EC9A0: Pre-sessional Advanced Mathematics Course Real Analysis

Pablo F. Beker Department of Economics University of Warwick

September 2023

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Pablo F. Beker

1 of 38

Slides Outline

Sets

- Definition and Operations
- Binary Relation
- Correspondences and Functions
- The Real Numbers
- The Euclidean Space
- Fields
- Vector Spaces
- Metric Spaces
- Normed Vector Spaces
- 2 Sequences
 - Sequences in \mathbb{R}^{K}
 - Limits of Sequences

\bigcirc Topology of \mathbb{R}^{K}

- Open Sets
- Closed Sets
- Compact Sets
- Limits of Functions in ${\mathbb R}$
- Continuity of Functions
- Differentiability
- Mean Value Theorem and Taylor's Theorem

Sets: Definition and Operations

- A set is a collection of (finitely or infinitely many) objects.
 - For any set A, we use the notation x ∈ A to indicate that "x is an element of A" ("or belongs to A" or "is a member of A").
 - $\bullet\,$ The empty set, \oslash , is the only set with no elements at all.
 - $\mathbb{N} := \{1, 2, ...\}$ denotes the (countably infinite) set of *natural numbers*
 - $\mathbb R$ denotes the (uncountable) set of *real numbers*.
- Two sets A and B are equal (A = B) if they have the same elements.
- If every member of A is also a member of B, we say that A is a subset of B and write A ⊆ B.
 - A = B if and only if $A \subseteq B$ and $B \subseteq A$.
 - If A ⊆ B but A ≠ B, then A is said to be a proper subset of B, denoted A ⊂ B.
 - The set of all subsets of A is called the power set of A and denoted 2^A.
- Given any sets A and B, their union is $A \cup B \equiv \{x : x \in A \text{ or } x \in B\}$.
- Given any sets A and B, their intersection is $A \cap B \equiv \{x : x \in A \& x \in B\}$.
- Given any sets A and B, the cartesian product $A \times B$ is the set $\{(a_1, b_1), (a_2, b_2), ...\}$ where $a_i \in A$ and $b_i \in B$ for all *i*.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Sets

Binary Relation

Definition

Let X and Y be two nonempty subsets. A subset R of $X \times Y$ is called a binary relation from X to Y. If $(x, y) \in R$, then we write x R y

Correspondences and Functions

Definition

A correspondence f from a set $X \neq \emptyset$ into a set $Y \neq \emptyset$, denoted $f : X \rightarrow Y$, is a relation $f \in X \times 2^{Y}$

Sets

() for every $x \in X$, there exists a $Y' \subseteq Y$ such that x f Y',

2 for every $Y', Z' \subseteq Y$ with x f Y' and x f Z', we have Y' = Z'.

(a rule that assigns to each $x \in X$ a unique set $f(x) \subseteq Y$).

Definition

A *function* f from a set $X \neq \emptyset$ into a set $Y \neq \emptyset$, denoted $f : X \rightarrow Y$, is a relation $f \in X \times Y$ such that

1 for every $x \in X$, there exists a $y \in Y$ such that x f y,

2 for every $y, z \in Y$ with x f y and x f z, we have y = z.

(a rule that assigns to each $x \in X$ a unique $f(x) \in Y$)

Functions

Given function $f: X \mapsto Y$,

- X is said to be the *domain* Y its *target set* or *co-domain*.
- If f : X → Y and A ⊆ X, the *image of A under f*, denoted by f[A], is the set

$$f[A] = \{ y \in Y | \exists x \in A : f(x) = y \}.$$

- The image f[X] of the whole domain is called the *range* of f.
- If f : X → Y, and B ⊂ Y, the inverse image of B under f, denoted f⁻¹[B], is the set

$$f^{-1}[B] = \{x \in X | f(x) \in B\} \text{ (or } f^{-1}[B] = \{x \in X | f(x) \subset B\}).$$

Properties of Functions

Definition

Function $f: X \to Y$ is said to be:

- Onto, or surjective, if f[X] = Y;
- One-to-one, or injective, if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$;
- *Bijective*, if it is both onto and one-to-one.

Examples

- $f: \mathbb{R}^2 \mapsto \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$ is neither one-to-one nor onto.
- $f : \mathbb{R} \setminus \{0\} \mapsto \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is one-to-one but not onto.

Sets

- $f: \mathbb{R}^2 \mapsto \mathbb{R}$ defined by $f(x_1, x_2) = x_1 + x_2$ is onto but not one-to-one.
- $f : \mathbb{R} \mapsto \mathbb{R}$ defined by f(x) = x is one-to-one and onto.

Inverse Function

Definition

If $f: X \to Y$ is a one-to-one function, the *inverse function* $f^{-1}: f[X] \to X$ is implicitly defined by $f^{-1}(y) = f^{-1}[\{y\}]$.

Theorem

The function $f: X \to Y$ is onto iff $f^{-1}[B] \neq \emptyset$ for all non-empty $B \subseteq Y$.

Proof: (\Rightarrow) Suppose $f : X \mapsto Y$ is onto.

- Let $B \subseteq Y$. We need to show $f^{-1}[B] \equiv \{x \in X | f(x) \in B\} \neq \emptyset$.
- 2 Let $\tilde{y} \in B$. Since f is onto, $\{y \in Y | f(x) = y \text{ for some } x \in X\} = Y$.
- **3** Then, there exists $x \in X$ such that $f(x) = \tilde{y}$. Thus, $f^{-1}[B] \neq \emptyset$.
- (⇐) Suppose $f^{-1}[B] \neq \emptyset$ for all non-empty $B \subseteq Y$.
 - **(**) We need to show that $f[X] \equiv \{y \in Y | f(x) = y \text{ for some } x \in X\} = Y$.
 - **2** Since $f[X] \subseteq Y$, it suffices to show that $Y \subseteq f[X]$. Let $\tilde{y} \in Y$.
 - **3** By hypothesis, $f^{-1}({\tilde{y}}) \neq \emptyset$. Hence, there is $x \in X$ such that $f(x) = \tilde{y}$

3 Then,
$$\tilde{y} \in \{y \in Y | f(x) = y \text{ for some } x \in X\} \equiv f[X]$$
. Thus, $Y \subseteq f[X] \blacksquare$.

The Real Numbers: Infimum and Supremum

Definition

Fix a set $Y \subseteq \mathbb{R}$. A number $\alpha \in \mathbb{R}$ is *an upper bound of* Y if $y \leq \alpha$ for all $y \in Y$, and is *a lower bound of* Y if the opposite inequality holds.

Sets

Definition

```
\alpha \in \mathbb{R} is the least upper bound of Y, denoted \alpha = \sup Y, if:
```

```
1 \alpha is an upper bound of Y; and
```

2) $\gamma \ge \alpha$ for any other upper bound γ of Y.

Definition

 $\beta \in \mathbb{R}$ is *the greatest lower bound of Y*, denoted $\beta = \inf Y$, if:

```
(1) \beta is a lower bound of Y; and
```

2) if γ is a lower bound of Y, then $\gamma \leq \beta$.

THE COMPLETENESS AXIOM: Every nonempty subset S of \mathbb{R} that is bounded from above has a supremum in \mathbb{R} .

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

The Euclidean Space

For any K ∈ N, the K-dimensional real (Euclidean) space is the K-fold Cartesian product of R, denoted by ℝ^K.

•
$$x \in \mathbb{R}^K \implies x = (x_1 \ x_2 \dots x_K).$$

• The origin of \mathbb{R}^{K} is the vector zero given by (0, 0, ..., 0).

- The non-negative orthant of \mathbb{R}^K is $\mathbb{R}^K_+ := \{x \in \mathbb{R}^K \mid x \ge 0\};$
- The positive orthant of \mathbb{R}^K is $\mathbb{R}_{++}^K := \{x \in \mathbb{R}^K \mid x \gg 0\};$
- No special notation for the set $\mathbb{R}_+^K \setminus \{0\} = \{x \in \mathbb{R}^K \mid x > 0\};$
- Define vector addition by $x + y = (x_1 + y_1 x_2 + y_2 \dots x_K + y_K);$
- Define scalar multiplication by $\alpha x = (\alpha x_1 \ \alpha x_2 \dots \alpha x_K).$

Sets Fields

Fields Definition

A set \mathbb{F} is said to be a field if there are two binary operations $(x, y) \mapsto x \oplus y$ from $\mathbb{F} \times \mathbb{F}$ to \mathbb{F} and $(x, y) \mapsto x \otimes y$ from $\mathbb{F} \times \mathbb{F}$ to \mathbb{F} called addition and multiplication, respectively, such that for all $x, y, z \in \mathbb{F}$:

- $x \oplus y = y \oplus x$ (addition commutes);
- 2 $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ (addition is associative);
- 3 There exists an element $0 \in \mathbb{F}$, such that $x \oplus 0 = x$ (additive identity);
- Sor each x ∈ 𝔽, there is a unique element in 𝔽, denoted -x, such that $x \oplus (-x) = 0$ (negative);
- $x \otimes y = y \otimes x$ (multiplication is commutative);
- $(x \otimes y) \otimes z = x \otimes (y \otimes z)$ (multiplication is associative);
- **()** There is an element $1 \in \mathbb{F}$ s.t. $1 \neq 0$ and $1 \otimes x = x$; (multiplicative identity)
- **(3)** If $x \in \mathbb{F}$ and $x \neq 0$, there is an element $\frac{1}{x} \in \mathbb{F}$ such that $x \otimes (\frac{1}{x}) = 1$

Vector Spaces

A set *L* is said to be a vector (or linear) space over the scalar field \mathbb{F} if there are two binary operations $(x, y) \mapsto x \oplus y$ from $L \times L$ to *L* and $(\lambda, x) \mapsto \lambda \otimes x$ from $\mathbb{F} \times L$ to *L* called addition and scalar multiplication, respectively, and a unique *null vector* $\theta \in L$, such that for all $x, y, z \in L$ and $\lambda, \mu \in \mathbb{F}$:

2
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 (addition is associative);

•
$$x \oplus \theta = x$$
 (additive identity);

() for each $x \in L$, there is a unique *inverse* -x such that $x \oplus (-x) = \theta$;

$$\ \, \mathbf{\delta} \ \, \mathbf{\delta} \$$

•
$$1 \otimes x = x$$
 (multiplicative identity);

$$0 \otimes x = \theta;$$

 $(\lambda + \mu) \otimes x = \lambda \otimes x \oplus \mu \otimes x$ (first distributive law);

 $\bigcirc \ \lambda \otimes (x \oplus y) = \lambda \otimes x \ \oplus \ \lambda \otimes y \ \text{(second distributive law)}.$

Vector Spaces: Examples

Examples

- \mathbb{R}^{K} is a vector space over the field \mathbb{R} .
- The set ℝ[∞] consisting of all infinite sequences {x₀, x₁, x₂...} is a vector space.
- The unit circle in \mathbb{R}^2 is not a vector space over the field \mathbb{R} .
- The set of all nonnegative functions on [a, b] is not a vector space over the field ${\rm I\!R}.$
- The set \mathbb{R} with $x \oplus y \equiv x + y + 7$ and $r \otimes x \equiv rx + 7(r-1)$, is a vector space over the field \mathbb{R} .

Metric Spaces: Distance Function

Definition

Given any set X, the function $d : X \times X \to \mathbb{R}$ is a *metric or distance function* on X if the following properties hold:

- Positivity: $d(x, y) \ge 0$ for all $x, y \in X$, with d(x, y) = 0 iff x = y.
- Symmetry: d(x, y) = d(y, x).
- Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z), \forall x, y, z \in X$.

Example

Euclidean distance:
$$d(x,y) = \left(\sum_{i \in \mathcal{K}} (x_i - y_i)^2
ight)^{1/2}$$
 .

Example

Let
$$p \in \mathbb{R}_+$$
 and $d_p : \mathbb{R}^K imes \mathbb{R}^K o \mathbb{R}$ by $d_p(x,y) = (\sum_{i \in K} |x_i - y_i|^p)^{rac{1}{p}}$.

•
$$d_p$$
 is a distance iff $p \ge 1$.

Metric Spaces: Definition

Definition

A metric space is (X, d) where X is a set and $d : X \times X \to \mathbb{R}$ is a metric.

Examples

1 the set of integers with
$$d(x, y) = |x - y|$$
.

- (a) the set of integers with $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y. \end{cases}$
- **③** \mathbb{R} with d(x, y) = f(|x y|), where $f : \mathbb{R}_+ \to \mathbb{R}_+$ is strictly increasing, and strictly concave, with f(0) = 0.

Definition

A neighborhood with radius ϵ around $x \in X$ is the set $B_{\epsilon}(x) \equiv \{y \in X : d(x, y) \le \epsilon\}$

Normed Vector Spaces: Norms

Definition

Given any vector space X, a norm on X is a function $\|\cdot\| : X \mapsto \mathbb{R}$ such that for all $x, y \in X$ and $\alpha \in \mathbb{R}$:

Sets

• $||x|| \ge 0$, with equality if and only if $x = \theta$;

2
$$\|\alpha x\| = |\alpha| \|x\|$$
; and

- **3** $||x + y|| \le ||x|| + ||y||$ (the triangle inequality)
 - In order to measure how far from 0 an element x of \mathbb{R}^{K} is, we use the *Euclidean norm* which is defined as

$$\|\mathbf{x}\| = \left(\sum_{k=1}^{K} x_k^2\right)^{1/2}$$

Normed Vector Spaces: Definition

Definition

A normed vector space is a pair $(X, \|\cdot\|)$ where X is a vector space and $\|\cdot\| : X \mapsto \mathbb{R}$ is a norm.

It is standard to view any normed vector space (X, ||·||) as a metric space where the metric d(x, y) = ||x − y|| for all x, y ∈ X.

1

Examples

Sequences in \mathbb{R}^{K}

Sequences in \mathbb{R}^{K}

Definition

A sequence in \mathbb{R}^{K} is a function $f : \mathbb{N} \to \mathbb{R}^{K}$.

- (a_1, a_2, \ldots) or $(a_n)_{n=1}^{\infty}$, where $a_n = f(n)$, for $n \in \mathbb{N}$.
- $(a_n)_{n=1}^{\infty}$ is
 - nondecreasing (increasing) if $a_{n+1} \ge (>)a_n$ for all $n \in \mathbb{N}$;
 - nonincreasing (decreasing) if $a_{n+1} \leq (<)a_n$ for all $n \in \mathbb{N}$;
 - bounded above if there exists $\bar{a} \in \mathbb{R}^{K}$ such that $a_{n} \leq \bar{a}$ for all n;
 - bounded below if there exists $a \in \mathbb{R}^K$ such that $a_n > a$ for all n;
 - bounded if it is bounded both above and below.

Definition

Given a sequence $(a_n)_{n=1}^{\infty}$, a sequence $(b_m)_{m=1}^{\infty}$ is a subsequence of $(a_n)_{n=1}^{\infty}$ if there exists an increasing sequence $(n_m)_{m=1}^{\infty}$ such that $n_m \in \mathbb{N}$ and $b_m = a_{n_m}$ for all $m \in \mathbb{N}$.

Example

$$(1/\sqrt{2m+5})_{m=1}^{\infty}$$
 is a subsequence of $(1/\sqrt{n})_{n=1}^{\infty}$ for $(n_m)_{m=1}^{\infty} = (2m+5)_{m=1}^{\infty}$.
University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Pablo F. Beker 18 of 38

Limits of Sequences

Limits of Sequences

Definition

A sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^K converges to $a \in \mathbb{R}^K$ (written $a_n \to a$), if for each $\varepsilon > 0$ there exists some $N_{\varepsilon} \in \mathbb{N}$ such that

 $d(a_n, a) < \varepsilon$ for all $n \ge N_{\varepsilon}$.

Theorem

Let d be the Euclidean distance. Then, $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^K converges to a if and only if $(a_{k,n})_{n=1}^{\infty}$ in \mathbb{R} converges to a_k for all k = 1, ..., K.

Theorem

Sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R}^K converges to $a \in \mathbb{R}^K$ if and only if every subsequence of $(a_n)_{n=1}^{\infty}$ converges to a.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Limits of Sequences

Definition

For a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} , we say that $\lim_{n\to\infty} a_n = \infty$ if for all $\Delta > 0$ there exists some $n^* \in \mathbb{N}$ such that $a_n > \Delta$ for all $n \ge n^*$. We say that $\lim_{n\to\infty} a_n = -\infty$ when $\lim_{n\to\infty} (-a_n) = \infty$. We say that a sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} diverges to ∞ $(-\infty)$ if $\lim_{n\to\infty} a_n = \infty(-\infty)$.

Examples

Does ((-1)ⁿ)[∞]_{n=1} converge? Does (-1/n)[∞]_{n=1}?
 Does the sequence (³ⁿ/_{√n})[∞]_{n=1} have a limit? Does it converge?

Limits of Sequences: Properties I

Theorem

If $a_n \to x$ and $a_n \to y$, then x = y.

Theorem

For sequences $(a_n)_{n=1}^{\infty}$ in \mathbb{R} such that $a_n > 0$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = \infty \Leftrightarrow \lim_{n \to \infty} \frac{1}{a_n} = 0.$

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Limits of Sequences: Properties II

Theorem (Arithmetic of Limits)

Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be sequences in \mathbb{R} . Suppose that $a, b \in \mathbb{R}$, we have that $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$. Then,

Theorem (Weak Inequalities are Preserved under Sequential Limits)

If $a_n \leq \alpha$, for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} a_n = a$, then $a \leq \alpha$.

• Can we strengthen the last Theorem to strict inequalities?

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Limits of Sequences: Properties III

Theorem

Every sequence $(a_n)_{n=1}^{\infty}$ has a monotone subsequence.

Theorem

If sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} is convergent, then it is bounded.

Theorem

If a sequence $(a_n)_{n=1}^{\infty}$ is monotone and bounded, then it is convergent.

Theorem (Bolzano-Weierstrass)

If sequence $(a_n)_{n=1}^{\infty}$ is bounded, then it has a convergent subsequence.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Cauchy Sequences

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence (or satisfies the Cauchy criterion) if for each $\varepsilon > 0$, there exists N_{ε} such that

 $d(a_n, a_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$.

Example

Is the sequence $(1/\sqrt{n})_{n=1}^{\infty}$ in $\mathbb R$ Cauchy?

Theorem

If a sequence is convergent, then it is a Cauchy sequence.

If a sequence is Cauchy, then it is bounded.

Definition

A metric space (X, d) is complete if every Cauchy sequence in X converges to an element of X.

Fact: \mathbb{R} with d(x, y) = |x - y| is a complete metric space.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Open Sets

Open Sets

Definition

Set X is *open* if for all $x \in X$, there is some $\varepsilon > 0$ for which $B_{\varepsilon}(x) \subseteq X$.

Theorem

The empty set, the open intervals in \mathbb{R} and \mathbb{R}^{K} are open.

Theorem

The union of any collection of open sets is an open set. The intersection of any finite collection of open sets is an open set.

Exercise

- **O** be we really need finiteness in the second part of the last Theorem? Consider $I_n = (-\frac{1}{n}, \frac{1}{n})$ for all $n \in \mathbb{N}$. Find the intersection of all those intervals, denoted $\bigcap_{n=1}^{\infty} I_n$. Is it an open set?
- Whether or not a set is open depends on the metric space. So changing either the set or the metric can change the openness of a set. For example, {1} is open in N under the Euclidean metric. However {1} is not open in R under the Euclidean metric. But it is open in R under the discrete metric

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Closed Sets

Closed Sets

Definition

Set $X \subset \mathbb{R}^{K}$ is *closed* if for every sequence $(x_n)_{n=1}^{\infty} \in X$ that converges to \bar{x} , then $\bar{x} \in X$.

Theorem

The empty set, the closed intervals in \mathbb{R} and \mathbb{R}^{K} are closed.

Theorem

A set X is closed if and only if X^c is open.

Theorem

The intersection of any collection of closed sets is closed. The union of any finite collection of closed sets is closed.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Compact Sets

Compact Sets

Definition

A set $X \subseteq \mathbb{R}^{K}$ is said to be *bounded above* if there exists $\alpha \in \mathbb{R}^{K}$ such that $x \leq \alpha$ for all $x \in X$; it is said to be *bounded below* if for some $\beta \in \mathbb{R}^{K}$ one has that $x \geq \beta$ is true for all $x \in X$; and it is said to be *bounded* if it is bounded above and below.

Definition

A set $X \subseteq \mathbb{R}^{K}$ is said to be *compact* if it is closed and bounded.

Exercise

Prove the following statement: if $(x_n)_{n=1}^{\infty}$ is a sequence defined on a compact set X, then it has a subsequence that converges to a point in X.

Theorem

A set $X \subset \Re^K$ is compact if and only if every sequence in X has a subsequence that converges to a point in X.

Compact Sets

Limit Points

Definition

Let $x \in \mathbb{R}^{K}$ and $\delta > 0$. The open ball of radius δ around x, denoted $B_{\delta}(x)$, is the set

$$B_{\delta}(x) = \{ y \in \mathbb{R} : d(y, x) < \delta \}.$$

Definition

The punctured open ball of radius δ around x, denoted $B'_{\delta}(x)$, is the set $B'_{\delta}(x) = B_{\delta}(x) \setminus \{x\}.$

Definition

A point $\bar{x} \in \mathbb{R}^{K}$ is a limit point of $X \subseteq \mathbb{R}^{K}$ if for all $\varepsilon > 0$, $B_{\varepsilon}'(\bar{x}) \cap X \neq \emptyset$

Limits of Functions in ${\ensuremath{\mathbb R}}$

Limits of Functions in ${\mathbb R}$

Definition

Consider $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. We say that $\lim_{x \to \bar{x}} f(x) = \bar{y}$ when for all $\varepsilon > 0$ there exists $\delta > 0$ such that $d(f(x), \bar{y}) < \varepsilon$ for all $x \in B'_{\delta}(\bar{x}) \cap X$.

Definition

Consider $f: X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X. We say that $\lim_{x\to \bar{x}} f(x) = \infty$ when for all $\Delta > 0$, there exists $\delta > 0$ such that $f(x) \ge \Delta$ for all $x \in B'_{\delta}(\bar{x}) \cap X$. We say that $\lim_{x\to \bar{x}} f(x) = -\infty$ when $\lim_{x\to \bar{x}} (-f)(x) = \infty$.

Limits of Functions in R

Limits of Functions: Examples

Example

Suppose that $X = \mathbb{R}$ and $f : X \to \mathbb{R}$ is defined by $f(x) = \begin{cases} 1/x, & \text{if } x \neq 0, \\ 0, & \text{otherwise.} \end{cases}$

What is $\lim_{x\to 5} f(x)$? What is $\lim_{x\to 0} f(x)$?

Example

Let
$$X = \mathbb{R} \setminus \{0\}$$
 and $f : X \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1, & \text{if } x > 0, \\ -1, & \text{otherwise.} \end{cases}$$
In this case, we claim that $\lim_{x \to 0} f(x)$ does not exit

ist.

Limits of Functions and Sequences

Theorem

Consider a function $f : X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^K$. Suppose that $\bar{x} \in \mathbb{R}^K$ is a limit point of X and that $\bar{y} \in \mathbb{R}$. Then, $\lim_{x \to \bar{x}} f(x) = \bar{y}$ if and only if for every $(x_n)_{n=1}^{\infty} \in X \setminus \{\bar{x}\}$ that converges to \bar{x} , $\lim_{n \to \infty} f(x_n) = \bar{y}$.

Limits of Functions: Properties I

Define:

•
$$(f+g): X \to \mathbb{R}$$
 by $(f+g)(x) = f(x) + g(x)$.
• $(\alpha f): X \times \mathbb{R} \to \mathbb{R}$ by $(\alpha f)(x) = \alpha f(x)$.
• $(f \cdot g): X \to \mathbb{R}$ by $(f \cdot g)(x) = f(x)g(x)$
• $(\frac{f}{g}): X_g^* \to \mathbb{R}$ by $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$, where $X_g^* = \{x \in X | g(x) \neq 0\}$.

Theorem

Let $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$. Let \bar{x} be a limit point of X. Suppose that $\bar{y}_1, \bar{y}_2 \in \mathbb{R}$ and that $\lim_{x \to \bar{x}} f(x) = \bar{y}_1$ and $\lim_{x \to \bar{x}} g(x) = \bar{y}_2$.

1
$$\lim_{x \to \bar{x}} (f + g)(x) = \bar{y}_1 + \bar{y}_2;$$

2
$$\lim_{x\to \bar{x}} (\alpha f)(x) = \alpha \bar{y}_1$$
, for all $\alpha \in \mathbb{R}$;

$$Iim_{x\to \bar{x}}(f\cdot g)(x) = \bar{y}_1\cdot \bar{y}_2;$$

• if
$$\bar{y}_2 \neq 0$$
, then $\lim_{x \to \bar{x}} (f/g)(x) = \bar{y}_1/\bar{y}_2$.

Limits of Functions: Properties II

Theorem

Consider $f: X \to \mathbb{R}$ and $\bar{y} \in \mathbb{R}$, and let $\bar{x} \in \mathbb{R}^K$ be a limit point of X. If $f(x) \leq \gamma$ for all $x \in X$, and $\lim_{x \to \bar{x}} f(x) = \bar{y}$, then $\bar{y} \leq \gamma$.

Corollary

Consider $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$, let $\bar{y}_1, \bar{y}_2 \in \mathbb{R}$, and let $\bar{x} \in \mathbb{R}^K$ be a limit point of X. If $f(x) \ge g(x)$, for all $x \in X$, $\lim_{x \to \bar{x}} f(x) = \bar{y}_1$ and $\lim_{x \to \bar{x}} g(x) = \bar{y}_2$, then $\bar{y}_1 \ge \bar{y}_2$.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Pablo F. Beker

33 of 38

Continuity of Functions

Continuity of Functions

Definition

Function $f: X \to \mathbb{R}$ is *continuous at* $\bar{x} \in X$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(\bar{x})| < \varepsilon$ for all $x \in B_{\delta}(\bar{x}) \cap X$. It is *continuous* if it is continuous at all $\bar{x} \in X$.

Theorem

Suppose that $f : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ are continuous at $\bar{x} \in X$, and let $\alpha \in \mathbb{R}$. Then, the functions f + g, αf and $f \cdot g$ are continuous at \bar{x} . Moreover, if $g(\bar{x}) \neq 0$, then $\frac{f}{g}$ is continuous at \bar{x} .

Properties of Continuous Functions

Theorem

The image of a compact set under a continuous function is compact.

Theorem

Function $f : \mathbb{R}^K \to \mathbb{R}$ is continuous if and only if for every open set $U \subseteq \mathbb{R}$ the set $f^{-1}[U]$ is open.

Theorem (The Intermediate Value Theorem in \mathbb{R})

If function $f : [a, b] \to \mathbb{R}$ is continuous, then for every number γ between f(a) and f(b) there exists an $x \in [a, b]$ for which $f(x) = \gamma$.

Left- and Right- Continuity

Definition

One says that $\lim_{x \searrow \bar{x}} f(x) = \ell$, if for every $\varepsilon > 0$ there is a number $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ whenever $x \in X \cap B_{\delta}(\bar{x})$ and $x > \bar{x}$. In such case, function f is said to converge to ℓ as x tends to \bar{x} from above. Similarly, $\lim_{x \nearrow \bar{x}} f(x) = \ell$, when for every $\varepsilon > 0$ there is $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in X \cap B_{\delta}(\bar{x})$ satisfying that $x < \bar{x}$. In this case, f is said to converge to ℓ as x tends to \bar{x} from below.

Definition

Function $f: X \to \mathbb{R}$ is *right-continuous at* $\bar{x} \in X$, where \bar{x} is a limit point of X, if $\lim_{x \searrow \bar{x}} f(x) = f(\bar{x})$. It is *right-continuous* if it is right-continuous at every $\bar{x} \in X$ that is a limit point of X. Similarly, $f: X \to \mathbb{R}$ is *left-continuous at* \bar{x} if $\lim_{x \nearrow \bar{x}} f(x) = f(\bar{x})$, and one says that f is *left-continuous* if it is left-continuous at all limit point $\bar{x} \in X$.

Differentiability

Differentiability

Definition

Let $f : \mathbb{R} \mapsto R$ be a function defined in a neighbourhood of x_0 . Then f is said to be differentiable at x_0 with derivative equal to the real number $f'(x_0)$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies

$$\left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|\leq \varepsilon$$

• Since $x - x_0 \neq 0$, multiply the inequality above by $|x - x_0|$ to obtain

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \varepsilon |x - x_0|$$

to see that $|f(x)-f(x_0)-f^\prime(x_0)(x-x_0)|$ goes to zero faster than $|x-x_0|$.

Mean Value Theorem and Taylor's Theorem

Theorem (Mean Value Theorem)

Let f be a continuous function on [a, b] that is differentiable in (a, b). Then there exists $x_0 \in (a, b)$ such that $f'(x_0) = \frac{f(b)-f(a)}{b-a}$.

Theorem (Taylor's Theorem)

Let f be
$$\mathbb{C}^n$$
 in a neighborhood of x_0 , and let
 $T_n(x_0, x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + ... + \frac{1}{n!}f^n(x_0)(x - x_0)^n$.
Then for any $\varepsilon > 0$, there exists δ such that $|x - x_0| \le \delta$ implies
 $|f(x) - T_n(x_0, x)| \le \varepsilon |x - x_0|^n$.

Theorem (Lagrange Remainder Theorem)

Suppose f is \mathbb{C}^{n+1} in a neighborhood of x_0 . Then for every x in the neighbourhood there exists x_1 between x_0 and x such that

$$f(x) = T_n(x_0, x) + \frac{1}{(n+1)!} f^{n+1}(x_1)(x - x_0)^{n+1}$$