EC9A0: Pre-sessional Advanced Mathematics Course Fixed Point Theorems

Pablo F. Beker Department of Economics University of Warwick

September 2023

Lecture Outline

- Contraction Mapping Theorem
 - DEFINITION OF CONTRACTION
 - Blackwell's sufficient conditions
 - Applications
 - Theorem
- Brouwer's Fixed Point Theorem
 - Definitions
 - Theorem
- Kakutani's Fixed Point Theorem
 - Theorem

DEFINITION OF CONTRACTION

Definition

Let (X, d) be a metric space and $f: X \mapsto X$. f is a contraction mapping (with modulus β) if for some $\beta \in (0, 1)$, $d(f(x), f(y)) \leq \beta d(x, y)$, $\forall x, y \in X$.

Example

Let $a, b \in \mathbb{R}$ with a < b, X = [a, b] and d(x, y) = |x - y|. Then f is a contraction if for some $\beta \in (0, 1)$,

$$\frac{|f(x)-f(y)|}{|x-y|} \leq \beta < 1$$
, for all $x, y \in X$ with $x \neq y$

That is, f is a contraction mapping if it is a function with slope uniformly less than one in absolute value.

BLACKWELL'S SUFFICIENT CONDITIONS

Theorem: Blackwell's sufficient conditions for a contraction

Let $X \subset \mathbb{R}^K$, and let B(X) be a space of bounded functions $f: X \mapsto \mathbb{R}$ with the sup norm. Let $T: B(X) \mapsto B(X)$ satisfy

- (monotonicity) $f, g \in B(X)$ and $f(x) \le g(x)$, for all $x \in X$, implies $(Tf)(x) \le (Tg)(x)$, for all $x \in X$;
- lacktriangledown (discounting) there exists some $eta\in(0,1)$ such that

$$[T(f+a)](x) \leq (Tf)(x) + \beta a$$
, for all $f \in B(X)$, $a \geq 0$, $x \in X$

where (f + a)(x) is the function defined by (f + a)(x) = f(x) + a.

Then T is a contraction with modulus β

Blackwell's sufficient conditions: Proof

Proof:

Thus,

- For any $f, g \in B(X)$, f(x) - g(x) < ||f - g||
- ② By monotonicity: Tf(x) < T(g + ||f - g||)(x)
- By discounting:

$$T(g + ||f - g||)(x) \le Tg(x) + \beta ||f - g||$$

- $Tf(x) < Tg(x) + \beta ||f g||$
- Reversing the roles of f and g we obtain

$$Tg(x) \le Tf(x) + \beta \|f - g\|.$$

6 Combining (1) and (2) we get $||Tf - Tg|| < \beta ||f - g||$, as desired.

(1)

(2)

APPLICATION I: NEOCLASSICAL GROWTH MODEL

Example

In the one sector optimal growth problem, an operator $\mathcal T$ is defined by

$$(Tv)(x) = \max_{0 \le y \le f(x)} \{ U[f(x) - y] + \beta v(y) \}$$

- If $v(y) \le w(y)$ for all y, then $Tw \ge Tv$ and so monotonicity holds.
- To show discounting note that:

$$T(v+a)(x) = \max_{0 \le y \le f(x)} \{ U[f(x) - y] + \beta [v(y) + a] \}$$

=
$$\max_{0 \le y \le f(x)} \{ U[f(x) - y] + \beta v(y) \} + \beta a$$

=
$$(Tv)(x) + \beta a$$

Complete Metric Space

Definition

A metric space (X, d) is complete if every Cauchy sequence in X converges to an element of X.

Fact: \mathbb{R} with d(x, y) = |x - y| is a complete metric space.

Exercise: Show that:

- **①** The set of integers with d(x, y) = |x y| is a complete metric space.
- ② The set of continuous, strictly increasing functions on [0,1], with

$$d(x,y) = \max_{0 \le t \le 1} |x(t) - y(t)|. \tag{3}$$

is not a complete metric space. (Hint: show the sequence $x_n(t)=1+\frac{t}{n}$ converges to the constant function x(t)=1)

CONTRACTION MAPPING THEOREM

Theorem

If (X,d) is a complete metric space and $T:X\mapsto X$ is a contraction mapping with modulus β , then

- **1** T has exactly one fixed point $x \in X$, and
- ② for any $x_0 \in X$, $d(T^n x_0, x) \le \beta^n d(x_0, x)$, n = 0, 1, 2, ...
- Define $\{T^n\}_{t=0}^n$ by $T^0x = x$ and $T^nx = T(T^{n-1}x)$, n = 1, 2, ...

STEP 1: v_n converges.

- Let $v_0 \in X$, $\{v_n\}_{n=0}^{\infty}$ by $v_{n+1} = Tv_n$ so that $v_n = T^n v_0$.
- By the contraction property:

$$d(v_2, v_1) = d(Tv_1, Tv_0) \leq \beta d(v_1, v_0)$$

$$d(v_{n+1}, v_n) \leq \beta^n d(v_1, v_0), n = 1, 2, ...$$

$$d(v_{m}, v_{n}) \leq d(v_{m}, v_{m-1}) + \dots + d(v_{n+2}, v_{n+1}) + d(v_{n+1}, v_{n})$$

$$\leq [\beta^{m-1} + \dots + \beta^{n+1} + \beta^{n}] d(v_{1}, v_{0})$$

$$= \beta^n \left[\beta^{m-n-1} + \ldots + \beta + 1\right] d(v_1, v_0) \le \frac{\beta^n}{1-\beta} d(v_1, v_0).$$
• Thus $\{v_n\}_{n=0}^{\infty}$ is Cauchy. Since X is complete, $v_n \to v \in X$.

STEP 2: Show Tv = v

 $\bullet \ \forall n \text{ and } \forall v_0 \in X, \ d(Tv,v) \leq d(Tv,T^nv_0) + d(T^nv_0,v) \leq \beta \underbrace{d(v,T^{n-1}v_0)} + \underbrace{d(T^nv_0,v)} \rightarrow 0$

CONTRACTION MAPPING THEOREM

STEP 3: Uniqueness

• Suppose $\exists \hat{v} \neq v$ such that $T\hat{v} = \hat{v}$. Then,

$$0 < d(\hat{v}, v) = d(T\hat{v}, Tv) < \beta d(\hat{v}, v) < d(\hat{v}, v).$$

• To prove (2), note that for any $n \ge 1$:

$$d(T^{n}v_{0}, v) = d(T(T^{n-1}v_{0}), Tv) \leq \beta d(T^{n-1}v_{0}, v)$$

Q.E.D.

APPLICATION II: DIFFERENTIAL EQUATIONS

Example

sup norm.

Consider the differential equation and boundary condition $\frac{dx(s)}{ds} = f[x(s)]$, all $s \ge 0$, with $x(0) = c \in \mathbb{R}$. Assume that $f: \mathbb{R} \mapsto \mathbb{R}$ is continuous, and for some B > 0 satisfies the Lipschitz condition $|f(a) - f(b)| \le B|a - b|$, all $a, b \in \mathbb{R}$. For any t > 0, consider C[0, t], the space of bounded continuous functions on [0, t], with the

lacktriangle Show that the operator T defined by

$$(Tv)(s) = c + \int_0^s f[v(s)]dz, 0 \le s \le t$$

maps C[0, t] into itself.

- ② Show that for some $\tau > 0$, T is a contraction on $C[0, \tau]$.
- **3** Show that the unique fixed point of T on $C[0, \tau]$ is a differentiable function, and hence that it is the unique solution on $[0, \tau]$ to the given differential equation.

DEFINITIONS

- f maps the set $X \subset \mathbb{R}^K$ into itself if $f(x) \in X$ for all $x \in X$.
- We would like to find conditions ensuring that any continuous function mapping X into itself has a fixed point.
- ullet The following example shows that some restrictions must be placed on X:
 - f(x) = x + 1 maps \mathbb{R} into itself.
 - f(x) has no fixed point since f(x) = x implies 1 + x = x, an absurd.

BROUWER'S FIXED POINT THEOREM

Theorem L.E.J. Brouwer's fixed point theorem

Let X be a nonempty compact convex set in \mathbb{R}^K , and f be a continuous function mapping X into itself. Then f has a fixed point x^* .

- For $X = \mathbb{R}$, a nonempty compact convex set is a closed interval [a, b].
- A continuous function $f : [a, b] \mapsto [a, b]$ must have a fixed point.
- This follows from the IVT:
 - Define g(x) = f(x) x.
 - x is a fixed point of f if and only if g(x) = 0.
 - Since $g(a) \ge 0$ and $g(b) \le 0$, there is $x^* \in [a, b]$ such that $g(x^*) = 0$.
- We use Brouwer's fixed point Theorem to prove existence of equilibrium in a pure exchange economy.

KAKUTANI'S FIXED POINT THEOREM

- Brouwer's Theorem deals with fixed points of continuous functions.
- Kakutani's theorem generalises the theorem to correspondences.

Definition

An element $x \in X$ is a fixed point of a correspondence $F: X \mapsto X$ if $x \in F(x)$.

Let X be a nonempty compact convex set in \mathbb{R}^K and $F: X \mapsto X$ be a

Theorem Kakutani's Fixed Point Theorem

correspondence. Suppose that: **1** F(x) is a nonempty convex set in X for each $x \in X$

- F is upper hemicontinuous.
- Then F has a fixed point x^* in X.
- We use Kakutani's Fixed Point Theorem to prove existence of a Mixed Strategy Nash Equilibrium in an N-player game with finite (pure) strategy sets.

Pablo F. Beker