EC9A0: Pre-sessional Advanced Mathematics Course

Constrained Optimisation: Inequality Constraints

Pablo F. Beker Department of Economics University of Warwick

September 2023

Lecture Outline

- Constrained Optimisation with Inequality Constraints
 - Introduction
 - Counter-Example
 - Kühn-Tucker Theorem
 - Sufficient Conditions
 - Example
 - Quasi-Concave Problems

Introduction

- Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable, $(a, b) \in \mathbb{R}$ and a < b.
- We would like to solve the problem:

$$\max f(x): x \ge a \text{ and } x \le b. \tag{1}$$

- If $x^* \in (a, b)$ solves (1), x^* is a local maximizer of f and $f'(x^*) = 0$.
- If $x^* = b$ solves (1), $f'(x^*) \ge 0$.
- If $x^* = a$ solves (1), $f'(x^*) \le 0$.
- Thus, if x^* solves the problem, there exist $\lambda_a^*, \lambda_b^* \in \mathbb{R}_+$ such that:

$$f'(x^*) - \lambda_b^* + \lambda_a^* = 0,$$

 $\lambda_a^*(x^* - a) = 0,$
 $\lambda_b^*(b - x^*) = 0.$

 \bullet It is customary to define a function $\mathcal{L}:\mathbb{R}^3\to\mathbb{R}$ by

$$\mathcal{L}(x, \lambda_a, \lambda_b) = f(x) + \lambda_b(b - x) + \lambda_a(x - a),$$

called the Lagrangean, and with which the FOC can be re-written as

$$\frac{\partial \mathcal{L}}{\partial x}(x^*, \lambda_a^*, \lambda_b^*) = 0.$$

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Introduction

- We will show how this Lagrangean method works and explain when it fails.
- Suppose $D \subseteq \mathbb{R}^K$, K finite, is open.
- $f: D \to \mathbb{R}$
- $g: D \to \mathbb{R}^J$ and $b \in \mathbb{R}^J$, with $J \leq K$.
- We would like to solve:

$$\max_{x \in D} f(x) \text{ s.t. } g(x) - b \ge 0.$$
 (2)

- The "usual" method says that one should try to find $(x^*, \lambda^*) \in D \times \mathbb{R}_+^J$ such that $D_x \mathcal{L}(x^*, \lambda^*) = 0$, $g(x^*) b \ge 0$ and $\lambda^* \cdot g(x^*) = 0$.
- It is as if there were a theorem that states:

If
$$x^* \in D$$
 locally solves Problem (2), then there exists $\lambda^* \in \mathbb{R}_+^J$ such that $D_x \mathcal{L}(x^*, \lambda^*) = 0$, $g(x^*) - b \ge 0$ and $\lambda^* \cdot (g(x^*) - b) = 0$.

 Although this statement recognizes the local character and states only necessary conditions, it neglects the constraint qualification.

Counter-Example

Consider the problem

$$\max_{(x,y)\in\mathbb{R}^2} x \text{ s.t. } 0 \le y \le (1-x)^3.$$
 (3)

The Lagrangean of this problem can be written as

$$\mathcal{L}(x, y, \lambda_1, \lambda_2) = x + \lambda_1((1-x)^3 - y) + \lambda_2 y.$$

- Although (1,0) solves (3), there is no (λ_1,λ_2) s.t. $(1,0,\lambda_1,\lambda_2)$ solves:
 - $1 3\lambda_1^*(1 x^*)^2 = 0$
 - $-\lambda_1^* + \lambda_2^* = 0;$

 - $(1-x^*)^3-y^*\geq 0$ and $y^*\geq 0$; and
- If the FOC were to hold even without the constraint qualification, the system of equations would have to have a solution.

Kühn-Tucker Theorem

Theorem (Kühn - Tucker)

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}^J$ are both \mathbb{C}^1 . Suppose that $x^* \in D$ is a local maximiser of f on the constraint set and $g_i(x^*) = b_i$ for $i = 1, ..., I \le J$. Suppose that $\operatorname{rank}(D\tilde{g}(x^*)) = I$ for $\tilde{g}: D \to \mathbb{R}^I$ defined by $\tilde{g}(x) = (g_j(x))_{j=1}^I$.

Then, there exists $\lambda^* \in \mathbb{R}^J$ such that

- 2 $\lambda_j^* \cdot (g_j(x^*) b_j) = 0$ for all j = 1, ..., J,
- $\delta \lambda_j^* \geq 0$ for all j = 1, ..., J, and
- **4** $g_j(x^*) b_j \ge 0$ for all j = 1, ..., J.
 - With inequality constraints, the sign of λ does matter.
- ullet It is crucial to notice that the process does not amount to maximizing ${\cal L}.$
 - In general, \mathcal{L} does not have a maximum;
 - One finds a saddle point of \mathcal{L} .

Sufficient Conditions

Theorem

Suppose $f: D \to \mathbb{R} \in \text{and } g: D \to \mathbb{R}^J$ are both \mathbb{C}^2 . Suppose there exists $(x^*, \lambda^*) \in \mathbb{R}^K \times \mathbb{R}^J$ such that:

- ② $\lambda_{j}^{*} \cdot (g_{j}(x^{*}) b_{j}) = 0$ for all j = 1, ..., J,
- $\delta \lambda_{j}^{*} \geq 0$ for all j = 1, ..., J, and
- **4** $g_i(x^*) b_i \ge 0$ for all j = 1, ..., J.

Example

• Suppose f(x, y, z) = xyz,

$$g(x,y,z) = \begin{bmatrix} -(x+y+z) \\ x \\ y \\ z \end{bmatrix}, \qquad b = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Then,

$$Dg(x, y, z) = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A solution exists because the objective function is continuous and the constraint set is nonempty and compact.
- Since at most 3 constraints can be binding at the same time, the CQ holds.
- Let's form the Kühn -Tucker Lagrangean function:

$$\mathcal{L}(x, y, z, \lambda) = xyz + \lambda(1 - x - y - z) + \lambda_x x + \lambda_y y + \lambda_z z$$

Example (cont.)

• The FONC are,

$$(1) \quad \frac{\partial \mathcal{L}(\cdot)}{\partial x} = yz - \lambda + \lambda_x = 0 \qquad (8) \quad \lambda \ge 0$$

$$(2) \quad \frac{\partial \mathcal{L}(\cdot)}{\partial y} = xz - \lambda + \lambda_y = 0 \qquad (9) \quad \lambda_x \ge 0$$

$$(3) \quad \frac{\partial \mathcal{L}(\cdot)}{\partial z} = xy - \lambda + \lambda_z = 0 \qquad (10) \quad \lambda_y \ge 0$$

$$(4) \quad \lambda(1 - x - y - z) = 0 \qquad (11) \quad \lambda_z \ge 0$$

$$(5) \quad \lambda_x x = 0 \qquad (12) \quad x + y + z = 1$$

$$(6) \quad \lambda_y y = 0 \qquad (13) \quad x \ge 0$$

$$(7) \quad \lambda_z z = 0 \qquad (14) \quad y \ge 0$$

• Since the global maximiser exists and the only points that solve the FONC are (x, y, z) such that xyz = 0 and $(x, y, z) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, it follows that the latter is the global maximiser.

(15)

Quasi-Concave Problems

Theorem

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}^J$. Suppose f is \mathbb{C}^1 . Assume there exists $(x^*, \lambda^*) \in \mathbb{R}^K \times \mathbb{R}^J$ such that:

- 2 $\lambda_j^* \cdot (g_j(x^*) b_j) = 0$ for all j = 1, ..., J,
- **3** $\lambda_i^* \geq 0$ for all j = 1, ..., J,
- **1** $g_j(x^*) b_j \ge 0$ for all j = 1, ..., J,
- **5** f is quasi-concave with $\nabla f(x^*) \neq 0$, and
- **1** $g_j(x)$ is quasi-concave for all j = 1, ..., J.

Then x^* is a global maximiser in problem (2)

Proof

Proof: Suppose x^* is not a global maximizer.

- **1** Then, $f(x) > f(x^*)$ for some $x \in \mathbb{R}^K$ s.t. $g_i(x) \ge b_i$ for every j.
- 2 Since f is quasi-concave with $\nabla f(x^*) \neq 0$, then $\nabla f(x^*)(x-x^*) > 0$.
- § Since $g_j(\cdot)$ is quasi-concave, $\nabla g_j(x^*)(x-x^*) \geq 0$ for all $j=1,\ldots,J$.
- Hence, $\sum_{j=1}^{J} \lambda_j \nabla g_j(x^*)(x-x^*) \ge 0$ as $\lambda_j \ge 0$.
- But by the first K-T condition,

$$\sum_{j=1}^{J} \lambda_{j} \nabla g_{j}(x^{*})(x - x^{*}) = -\nabla f(x^{*})(x - x^{*}) < 0$$

a contradiction.