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Contraction Mapping Theorem Definition of Contraction

Definition of Contraction

Definition

Let (X , d) be a metric space and f : X 7→ X . f is a contraction mapping (with
modulus β) if for some β ∈ (0, 1), d(f (x), f (y)) ≤ βd(x , y), ∀x , y ∈ X .

Example

Let a, b ∈ R with a < b, X = [a, b] and d(x , y) = |x − y |. Then f is a
contraction if for some β ∈ (0, 1),

|f (x)−f (y )|
|x−y | ≤ β < 1, for all x , y ∈ X with x 6= y

That is, f is a contraction mapping if it is a function with slope uniformly less
than one in absolute value.
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Contraction Mapping Theorem Blackwell’s sufficient conditions

Blackwell’s sufficient conditions

Theorem : Blackwell’s sufficient conditions for a contraction

Let X ⊂ RK , and let B(X ) be a space of bounded functions f : X 7→ R with
the sup norm. Let T : B(X ) 7→ B(X ) satisfy

1 (monotonicity) f , g ∈ B(X ) and f (x) ≤ g(x), for all x ∈ X, implies
(Tf )(x) ≤ (Tg)(x), for all x ∈ X ;

2 (discounting) there exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf )(x) + βa, for all f ∈ B(X ), a ≥ 0, x ∈ X

where (f + a)(x) is the function defined by (f + a)(x) = f (x) + a.

Then T is a contraction with modulus β
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Contraction Mapping Theorem Blackwell’s sufficient conditions

Blackwell’s sufficient conditions: Proof

Proof:

1 For any f , g ∈ B(X ),
f (x)− g(x) ≤ ‖f − g‖

2 By monotonicity:
Tf (x) ≤ T (g + ‖f − g‖) (x)

3 By discounting:

T (g + ‖f − g‖) (x) ≤ Tg(x) + β‖f − g‖

4 Thus, Tf (x) ≤ Tg(x) + β‖f − g‖ (1)

5 Reversing the roles of f and g we obtain

Tg(x) ≤ Tf (x) + β‖f − g‖. (2)

6 Combining (1) and (2) we get ‖Tf − Tg‖ ≤ β‖f − g‖, as desired.
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Contraction Mapping Theorem Applications

Application I: Neoclassical Growth Model

Example

In the one sector optimal growth problem, an operator T is defined by

(Tv)(x) = max
0≤y≤f (x)

{U [f (x)− y ] + βv(y)}

If v(y) ≤ w(y) for all y , then Tw ≥ Tv and so monotonicity holds.

To show discounting note that:

T (v + a)(x) = max
0≤y≤f (x)

{U [f (x)− y ] + β[v(y) + a]}

= max
0≤y≤f (x)

{U [f (x)− y ] + βv(y)}+ βa

= (Tv)(x) + βa
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Contraction Mapping Theorem Applications

Complete Metric Space

Definition

A metric space (X , d) is complete if every Cauchy sequence in X
converges to an element of X .

Fact: R with d(x , y) = |x − y | is a complete metric space.

Exercise: Show that:

1 The set of integers with d(x , y) = |x − y | is a complete metric space.

2 The set of continuous, strictly increasing functions on [0, 1], with

d(x , y) = max
0≤t≤1

|x(t)− y(t)|. (3)

is not a complete metric space. (Hint: show the sequence xn(t) = 1 + t
n

converges to the constant function x(t) = 1)
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Contraction Mapping Theorem Theorem

Contraction Mapping Theorem
Theorem

If (X , d) is a complete metric space and T : X 7→ X is a contraction mapping with modulus β, then

1 T has exactly one fixed point x ∈ X, and

2 for any x0 ∈ X, d(T nx0, x) ≤ βnd(x0, x), n = 0, 1, 2, ...

Define {T n}nt=0 by T 0x = x and T nx = T (T n−1x), n = 1, 2, ....

Step 1: vn converges.

Let v0 ∈ X , {vn}∞
n=0 by vn+1 = Tvn so that vn = T nv0.

By the contraction property:

d(v2, v1) = d(Tv1,Tv0) ≤ βd(v1, v0)

d(vn+1, vn) ≤ βnd(v1, v0), n = 1, 2, ...

d(vm, vn) ≤ d(vm, vm−1) + ... + d(vn+2, vn+1) + d(vn+1, vn)

≤
[
βm−1 + ... + βn+1 + βn

]
d(v1, v0)

= βn
[
βm−n−1 + ... + β + 1

]
d(v1, v0) ≤ βn

1−βd(v1, v0).

Thus {vn}∞
n=0 is Cauchy. Since X is complete, vn → v ∈ X .

Step 2: Show Tv = v

∀n and ∀v0 ∈ X , d(Tv , v ) ≤ d(Tv ,T nv0) + d(T nv0, v ) ≤ β d(v ,T n−1v0)︸ ︷︷ ︸
→0

+ d(T nv0, v )︸ ︷︷ ︸
→0

→ 0
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Contraction Mapping Theorem Theorem

Contraction Mapping Theorem

Step 3: Uniqueness

Suppose ∃v̂ 6= v such that Tv̂ = v̂ . Then,

0 < d(v̂ , v ) = d(Tv̂ ,Tv ) ≤ βd(v̂ , v ) < d(v̂ , v ).

To prove (2), note that for any n ≥ 1 :

d(T nv0, v ) = d(T
(
T n−1v0

)
,Tv ) ≤ βd(T n−1v0, v )

Q.E.D.
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Contraction Mapping Theorem Theorem

Application II: Differential Equations

Example

Consider the differential equation and boundary condition
dx(s)
ds = f [x(s)], all s ≥ 0,

with x(0) = c ∈ R. Assume that f : R 7→ R is continuous, and for some B > 0
satisfies the Lipschitz condition |f (a)− f (b)| ≤ B |a− b|, all a, b ∈ R. For any
t > 0, consider C [0, t], the space of bounded continuous functions on [0, t], with the
sup norm.

1 Show that the operator T defined by

(Tv)(s) = c +
∫ s

0
f [v(s)]dz , 0 ≤ s ≤ t

maps C [0, t] into itself.

2 Show that for some τ > 0, T is a contraction on C [0, τ].

3 Show that the unique fixed point of T on C [0, τ] is a differentiable function, and
hence that it is the unique solution on [0, τ] to the given differential equation.
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Brouwer’s Fixed Point Theorem Definitions

Definitions

f maps the set X ⊂ RK into itself if f (x) ∈ X for all x ∈ X .

We would like to find conditions ensuring that any continuous function
mapping X into itself has a fixed point.

The following example shows that some restrictions must be placed on X :

f (x) = x + 1 maps R into itself.
f (x) has no fixed point since f (x) = x implies 1 + x = x , an absurd.
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Brouwer’s Fixed Point Theorem Theorem

Brouwer’s Fixed Point Theorem

Theorem L.E.J. Brouwer’s fixed point theorem

Let X be a nonempty compact convex set in RK , and f be a continuous
function mapping X into itself. Then f has a fixed point x∗.

For X = R, a nonempty compact convex set is a closed interval [a, b].

A continuous function f : [a, b] 7→ [a, b] must have a fixed point.

This follows from the IVT:

Define g(x) = f (x)− x .
x is a fixed point of f if and only if g(x) = 0.
Since g(a) ≥ 0 and g(b) ≤ 0, there is x∗ ∈ [a, b] such that g(x∗) = 0.

We use Brouwer’s fixed point Theorem to prove existence of equilibrium in a pure
exchange economy.
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Kakutani’s Fixed Point Theorem Theorem

Kakutani’s Fixed Point Theorem

Brouwer’s Theorem deals with fixed points of continuous functions.

Kakutani’s theorem generalises the theorem to correspondences.

Definition

An element x ∈ X is a fixed point of a correspondence F : X 7→ X if x ∈ F (x).

Theorem Kakutani’s Fixed Point Theorem

Let X be a nonempty compact convex set in RK and F : X 7→ X be a
correspondence. Suppose that:

1 F (x) is a nonempty convex set in X for each x ∈ X

2 F is upper hemicontinuous.

Then F has a fixed point x∗ in X.

We use Kakutani’s Fixed Point Theorem to prove existence of a Mixed Strategy

Nash Equilibrium in an N-player game with finite (pure) strategy sets.
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