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Quadratic Forms: Preliminary Exercise

Exercise
Let A be any n × n matrix.

For each j ∈ Nn, recall that ej = (δij)
n
i=1

denotes the jth column of the identity matrix In,
and that (ei )> = (δij)

n
j=1 is the ith row of In.

For each i , j ∈ Nn, explain why:

1. Aej is the jth column aj of the matrix A,
whose ith component is

∑n
k=1 aikδkj = aij ;

2. (ei )>Aej =
∑n

k=1 δikakj ,
which equals the single element aij of the matrix A.
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Definition of Quadratic Form

Definition
A quadratic form on the n-dimensional Euclidean space Rn

is a mapping

Rn 3 x 7→ q(x) = x>Qx =
∑n

i=1

∑n

j=1
xiqijxj ∈ R

where Q is a symmetric n × n matrix.

The quadratic form x>Qx is diagonal just in case
the matrix Q is diagonal, with Q = Λ = diag(λ1, λ2, . . . , λn).

In this case x>Qx reduces to x>Λx =
∑n

i=1 λi (xi )
2.
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The Hessian Matrix of a Quadratic Form in Two Variables

Exercise

Given the quadratic form q(x , y) = (x , y)

(
a b
c d

)(
x
y

)
,

show that, even if the matrix

(
a b
c d

)
is not symmetric,

the Hessian matrix of its second-order partial derivatives

is the symmetric matrix

(
q′′xx q′′xy
q′′yx q′′yy

)
=

(
2a b + c

b + c 2d

)
.
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The Hessian Matrix of a Quadratic Form in n Variables

Exercise
Consider the n-variable quadratic form

Rn 3 x 7→ q(x) = x>Ax ∈ R

Show that, even if the matrix A is not symmetric,
the n × n Hessian matrix H whose elements hij

are the constant second-order partial derivatives
∂2q

∂xi∂xj
is the symmetric matrix A + A>.
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Symmetry Loses No Generality

Requiring Q in x>Qx to be symmetric loses no generality.

This is because, given a general non-symmetric n × n matrix A,
repeated transposition implies that

x>Ax = (x>Ax)> = 1
2 [x>Ax + (x>Ax)>] = 1

2x>(A + A>)x

Hence x>Ax = x>A>x = x>Qx
where Q is the symmetrized matrix 1

2(A + A>).

Note that Q is indeed symmetric because

Q> = 1
2(A + A>)> = 1

2 [A> + (A>)
>

] = 1
2(A> + A) = Q
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Definiteness of a Quadratic Form
When x = 0, then x>Qx = 0. Otherwise:

Definition
The quadratic form Rn 3 x 7→ x>Qx ∈ R,
as well as its associated symmetric n × n matrix Q, are both:

positive definite just in case x>Qx > 0 for all x ∈ Rn \ {0};
negative definite just in case x>Qx < 0 for all x ∈ Rn \ {0};
positive semi-definite just in case x>Qx ≥ 0 for all x ∈ Rn;

negative semi-definite just in case x>Qx ≤ 0 for all x ∈ Rn;

indefinite just in case there exist both x+ and x− in Rn

such that (x+)>Qx+ > 0 and (x−)>Qx− < 0.

Given the domain Qn×n of symmetric n × n matrices,
the sign of each Q ∈ Qn×n is indicated,
using some obvious abbreviations, by the definiteness function

Qn×n 3 Q 7→ def(Q) ∈ {PD, ND, PSD, NSD, ID}
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Definiteness of a Diagonal Quadratic Form

Theorem
Suppose that Q is the diagonal matrix diag(λ1, . . . , λn),
so that x>Qx =

∑n
i=1 λi (xi )

2.

Then the diagonal quadratic form x 7→
∑n

i=1 λi (xi )
2 ∈ R is:

positive definite if and only if λi > 0 for i = 1, 2, . . . , n;

negative definite if and only if λi < 0 for i = 1, 2, . . . , n;

positive semi-definite if and only if λi ≥ 0 for i = 1, 2, . . . , n;

negative semi-definite if and only if λi ≤ 0 for i = 1, 2, . . . , n;

indefinite if and only if there exist i , j ∈ {1, 2, . . . , n}
such that λi > 0 and λj < 0.

Proof.
The proof is left as an exercise.

The result is obvious if n = 1, and straightforward if n = 2.

Working out these two cases first suggests the proof for n > 2.
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Concavity or Convexity of a Quadratic Form

Exercise
Show that, as a function Rn 3 x 7→ x>Qx ∈ R,
the quadratic form x>Qx is:

strictly convex if and only if Q is positive definite;

strictly concave if and only if Q is negative definite;

convex if and only if Q is positive semi-definite;

concave if and only if Q is negative semi-definite.

Otherwise x>Qx is neither concave nor convex
if and only if Q is indefinite.

The solution is more suited to Pablo’s lectures than mine!
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Definiteness of a Quadratic Form: Simple Tests
Even if Q is not a diagonal matrix,
its diagonal elements still provide useful information.

Proposition

The quadratic form Rn 3 x 7→ x>Qx is:

1. positive definite only if qii > 0 for all i ∈ Nn;

2. positive semi-definite only if qii ≥ 0 for all i ∈ Nn;

3. negative definite only if qii < 0 for all i ∈ Nn;

4. negative semi-definite only if qii ≤ 0 for all i ∈ Nn;

5. indefinite if there exist i , j ∈ Nn such that qii > 0 > qjj .

Proof.
For each i ∈ Nn, recall that (ei )>Qei = qii
where ei denotes column i of In.

The result follows from checking the signs
of (ei )>Qei = qii and (ej)>Qej = qjj in the 5 different cases.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 13 of 64



Semi-Definiteness of a Quadratic Form

Suppose that the diagonal of the symmetric n × n matrix Q
has at least one zero element.

By the previous proposition, the quadratic form Rn 3 x 7→ x>Qx
cannot be either positive definite or negative definite.

But could it still be
either positive semi-definite or negative semi-definite?
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Semi-Definiteness of a Quadratic Form: Simple Test

Proposition

Suppose that the diagonal of the symmetric n × n matrix Q
has two zero elements qii and qjj with i 6= j .

Then the quadratic form Rn 3 x 7→ x>Qx is indefinite
unless one has qij = qji = 0.

Proof.
Consider the particular column vector x = αei + βej ∈ Rn

where α and β are any two real scalars.

Routine calculation shows that, because Q is symmetric,
and (ei )>Qei = (ej)>Qej = qii = qjj = 0, one has

x>Qx = αβ[(ei )>Qej + (ej)>Qei ] = 2qijαβ

As both α and β range over all of R \ {0},
one has αβ ≷ 0 according as sgnα = ± sgnβ.

So x>Qx = 2qijαβ is indefinite unless qij = qji = 0.
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The Two Variable Case: Completing the Square

In the 2× 2 case, the typical quadratic form is

R2 3
(
x
y

)
7→
(
x y

)(a h
h b

)(
x
y

)
= ax2 + 2hxy + by2

Assuming that a 6= 0, one can complete the square

by writing ax2 + 2hxy + by2 as a

(
x +

h

a
y

)2

+

(
b − h2

a

)
y2,

which can be verified term by term.

First, the quadratic form ax2 + 2hxy + by2

is neither positive nor negative definite in case:

I a = 0, because then ax2 + 2hxy + by2 = 0
when x 6= 0 and y = 0;

I a 6= 0 but ab − h2 = 0, because then ax2 + 2hxy + by2 = 0
when y 6= 0 and x = −hy/a.
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Tests Based on Completing the Square
We are considering the quadratic form which, in case a 6= 0,
after completing the square, becomes

ax2 + 2hxy + by2 = a

(
x +

h

a
y

)2

+

(
b − h2

a

)
y2

If a > 0, because b − h2

a
=

1

a
(ab − h2), the quadratic form is:

positive definite if and only if ab − h2 > 0;

positive semi-definite if and only if ab − h2 ≥ 0;

indefinite if and only if ab − h2 < 0.

If a < 0, because b − h2

a
=

1

a
(ab − h2), the quadratic form is:

negative definite if and only if ab − h2 > 0;

negative semi-definite if and only if ab − h2 ≥ 0;

indefinite if and only if ab − h2 < 0.
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Completing the Square as Symmetric Pivoting, I

Given the 2× 2 matrix

(
a h
h b

)
, provided that a 6= 0,

the downward pivoting operation
involves adding −h/a times row 1 to row 2.

In symbols, this downward pivoting operation is represented

by the 2× 2 matrix E↓11 = E2+(−h/a)1 =

(
1 0
−h/a 1

)
.

Applied to the original matrix, the result is

E↓11

(
a h
h b

)
=

(
1 0
−h/a 1

)(
a h
h b

)
=

(
a h
0 b − h2/a

)
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Completing the Square as Symmetric Pivoting, II

Starting with the equation E↓11

(
a h
h b

)
=

(
a h
0 b − h2/a

)
,

suppose now we post-multiply each side by the transpose (E↓11)>.

This completes a symmetric pivoting operation whose result is

E↓11

(
a h
h b

)
(E↓11)> =

(
a h
0 b − h2/a

)(
1 −h/a
0 1

)
=

(
a 0
0 b − h2/a

)
= diag(a, b − h2/a)

The two-part symmetric pivoting operation
converts the original quadratic form ax2 + 2hxy + by2

to the diagonal form az2 + (b − h2/a)w2

where

(
x
y

)
= E↓11

(
z
w

)
=

(
1 0
−h/a 1

)(
z
w

)
and so

(
z
w

)
= (E↓11)−1

(
x
y

)
=

(
1 0

h/a 1

)(
x
y

)
.
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Example Where Symmetric Pivoting Is Impossible

Example

Let A be the 2× 2 symmetric matrix

(
0 h
h 0

)
.

Both diagonal elements are zero.

These zeroes make symmetric pivoting impossible,
so one cannot complete the square in the quadratic form

(
x y

)
A

(
x
y

)
=
(
x y

)(0 h
h 0

)(
x
y

)
=
(
x y

)(hy
hx

)
= 2hxy

Fortunately the definiteness of A is easy to determine directly.

If h 6= 0 then A is indefinite.

If h = 0 then A = 02×2,
the only 2× 2 symmetric matrix that is both
positive semi-definite and negative semi-definite.
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The Block Diagonal Case: Proposition

Proposition

Suppose that A = diag(B,C)
is a symmetric block diagonal matrix.

Then A is positive definite (resp. semi-definite) if and only if
both blocks B and C are positive definite (resp. semi-definite).

Corollary

Suppose that A = diag(A(1), . . . ,A(k)) is symmetric.

Then A is positive definite (resp. semi-definite) if and only if
each block A(i) (i ∈ Nk) is positive definite (resp. semi-definite).

The corollary is easily proved by induction on k .

Remark
As usual, the result for a negative (semi-)definite matrix A
follows from the corresponding result
for the positive (semi-)definite matrix −A.
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The Block Diagonal Case: Proof

Proof.
Consider the block diagonal quadratic form

(y>, z>)A

(
y
z

)
= (y>, z>)

(
B 0
0 C

)(
y
z

)
= y>By + z>Cz

If A is positive definite (resp. semi-definite),

then (y>, 0>)A

(
y
0

)
= y>By > 0 (resp. ≥ 0) for all y 6= 0,

and (0>, z>)A

(
0
z

)
= z>Cz > 0 (resp. ≥ 0) for all z 6= 0.

So both B and C are positive definite (resp. semi-definite).

Conversely, if both B and C are positive definite, then so is A
because y>By + z>Cz > 0 unless both y = 0 and z = 0.

But if both B and C are only positive semi-definite,
then y>By + z>Cz ≥ 0, so A is positive semi-definite.
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Quadratic Form Invariance: Statement of Lemma

Lemma
Suppose that A and B are n × n symmetric matrices,
and there exists an invertible n× n matrix R such that B = RAR>.

Then the definiteness function

Qn×n 3 Q 7→ def(Q) ∈ {PD, ND, PSD, NSD, ID}

satisfies def(B) = def(A).
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Quadratic Form Invariance: Proof of Lemma

Proof.
For any x,u ∈ Rn with x = R>u and so u = (R>)−1x, note that

1. x>Ax = (R>u)>AR>u = u>RAR>u = u>Bu;

2. x = 0⇐⇒ u = 0 and so x 6= 0⇐⇒ u 6= 0.

From these two statements one can verify
each of the following four equivalences:

∀x 6= 0 : x>Ax


>
<
≥
≤

 0⇐⇒ ∀u 6= 0 : u>Bu


>
<
≥
≤

 0

In addition, it also follows from these four equivalences
that A is indefinite if and only if B is indefinite.
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Quadratic Form Invariance: Counter Example

Example

Suppose that A and B are n × n symmetric matrices,
where A is either positive or negative definite.

Suppose too that there exists a singular n × n matrix S
such that B = SAS>.

Then |S| = |S>| = 0, so S> is also singular.

Hence there exists y 6= 0 such that S>y = 0.

Then y>By = y>SAS>y = 0.

It follows that B is neither positive nor negative definite.
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Symmetric Maximal Diagonalization: Definition

Definition
A symmetric maximal diagonalization of an n × n matrix A

takes the form RAR> =

(
Dr×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
where:

1. the integer r ∈ Z satisfying 0 ≤ r ≤ min{m, n} is the rank;

2. Dr×r is an r × r diagonal matrix which is invertible
because all its r diagonal elements are non-zero;

3. R is an invertible n × n matrix that, because |R| = 1,
represents a determinant preserving row operation.

In case 0 < r < n, the symmetric maximal diagonalization
of the n × n matrix A needs the full expression
for the 2× 2 partitioned matrix on the right-hand side.

Otherwise, in case r = n, this partitioned matrix reduces to Dn×n.
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Straightforward Symmetric Pivoting, First Step

Start with any n × n symmetric matrix A, also denoted by A(0),

which we can write in partitioned form as A =

(
a11 a>>1,1

a>1,1 A>1,>1

)
,

where a>1,1 is a column n − 1-vector.

Provided that a11 6= 0, we can pivot symmetrically about a11 by:

1. pre-multiplying A
by the lower triangular downward pivot matrix E↓11;

2. post-multiplying the product E↓11A

by the upper triangular transpose (E↓11)>

of the downward pivot matrix E↓11.

The combined effect is to transform A to the symmetric matrix

A(1) = E↓11A(E↓11)> =

(
a11 01,>1

0>1,1 A
(1)
>1,>1

)
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Straightforward Symmetric Pivoting, Start of Step k

For each k ∈ N with 1 < k < n,
step k starts with the n × n matrix A(k−1) which,
by induction on k , takes the symmetric form

A(k−1) =


D

(k−1)
<k,<k 0<k,k 0<k,>k

0>k,<k a
(k−1)
kk (a

(k−1)
>k,k )>

0>k,<k a
(k−1)
>k,k A

(k−1)
>k,>k


where:

1. D
(k−1)
<k,<k is a (k − 1)× (k − 1) diagonal matrix;

2. a
(k−1)
>k,k is a column n − k-vector;

3. A
(k−1)
>k,>k is an (n − k)× (n − k) symmetric matrix.
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Straightforward Symmetric Pivoting, Step k

Starting from A(k−1) =


D

(k−1)
<k,<k 0<k,k 0<k,>k

0>k,<k a
(k−1)
kk (a

(k−1)
>k,k )>

0>k,<k a
(k−1)
>k,k A

(k−1)
>k,>k

,

provided that a
(k−1)
kk 6= 0, we can:

I pre-multiply by the lower triangular pivot matrix E↓kk ;

I post-multiply by the upper triangular transpose (E↓kk)>

The result is A(k) = E↓kkA(k−1)(E↓kk)> where

A(k) =


D

(k)
≤k,≤k 0≤k,k+1 0≤k,>k+1

0>k+1,≤k a
(k)
k+1,k+1 (a

(k)
>k+1,k+1)>

0>k+1,≤k a
(k)
>k+1,k+1 A

(k)
>k+1,>k+1


The k × k diagonal matrix D

(k)
≤k,≤k is the diagonal matrix D

(k−1)
<k,<k

with one extra non-zero pivot element a
(k)
kk on the diagonal.
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Conclusion of Straightforward Symmetric Pivoting

Provided that the successive pivot elements a
(k−1)
kk , for k ∈ Nn−1,

are all non-zero, straightforward symmetric pivoting can continue
until k reaches n − 1.

After all n − 1 stages, straightforward symmetric pivoting
ends with the n × n matrix A(n−1),
which equals the diagonal matrix D

(n)
≤n,≤n.

The last diagonal element a
(n−1)
nn could be zero.

This does not matter because no more pivoting is required.

But like downward pivoting, if a
(k−1)
kk = 0 for some k < n,

then straightforward symmetric pivoting eventually fails.

Some adjustment of at least one pivot element is needed.
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Adjusted Symmetric Pivoting: The Matrix Sequence, I

Like straightforward downward pivoting,
straightforward symmetric pivoting works provided

each successive pivot element a
(k−1)
kk (k = 1, 2, . . . , n − 1)

that is relevant because k < n is non-zero.

Adjusted symmetric pivoting allows for the possibility

that at least one relevant prospective pivot a
(k−1)
kk with k < n is 0.

The adjusted symmetric pivoting process that lasts at least r steps
will generate, for each k ∈ Nr , an n × n symmetric matrix Ã(k)

that takes the partitioned form Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

Here D̃
(k)
k×k is the diagonal matrix in which, for each p ∈ Nk ,

the non-zero diagonal element ũ
(k)
pp

is the adjusted pivot element ã
(p−1)
pp that was used at stage p.
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Adjusted Symmetric Pivoting: The Matrix Sequence, II

Suppose that the adjusted symmetric pivoting process
lasts exactly r steps, where r ∈ Nn.

Starting from Ã(0) = A, each successive step k ∈ Nr ,
after adjusting any non-zero pivots, makes double symmetric uses
of the determinant preserving downward pivoting operation Ẽ↓kk .

The double symmetric application of Ẽ↓kk to the matrix Ã(k−1)

leads to the symmetric matrix Ã(k) = Ẽ↓kkÃ(k−1)(Ẽ↓kk)>.

By induction on k , for each k ∈ Nr one has Ã(k) = R(k)A(R(k))>

where R(k) =
∏k−1

q=0 Ẽ↓k−q,k−q = Ẽ↓kk Ẽ↓k−1,k−1 · · · Ẽ
↓
22Ẽ↓11,

multiplied in that specific order.

Pivoting ceases with the matrix Ã(r) = R(r)A(R(r))>.

Note that R(k) is invertible as the product of invertible matrices.

From quadratic form invariance,
it follows that def(A) = def(Ã(k)) = def(Ã(r)) for all k ∈ Nr .
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Adjusted Symmetric Pivoting: The End, Case 1

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

Case 1: If the bottom right submatrix Ã
(k)
>k,>k = 0(n−k)×(n−k),

then the (k + 1)th pivot step is impossible.

All the r pivoting steps that are possible have been completed.

The final matrix takes the form

(
Dr×r 0r×(n−r)

0(m−r)×r 0(n−r)×(n−r)

)
,

where Dr×r is an invertible r × r diagonal matrix with r < n.

Because r < n, quadratic form invariances implies
that the original symmetric matrix A cannot be definite.

It is positive or negative semi-definite according as the (non-zero)
diagonal elements of Dr×r are all positive or all negative
— that is, according as Dr×r is positive or negative definite.

But if the diagonal of Dr×r
has both positive and negative elements, then A is indefinite.
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Adjusted Symmetric Pivoting: The End, Case 2

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

Case 2: Suppose that in the bottom right submatrix Ã
(k)
>k,>k ,

at least two of the diagonal elements (ã
(k)
qq )nq=k+1 are zero,

even though Ã
(k)
>k,>k 6= 0(n−k)×(n−k).

Then there exist a pair p, q ∈ N with k < p < q ≤ n

such that ã
(k)
pp = ã

(k)
qq = 0 and yet ã

(k)
pq = ã

(k)
qp 6= 0.

So the simple test for semi-definiteness
implies that the symmetric matrix Ã(k) is indefinite.

By quadratic form invariance, so is the original matrix A.
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Adjusted Symmetric Pivoting: How to Adjust

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

Case 3: Suppose that ã
(k)
k+1,k+1 = 0 but the matrix Ã

(k)
>k,>k

has at least one non-zero diagonal element ã
(k)
qq with q > k + 1.

That is, there exists at least non-zero element ã
(k)
qq

on the part of the diagonal below and to the right of ã
(k)
k+1,k+1.

We adjust the pivot symmetrically along the diagonal by applying
one sign corrected swap matrix along with its transpose:

1. first, we pre-multiply Ã(k) by the n × n matrix T̂q,k+1
n×n ,

which first swaps rows q and k + 1, then corrects the sign;

2. then we post-multiply T̂q,k+1
n×n Ã(k)

by the n × n transposed matrix (T̂q,k+1
n×n )>,

which first swaps columns q and k + 1, then corrects the sign.
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Adjusted Symmetric Pivoting: The Next Step

The (k + 1)th step starts from Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

Together, the two sign corrected swaps T̂q,k+1
n×n and (T̂q,k+1

n×n )>

move the original non-zero element ã
(k)
qq in Ã(k) up left

to the k + 1, k + 1 position
in the adjusted matrix T̂q,k+1

n×n Ã(k)(T̂q,k+1
n×n )>.

These prior sign corrected swaps
of both rows and columns q and k + 1 allow us to apply
the standard symmetric pivoting operation based on E↓k+1,k+1

to this new version of the matrix Ã(k)

The result of this (k + 1)th adjusted symmetric pivot step

is the next matrix Ã(k+1) = Ẽ↓k+1,k+1Ã(k)(Ẽ↓k+1,k+1)>

where Ẽ↓k+1,k+1 is the adjusted pivot matrix E↓k+1,k+1T̂q,k+1
n×n .
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How Adjusted Symmetric Pivoting Ends: Case A

Given an n × n symmetric matrix A, adjusted symmetric pivoting
can go on through steps k = 1, 2, . . . , r
until it reaches a terminal symmetric matrix Ã(r) with r ≤ n.

There are two possible cases.

Case A: Symmetric pivoting may end after r steps with

Ã(r) =

(
Dr×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

)
= diag(a

(r)
11 , . . . , a

(r)
rr , 0n−r )

where a
(r)
kk is the non-zero kth pivot element, for all k ∈ Nr ,

and so Dr×r is an invertible r × r diagonal matrix.

Then the definiteness def(A) of the original matrix
is the same as the definiteness def(Ã(r)) of the diagonal matrix,
which is easy to determine.
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How Adjusted Symmetric Pivoting Ends: Case B

Case B: Alternatively symmetric pivoting may end after r steps

with Ã(r) =

(
Dr×r 0r×(n−r)

0(n−r)×r S(n−r)×(n−r)

)
where Dr×r = diag(a

(r)
11 , . . . , a

(r)
rr ) whose element a

(r)
kk

is the non-zero kth pivot element, for each k ∈ Nr ,
and S(n−r)×(n−r) is a non-zero symmetric matrix
whose diagonal elements are all zero.

In this case too the definiteness def(A) of the original matrix
equals the definiteness of the non-diagonal matrix def(Ã(r)).

But in this case Ã(r) is always indefinite.
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Curtailing the Symmetric Pivoting

After k steps, symmetric pivoting reaches a partial diagonalization

of the form Ã(k) =

 D̃
(k)
k×k 0k×(n−k)

0(n−k)×k Ã
(k)
>k,>k

.

The simple tests of definiteness we discussed earlier imply that,

in case the matrix D̃
(k)
k×k has:

1. two elements of different signs,
both it and the original symmetric matrix are indefinite;

2. any zero element, neither it nor the original symmetric matrix
can be either positive definite or negative definite.

These properties may allow a test of definiteness to be curtailed
before the symmetric pivoting process has been completed.
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Notation for Relevant Principal Minors

Recall the earlier definitions
of the principal and leading principal minors of a determinant.

Given any n × n symmetric matrix A
and any non-empty subset K ⊆ Nn with k = #K , let:

1. AK×K denote the k × k matrix
whose elements form the symmetric submatrix (aij)(i ,j)∈K×K
made up of the rows i ∈ K and columns j ∈ K ;

2. let ∆K
k = |AK×K | denote

the corresponding principal minor of order k .

In case K = Nk = {1, 2, . . . , k}, let Dk denote ∆Nk
k ,

which is the unique leading principal minor of order k .
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Sylvester’s Criterion: General Statement

Theorem (Sylvester’s criterion)

Any n × n symmetric matrix A
and associated quadratic form x>Ax are both:

positive definite ⇐⇒ Dk > 0 for all k = 1, . . . , n

positive semidefinite ⇐⇒ ∆K
k ≥ 0 for all ∆K

k of any order k

negative definite ⇐⇒ (−1)kDk > 0 for all k = 1, . . . , n

negative semidefinite ⇐⇒ (−1)k∆K
k ≥ 0 for all ∆K

k of any order k

Otherwise the quadratic form x>Ax and matrix A are indefinite.

Note that the conditions for A to be negative (semi-) definite
are exactly those for −A to be positive (semi-) definite.
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The Case of a Quadratic Form in Two Variables
The general quadratic form in 2 variables is

(x , y)

(
a h
h b

)(
x
y

)
= ax2 + 2hxy + by2

If it is positive definite, it is positive whenever x 6= 0 and y = 0.

This implies that ax2 > 0 whenever x 6= 0,
which holds if and only if the first leading principal minor a > 0.

But if a > 0, then completing the square implies that

ax2 + 2hxy + by2 = a(x + hy/a)2 + (b − h2/a)y2

Given that a > 0, this is positive definite if and only if b > h2/a,

or iff the second leading principal minor ab − h2 =

∣∣∣∣a h
h b

∣∣∣∣ > 0.

For the case of 2 variables, this proves
that the real-symmetric matrix A is positive definite
if and only if all the leading principal minors of A are positive.
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Quadratic Form in Two Variables: Exercise

Exercise
For the case of a quadratic form in two variables,
prove the other cases of Sylvester’s criterion.
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The Case of a Diagonal Quadratic Form

The general diagonal quadratic form in n variables is x>Λx
where x is an n-vector
and Λ is an n × n diagonal matrix diag(λ1, . . . , λn).

Then the quadratic form x>Λx =
∑n

i=1 λi (xi )
2 and matrix Λ are:

1. positive definite if and only if λi > 0 for i = 1, 2, . . . , n.

This is true if and only if the k-fold product
∏k

i=1 λi
is positive for each k = 1, 2, . . . , n.

But
∏k

i=1 λi = |diag(λ1, . . . , λk)|
is the leading principal minor Dk of order k for Λ.

2. positive semi-definite if and only if λi ≥ 0 for i = 1, 2, . . . , n.

This is true if and only if the product
∏

i∈K λi is nonnegative
for every nonempty K ⊆ Nn = {1, 2, . . . , n}.
But each product

∏
i∈K λi equals

the determinant |ΛK×K | of the diagonal submatrix ΛK×K ,
which is the particular principal minor ∆K

k of order k = #K .
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Toward the General Case

The formal proof of Sylvester’s criterion
for a general n × n symmetric matrix A
to be positive or negative definite will rely on:

1. showing that unadjusted symmetric pivoting, while it works,
preserves each leading principal minor of A;

2. using unadjusted symmetric pivoting to reduce
the general case to the case when A is diagonal.

A similar argument allowing for adjusted symmetric pivoting
will treat the case when A is positive or negative semi-definite.

For large n (n > 3?), the best way to compute those minors,
however, may well be to use symmetric pivoting ...
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Symmetric Pivoting Preserves Leading Principal Minors

Given any n × n symmetric matrix A and any k ∈ Nn,
let A≤k,≤k denote the k × k matrix whose determinant |A≤k,≤k |
is the kth order leading principal minor.

Whenever p < q ≤ k , the elementary row operation A 7→ Eq+αpA
of adding α times row p to row q of A preserves not only |A|,
but also each leading principal minor |A≤k,≤k |
when Eq+αp is restricted to the k × k matrix A≤k,≤k .

The same property of leading principal minor preservation
applies to each elementary column operation A 7→ AE>q+αp.

From this, it follows that leading principal minor preservation
also applies to the symmetric pivoting operation A 7→ E↓ppA(E↓pp)>

when it is restricted to A≤k,≤k , where k > p.
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Proof by Induction: Key Ideas

We will prove Sylvester’s criterion
for a general n × n symmetric matrix A.

Actually, we prove a superficially stronger necessary condition
for A to be positive definite:
all its principal minors, whether leading or not, must be positive.

The proof of this modified form of Sylvester’s criterion
will be by induction on n.

The result is trivial when n = 1 and A = (a11),
whose only minor is det(a11) = a11.

The induction hypothesis will be that Sylvester’s modified criterion
is valid for any m ×m symmetric matrix A.

The induction step will be to prove
that if Sylvester’s modified criterion is valid
for every (n − 1)× (n − 1) symmetric matrix,
then it is valid for every n × n symmetric matrix.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 54 of 64



Proof by Induction in Four Parts

To repeat, the induction step will be to prove
that if Sylvester’s modified criterion is valid
for every (n − 1)× (n − 1) symmetric matrix,
then it is valid for every n × n symmetric matrix.

This induction step has to be proved four times for Sylvester’s:

1. modified necessary condition for a positive definite matrix;

2. sufficient condition for a positive definite matrix;

3. necessary condition for a positive semi-definite matrix;

4. sufficient condition for a positive semi-definite matrix.

Each of the four proofs will occupy two slides.

Recall that the criterion
for a negative definite or semi-definite symmetric matrix A
is equivalent to the same criterion
for the positive definite or semi-positive symmetric matrix −A.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 55 of 64



1. Proving Necessity for a Positive Definite Matrix, I

(a) Suppose the n × n symmetric matrix A is positive definite.

(b) We have already argued that a11 > 0, as a diagonal element.

(c) So the downward pivoting matrix E↓11
is well defined and invertible.

(d) Because E↓11 is invertible and A is positive definite,

so is the block diagonal matrix E↓11A(E↓11)> = diag(a11,B)
where B is the (n − 1)× (n − 1) symmetric submatrix
that results from one round of symmetric pivoting.

(e) It follows from (d) that the block B is positive definite.

(f) Because B is positive definite, the induction hypothesis
implies that each principal minor ∆K

k of |B| is positive.
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1. Proving Necessity for a Positive Definite Matrix, II

(g) From (f) it follows that every principal minor of diag(a11,B)
which does not include the diagonal element a11 must be positive.

(h) But apart from a11 by itself,
all the other principal minors of diag(a11,B)
which do include the element a11 take the form a11∆K

k

where ∆K
k is a principal minor of |B|.

(i) Because a11 > 0, it follows from (f), (g) and (h)
that every principal minor of diag(a11,B) must be positive.

(j) But the matrix E↓11 is determinant preserving,

so E↓11A(E↓11)> = diag(a11,B) has the same principal minors as A,
implying that all the principal minors of A are also positive.
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2. Proving Sufficiency for a Positive Definite Matrix, I

(a) Suppose that every leading principal minor
of the n × n symmetric matrix A is positive.

(b) Note that (a) implies in particular
that the first leading principal minor satisfies a11 > 0.

(c) So the downward pivoting matrix E↓11
is well defined and determinant preserving.

(d) But (c) implies that A has the same leading principal minors

as the block diagonal matrix E↓11A(E↓11)> = diag(a11,B)
where B is the (n − 1)× (n − 1) symmetric submatrix
that results from one round of symmetric pivoting.

(e) Evidently, the leading principal minors of |diag(a11,B)|
take the form a11, a11D1, . . . , a11Dn−1
where each Dk denotes the kth leading principal minor of |B|.
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2. Proving Sufficiency for a Positive Definite Matrix, II

(f) By the induction hypothesis, because (e) implies
that all the leading principal minors of |B| are positive,
the (n − 1)× (n − 1) symmetric matrix B is positive definite.

(g) Then, because (b) implies that a11 > 0,
it follows from (f) that diag(a11,B) is positive definite.

(h) Finally, because E↓11 is invertible and (g) implies

that diag(a11,B) = E↓11A(E↓11)> is positive definite,
it follows from quadratic form invariance
that A is also positive definite.
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3. Proving Necessity for a Positive Semi-Definite Matrix, I

(a) Suppose the n× n symmetric matrix A is positive semi-definite.

(b) In case all the diagonal elements of A are zero,
we must have A = 0n×n, otherwise A would be indefinite.

(c) In the trivial case when A = 0n×n, all minors of |A| are zero.

(d) Otherwise there exists a diagonal element app 6= 0,
which is positive because A is positive semi-definite.

(e) Let T̂1p denote the sign adjusted swap of rows 1 and p.

Use it to define an adjusted symmetric pivot operation that gives
the symmetric matrix E↓11T̂1pA(E↓11T̂1p)> = diag(app, B̃),
where B̃ is an (n − 1)× (n − 1) symmetric matrix.

(f) Because E↓11T̂1p is invertible,
it follows from quadratic form invariance
that positive semi-definiteness of A
implies the same for diag(app, B̃), and so also for B̃.
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3. Proving Necessity for a Positive Semi-Definite Matrix, II
(g) Because B̃ is positive semi-definite, the induction hypothesis
implies that, for each k ∈ Nn−1 and each K ⊆ Nn−1 with #K = k ,
the principal minor ∆K

k of |B̃| is non-negative.

(h) Now each principal minor of |diag(app, B̃)|
that is not a principal minor of |B̃|
must take the form app ∆K

k for some principal minor ∆K
k of |B̃|.

(i) But then app > 0 by (d) and ∆K
k ≥ 0 by (g),

so (h) implies that every principal minor of |diag(app, B̃)| is
non-negative.

(j) Now diag(a11, B̃) = E↓11T̂1pA(E↓11T̂1p)>

where T̂1p is a sign-preserving swap of two rows

and the downward pivot matrix E↓11 is determinant preserving.

It follows that there is an obvious bijection
between each of the 2n − 1 principal minors of |diag(app, B̃)|
and a unique corresponding principal minor of A.

(k) From (i) and (j), each principal minor of A is non-negative.
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4. Proving Sufficiency for a Positive Semi-Definite Matrix, I

(a) Suppose that every principal minor
of the n × n symmetric matrix A is non-negative.

(b) In case all the diagonal elements of A are zero,
we must have A = 0n×n, otherwise at least one principal minor
of the symmetric A would be negative.

(c) In the trivial case when A = 0n×n,
the matrix A is evidently positive semi-definite.

(d) Otherwise there exists a non-zero diagonal element app,
which is positive because every principal minor of A is ≥ 0.

(e) Let T̂1p denote the sign adjusted swap of rows 1 and p.

Use it to define an adjusted symmetric pivot operation that gives
the n × n symmetric matrix E↓11T̂1pA(E↓11T̂1p)> = diag(app, B̃),
where app > 0 and B̃ is an (n − 1)× (n − 1) symmetric matrix.
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4. Proving Sufficiency for a Semi-Definite Matrix, II
(f) Because T̂1p is a sign-preserving swap of two rows

whereas E↓11 is determinant preserving, there exists
an obvious bijection between each of the principal minors
of |E↓11T̂1pA(E↓11T̂1p)>| = |diag(app, B̃)|
and a unique corresponding principal minor of A.

(g) Together (a) and (f) imply
that each principal minor of |diag(app, B̃)| is non-negative.
So therefore is each principal minor of |B̃|.
(h) By the induction hypothesis, (g) implies
that the (n − 1)× (n − 1) matrix B̃ is positive semi-definite.

(i) Because app > 0, (h) implies
that the n × n matrix diag(app, B̃) is positive semi-definite.

(j) But diag(app, B̃) = E↓11T̂1pA(E↓11T̂1p)>

where E↓11T̂1p is invertible.

(k) By quadratic form invariance,
together (i) and (j) imply that A is positive semi-definite.
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Envoi

Though Sylvester’s Criterion has been proved, remember it is here
only because it is in various textbooks, including ours.

To establish the definiteness of a symmetric matrix,
especially if it is larger than 3× 3,
one can and should use symmetric pivoting first.

Key reference for idea of symmetric pivoting:
Paul Binding (1991) “Simple Tests for Classifying Critical Points
of Quadratics with Linear Constraints”
American Mathematical Monthly 98 (10): 949–954.

This paper also considers conditions for a quadratic form x>Ax
to be positive (semi-)definite subject to a constraint Kx = 0,
— in the sense that x>Ax > (≥) 0 for all x ∈ Rn \ {0n}
that satisfy Kx = 0.

The relevant tests involves “bordered Hessians”.

We can finally move on at last!
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