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Determinants and “Volume” in Two or Three Dimensions

Eric Renault has asked me to explain
the change of variables formula
for the kind of multiple integral that occurs in econometrics.

It helps to understand first
the relationship between volume and determinant.

To start the discussion, see the two subsections,
both entitled “A Geometric Interpretation”, which can be found:

I in Section 13.1 on pp. 497–498
and in Section 13.2 on pp. 502–503 of EMEA6;

I with one figure less,
in Sections 16.1 and 16.2 of previous editions of EMEA.

The next few slides are adapted from Section 13.1 of EMEA6.
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Determinants and “Volume” in Two Dimensions Illustrated

T

(a21 , a22)

(a11 , a12)

Suppose we represent the two rows of the matrix A = (aij)2×2
as the two 2-vectors shown in the figure.

Then |A| equals the shaded area T of the parallelogram.

But if we swap the two rows,
the determinant becomes minus this shaded area.
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Determinants and Area in Two Dimensions: Special Case

(a21,a22)

a11

T

This figure shows the area corresponding to the 2× 2 determinant
in the special case when a12 = 0.

Here the area of T is simply the product of its base and height,
which is just a11a22 = |A| because a12a21 = 0.
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Determinants and Area in Two Dimensions: General Case
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The area of the large rectangle is (a11 + a21)(a12 + a22).

It is the sum of the relevant area T
and the two triangular or rectangular areas marked.

This sum of areas equals 2T1 + 2T2 + 2T3 + T
where T1 = a12a21, T2 = 1

2a21a22, and T3 = 1
2a11a12.

By elementary algebra, it follows that T = a11a22 − a21a12 = |A|.
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Determinants and Volume in Three Dimensions

x

y

z

(a11,a12,a13)

(a21,a22,a23)

(a31,a32,a33)

The rows of a 3× 3 determinant correspond
to three different 3-vectors represented in the diagram.

Instead of a cuboid whose six faces are all rectangles,
one has a parallelepiped whose six faces are all parallelograms.

The volume of this parallelepiped must equal
the absolute value of the determinant |A|.

Higher dimensions require new definitions.
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Summing Sets in n Dimensions: Definition

Definition
Let {Sk | k = 1, 2, . . . , r} be any collection of r subsets of Rn.
Define the vector sum S :=

∑r
k=1 Sk of these sets as the set

S := {x ∈ Rn | ∀k ∈ Nr ;∃xk ∈ Sk : x =
∑r

k=1
xk}

of all possible selections Nr 3 k 7→ xk ∈ Rn

of r n-vectors from the family of sets,
or equivalently, from the correspondence Nr 3 k 7→→Sk ⊂ Rn.

Exercise
Once you have learned about convex sets,
prove that the vector sum of convex subsets of Rn is convex.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 9 of 28



Two Examples of Summing Sets in Two Dimensions

Example

In two dimensions, the rows of the general 2× 2 matrix A
are vectors described by the two line intervals in R2 given by

I1 := [(0, 0), (a11, a12)] and I2 := [(0, 0), (a21, a22)]

The respective sets of endpoints for these two intervals are

Z1 := {(0, 0), (a11, a12)} and Z2 := {(0, 0), (a21, a22)]}

The vector sum of these two sets is the set

Z1 + Z2 = {(0, 0), (a11, a12), (a21, a22), (a11 + a21, a12 + a22)}

consisting of the four vertices of a parallelogram in R2.

The vector sum I1 + I2 of the convex intervals, however,
is a convex set equal to the whole parallelogram.
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An Exercise in Summing Sets in Three Dimensions

Exercise
Extend the previous example from two dimensions to three.
In particular:

1. Show that the rows of the general 3× 3 matrix A
determine three line intervals Ik (k = 1, 2, 3)
that each join the origin 0 of R3

to a point ak ∈ R3 representing one row of the matrix.

2. If Zk denotes, for each k = 1, 2, 3,
the pair set {0, ak} of endpoints,
show that the vector sum Z1 + Z2 + Z3

is a set consisting of eight vertices of a parallelipiped.

3. Show that the vector sum I1 + I2 + I3 of the three line intervals
is the parallelipiped
that is the convex hull of the eight points in Z1 + Z2 + Z3.
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An Iterative Definition of Parallelipiped Volumes

Definition
Consider the n × n matrix A
whose rows are the n row n-vectors (a1, a2, . . . an).

First, define vol1(A) := ‖a1‖ and then, for each k = 2, 3, . . . n,
define each successive volume by volk(A) = dk(A) volk−1(A) where

dk(A) := min
λ1,λ2,...,λk−1

‖ak −
∑k−1

r=1
λrar‖

denotes the (shortest) distance of ak from the linear subspace
spanned by the first k − 1 rows of A.

The idea is that the volume volk(A)
of the parallelipiped

∑k
r=1[0, ar ] spanned by the first k rows of A

is equal to the product of:
(i) the volume volk−1(A) of the “base” parallelipiped;
(ii) the “height” dk(A) of the vector ak
above the linear space spanned by the first k − 1 rows of A.
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The Two-Dimensional Case

T

(a21 , a22)

(a11 , a12)

When A is 2× 2, the area T
is given by vol2(A) = d2(A) vol1(A) where:

1. vol1(A) is the length ‖a1‖ of A’s first row a1 = (a11, a12);

2. d2(A) equals the (minimum) distance minλ1 ‖a2 − λ1a1‖
between the point a2 = (a21, a22)
that corresponds to the second row
and the closest point to a2 on the line through a1.
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The Three-Dimensional Case

x

y

z

(a11,a12,a13)

(a21,a22,a23)

(a31,a32,a33)

When A is 3× 3, its volume
is given by vol3(A) = d3(A) vol2(A) where:

1. vol2(A) is the area of the parallelogram
spanned by the first two rows of A;

2. d3(A) equals the distance minλ1,λ2 ‖a3 − λ1a1 − λ2a2‖
between the third row vector a3 = (a31, a32, a33)
and the closest point to a3
on the plane spanned by the first two rows of A.
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Determinants and Volumes of Diagonal Matrices
Recall the notation ei for the ith row vector of the canonical basis,
whose jth component, for j = 1, 2, . . . , n,
equals the Kronecker delta δij .

Then λiei is the ith row
of the n × n diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

Exercise
Prove by induction that, for k = 1, 2, . . . , n, one has dk(Λ) = |λk |
and

volk(Λ) =
∏k

i=1
|λi | = | det Λ|

Remark
The answer to this exercise accords with the geometric intuition
that the volume of an n-dimensional cuboid,
whose faces are all n − 1-dimensional cuboids,
equals the product of the lengths ‖λiei‖ = |λi |‖ei‖ = |λi |
of all its n row vectors.
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Diagonal Matrices with Permuted Columns

Suppose that the n × n diagonal matrix Λ = diag(λ1, λ2, . . . , λn)
is post-multiplied by the sign corrected determinant preserving
permutation matrix P̂ = (−1)sgnπ(δiπ(j))n×n
for some permutation π ∈ Πn which is applied to the columns of In.

Then each (i , j) element of the matrix ΛP̂ is given by

(ΛP̂)ij = (−1)sgnπ
∑n

h=1
λiδihδhπ(j) = (−1)sgnπλiδiπ(j)

This is a matrix whose only non-zero element in the ith row
occurs when π(j) = 1, so the ith row is (−1)sgnπλieπ−1(i).

Arguing as in the case of a diagonal matrix,
it follows that for each k = 1, 2, . . . , n,
one has dk(Λ) = |λk | and volk(Λ) =

∏k
i=1 |λi |.

This proves that voln(ΛP̂) = voln(Λ) =
∏k

i=1 |λi |.
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General Invariance to Row Permutations

Lemma
Given any n × n matrix A and any n × n permutation matrix P,
one has voln(PA) = voln(A).

Proof.
Pre-multiplying the matrix A by the permutation matrix P
permutes the rows of A.

This pre-multiplication merely reorders the terms
in the vector sum

∑n
r=1[0, ar ] ⊂ Rn of line intervals.

But this vector sum corresponds to the paralleliped
that is spanned by all the n rows of A.

Geometrically, therefore, since the paralleliped defined
by the sum

∑n
r=1[0, ar ] must be unchanged, so is its volume.
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The Effect of an Elementary Row Operation, I

Recall the notation Er+αs for the n × n matrix
that represents the elementary and determinant preserving
row operation of adding α times row s to row r .

We start with the special case when r = n,
so a multiple of row s is added to the last row n.

Lemma
Given any n × n matrix A and any row s < n,
for all k = 1, 2, . . . , n − 1 one has volk(En+αsA) = volk(A).

Proof.
Note that the operation En+αs

affects only the last row n of any n × n matrix.

From the definition of volk(A) for any n × n matrix A,
it follows that, for k = 1, 2, . . . , n − 1,
one has volk(En+αsA) = volk(A).
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The Effect of an Elementary Row Operation, II

Lemma
Given any n × n matrix A and any row s < n,
one has dn(En+αsA) = dn(A).

Proof.
Because (an + αas)−

∑n−1
i=1 λiai = an −

∑n−1
i=1 (λi − δisα)ai ,

one has dn(En+αsA) = min(λ1,λ2,...,λn−1) ‖an −
∑n−1

i=1 (λi − δisα)ai‖.

Suppose that min(λ1,λ2,...,λn−1) ‖an −
∑n−1

i=1 λiai‖
is achieved at (λ∗1, . . . λ

∗
n−1), so dn(A) = ‖an −

∑n−1
i=1 λ

∗
i ai‖.

Then min(λ1,λ2,...,λn−1) ‖an −
∑n−1

i=1 (λi − δisα)ai‖ is achieved
when for each i = 1, 2, . . . , n − 1
one has λi − δisα = λ∗i and so λi = λ∗i + δisα.

This proves that dn(En+αsA) = ‖an −
∑n−1

i=1 λ
∗
i ai‖ = dn(A).
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The Effect of an Elementary Row Operation, III

Proposition

Given any n × n matrix A and any row s < n,
one has voln(En+αsA) = voln(A).

Proof.
The definitions of voln(A) and of voln(En+αsA) imply that

voln(En+αsA) = dn(En+αsA) voln−1(En+αsA)

voln(A) = dn(A) voln−1(A)

But the two previous lemmas imply
that voln−1(En+αsA) = voln−1(A) and dn(En+αsA) = dn(A).

Thus, the right-hand sides of the two displayed equations are equal,
implying that the left-hand sides must also be equal.
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The Effect of an Elementary Row Operation, IV

Proposition

Given any n× n matrix A and any elementary row operation Er+αs ,
one has voln(Er+αsA) = voln(A).

Proof.
Note that for all r ∈ Nn−1 and all s 6= r ,
one has Er+αs = T̂r↔nEn+αsT̂r↔n

where T̂r↔n = −Tr↔n is the sign-adjusted version
of the row operation Tr↔n that transposes rows r and n.

Because transpositions are permutations that preserve the volume,
it follows from the previous lemma that

voln(A) = voln(T̂r↔nA) = voln(En+αsT̂r↔nA)

= voln(T̂r↔nEn+αsT̂r↔nA) = voln(Er+αsA)
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The Case of Linearly Dependent Rows

Proposition

The n × n matrix A has linearly dependent rows
if and only if voln(A) = 0.

Proof.
If the rows of A are linearly dependent,
then after permuting its rows a1, . . . , an if necessary,
there must exist n − 1 real constants λ1, . . . , λn−1
such that an =

∑n−1
i=1 λiai .

But then dn(A) = ‖an −
∑n−1

i=1 λiai‖ = 0 and so voln(A) = 0.

Conversely, if voln(A) = 0, then there exists k ∈ Nn

and k − 1 real constants λ1, . . . , λk−1
such that dk(A) = ‖ak −

∑k−1
i=1 λiai‖ = 0.

So ak =
∑k−1

i=1 λiai ,
implying that the rows of A are linearly dependent.
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Determinants and Volumes: Main Theorem

Theorem
Given any n × n matrix A,
the volume voln(A) of the parallelipiped spanned by its rows
equals | detA|, the absolute value of the determinant.
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Determinants and Volumes: Proof of Main Theorem

Proof.
In the case when A is singular, so its rows are linearly dependent,
the previous Proposition implies that voln(A) = detA = 0.

Otherwise there exists a maximal diagonalization RAP̂ = D,
where the diagonal matrix D is non-singular.

Furthermore R is invertible, and R−1 is the product of matrices
which are either sign corrected permutations,
or elementary row operations of the form Er+αs .

Finally P̂ is an invertible permutation, so A = R−1DP̂
−1

,
where both R−1 and P̂−1 are determinant preserving.

From previous results, in the non-singular case it follows that

voln(A) = voln(DP̂
−1

) = voln(D) = | detD| = | detA| > 0
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