:

1. multiply along the three lines falling to the right,
then sum these three products, to obtain

a11 a22 a33 + a12 a23 a31 + a13 a21 a32

2. multiply along the three lines rising to the right,
then sum these three products, giving the sum a minus sign,
to obtain

−a11 a23 a32 − a12 a21 a33 − a13 a22 a31

The sum of all six terms exactly equals the earlier formula for |A|.

Note that this method, known as Sarrus’s rule,
does not generalize to determinants of order higher than 3.
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The Determinant Function

For each n ∈ N, let Mn×n denote the domain of n × n matrices.

It is evidently a copy of the space Rn×n = Rn2
.

Definition
For all n ∈ N, the determinant function

Mn×n 3 A 7→ detA = |A| :=
∑

π∈Πn
sgn(π)

∏n

i=1
aiπ(i) ∈ R

specifies the determinant |A| of each n × n matrix A

as a function of its n row vectors (a>i )ni=1 =
(

(aij)
n
j=1

)n
i=1

.

Here the multiplier sgn(π) attached to each product of n terms
can be regarded as the sign adjustment
associated with the permutation π ∈ Πn.
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Functions of the Rows of a Matrix

For a general natural number n ∈ N, consider any function

Mn×n 3 A 7→ D(A) = D
(
〈a>i 〉ni=1

)
∈ R

whose domain Mn×n is the set of all n × n matrices A,
regarded as a collection of n row vectors 〈a>i 〉ni=1.

Notation: For each fixed r ∈ Nn, let D(A/b>r )

denote the new value D(a>1 , . . . , a
>
r−1,b

>
r , a

>
r+1, . . . , a

>
n )

of the function A 7→ D(A) after the r th row a>r of the matrix A
has been replaced by the new row vector b>r ∈ Rn,
with all the other n − 1 rows remaining fixed.
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A Three-Part Exercise

Exercise
Use the formula on the previous slide to calculate |A| when A is:

1. the general 2× 2 matrix

(
a11 a12

a21 a22

)
;

2. any 3× 3 matrix of the form

a11 a12 0
0 a22 0
0 0 a33


with only one non-zero term off the diagonal;

3. any n × n diagonal matrix D = diag(d1, d2, . . . , dn).
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Row Multilinearity

Definition
The function Mn×n 3 A 7→ D(A) of the n rows 〈a>i 〉ni=1 of A
is (row) multilinear just in case, for each row number i ∈ Nn,
for each pair b>i , c

>
i ∈ Rn of new versions of row i ,

and for each pair of scalars λ, µ ∈ R, one has

D(A−i/λb
>
i + µc>i ) = λD(A−i/b

>
i ) + µD(A−i/c

>
i )

Formally, the mapping Rn 3 a>i 7→ D(A−i/a
>
i ) ∈ R

is required to be linear, for fixed each row i ∈ Nn.

That is, D is a linear function of the ith row vector a>i on its own,
when all the other rows a>h (h 6= i) are fixed.
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Determinants are Row Multilinear

Theorem
For all n ∈ N, the earlier definition
implies that the determinant mapping

Mn×n 3 A 7→ |A| :=
∑

π∈Πn
sgn(π)

∏n

i=1
aiπ(i) ∈ R

is a row multilinear function of its n row vectors (a>i )ni=1.

Proof.
For each fixed row r ∈ Nn, the determinant mapping satisfies

det(A−r/λb>r + µc>r )

=
∑

π∈Πn
sgn(π) (λbrπ(r) + µcrπ(r))

∏
i 6=r aiπ(i)

=
∑

π∈Πn
sgn(π)

[
λbrπ(r)

∏
i 6=r aiπ(i) + µcrπ(r)

∏
i 6=r aiπ(i)

]
= λ det(A−r/b>r ) + µ det(A−r/c>r )

This confirms multilinearity.
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The Eight Basic Rules: Background and Explanation

EMEA is an acronym for our undergraduate textbook
Essential Mathematics for Economic Analysis.

EMEAn is an abbreviation for the n edition.

Some of you may have used EMEA5, but EMEA6 just appeared.

The eight rules labelled 1–8 here appear as Rules A–H in:

I Section 16.4 of EMEA5
— see Theorem 16.4.1 on page 636;

I Section 13.4 of EMEA6
— see Theorem 13.4.1 on page 509.

Of the eight rules:

I Rule 6 plays a key role when discussing pivoting subsequently;

I Rules 1–6 and Rule 8 will be confirmed here;

I a proof of Rule 7, which uses pivoting in a key way,
is deferred until the next Segment D.
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The Eight Basic Rules: Statement
Let |A| denote the determinant of any n × n matrix A.

1. |A| = 0 if all the elements in a row (or column) of A are 0.

2. |A>| = |A|, where A> is the transpose of A.

3. If all the elements in a single row (or column) of A
are multiplied by a scalar α, so is its determinant.

4. If two rows (or two columns) of A are interchanged,
the determinant changes sign, but not its absolute value.

5. If two of the rows (or columns) of A are proportional,
then |A| = 0.

6. The value of the determinant of A is unchanged
if any multiple of one row (or one column)
is added to a different row (or column) of A.

7. The determinant of the product |AB| of two n × n matrices
equals the product |A| · |B| of their determinants.

8. If α is any scalar, then |αA| = αn|A|.
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Verifying the Transpose Rule 2
The transpose rule 2 is very useful: it implies that
for any statement S about how |A| depends on the rows of A,
there is an equivalent “transpose” statement S>
about how |A| depends on the columns of A.

Exercise
Verify Rule 2 directly for 2× 2 and then for 3× 3 matrices.

Proof of Rule 2 The expansion formula implies that

|A| =
∑

π∈Π
sgn(π)

∏n

i=1
aiπ(i) =

∑
π∈Π

sgn(π)
∏n

j=1
aπ−1(j)j

But we proved earlier that sgn(π−1) = sgn(π).

Also aπ−1(j)j = a>jπ−1(j) by definition of transpose.

Hence, because π ↔ π−1 is a bijection on the set Π,
the expansion formula with π replaced by π−1

implies that |A| =
∑

π−1∈Π sgn(π−1)
∏n

j=1 a
>
jπ−1(j) = |A>|.
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Verifying the Alternation Rule 4
Recall the notation τr ,s for the transposition of r , s ∈ Nn.

Let Ar↔s denote the matrix that results from applying τr ,s
to the rows of the matrix A — i.e., interchanging rows r and s.

Theorem
Given any n × n matrix A and any transposition τr ,s ,
one has detAr↔s = − detA.

Proof.
Write τ for τr ,s . Then, because π ↔ τ−1 ◦ π is a bijection on Πn

and sgn(τ−1 ◦ π) = − sgn(π) for all π ∈ Πn, we have

detAr↔s =
∑

π∈Πn
sgn(π)

∏n
i=1 aτ(i),π(i)

=
∑

π∈Πn
sgn(π)

∏n
i=1 ai ,(τ−1◦π)(i)

= −
∑

π∈Πn
sgn(τ−1 ◦ π)

∏n
i=1 ai ,(τ−1◦π)(i)

= −
∑

π∈Πn
sgn(π)

∏n
i=1 ai ,π(i) = − detA
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The Duplication Rule, and Rule 8
The following duplication rule is a special case of Rule 5.

Proposition

If two different rows r and s of A are equal, then |A| = 0.

Proof.
Suppose that rows r and s of A are equal.

Then Ar↔s = A, and so |Ar↔s | = |A|.
Yet the alternation Rule 4 implies that |Ar↔s | = −|A|.
Hence |A| = −|A|, implying that |A| = 0.

Rule 8: |αA| = αn|A| for any α ∈ R.

Proof.
The expansion formula implies that

|αA| =
∑

π∈Π sgn(π)
∏n

i=1(αaiπ(i))

= αn
∑

π∈Π sgn(π)
∏n

i=1 aiπ(i)) = αn|A|
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First Implications of Multilinearity: Rules 1 and 3

Recall the notation A−r/b>r for the matrix that results
after the r th row a>r of A has been replaced by b>r .

With this notation, the matrix A−r/αa>r is the result
of replacing the rth row a>r of A by αa>r .

That is, it is the result of multiplying the rth row a>r of A
by the scalar α.

Rule 3: If all the elements in a single row of A
are multiplied by a scalar α, so is its determinant.

Proof.
By multilinearity one has |A−r/αa>r | = α|A−r/a>r | = α|A|.

Rule 1: |A| = 0 if all the elements in a row of A are 0.

Proof.
This follows from putting α = 0 in Rule 3.
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More Implications of Multilinearity: Rules 5 and 6
Rule 5: If two rows of A are proportional, then |A| = 0.

Proof.
Suppose that a>r = αa>s where r 6= s.

Then |A| = |A/(αa>s )r | = α|A/(a>s )r | = 0 by duplication.

Rule 6: |A| is unchanged if any multiple of one row is added
to a different row of A.

Proof.
For the matrix A/(a>r + αa>s )r , where α times row s of A
has been added to row r , row multilinearity implies that

|A/(a>r + αa>s )r | = |A/(a>r )r |+ α|A/(a>s )r |

But A/(a>r )r = A and A/(a>s )r has a copy of row s in row r .

By the duplication rule, it follows that

|A/(a>r + αa>s )r | = |A/(a>r )r |+ α|A/(a>s )r | = |A|+ 0 = |A|
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Verification of the Product Rule 7: Diagonal Case
Recall that Rule 7 is the product rule stating that |AB| = |A| · |B|.
Later we will use pivoting to verify this rule for general matrices.

Here we consider the special case when the first matrix A
is the n × n diagonal matrix D = diag(d1, d2, . . . , dn).

Proposition

For any n× n matrix B, one has |DB| = |D| · |B| = (
∏n

k=1 dk) |B|.

Proof.
First, note that DB is the matrix that results from simultaneously
multiplying each row i = 1, 2, . . . , n of B
by the corresponding diagonal element di of D.

By Rule 3 applied n times,
the result of all these n simultaneous multiplications
is that the determinant is multiplied by the n-fold product

∏n
i=1 di .

So |DB| =
∏n

i=1 di · |B|.
But D is diagonal, so |D| =

∏n
i=1 di , and |DB| = |D| · |B|.
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Triangular Matrices: Definition

Definition
A square matrix is upper (resp. lower) triangular
if all its non-zero off diagonal elements are above and to the right
(resp. below and to the left) of the diagonal
— i.e., in the upper (resp. lower) triangle
bounded by the principal diagonal.

I The elements of an upper triangular matrix U
satisfy (U)ij = 0 whenever i > j .

I The elements of a lower triangular matrix L
satisfy (L)ij = 0 whenever i < j .
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Products of Upper Triangular Matrices

Theorem
The product W = UV of any two upper triangular matrices U,V
is upper triangular,
with diagonal elements wii = uiivii (i = 1, . . . , n) equal
to the product of the corresponding diagonal elements of U,V.

Proof.
Given any two upper triangular n × n matrices U and V,
one has uikvkj = 0 unless both i ≤ k and k ≤ j .

So the elements (wij)
n×n of their product W = UV satisfy

wij =

{∑j
k=i uikvkj if i ≤ j

0 if i > j

Hence W = UV is upper triangular.

Finally, when j = i the above sum collapses to just one term,
and wii = uiivii for i = 1, . . . , n.
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Triangular Matrices: Exercises

Exercise
Prove that the transpose:

1. U> of any upper triangular matrix U is lower triangular;

2. L> of any lower triangular matrix L is upper triangular.

Exercise
Consider the matrix Er+αq

that represents the elementary row operation
of adding a multiple of α times row q to row r, with r 6= q.

Under what conditions is Er+αq

(i) upper triangular? (ii) lower triangular?

Hint: Apply the row operation to the identity matrix I.

Answer: (i) iff q < r ; (ii) iff q > r .
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Products of Lower Triangular Matrices

Theorem
The product of any two lower triangular matrices
is lower triangular.

Proof.
Given any two lower triangular matrices L,M,
taking transposes shows that (LM)> = M>L> = U,
where the product U is upper triangular,
as the product of upper triangular matrices.

Hence LM = U> is lower triangular,
as the transpose of an upper triangular matrix.
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Determinants of Triangular Matrices

Theorem
The determinant of any n × n upper triangular matrix U
equals the product of all the elements on its principal diagonal.

Proof.
Recall the expansion formula |U| =

∑
π∈Π sgn(π)

∏n
i=1 uiπ(i)

where Π denotes the set of permutations on {1, 2, . . . , n}.
Because U is upper triangular, one has uiπ(i) = 0 unless i ≤ π(i).

So
∏n

i=1 uiπ(i) = 0 unless i ≤ π(i) for all i = 1, 2, . . . , n.

But the identity ι is the only permutation π ∈ Π
that satisfies i ≤ π(i) for all i ∈ Nn.

Because sgn(ι) = +1, the expansion reduces to the single term

|U| = sgn(ι)
∏n

i=1
uiι(i) =

∏n

i=1
uii

This is the product of the n diagonal elements, as claimed.
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Invertible Triangular Matrices

Similarly |L| =
∏n

i=1 `ii for any lower triangular matrix L.

Evidently:

Corollary

A triangular matrix (upper or lower) has a non-zero determinant,
and so is invertible,
if and only if no element on its principal diagonal is 0.
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The Product Rule 7 for Triangular Determinants

Example

Let A and B be n × n matrices where:
(i) either both are upper triangular; or (ii) both are lower triangular.

We showed earlier that the product C = AB is also triangular.

We also showed that diagonal elements cii = aiibii of the product
equal the product of the diagonal elements of A and B.

Also, recall that the determinant of a triangular matrix,
either upper or lower, equals the product of its diagonal elements.

It follows that

|C| =
∏n

i=1
cii =

∏n

i=1
aiibii

=
(∏n

i=1
aii

)(∏n

i=1
bii

)
= |A| · |B|
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Three Simultaneous Equations
Consider the following system
of three simultaneous equations in three unknowns,
which depends upon two “exogenous” constants a and b:

x + y − z = 1
x − y + 2z = 2
x + 2y + az = b

It can be expressed, using an augmented 3× 4 matrix, as :

1 1 −1 1
1 −1 2 2
1 2 a b

Perhaps even more useful is the doubly augmented 3× 7 matrix:

1 1 −1 1 1 0 0
1 −1 2 2 0 1 0
1 2 a b 0 0 1

whose last 3 columns are those of the 3× 3 identity matrix I3.
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Pivoting: First Step
Start with the doubly augmented 3× 7 matrix:

1 1 −1 1 1 0 0
1 −1 2 2 0 1 0
1 2 a b 0 0 1

First, pivot about the element in row 1 and column 1
to eliminate or “zeroize” the other elements of column 1.

This elementary row operation requires us to subtract row 1
from both rows 2 and 3.

It is equivalent to multiplying by the matrix E1 =

 1 0 0
−1 1 0
−1 0 1

.

Note: this is the result of applying the same row operations to I3.

The resulting 3× 7 matrix is:

1 1 −1 1 1 0 0
0 −2 3 1 −1 1 0
0 1 a + 1 b − 1 −1 0 1
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Pivoting: Second Step
Including another copy of the identity matrix at the end gives:

1 1 −1 1 1 0 0 1 0 0
0 −2 3 1 −1 1 0 0 1 0
0 1 a + 1 b − 1 −1 0 1 0 0 1

Next, we pivot about the element in row 2 and column 2.

Specifically, add half the second row
to both the first and third rows to obtain:

1 0 1
2

3
2

1
2

1
2 0 1 1

2 0

0 −2 3 1 −1 1 0 0 1 0

0 0 a + 5
2 b − 1

2 −3
2

1
2 1 0 1

2 1

Again, the pivot operation is equivalent to multiplying

by the matrix E2 =

1 1
2 0

0 1 0
0 1

2 1

,

which is the result of applying the same row operation to I3.
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 39 of 73



The Augmented Matrix After Downward Pivoting

The resulting augmented matrix is
1 0 1

2
3
2

0 −2 3 1
0 0 a + 5

2 b − 1
2

whose top two rows and columns form a 2× 2 diagonal matrix.

Thus, the two steps of pivoting have eliminated:

I x , the 1st variable, from both the 2nd and 3rd equations;

I y , the 2nd variable, from both the 1st and 3rd equations.

To conclude, we need to treat two different cases:

Case 1: if a + 5
2 6= 0, the 3× 3 coefficient matrix

is upper triangular, with a non-zero diagonal;

Case 2: if a + 5
2 = 0, the 3× 3 coefficient matrix

takes the partitioned form

(
D2×2 B2×1

01×2 0

)
where D2×2 is a 2× 2 diagonal matrix.
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Case 1: Third Pivoting Step

In case 1 when a + 5
2 6= 0, we will complete solving the equation

by pivoting a third time about the 3, 3 element
to reach a diagonal matrix whose diagonal terms are non-zero.

Starting with the augmented matrix
1 0 1

2
3
2

0 −2 3 1
0 0 a + 5

2 b − 1
2

and with c = 1/(a+ 5
2 ), we pivot about the 3, 3 element by adding:

(i) −1
2 · c times row 3 to row 1; (ii) −3 · c times row 3 to row 2.

The final augmented matrix that results

from this last pivot operation is

1 0 0 3
2 −

1
2c(b − 1

2 )

0 −2 0 1− 3c(b − 1
2 )

0 0 a + 5
2 b − 1

2

The coefficient matrix has become diagonal,
with all its diagonal elements non-zero.

This makes the resulting equations easy to solve.
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Case 1: Solution of the Equation System

The three pivoting operations we have completed
have reduced the equation system to

x = 3
2 −

1
2c(b − 1

2 )

−2y = 1− 3c(b − 1
2 )

(a + 5
2 )z = b − 1

2

Because c = 1/(a + 5
2 ), this gives the unique solution

x = 3
2 −

1
2c(b − 1

2 ), y = −1
2 + 3

2c(b − 1
2 ), z = c(b − 1

2 )
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Case 2: Pivoting Concludes after Two Steps

In case 2, when a + 5
2 = 0, after two steps of pivoting,

the augmented matrix has been reduced to
1 0 1

2
3
2

0 −2 3 1
0 0 0 b − 1

2

This takes the partitioned form

(
D2×2 B2×1

01×2 0

)
where:

D2×2 is a 2× 2 diagonal matrix with non-zero diagonal elements;

B2×1 is a 2× 1 matrix, or a 2× 1 column vector b2×1.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 43 of 73



Case 2: Dependent Equations

In case 2A, when b 6= 1
2 , neither the last equation,

nor the system as a whole, has any solution.

In case 2B, when b = 1
2 , the third equation is redundant.

Then the augmented matrix for the remaining two equations

reduces to
1 0 1

2
3
2

0 −2 3 1

The associated equation system has a general solution

x = 3
2 −

1
2z and y = 3

2z −
1
2

where z is an arbitrary scalar.

In particular, there is a one-dimensional set of solutions
along the unique straight line in R3 that passes through both:

(i) ( 3
2 ,−

1
2 , 0), when z = 0; (ii) (1, 1, 1), when z = 1.
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Row and Column Operations

Definition
For each m, n ∈ N, let Mm×n denote
the family of all m × n matrices.

I A row operation
is a mapping Mm×n 3 X 7→ EX ∈Mm×n
represented by an m ×m matrix E that pre-multiplies
(or multiplies on the left) any X ∈Mm×n.

I Similarly, a column operation
is a mapping Mm×n 3 Y 7→ YE ∈Mm×n
represented by an n × n matrix E that post-multiplies
(or multiplies on the right) any Y ∈Mm×n.

Given any k ∈ N, note that E is the k × k matrix
which results from applying either the row or the column operation
represented by E to the identity matrix Ik .
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Three Kinds of Elementary Row Operation

The pivoting operations used in the previous example
are examples of row operations
that belong to a special category of elementary row operation.

Textbooks (including ours) usually specify
the following three kinds of elementary row operation A 7→ EA:

1. rescale one row r ∈ Nm by multiplying it
by a scalar α ∈ R \ {0};

2. swap two rows r , s ∈ Nm with r 6= s;

3. pivot by adding one rescaled row s to another row r .

In the next few slides we will describe each of these in detail.

There are obviously similar elementary column operations.
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Type 1: Rescaling One Row
For each r ∈ Nm and each scalar α ∈ R \ {0},
let the m ×m matrix Er×α represent the rescaling operation that,
when applied to any m × n matrix A, multiplies row r of A by α.

The elements of Er×α, which are those of Er×αIm, are given by

(Er×α)ij =

{
δij if i 6= r

αδij if i = r
for all (i , j) ∈ Nm × Nm

This implies that Er×α = diag(1, . . . , 1, α, 1, . . . , 1),
which differs from Im in at most the (r , r) element.

Suppose m = n, so the determinant |A| is well defined.

Then Rule 3 for determinants implies that |Er×αA| = α|A|.
Putting A = Im in this equality implies that

|Er×α| = |Er×αIm| = α|Im| = α

Only in the trivial case when α = 1 and so Er×α = Im
does Er×α “preserve the determinant”
in the sense that |Er×αA| = |A|.
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Type 2: Swapping Two Rows
For each distinct pair r , s ∈ Nm,
let the m ×m matrix Er↔s represent the swap operation
that, when applied to any m × n matrix A,
results in row r of A becoming row s of Er↔sA, and vice versa.

The elements of Er↔s , which are those of Er↔s Im, are given by

(Er↔s)ij =


δij if i 6∈ {r , s}
δsj if i = r

δrj if i = s

for all (i , j) ∈ Nm × Nm

Suppose m = n, so the determinant |A| is well defined.

Then Rule 4 for determinants implies that |Er↔sA| = −|A|.
Putting A = Im in this equality implies that

|Er↔s | = |Er↔s Im| = −|Im| = −1

Because |Er↔sA| = |A| only if |A| = 0,
this matrix is not “determinant preserving”.
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Type 3: Pivoting by Adding One Rescaled Row to Another

For each distinct pair r , s ∈ Nm and each scalar α ∈ R,
let the m ×m matrix Er+αs represent
the elementary row pivot operation which,
when applied to any m × n matrix A,
adds α times its row s to its row r , without affecting any other row.

The elements of Er+αs , which are those of Er+αs Im,
are given for all (i , j) ∈ Nm × Nm by

(Er+αs)ij =

{
δij if i 6= r
δij + αδsj if i = r

}
= δij + αδirδsj

Thus Er+αs = Im + α1rs where 1rs denotes the m ×m matrix
whose only non-zero element is 1 in row r and column s.

In particular Er+αs is upper or lower triangular
according as r < s or r > s,
or equivalently, according as row r is above or below row s.
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Determinant Preserving Operations: Definition

Definition
For each m, n ∈ N,
let Mm×n denote the family of all m × n matrices.

The row operation Mm×n 3 X 7→ EX ∈Mm×n
that is represented by the m ×m matrix E
is determinant preserving just in case,
given any m ×m matrix A, one has |EA| = |A|.

Similarly, the column operation Mm×n 3 Y 7→ YE ∈Mm×n
that is represented by the n × n matrix E
is determinant preserving just in case,
given any n × n matrix A, one has |AE| = |A|.
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Properties of Determinant Preserving Operations, I

Lemma
If a square matrix E represents either a row or column operation
that is determinant preserving, then |E| = 1.

Proof.
Because I is a diagonal matrix, putting X = I or Y = I
in the definition of determinant preservation gives:

1. |E| = |EI| = |I| = 1 in the case of a row operation;

2. |E| = |IE| = |I| = 1 in the case of a column operation.
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Properties of Determinant Preserving Operations, II

Proposition

Suppose that the two k × k matrices E1 and E2 both represent
determinant preserving row (resp. column) operations.

Then the k × k product matrix E1E2 also represents
a determinant preserving row (resp. column) operation.

Proof.
Given any k × n matrix X, because E2X is a k × n matrix,
determinant preservation of both E1 and E2 implies that

|(E1E2)X| = |E1(E2X)| = |E2X| = |X|

Similarly, given any m × k matrix Y,
because YE1 is an m × k matrix,
determinant preservation of both E1 and E2 implies that

|Y(E1E2)| = |(YE1)E2| = |YE1| = |Y|
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Elementary Pivoting Is Determinant Preserving

Given any triple (r , s, α) ∈ Nm × Nm × R with r 6= s,
the m ×m matrix Er+αs represents the elementary pivot
row operation Mm×n 3 X 7→ Er+αsX ∈Mm×n
of adding α times row s of the matrix X to its row r .

Similarly, the n × n matrix (Er+αs)> represents the elementary
pivot column operation Mm×n 3 Y 7→ Y(Er+αs)> ∈Mm×n
of adding α times column s of the matrix Y to its column r .

Consider any m × n matrix A with n = m,
so that A has a well defined determinant |A|.

Then Rule 6 for determinants implies that

|Er+αsA| = |A(Er+αs)>| = |A|

In this sense, both the row operation represented by Er+αs

and the column operation represented by (Er+αs)>

are determinant preserving.
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Determinant Preserving Row Swaps

The second elementary row operation Er↔s of swapping
is not determinant preserving without a key modification.

Let T̂rs = Es×(−1)Er↔s denote the m ×m matrix
that describes the combined row operation of:

1. first interchanging rows r and s, as in Er↔s ;

2. but then adjusting or correcting the sign of row s
by multiplying it by −1, as in Es×(−1).

From Rules 3 and 4 for determinants, given any m ×m matrix Y,
we have |Er↔sX| = −|X| and then

|T̂rsX| = |Es×(−1)(Er↔sX)| = (−1)|Er↔sX| = |X|

So X 7→ T̂rsX is a determinant preserving row operation.
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Determinant Preserving Column Swaps

Note that, if the m ×m matrix R represents
a row operation X 7→ RX on m × n matrices X,
then its transpose R> represents a column operation Y 7→ YA>

on n ×m matrices Y.

In particular, because X 7→ T̂rsX
is a determinant preserving row operation,
it follows that Y 7→ Y(T̂rs)>

is a determinant preserving column operation.
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Permutation Matrices: Definition

Definition
Given any permutation π ∈ Πn on Nn = {1, 2, . . . , n},
define Pπ as the n × n permutation matrix
whose elements satisfy pππ(i),j = δi ,j or equivalently pπi ,j = δπ−1(i),j .

That is, the rows of the identity matrix In are permuted
so that for each i = 1, 2, . . . , n, its ith row vector (ei )

>,
whose jth element is δij for each j ∈ Nn,
is moved to become row π(i) of Pπ,
whose jth element is δij = pππ(i),j for each j ∈ Nn.
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Permutation Matrices: 2× 2 Examples

Example

There are two 2× 2 permutation matrices, which are given by:

P12 = I2; P21 =

(
0 1
1 0

)
.

Their signs, and their determinants, are respectively +1 and −1.
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Permutation Matrices: 3× 3 Examples

Example

There are 3! = 6 permutation matrices in 3 dimensions given by:

P123 =

1 0 0
0 1 0
0 0 1

 P132 =

1 0 0
0 0 1
0 1 0

 P213 =

0 1 0
1 0 0
0 0 1



P231 =

0 1 0
0 0 1
1 0 0

 P312 =

0 0 1
1 0 0
0 1 0

 P321 =

0 0 1
0 1 0
1 0 0


Their signs equal their determinants, which satisfy

|P123| = |P231| = |P312| = +1

and |P132| = |P213| = |P321| = −1
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Multiplying a Matrix by a Permutation Matrix

Lemma
Given any n × n matrix A, for each permutation π ∈ Πn

the corresponding permutation matrix Pπ satisfies

(PπA)π(i),j = aij = (APπ)i ,π(j)

Proof.
For each pair (i , j) ∈ N2

n, one has

(PπA)π(i),j =
∑n

k=1
pππ(i),kakj =

∑n

k=1
δikakj = aij

and also

(APπ)i ,π(j) =
∑n

k=1
aikp

π
k,π(j) =

∑n

k=1
aikδkj = aij

So

{
premultiplying

postmultiplying

}
A by Pπ applies π to A’s

{
rows

columns

}
.
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Multiplying Permutation Matrices

Theorem
Given the composition π ◦ ρ of two permutations π, ρ ∈ Πn,
the associated permutation matrices satisfy PπPρ = Pπ◦ρ.

Proof.
For each pair (i , j) ∈ N2

n, one has

(PπPρ)ij =
∑n

k=1 p
π
ik p

ρ
kj =

∑n
k=1 δπ−1(i),k δρ−1(k),j

=
∑n

k=1 δ(ρ−1◦π−1)(i),ρ−1(k) δρ−1(k),j

=
∑n

`=1 δ(π◦ρ)−1(i),` δ`,j = δ(π◦ρ)−1(i),j

= pπ◦ρij = (Pπ◦ρ)ij

Corollary

If π = π1 ◦ π2 ◦ · · · ◦ πq, then Pπ = Pπ
1
Pπ

2 · · ·Pπq
.

Proof.
By induction on q, using the result of the Theorem.
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Any Permutation Matrix Is Orthogonal

Proposition

Any permutation matrix Pπ satisfies Pπ(Pπ)> = (Pπ)>Pπ = In,
so is orthogonal.

Proof.
Because π is a permutation on Nn, for each pair (i , j) ∈ N2

n,
one has

[Pπ(Pπ)>]ij =
∑n

k=1 p
π
ikp

π
jk =

∑n
k=1 δπ−1(i),k δπ−1(j),k

= δπ−1(i),π−1(j) = δij

and also

[(Pπ)>Pπ]ij =
∑n

k=1 p
π
kip

π
kj =

∑n
k=1 δπ−1(k),i δπ−1(k),j

=
∑n

`=1 δ`,i δ`,j = δij

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 64 of 73



Transposition Matrices

A special case of a permutation matrix
is a transposition or swap Trs of rows r and s.

As the matrix I with rows r and s transposed, it satisfies

(Trs)ij =


δij if i 6∈ {r , s}
δsj if i = r

δrj if i = s

Remark
Distinguish carefully between the two operations of:

1. swapping the two particular rows or columns r and s
of a matrix A, which results from applying Trs or T>rs to A;

2. transposing an entire matrix from A to A>,
which results from converting each row vector of A
into a column vector of A>, and vice versa.
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Transposition Matrices: Exercise

Exercise

1. Prove that: (i) Trs is symmetric and orthogonal;
(ii) Trs = Tsr ; (iii) TrsTsr = TsrTrs = I.

2. Prove that, if A is any m × n matrix, then:
(i) if Trs is m ×m,
then TrsA is A with rows r and s interchanged;
(ii) if Trs is n × n,
then ATrs is A with columns r and s interchanged.
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Determinants with Permuted Rows: Theorem

Theorem
Given any n × n matrix A and any permutation π ∈ Πn,
one has |PπA| = |APπ| = sgn(π) |A|.
The proof appears on the next slide.

Meanwhile, putting A = I in the theorem gives immediately:

Corollary

Given any permutation π ∈ Πn,
the associated permutation matrix Pπ satisfies |Pπ| = sgn(π).
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Determinants with Permuted Rows: Proof

Proof.
The expansion formula for determinants gives

|PπA| =
∑

ρ∈Πn
sgn(ρ)

∏n

i=1
(PπA)i ,ρ(i)

But for each i ∈ Nn, ρ ∈ Πn, one has (PπA)i ,ρ(i) = aπ−1(i),ρ(i), so

|PπA| =
∑

ρ∈Πn
sgn(ρ)

∏n
i=1 aπ−1(i),ρ(i)

= [1/ sgn(π)]
∑

π◦ρ∈Πn
sgn(π ◦ ρ)

∏n
i=1 ai ,(π◦ρ)(i)

= sgn(π)
∑

σ∈Πn
sgn(σ)

∏n
i=1 ai ,σ(i) = sgn(π) |A|

because sgn(π ◦ ρ) = sgn(π) sgn(ρ) and 1/ sgn(π) = sgn(π),
whereas there is an obvious bijection Πn 3 ρ↔ π ◦ ρ = σ ∈ Πn

on the set of permutations Πn.

The proof that |APπ| = sgn(π) |A| is sufficiently similar
to be left as an exercise.
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The Alternation Rule for Determinants

Corollary

Given any n × n matrix A
and any transposition τrs with associated transposition matrix Trs ,
one has |TrsA| = |ATrs | = −|A|.

Proof.
Apply the previous theorem in the special case
when π = τrs and so Pπ = Trs .

Then, because sgn(π) = sgn(τrs) = −1,
the equality |PπA| = sgn(π) |A| implies that |TrsA| = −|A|.
We have shown that, for any n × n matrix A, given any:

1. permutation π ∈ Nn, one has |PπA| = |APπ| = sgn(π) |A|;
2. transposition τrs , one has |TrsA| = |ATrs | = −|A|.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 69 of 73



Sign Adjusted Transposition Matrices

We define the sign adjusted m ×m transposition matrix T̂rs

so that, given any m× n matrix A, the matrix T̂rsA is the result of:
(i) first swapping rows r and s of the matrix A;
(ii) then multiplying row s in the result by −1.

Because it is the matrix I with rows r and s transposed,
and then row s multiplied by −1,
the matrix T̂rs has elements that satisfy

(T̂rs)ij =


δij if i 6∈ {r , s}
δsj if i = r

−δrj if i = s

Rules 3 and 4 together imply that |T̂rs | = |(−1)Trs | = 1 .

In the special case of any m ×m matrix A, this implies
that the determinants satisfy |T̂rsA| = |(−1)TrsA| = |A| .
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2× 2 and 3× 3 Sign Adjusted Transposition Matrices

Example

1. The two different 2× 2 sign adjusted transposition matrices

are T̂12 =

(
0 1
−1 0

)
and T̂21 =

(
0 −1
1 0

)
= (T̂12)> = −T̂12.

2. There are six 3× 3 sign adjusted transposition matrices.

The first two satisfy T̂12 = (T̂21)> =

 0 1 0
−1 0 0

0 0 1

.

Two others satisfy T̂13 = (T̂31)> =

 0 0 1
0 1 0
−1 0 0

.

The last two satisfy T̂23 = (T̂32)> =

1 0 0
0 0 1
0 −1 0

.
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Inverses of Sign Adjusted Transposition Matrices

Exercise

1. Verify that, because T̂12T̂21 = T̂21T̂12 = I2,
the two 2× 2 matrices T̂12 and T̂21 are inverses.

2. Verify that whenever r , s ∈ N3 with r 6= s,
the two 3× 3 matrices T̂rs and T̂sr are inverses.

Harder: Verify directly that whenever r , s ∈ Nm with r 6= s,
the two m ×m matrices T̂rs and T̂sr

satisfy T̂rs = (T̂sr )> and are inverses.
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Sign Adjusted Permutation Matrices
Given any permutation matrix P,
there is a unique permutation π such that P = Pπ.

Suppose that π = τr1s1 ◦ · · · ◦ τr`s` is any one of the several ways
in which the permutation π can be decomposed
into a composition of transpositions.

Then P =
∏`

k=1 Trk sk and |PA| = (−1)`|A| for any A.

Definition
Say that P̂ is a sign adjusted version of P = Pπ

just in case it can be expressed as the product P̂ =
∏`

k=1 T̂rk sk

of sign adjusted transpositions satisfying P =
∏`

k=1 Trk sk .

Then it is easy to prove by induction on `
that for every n × n matrix A one has |P̂A| = |AP̂| = |A|.
Recall that all the elements of a permutation matrix P are 0 or 1.

A sign adjustment of P involves changing some of the 1 elements
into −1 elements, while leaving all the 0 elements unchanged.
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