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Definition of Maximal Diagonalization

Definition
A maximal diagonalization of an m × n matrix A takes the form

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where:

1. the integer r ∈ Z satisfying 0 ≤ r ≤ min{m, n}
is the diagonalization rank;

2. Dr×r is an r × r diagonal matrix which is invertible
because all its r diagonal elements are non-zero;

3. R is an invertible m ×m matrix
that represents a determinant preserving row operation;

4. P̂ is a sign adjusted invertible n × n permutation matrix
that represents a determinant preserving column operation;

5. Br×(n−r) denotes an r × (n − r) matrix.
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Four Special Cases

In case 0 < r < min{m, n}, the maximal diagonalization

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
of the m × n matrix A needs the full expression
for the 2× 2 partitioned matrix on the right-hand side.

Otherwise, there are four special cases
when this partitioned matrix reduces to:

1. 0m×n in the degenerate case when r = 0;

2. Dn×n in case r = m = n, so m − r = n − r = 0;

3.
(
Dm×m Bm×(n−m)

)
in case r = m < n, so m − r = 0;

4.

(
Dn×n

0(m−n)×n

)
in case r = n < m, so n − r = 0.

Our notation is intended to include all these special cases.
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Existence Theorem

Theorem
Any m × n matrix A has a maximal diagonalization

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)

The name “maximal diagonalization” is used
because the invertible diagonal matrix Dr×r is as big as possible.

The next several slides offer a constructive proof.

The construction is based on a pivoting algorithm
that is a version of Gaussian elimination.

It is somewhat related to the “Doolittle algorithm”
which does a lot for square matrices!

Provided that the non-negative integer r ≤ m is unique,
independent of what pivots are chosen,
we may want to call r the pivot rank of the matrix A.
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Definition of Straightforward Pivoting, I

Let A be any m × n matrix, with apq in row p and column q
where 1 < p < m and that 1 < q < n.

In partitioned form, we have A =

A<p,<q a<p,q A<p,>q

a>p,<q apq a>p,>q

A>p,<q a>p,q A>p,>q

.

If apq 6= 0, a determinant preserving row operation can zeroize
many of the elements of column q by pivoting about apq:

I either downwards, to reach

A<p,<q a<p,q A<p,>q

a>p,<q apq a>p,>q

A↓>p,<q 0>p,q A↓>p,>q

;

I or upwards, to reach

A↑<p,<q 0<p,q A↑<p,>q

a>p,<q apq a>p,>q

A>p,<q a>p,q A>p,>q

.
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Definition of Straightforward Pivoting, II

Starting from A =

A<p,<q a<p,q A<p,>q

a>p,<q apq a>p,>q

A>p,<q a>p,q A>p,>q

 where apq 6= 0,

one pivots by adding αi := −aiq/apq times row p:

1. if pivoting downwards, to each row i with p < i ≤ m,

until one reaches E↓pqA =


A<p,<q a<p,q A<p,>q

a>p,<q apq a>p,>q

A↓>p,<q 0>p,q A↓>p,>q

;

2. if pivoting upwards, to each row i with 1 ≤ i < p,

until one reaches E↑pqA =

A↑<p,<q 0<p,q A↑<p,>q

a>p,<q apq a>p,>q

A>p,<q a>p,q A>p,>q

.
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Upper and Lower Triangular Pivot Matrices

The pre-multiplying matrices E↓ and E↑ involved
in downward and upward pivoting respectively are the products

E↓pq =
∏m

i=p+1
Ei+αip and E↑pq =

∏p−1

i=1
Ei+αip

of the relevant elementary row operations Ei+αip

which all focus on the pivot row p.

Recall that:

1. the matrix Ei+αip is upper or lower triangular
according as the pivot row p is above or below row i ;

2. the product of any pair of upper/lower triangular matrices
is upper/lower triangular.

It follows that downward pivoting results in a lower triangular E↓pq,

whereas upward pivoting results in an upper triangular E↑pq.
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Straightforward Double Pivoting

In our earlier motivating example of 3 equations in 3 unknowns,
we allowed double pivoting
that combines both downward and upward pivoting.

Starting from A =

A<p,<q a<p,q A<p,>q

a>p,<q apq a>p,>q

A>p,<q a>p,q A>p,>q

 where apq 6= 0,

double pivoting involves adding αi := −aiq/apq times row p
to each row i with i 6= p, resulting in the matrix

E
l
pqA =


A↑<p,<q 0<p,q A↑<p,>q

a>p,<q apq a>p,>q

A↓>p,<q 0>p,q A↓>p,>q


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Straightforward Double Pivoting, First Step
Start with any m × n matrix A(0) = A.

Assuming that a11 6= 0, we can pivot about a11 in order to go

from A(0) =

(
a11 A1,>1

A>1,1 A>1,>1

)
to A(1) =

(
a11 A

(1)
1,>1

0>1,1 A
(1)
>1,>1

)
,

a matrix whose only non-zero element in column 1 is a11.

For each row i > 1, we must pre-multiply A(0) by Ei+αi1,
the determinant-preserving elementary row operation
which adds αi1 = −ai1/a11 times row 1 to row i .

The combination of all these m − 1 row operations
is represented by the lower triangular downward pivot matrix

E↓11 :=
∏m

i=2
Ei+αi11 =


1 0 0 . . . 0
α2 1 0 . . . 0
α3 0 1 . . . 0
...

...
...

. . .
...

αm 0 0 . . . 1


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Straightforward Double Pivoting, Start of Step k

For each k ∈ N with 1 < k < r := min{m, n},
step k starts with the m × n matrix A(k−1) which,
by induction on k , takes the form

A(k−1) =


D

(k−1)
<k,<k a

(k−1)
<k,k A

(k−1)
<k,>k

0>k,<k a
(k−1)
kk (a>)

(k−1)
k,>k

0>k,<k a
(k−1)
>k,k A

(k−1)
>k,>k


where D

(k−1)
<k,<k is a (k − 1)× (k − 1) diagonal matrix

whose diagonal elements are all non-zero.
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Straightforward Double Pivoting, Step k
Assuming that a

(k−1)
kk 6= 0, we can pre-multiply

A(k−1) =

D
(k−1)
<k,<k a

(k−1)
<k,k A

(k−1)
<k,>k

0>k,<k a
(k−1)
kk (a>)

(k−1)
k,>k

0>k,<k a
(k−1)
>k,k A

(k−1)
>k,>k


by the double pivot matrix E

l
kk in order to arrive at

A(k) = E
l
kkA(k−1) =

 D
(k)
≤k,≤k a

(k)
≤k,k+1 A

(k)
≤k,>k+1

0>k+1,≤k a
(k)
k+1,k+1 (a>)

(k)
k+1,>k+1

0>k+1,≤k a
(k)
>k+1,k+1 A

(k)
>k+1,>k+1


Here the k × k diagonal matrix D

(k)
≤k,≤k

is the (k − 1)× (k − 1) diagonal matrix D
(k−1)
<k,<k

with one extra non-zero diagonal element a
(k−1)
kk .
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Conclusion of Straightforward Double Pivoting
Let ` := min{m, n}, and let D denote a diagonal matrix
whose diagonal elements are always non-zero.

Provided a11 and then a
(k−1)
kk (k = 2, . . . , `− 1) are all non-zero,

pivoting can continue for `− 1 stages until k reaches `.

1. In case ` = m = n, pivoting ends with the `× ` diagonal

matrix A(`−1) =

(
D

(`−1)
<`,<` 0<`,`

0`,<` a
(`−1)
`,`

)
= D`×`.

2. In case ` = m < n, pivoting ends with the m × n matrix

A(`−1) =

(
D

(`−1)
<`,<` 0<`,` A

(`−1)
<`,>`

0`,<` a
(`−1)
`,` (a>)

(`−1)
`,>`

)
=
(
Dm×m Bm×(n−m)

)
3. In case ` = n < m, pivoting ends with the m × n matrix

A(`−1) =

D
(`−1)
<`,<` 0<`,`

0`,<` a
(`−1)
`,`

0>`,<` 0
(`−1)
>`,`

 =

(
Dn×n

0(m−n)×n

)

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 14 of 91



Outline
Maximal Diagonalization

Definition and Statement of Main Theorem
Straightforward Pivoting
Adjusted Double Pivoting

More Properties of Determinants
Finding Determinants and Inverses
Invertible Matrices
Verifying the Product Rule
Cofactor Expansion
Expansion by Alien Cofactors and the Adjugate Matrix
Cramer’s Rule
Determinants of Block Diagonal Matrices

Dimension, Rank, and Minors
Dimension
Column Rank and Row Rank
Solutions to Linear Equation Systems
Minor Determinants and Determinantal Rank

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 15 of 91



Adjusted Double Pivoting: The Matrix Sequence

Straightforward double pivoting works as long as

all the successive pivot elements a
(k−1)
kk (k ∈ N`−1) are non-zero.

Adjusted double pivoting allows for the possibility

that any prospective pivot a
(k−1)
kk = 0.

The adjusted double pivoting process that lasts at least r steps
will generate, for each k ∈ Nr , an m × n matrix Ã(k)

that takes the partitioned form Ã(k) =

 D̃
(k)
k×k Ã

(k)
≤k,>k

0(m−k)×k Ã
(k)
>k,>k

.

Here D̃
(k)
k×k is the diagonal matrix

whose non-zero pth diagonal element, for each p ≤ k,

is the adjusted pivot ã
(p−1)
pp that was used at step p.
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Adjusted Double Pivoting: When Not to Adjust

The next (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k Ã

(k)
≤k,>k

0(m−k)×k Ã
(k)
>k,>k

.

Case 1: Suppose that the top left element ã
(k)
k+1,k+1

of the submatrix Ã
(k)
>k,>k is non-zero.

In this case ã
(k)
k+1,k+1 is the obvious possible pivot element

for the next step k + 1.

Pivot adjustment is optional, but not needed.
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Adjusted Double Pivoting: The End

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k Ã

(k)
≤k,>k

0(m−k)×k Ã
(k)
>k,>k

.

Case 2: If the bottom right submatrix Ã
(k)
>k,>k = 0(m−k)×(n−k),

the zero matrix of the right dimension,
then the (k + 1)th pivot step is impossible.

All the r pivoting steps that are possible have been completed.

The final matrix takes the form

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
,

where:

1. Dr×r is an r × r diagonal matrix
whose diagonal elements are all non-zero;

2. Br×(n−r) is an arbitrary r × (n − r) matrix.
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Sign Corrected Transposition Matrices

Suppose that G is any m × n matrix and that r , s ∈ Nm.

Recall the notation T̂rs
m×m

for the m ×m sign corrected transposition matrix
having the property that T̂rs

m×mG equals G
with rows r and s interchanged,
and one of these rows multiplied by −1.

In case r = s ≤ m,
the matrix T̂rs

m×m becomes the identity matrix Im.

Recall too that the n × n sign corrected transposition matrix T̂rs
n×n

has the property that GT̂rs
n×n

equals G with columns r and s interchanged,
and one of these columns multiplied by −1.

In case r = s ≤ n,
the matrix T̂rs

n×n becomes the identity matrix In.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 19 of 91



Adjusted Double Pivoting: How to Adjust

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k Ã

(k)
≤k,>k

0(m−k)×k Ã
(k)
>k,>k

.

Case 3: Suppose that ã
(k)
k+1,k+1 = 0 but Ã

(k)
>k,>k 6= 0(m−k)×(n−k).

Then Ã
(k)
>k,>k has at least one non-zero element ã

(k)
pq

with k < p ≤ m and k < q ≤ n.

We adjust the pivot by applying two sign corrected transpositions:

1. first, we pre-multiply Ã(k) by the m ×m matrix T̂p,k+1
m×m ,

which swaps rows p and k + 1;

2. then we post-multiply T̂p,k+1
m×m Ã(k) by the n× n matrix T̂q,k+1

n×n ,
which swaps columns q and k + 1.

Together, these two sign corrected transpositions move up and left

the original non-zero element ã
(k)
pq in Ã(k) to the k + 1, k + 1

position in the adjusted matrix T̂p,k+1
m×m Ã(k)T̂q,k+1

n×n .
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Double Pivoting: The Adjusted Next Step

Recall that the (k + 1)th step started

from Ã(k) =

 D̃
(k)
k×k Ã

(k)
≤k,>k

0(m−k)×k Ã
(k)
>k,>k

.

The adjustment that replaces Ã(k) by T̂p,k+1
m×m Ã(k)T̂q,k+1

n×n
moves the element ã

(k)
pq 6= 0 into position

so that it can replace ã
(k)
k+1,k+1 as the next pivot element.

This adjustment allows the standard double pivoting row operation

that is represented by the matrix E
l
k+1,k+1

to be applied to the new version of the matrix Ã(k).

The result of this (k + 1)th pivot step is the next matrix Ã(k+1).
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The End of Double Pivoting
The double pivoting process can continue
through steps k = 1, 2, . . . , r , until it reaches a terminal matrix.

After double pivoting is over, the following four cases are possible:

1. row exhaustion with r = m < n
and terminal matrix Ã(m) =

(
D̃

(m)
m×m Ã

(m)
m×(n−m)

)
;

2. column exhaustion with r = n < m

and terminal matrix Ã(n) =

(
D̃

(n)
n×n

0(m−n)×n

)
;

3. simultaneous row and column exhaustion with r = m = n
and terminal matrix Ã(r) = D̃

(r)
r×r ;

4. non-zero pivot exhaustion with r < min{m, n}

and terminal matrix Ã(r) =

(
D̃

(r)
r×r Ã

(r)
r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
.

Together these four possible results of double pivoting
can all be summarized in one theorem, stated on the next slide.
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Existence of a Maximal Diagonalization

We have completed a constructive proof of the following:

Theorem
Any m × n matrix A has a maximal diagonalization

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where r ∈ Z satisfies 0 ≤ r ≤ min{m, n}.

Moreover, for each k ∈ Nr , there exist two pivot adjustments
in the form of sign corrected transposition
matrices T̂p,k

m×m and T̂q,k
n×n with k ≤ p ≤ m and k ≤ q ≤ n

such that R :=
∏r−1

j=0

(
E
l
r−j ,r−j T̂

p,r−j
m×m

)
and P̂ :=

∏r
k=1 T̂q,k

n×n
are well defined m ×m and n × n matrix products
which represent determinant preserving operations.
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Conclusion

This result seems novel, but will not surprise most mathematicians.

It states that any matrix can be reduced to one
that is not too different from a diagonal matrix
whose diagonal elements are all non-zero.

This implies that the diagonal matrix
has an inverse that is trivial to find.

This plays a significant role
in simplifying much of our subsequent discussion.
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Finding the Determinant of a Square Matrix
In the case of an n × n matrix A, when m = n,
the maximal diagonalization takes the form

RAP̂ =

(
Dr×r Br×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
The determinant of this upper triangular matrix is clearly 0
except in the special case of a complete set of n pivots when r = n.

In case r = n we have the complete diagonalization RAP̂ = D.

Because multiplication by R or P̂ is determinant preserving,
one has |RAP̂| = |A| = |D| =

∏n
i=1 di

where D = diag(d1, d2, . . . , dn).

So, to calculate the determinant when r = n, it is enough:

1. to pivot to reduce A to maximal diagonal form;

2. then multiply the resulting diagonal elements.

For n > 3, this is far more efficient
than trying to sum the n! products of n elements.
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Condition for a Square Matrix to Be Invertible

Theorem
Let A be an n × n matrix, with maximally diagonalized form

RAP̂ =

(
Dr×r Br×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
Then A has an inverse matrix X satisfying AX = XA = In
if and only if r = n.

Proof.
Separate proofs of necessity and sufficiency,
which do not assume the product rule for determinants
(yet to be proved), appear on the next two slides.

Remark
The condition r = n holds
if and only if the maximally diagonalized matrix RAP̂
is a fully diagonalized and so invertible n × n matrix D.
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Condition for Invertibility: Proof of Necessity
Suppose that A is an n × n matrix,
with maximally diagonalized form RAP̂.

Premultiplying the equation system AX = In
by the particular n × n matrix R used in pivoting
gives the equation RAX = RIn = R, or

RAX = RAP̂P̂
−1

X =

(
Dr×r Br×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
P̂−1X = R

Now, the equality

(
Dr×r Br×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
P̂−1X = Y holds

for the n× n matrix Y only if each of its last n− r rows equals 0>n .

But R is determinant preserving, so |R| = 1,
implying that none of its rows is 0>n , so r = n.

It follows that AX = In, and so RAX = R, holds only if r = n.

That is, a necessary condition for A to be invertible
is that the pivot rank r = n.
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Condition for Invertibility: Proof of Sufficiency
Conversely, suppose that r = n, implying that RAP̂ = D,
where D is a diagonal n× n matrix with no zero diagonal elements,
which is therefore invertible.

Recall that the matrix R that results from all the pivot operations
is the combined product of determinant preserving row operations,
all of which are invertible.

Furthermore, the sign corrected permutation matrix P̂ is invertible,
as the combined product of sign corrected transposition matrices,
all of which are invertible.

So the matrices R and P̂ are both invertible.

It follows that we can:
(i) premultiply RAP̂ = D by R−1 to obtain AP̂ = R

−1
D;

(ii) then postmultiply the result by P̂−1 to obtain A = R−1DP̂−1.

But the three matrices R−1, D, and P̂−1 are all invertible.

It follows that A is invertible,
with inverse A−1 = (R−1DP̂−1)−1 = P̂D−1R.
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Use Pivoting to Invert a Matrix!

Note that when A−1 exists,
pivoting to construct the three matrices P̂,D,R
does virtually all the work of matrix inversion.
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Existence of the Inverse Matrix

We have just proved:

Theorem
An n × n matrix A has an inverse
if and only if its determinant |A| 6= 0.

Definition

1. In case |A| = 0,
the matrix A is said to be singular;

2. In case |A| 6= 0,
the matrix A is said to be non-singular or invertible.
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Example and Application to Simultaneous Equations

Exercise

Verify that A =

(
1 1

1 −1

)
=⇒ A−1 = C :=

(
1
2

1
2

1
2 −1

2

)
by using direct multiplication to show that AC = CA = I2.

Example

Suppose that a system of n simultaneous equations in n unknowns
is expressed in matrix notation as Ax = b,
where the matrix A is n × n.

Suppose A has an inverse A−1.

Premultiplying both sides of the equation Ax = b by this inverse
gives A−1Ax = A−1b, which simplifies to Ix = A−1b.

Hence the unique solution of the equation is x = A−1b.
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Inverting Triangular Matrices

Theorem
Let U be any upper triangular square matrix.

Provided that |U| 6= 0, the inverse U−1 exists,
and is upper triangular.

Taking transposes leads immediately to:

Corollary

Let L be any lower triangular square matrix.

Provided that |L| 6= 0, the inverse L−1 exists,
and is lower triangular.
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Inverting an Upper Triangular Matrix: Proof
Let U be any upper triangular n × n matrix
which, because uii 6= 0 for all i ∈ Nn, satisfies |U| 6= 0.

By the straightforward pivoting lemma,
the n × n upward pivoting matrix R := E↖

is well defined, invertible, and upper triangular,
as well as representing a determinant preserving row operation.

Also, the result of the upward pivoting operation R = E↖ on U
is a diagonal matrix D = RU.

Then, because R is determinant preserving,
it follows that |D| = |U| 6= 0, which implies that D is invertible.

But R is invertible, so RU = D implies that U = R−1D.

Because both R−1 and D are invertible,
it follows that U−1 exists and that U−1 = (R−1D)−1 = D−1R.

Finally, the inverse matrix U−1 = D−1R is upper triangular
as the product of two upper triangular matrices.
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Verifying the Product Rule 7: Non-Singular Case

Proposition

If A and B are n × n matrices with |A| 6= 0, then |AB| = |A| · |B|.

Proof.
Because |A| 6= 0, its maximally diagonalized form is RAP̂ = D
where R is the product of determinant preserving row operations,
which is determinant preserving,
whereas P̂ is a sign adjusted permutation matrix,
and the diagonal matrix D is non-singular.

But the determinant preserving operations R and P̂
have inverses R−1 and P̂−1 that are also determinant preserving.

So A = R−1DP̂−1 and also |A| = |R−1(DP̂−1)| = |DP̂−1| = |D|.
Then, because the product rule holds for the product DC
when D is any diagonal matrix, for any n × n matrix B one has

|AB| = |R−1DP̂−1B| = |D(P̂−1B)| = |D||P̂−1B| = |A||B|
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Verifying the Product Rule 7: Singular Case

In case the n × n matrix A satisfies |A| = 0, there exists r < n
such that the maximally diagonalized matrix takes the form

RAP̂ =

(
Dr×r Cr×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
where n − r ≥ 1, while P̂ is an n × n permutation matrix,
and the n × n matrix R is determinant preserving.

So there exist matrices S,T,U,V of suitable dimension
such that RAB = (RAP̂)P̂−1B takes the form(

Dr×r Cr×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)(
Sr×r Tr×(n−r)

U(n−r)×r V(n−r)×(n−r)

)

Hence |AB| = |RAB| =

∣∣∣∣DS + CU DT + CV
0(n−r)×r 0(n−r)×(n−r)

∣∣∣∣ = 0 = |A| · |B|

also in this case when |A| = 0.
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Verifying the Product Rule 7: Summary

Finally, therefore, in view of the previous proposition when |A| 6= 0,
we have proved:

Theorem
For any n × n matrices A and B, one has |AB| = |A| · |B|.
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Definition of Cofactors

Definition
Given any element aij of the matrix n × n matrix A,
the associated (i , j)-cofactor Cij is the sign adjusted determinant
of the (n − 1)× (n − 1) matrix A−i ,−j , as shown below.

Cij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1,j−1 a1j a1,j+1 . . . a1n

a21 . . . a2,j−1 a2j a2,j+1 . . . a2n
...

...
...

...
...

ai1 . . . ai ,j−1 aij ai ,j+1 . . . ain
...

...
...

...
...

an1 . . . an,j−1 anj an,j+1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The box indicates the particular element aij .

The two blue lines it contains cross out row i and column j ,
both of which have to be deleted from the matrix A
before finding and adjusting the resulting determinant |A−i ,−j |.
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Cofactor Expansion: Theorem

Definition

The cofactor expansions of |A| along any row r or column s
are respectively

∑n
j=1 arjCrj and

∑n
i=1 aisCis .

Theorem
For every row r and column s of any n × n matrix A,
these cofactor expansions are valid — i.e., one has

|A| =
∑n

j=1
arjCrj =

∑n

i=1
aisCis

The proof of this theorem will occupy the next 6 slides.
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Cofactor Expansion: Proof, Part 1

Later we will prove the row expansion formula.

If it is valid, then applying it to the cofactor expansion
along any row r of the transposed matrix A>

with its transposed cofactors C>rj gives |A>| =
∑n

j=1 a
>
rjC
>
rj .

Taking transposes throughout gives |A| =
∑n

j=1 ajrCjr .

Replacing j by i and then r by s, one obtains |A| =
∑n

i=1 aisCis .

This is the formula for the cofactor expansion of A along column s.

So we have proved that the column expansion formula is implied
by the row expansion formula, leaving us to prove the latter.
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Cofactor Expansion: Proof, Part 2

To prove the row expansion formula,
first note that the rth row vector satisfies a>r =

∑n
j=1 arj e>j ,

where e>j is defined as the jth unit row vector in Rn,
equal to the jth row of the n × n identity matrix In.

Because the determinant function is multilinear, it follows that

|A| =
∑n

j=1
arj |A−r/(e>j )r |

which is a linear combination of the n determinants |A−r/(e>j )r |
in which each row a>r of A gets replaced,
successively for each j ∈ Nn, by the jth unit row vector e>j .

Therefore, to verify the formula |A| =
∑n

j=1 arjCrj

for the cofactor expansion of A along row any row r ,
we show that, for each j ∈ Nn, one has |A−r/(e>j )r | = Crj .
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Cofactor Expansion: Proof, Part 3

Consider the bordered n × n matrix Ârj =

(
A−r ,−j (aj)−r
0>n−1 1

)
whose:

1. top left hand corner is the (n − 1)× (n − 1) matrix A−r ,−j
obtained by removing row r and column j from A;

2. top right hand border is the column vector (aj)−r ∈ Rn−1

that is constructed by dropping the r th component
from the jth column aj of the original matrix A;

3. bottom left hand border is the row vector 0>n−1 of zeros;

4. bottom right hand corner is the number 1.

Three lemmas will be used to show that, for each j ∈ Nn:
(i) the permutations πr↗n and πj↗n

with their associated permutation matrices Pr↗n and Pj↗n

together satisfy Ârj = Pr↗nAPj↗n;

(ii) |A−r/e>j | = |Ârj |; and (iii) |Ârj | = Crj .

This will complete the proof that |A−r/(e>j )r | = |Crj |.
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Cofactor Expansion: Proof, Part 4

Given k ≤ ` ≤ n, recall that the permutation πk↗` ∈ Πn

moves k to `, and then moves each q ∈ {k + 1, . . . , `} to q − 1.

Let Pk↗` denote the corresponding permutation matrix Pπk↗`
.

Lemma (A)

For each r , j ∈ Nn, one has

Ârj =

(
A−r ,−j (aj)−r

0> 1

)
= Pr↗n [A−r/(e>j )r ] Pj↗n

Proof.
Premultiplying by Pr↗n applies πr↗n to the rows,
whereas postmultiplying by Pj↗n applies πj↗n the columns.

Now the result follows immediately from the definitions of:
(i) the matrix Ârj ; (ii) the permutations πr↗n and πj↗n;
(iii) the associated permutation matrices Pr↗n and Pj↗n.
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Cofactor Expansion: Proof, Part 5

Lemma (B)

For each r , j ∈ Nn one has |A−r/(e>j )r | = (−1)r+j |Ârj |.

Proof.
Lemma (A) implies that |Ârj | = |Pr↗n [A−r/(e>j )r ] Pj↗n|.
In earlier results we showed that, for every permutation π, one has

|PπA| = |APπ| = sgn(π)|A| and sgn(πk↗`) = (−1)`−k

Hence we have |Pr↗n [A−r/(e>j )r ]| = sgn(πr↗n)|A−r/(e>j )r |
and so |Pr↗n [A−r/(e>j )r ] Pj↗n| = (−1)n−r (−1)n−j |A−r/(e>j )r |.
Because (−1)2n = 1 and (−1)k = (−1)−k for all k ∈ N, one has

|A−r/(e>j )r | = (−1)r+j−2n|Pr↗n [A−r/(e>j )r ] Pj↗n|
= (−1)r+j |Ârj |
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Cofactor Expansion: Proof, Part 6

Lemma (C)

For each j ∈ Nn one has |Ârj | =

∣∣∣∣A−r ,−j (aj)−r
0> 1

∣∣∣∣ = Crj .

Proof.
Note that the elements of row n satisfy (Ârj)n,π(n) = δn,π(n).

Using the determinant expansion formula along with the definitions
of the bordered matrix Ârj and cofactor Crj ,
this special property of row n implies that

|Ârj | =
∑

π∈Πn

∏n

i=1
(Ârj)i ,π(i)

=
∑

π∈Πn−1

∏n−1

i=1
(Ârj)i ,π(i) = Crj

This completes all the parts of the proof
that the row r cofactor expansion of |A| is valid.
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Expansion by Alien Cofactors

Expanding by matching cofactors cofactors
along either row r or column s gives

|A| =
∑n

j=1
arj |Crj | =

∑n

i=1
ais |Cis |

Expanding by alien cofactors, however,
from either the wrong row i 6= r
or the wrong column j 6= s, gives

0 =
∑n

j=1
arj |Cij | =

∑n

i=1
ais |Cij |

This is because the answer will be the (zero) determinant
resulting from the cofactor expansion
of an alternative matrix in which:

I either row i has been duplicated and put in row r ;

I or column j has been duplicated and put in column s.
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The Adjugate Matrix

Definition
Given any n × n square matrix A,
its adjugate (or “(classical) adjoint”) matrix adj A
whose (i , j) element (adj A)ij ,
for all (i , j) ∈ Nn × Nn, is the cofactor Cji of A.

The adjoint is therefore the transpose (A+)>

of the cofactor matrix A+

whose (i , j) element (A+)ij = Cij ,
for all (i , j) ∈ Nn × Nn, is the cofactor Cij of A.
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Main Property of the Adjugate Matrix

Theorem
For every n × n square matrix A one has

(adj A)A = A(adj A) = |A|In
Proof.
The (i , j) elements of the first two matrices are respectively

[(adj A) A]ij =
∑n

k=1
Ckiakj and [A(adj A)]ij =

∑n

k=1
aikCjk

These are cofactor expansions
along, first column j , and second row i , using:

I alien cofactors in case i 6= j , implying that both equal 0;

I matching cofactors in case i = j , implying that both equal |A|.
Hence for each pair (i , j) ∈ Nn × Nn one has

[(adj A) A]ij = [A (adj A)]ij = |A|δij = |A|(In)ij
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Cramer’s Rule: Statement

Notation
Given any m × n matrix A,
recall that [A−j/b] denotes the new m × n matrix
in which column j has been replaced by the column vector b.

Evidently [A−j/aj ] = A.

Theorem
Provided that the n × n matrix A is invertible,
the simultaneous equation system Ax = b
has a unique solution x = A−1b
whose ith component is given by the ratio of determinants

xi =
|[A−i/b]

|A|

This result is known as Cramer’s rule.
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Cramer’s Rule: Proof

Proof.
Given the equation Ax = b, each cofactor |Cij | equals
the determinant of the (n − 1)× (n − 1) matrix formed
by dropping row i and column j from the coefficient matrix A.

It therefore equals the (i , j) cofactor of the n × n matrix |[A−j/b]|.

By definition of the adjugate matrix adj A, therefore,
expanding the determinant by cofactors along column j gives

|[A−j/b]| =
∑n

i=1
bi |Cij | =

∑n

i=1
(adj A)jibi

Hence the unique solution to the equation system has components

xi = (A−1b)i =
1

|A|
∑n

j=1
(adj A)ijbj =

1

|A|
|[A−i/b]|

for i = 1, 2, . . . , n.
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Recall the Definition of a Block Diagonal Matrix

For each i ∈ Nk , let A
(i)
ni×ni be an ni × ni matrix.

The notation diag(A
(1)
n1×n1

, . . . ,A
(k)
nk×nk ) was introduced

for the block diagonal matrix that results if the k matrices A
(i)
ni×ni

are arranged as blocks along the diagonal of a k × k square array,
with all off diagonal blocks equal to the zero matrix.

That is

diag(A
(1)
n1×n1

, . . . ,A
(k)
nk×nk ) =


A

(1)
n1×n1

0n1×n2 · · · 0n1×nk
0n2×n1 A

(2)
n2×n2

· · · 0n2×nk
...

...
. . .

...

0nk×n1 0nk×n2 · · · A
(k)
nk×nk


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The Determinant of a Block Diagonal Matrix

Theorem
The determinant |diag(A

(1)
n1×n1

, . . . ,A
(k)
nk×nk )|

of a block diagonal matrix

equals the product
∏k

i=1 |A
(i)
ni×ni | of the determinants

of the matrices that form the k blocks along the diagonal.

To prove this theorem, it is enough:

1. first to prove that, if X and Y are both square matrices,

then

∣∣∣∣X 0
0 Y

∣∣∣∣ = |X| |Y|;

2. second, to prove the result for k > 2 by induction.

Here I will only complete the first step as a lemma
and leave the second as an exercise.
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Basic Lemma for a Block Lower Triangular Matrix, I

In fact, we confirm that

∣∣∣∣X 0
Z Y

∣∣∣∣ =

∣∣∣∣X 0
0 Y

∣∣∣∣ = |X| |Y|

whenever Z is any matrix with appropriate dimensions.

Lemma

Given the block lower triangular matrix

(
Xm×m 0m×n
Zn×m Yn×n

)
,

its determinant D satisfies

∣∣∣∣Xm×m 0m×n
Zn×m Yn×n

∣∣∣∣ = |Xm×m| |Yn×n|.

The proof will be by induction on m.

First, suppose that m = 1, and that X1×1 = x , whereas Zn×1 = zn.

Then the cofactor expansion of D =

∣∣∣∣ x 0>n
zn Yn×n

∣∣∣∣
along the first row evidently reduces to x |Yn×n|, as required.
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Basic Lemma for a Block Lower Triangular Matrix, II

As the induction hypothesis, suppose that when m = p − 1,

one has D =

∣∣∣∣Xm×m 0m×n
Zn×m Yn×n

∣∣∣∣ = |Xm×m| |Yn×n|.

When m = p, the cofactor expansion of D along the first row
reduces to

∑p
j=1 x1jC1j .

Each cofactor, after using the induction hypothesis, becomes

C1j =

∣∣∣∣∣X
−1,−j
(p−1)×(p−1) 0(p−1)×n

Z−jn×(p−1) Yn×n

∣∣∣∣∣ = |X−1,−j
(p−1)×(p−1)| |Yn×n|

where X−1,−j
(p−1)×(p−1) and Z−jn×(p−1) denote the matrices Xp×p

and Zn×p with one indicated row and/or column omitted.

But
∑p

j=1 x1j |X−1,−j
(p−1)×(p−1)| is the cofactor expansion of |Xp×p|,

so D =
∑p

j=1 x1j |X−1,−j
(p−1)×(p−1)| |Yn×n| = |Xp×p| |Yn×n|.

This confirms the induction step.
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Definition of Dimension

The dimension of a linear space is the number of elements
in the largest linearly independent subset.

Theorem
The dimension of Rm is m.

To prove this, first consider the canonical basis of Rm.

It is the list (ej)mj=1 of the m unit column vectors

ej = (e ji )
m
i=1 = (δij)

m
i=1 ∈ Rm

That is, each ej equals the jth column of the identity matrix Im.

Now, if
∑m

j=1 xje
j = 0,

then x = (xj)
m
j=1 satisfies Imx = 0, implying that x = 0.

So this list of m unit column m-vectors is linearly independent.
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Linear Independence of Matrix Columns

From our earlier definition, the n column vectors
of the m × n matrix A are linearly independent
if and only if the vector equation

∑n
j=1 ξjaj = 0m in Rm

implies that ξj = 0 for each j = 1, 2, . . . , n.

Or equivalently, if and only if the only solution of Ax = 0m in Rn

is the trivial solution x = 0n.
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Linear Dependence with Too Many Vectors, I
To complete the proof that Rm has dimension m,
consider any list (yj)nj=1 of n ≥ m vectors in Rm.

These n vectors form the columns of the m × n matrix Y.

Let a maximal diagonalization of Y be

RYP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where r ≤ m ≤ n, and the matrices R and P̂ are both invertible.

Suppose that the n columns of Y are linearly independent
because Yx = 0 =⇒ x = 0 and so, with x = P̂z, one has

RYP̂z = 0 =⇒ RYx = 0 =⇒ Yx = R−10

=⇒ Yx = 0 =⇒ x = 0 =⇒ z = P̂
−1

x = 0

Thus, the n columns of the m × n matrix RYP̂
must be linearly independent.
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Linear Dependence with Too Many Vectors, II

We have shown that the only solution z of the equation

RYP̂z =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)(
z1

z2

)
= 0n

must satisfy z1 = 0r and z2 = 0n−r .

But then

RYP̂z = 0n ⇐⇒ Dz1 + Bz2 = 0n

⇐⇒ z2 ∈ Rn−r and z1 = −D−1Bz2

So RYP̂z = 0n =⇒ z = 0n only if Rn−r = {0n−r} because r = n.

Yet r ≤ m ≤ n, so r = n implies that m = n.
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Spanning

Definition
Let S = {xj ∈ Rn | j ∈ Nm} be any finite set of m vectors in Rn.

Then the set of vectors spanned by S , or the span of S , is

spS := {z ∈ Rn | ∃y = (yj)
m
j=1 ∈ Rm : z =

∑m

j=1
yjx

j}

Note that any vector z ∈ spS
if and only if z is a linear combination of the vectors in S .

Exercise
Verify that spS is a linear subspace of Rn

— i.e., it satisfies the vector space axioms.
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The Column Space and Row Space

In case the set S = {a1, . . . , an} ⊂ Rm

consists of the n columns of the m × n matrix A, one has

sp({a1, . . . , an}) = {y ∈ Rm | ∃x ∈ Rn : y = Ax}

This is the column space of A; the row space spanned by its rows,
which equals the column space of A>, is given by

sp({a>1 , . . . , a>m}) = {w> ∈ Rn | ∃z> ∈ Rm : w> = z>A}
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Column Rank and Row Rank

Definition
The column rank of the m × n matrix A
is the dimension rcol ≤ n of its column space,
which is the maximum number of linearly independent columns.

The row rank of the m × n matrix A
is the dimension rrow ≤ m of its row space,
which is the maximum number of linearly independent rows.

Obviously, the row rank of A
equals the column rank of the transpose A>.
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The Column Rank of a Maximally Diagonalized Matrix

Theorem
Suppose the m × n matrix A has the maximally diagonalized form

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
Then the column rank rcol of RAP̂ equals its pivot rank r .

Proof.
Given an arbitrary z ∈ Rr and w ∈ Rm−r , the vector equation(

Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)(
x
y

)
=

(
z
w

)
has a solution given by x = D−1(z− By) ∈ Rr iff w = 0m−r .

Hence the column space is Rr × {0m−r}.
It is evidently isomorphic to Rr , whose dimension r equals
the number of non-zero pivots in the diagonal matrix Dr×r .
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The Row Rank of a Maximally Diagonalized Matrix, I

Theorem
Suppose the m × n matrix A has the maximally diagonalized form

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
Then the row rank rrow of RAP̂ equals its pivot rank r .

Note first that, given this maximal diagonalization
and an arbitrary row vector (z>,w>) ∈ Rr × Rm−r ,
the equation (x>, y>)RAP̂ = (z>,w>) reduces to the equivalent
pair of vector equations x>D = z> and x>B = w>.

The rest of the proof appears on the next slide.
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Proof that Row Rank Equals Pivot Rank

Proof.
Given any z> ∈ Rr , because D is invertible,
the pair of vector equations x>D = z> and x>B = w>

has a non-empty solution set of pairs (x>, y>) ∈ Rm

if and only if the unique solution x> = D−1z> of the first equation
satisfies the second equation x>B = w>.

This is evidently true if and only if w> = z>D−1B.

This proves that the row space is

{(z>,w>) ∈ Rr × Rm−r | w> = z>D−1B}

Then the mapping Rr 3 z> ↔ (z>, z>D−1B)
is a linear bijection between Rr , whose dimension is r ,
and the row space.

This establishes that the row space also has dimension r .
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Invariance of Row Space

Theorem
Let A be any m × n matrix and R any m ×m matrix
representing a determinant preserving row operation.

Then A and RA have the same row space.

Proof.
Suppose that w> ∈ Rn is in the row space of A,
with w> = z>A where z> ∈ Rm.

Then w> = (z>R−1)RA,
so w> ∈ Rn is in the row space of RA.

Conversely, suppose w> ∈ Rn is in the row space of RA,
with w> = z>RA where z> ∈ Rm.

Then w> = (z>R)A,
so w> ∈ Rn is in the row space of A.
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Isomorphism of Column Spaces

Theorem
Let A be any m × n matrix and R any m ×m matrix
representing a determinant preserving row operation.

Then A and RA have isomorphic column spaces.

Proof.
Suppose that y ∈ Rm is in the column space of A,
with y = Ax where x ∈ Rn.

Then Ry = (RA)x, so Ry is in the column space of RA.

Conversely, suppose Ry is in the column space of RA,
with Ry = (RA)x where x ∈ Rn.

Because R is determinant preserving, it is invertible.

Then y = R−1(RA)x = Ax, so y is in the column space of A.

It follows that y↔ Ry is a linear bijection
between the column spaces of A and RA.
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Column Rank Equals Row Rank

Theorem
Suppose the m × n matrix A can be maximally diagonalized

as RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where D−1

r×r exists,

while R preserves determinants, and P̂ is a permutation.

Then both the column and row rank of A are equal to r .

Proof.
Because permuting the columns of a matrix makes no difference
to its row or column rank, the row and column ranks of RA
are equal to those of RAP̂, both of which equal r .

By the two previous theorems, the two matrices A and RA
have identical row spaces and isomorphic column spaces,
with equal dimensions.

So the respective row and column ranks of A are equal
to the row and column ranks of RAP̂, both of which are r .
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Two Equations in Two Unknowns Revisited

Consider once again the matrix equation

(
a b
c d

)(
x
y

)
=

(
e
f

)
with a, b, c , d all non-zero.

In case D = ad − bc 6= 0, the coefficient matrix

(
a b
c d

)
and the augmented matrix

(
a b e
c d f

)
both have rank 2.

Then the two lines ax + by = e and cx + dy = f intersect,

There is a unique solution.

In case D = 0, the coefficient matrix has rank 1.

If the augmented matrix has rank 2,
then the two lines are parallel and distinct, so there is no solution.

But if the augmented matrix has rank 1,
then the parallel lines coincide, so there are many solutions.
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Rank Condition for Existence of a Solution, I

Theorem
Let A be an m × n matrix, and b a column m-vector.

Then the equation Ax = b has a solution x ∈ Rn if and only if
the rank of the m × (n + 1) augmented matrix (A,b)
equals the rank of A.

Proof.
Necessity: Suppose that Ax = b has a solution x = (xj)

n
j=1.

Now apply to (A,b) the compound column operation
of successively subtracting from its last column
the multiple xj of each column j .

This converts (A,b) to (A, 0) while preserving the column rank.

Hence the ranks of (A,b) and (A, 0) must be equal,
with both equal to the rank of A.
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Rank Condition for Existence of a Solution, II

Proof.
Sufficiency: Suppose the common rank of A and (A,b) is r .

Then there is an r × n submatrix Ã
consisting of r linearly independent columns of A.

Because the rank of (A,b) equals r , and not r + 1,
the r + 1 columns of (Ã,b) must be linearly dependent.

But the rank of Ã is r , so this can only be true
because there exists an r -vector x̃ such that b = Ãx̃.

By augmenting x̃ with n − r appropriately placed zero elements,
one can construct x ∈ Rn to satisfy Ax = b.

Exercise
Let A and B be m × n and m × k matrices.

Prove that the matrix equation AX = B
has one or more solutions for the n × k matrix X if and only if
both A and the augmented matrix (A,B) have the same rank.
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Superfluous Equations and Degrees of Freedom, I

Theorem
Let A be an m × n matrix, and b a column m-vector.

Suppose A and the augmented matrix (A,b) have both rank r .

1. If r < m, then Ax = b has m − r superfluous equations.

2. If r < n, then there are n − r degrees of freedom
in the solution to Ax = b.

In the following proof, we assume that the m × n matrix A
can be maximally diagonalized as

RAP̂ =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
where D−1

r×r exists, while R is determinant preserving,

and P̂ is a sign adjusted permutation.
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Superfluous Equations and Degrees of Freedom, II

Proof.
Under the stated supposition, the vector equation Ax = b

is equivalent to RAx = (RAP̂)P̂
−1

x = Rb,

and so to RAP̂z = w where z = P̂
−1

x and w = Rb.

Because RAP̂ is a maximal diagonalization,
this system can be written as(

Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)(
z1
r

z2
n−r

)
=

(
w1

r

w2
m−r

)
Here the m × (n + 1) augmented matrix (RAP̂,w) has rank r
if and only if w2

m−r = 0m−r ,
in which case the last m − r equations are superfluous.

But then, for each z2
n−r ∈ Rn−r there is a unique solution

given by z1
r = D−1

r×r (w1
r − Br×(n−r)z

2
n−r ).

Hence there are n − r degrees of freedom.
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Equation Systems: Existence of a Solution
Let A, X and Y be m × n, n × p, and m × p respectively.

Consider again the matrix equation AX = Y in its equivalent form

RAX = RAPP−1X =

(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
P−1X = RY

Introduce the partitioned matrix

(
Z1

Z2

)
as notation for Z = P−1X,

where the r × p matrix Z1 consists of the first r rows of Z,
and the (n − r)× p matrix Z2 consists of the other n − r rows.

With this notation, the equation system takes the form(
Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)(
Z1

Z2

)
= RY =

(
Vr×p

W(m−r)×p

)
Because the matrix Dr×r of pivots is invertible,
and the last m − r rows of the left-hand side matrix are all zero,
a solution exists if and only if W(m−r)×p = 0(m−r)×p.
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Equation Systems: The Solution Space
We are considering the reduced equation system(

Dr×r Br×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)(
Z1

Z2

)
=

(
RY1

RY2

)
=

(
Vr×p

W(m−r)×p

)
We have shown that the necessary and sufficient condition
for solutions to exist is that RY2 = W(m−r)×p = 0(m−r)×p.

In case this is met, the system reduces to DZ1 + BZ2 = RY1.

The general solution is Z1 = D−1(RY1 − BZ2).

Because the (n − r)× p matrix Z2 can be chosen arbitrarily,
there are n − r degrees of freedom in the equation system.

The first r rows of the matrix Z = P−1X,
which is X with permuted columns, have been expressed
as a linear function of Y1, the first r rows of Y,
and of Z2, the last arbitrary n − r rows of P−1X.

The remaining m − r equations are redundant.
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Minors of a Determinant: Definition

Definition
Given any m × n matrix A, a minor (determinant) of order k
is the determinant |Ai1i2...ik , j1j2...jk | of a k × k submatrix (aij),
whose k row numbers satisfy 1 ≤ i1 < i2 < . . . < ik ≤ m
and whose column numbers satisfy 1 ≤ j1 < j2 < . . . < jk ≤ n.

The matrix Ai1i2...ik , j1j2...jk will also be denoted by AI×J .

The k × k matrix AI×J is formed by selecting in the right order
all the elements that lie in both:

I one of the k chosen rows in the ordered set I := 〈ir 〉kr=1;

I one of the k chosen columns in the ordered set J := 〈js〉ks=1.

Definition
The determinantal or minor rank of a matrix
is the dimension of its largest non-zero minor determinant.
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Minors: Some Examples

Example

1. In case A is an n × n matrix:
I the whole determinant |A| is the only minor of order n;
I each of the n2 cofactors Cij is a minor of order n − 1.

2. In case A is an m × n matrix:
I each element of the mn elements of the matrix

is a minor of order 1;
I the number of minors of order k is(

m

k

)
·
(
n

k

)
=

m!

k!(m − k)!

n!

k!(n − k)!

Exercise
In case A is n × n, verify that the set of elements that make up
the minor |Ai1i2...ik , j1j2...jk | of order k is completely determined
by its k diagonal elements aih,jh (h = 1, 2, . . . , k).
(These need not be diagonal elements of A.)
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Principal Minors of a Square Matrix

Definition
Suppose that A is an n × n matrix.

Then the minor |Ai1i2...ik , j1j2...jk | of order k is:

I a principal minor if ih = jh for h = 1, 2, . . . , k ,
implying that its k diagonal elements aihjh
are all on the (principal) diagonal of A;

I a leading principal minor if its diagonal elements
are the k leading elements 〈ahh〉kh=1

of the (principal) diagonal of A.

Exercise
Explain why an n × n determinant has:

1. 2n − 1 principal minors;

2. n leading principal minors.
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A First Lemma

Lemma
Given the m × n matrix A,
suppose that |AI×J | is any non-zero minor of order k.

Then both the set {a>i | i ∈ I} of rows of A
and the set {aj | j ∈ J} of columns of A are linearly independent.

Corollary

Let r denote the row rank of the m × n matrix A,
which equals its column rank.

Let d denote the determinantal rank of the m × n matrix A.

Then r ≥ d .

Proof of Corollary.

There is a non-zero minor |AI×J | of order d , so #I = d .

But then the same d rows of A are linearly dependent,
so the row rank satisfies r ≥ d .
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Proof of First Lemma

Proof.
Suppose that the linear combination

∑
i∈I ξi a>i

of the set of k rows {a>i | i ∈ I} in Rn equals 0n.

Then
∑

i∈I ξi aij = 0n for every column j ∈ Nn.

In particular,
∑

i∈I ξi aij = 0n for all the k columns j ∈ J.

So the linear combination
∑

i∈I ξi ã>i
of all the k rows of the k × k matrix Ã = AI×J is zero.

Since |AI×J | 6= 0, these k rows of Ã are linearly independent.

Hence
∑

i∈I ξi a>i = 0n implies that ξi = 0 for all i ∈ I .

This implies that the set {a>i | i ∈ I} of k rows
selected from A is linearly independent.

To prove the corresponding result for columns,
consider the transpose of each matrix.
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A Second Lemma

Lemma
Suppose that the m × n matrix A has row rank r .

Then there exist subsets I ⊆ Nm consisting of r rows
and J ⊆ Nn consisting of r columns
such that the minor |AI×J | of order r is non-zero.

Proof.
If A has row rank r ,
then there exists a set I ⊆ Nm of r linearly independent rows.

These form an r × n submatrix AI×Nn whose row rank is r .

Because row and column rank are equal,
it follows that AI×Nn has column rank r , where r ≤ n.

So AI×Nn has a subset J ⊆ Nn of r linearly independent columns.

These form an r × r submatrix AI×J whose rank is r .

So |AI×J | is a non-zero minor of order r .
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Determinantal Rank: Theorem and Proof

Theorem
The determinantal rank d of any m × n matrix A
equals both its row and column rank r .

Proof.
By the corollary to the first lemma, one has r ≥ d .

But the second lemma implies that d ≥ r .

Hence d = r .
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