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Sets Definition and Operations

Sets: Definition and Operations
A set is a collection of (finitely or infinitely many) objects.

For any set A, we use the notation x ∈ A to indicate that “x is an
element of A” (“or belongs to A” or “is a member of A”).
The empty set, ∅, is the only set with no elements at all.
N := {1, 2, . . .} denotes the (countably infinite) set of natural numbers
R denotes the (uncountable) set of real numbers.

Two sets A and B are equal (A = B) if they have the same elements.

If every member of A is also a member of B, we say that A is a subset of B
and write A ⊆ B.

A = B if and only if A ⊆ B and B ⊆ A.
If A ⊆ B but A 6= B, then A is said to be a proper subset of B,
denoted A ⊂ B.
The set of all subsets of A is called the power set of A and denoted 2A.

Given any sets A and B, their union is A∪ B ≡ {x : x ∈ A or x ∈ B} .

Given any sets A and B, their intersection is A∩B ≡ {x : x ∈ A & x ∈ B} .

Given any sets A and B, the cartesian product A× B is the set
{(a1, b1), (a2, b2), ...} where ai ∈ A and bi ∈ B for all i .
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Sets Binary Relation

Binary Relation

Definition

Let X and Y be two nonempty subsets. A subset R of X × Y is called a binary
relation from X to Y . If (x , y) ∈ R, then we write x R y
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Sets Correspondences and Functions

Correspondences and Functions

Definition

A correspondence f from a set X 6= ∅ into a set Y 6= ∅, denoted f : X → Y , is
a relation f ∈ X × 2Y

1 for every x ∈ X , there exists a Y ′ ⊆ Y such that x f Y ′,

2 for every Y ′,Z ′ ⊆ Y with x f Y ′ and x f Z ′, we have Y ′ = Z ′.

(a rule that assigns to each x ∈ X a unique set f (x) ⊆ Y ).

Definition

A function f from a set X 6= ∅ into a set Y 6= ∅, denoted f : X → Y , is a
relation f ∈ X × Y such that

1 for every x ∈ X , there exists a y ∈ Y such that x f y ,

2 for every y , z ∈ Y with x f y and x f z , we have y = z .

(a rule that assigns to each x ∈ X a unique f (x) ∈ Y )
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Sets Correspondences and Functions

Functions

Given function f : X 7→ Y ,

X is said to be the domain Y its target set or co-domain.

If f : X → Y and A ⊆ X , the image of A under f , denoted by f [A], is the
set

f [A] = {y ∈ Y |∃x ∈ A : f (x) = y}.

The image f [X ] of the whole domain is called the range of f .

If f : X → Y , and B ⊂ Y , the inverse image of B under f , denoted f −1[B ],
is the set

f −1[B ] = {x ∈ X |f (x) ∈ B} (or f −1[B ] = {x ∈ X |f (x) ⊂ B}).
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Sets Correspondences and Functions

Properties of Functions

Definition

Function f : X → Y is said to be:

Onto, or surjective, if f [X ] = Y ;

One-to-one, or injective, if f (x1) = f (x2)⇒ x1 = x2;

Bijective, if it is both onto and one-to-one.

Examples

f : R2 7→ R defined by f (x1, x2) = x2
1 + x2

2 is neither one-to-one nor onto.

f : R \ {0} 7→ R defined by f (x) = 1
x is one-to-one but not onto.

f : R2 7→ R defined by f (x1, x2) = x1 + x2 is onto but not one-to-one.

f : R 7→ R defined by f (x) = x is one-to-one and onto.
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Sets Correspondences and Functions

Inverse Function
Definition

If f : X → Y is a one-to-one function, the inverse function f −1 : f [X ]→ X is
implicitly defined by f −1(y) = f −1[{y}].

Theorem

The function f : X → Y is onto iff f −1[B ] 6= ∅ for all non-empty B ⊆ Y .

Proof: (⇒) Suppose f : X 7→ Y is onto.

1 Let B ⊆ Y . We need to show f −1[B ] ≡ {x ∈ X |f (x) ∈ B} 6= ∅.
2 Let ỹ ∈ B. Since f is onto, {y ∈ Y |f (x) = y for some x ∈ X} = Y .
3 Then, there exists x ∈ X such that f (x) = ỹ . Thus, f −1[B ] 6= ∅.

(⇐) Suppose f −1[B ] 6= ∅ for all non-empty B ⊆ Y .

1 We need to show that f [X ] ≡ {y ∈ Y |f (x) = y for some x ∈ X} = Y .
2 Since f [X ] ⊆ Y , it suffices to show that Y ⊆ f [X ]. Let ỹ ∈ Y .
3 By hypothesis, f −1({ỹ}) 6= ∅. Hence, there is x ∈ X such that f (x) = ỹ

4 Then, ỹ ∈ {y ∈ Y |f (x) = y for some x ∈ X} ≡ f [X ]. Thus, Y ⊆ f [X ] �.
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Sets The Real Numbers

The Real Numbers: Infimum and Supremum

Definition

Fix a set Y ⊆ R. A number α ∈ R is an upper bound of Y if y ≤ α for all
y ∈ Y , and is a lower bound of Y if the opposite inequality holds.

Definition

α ∈ R is the least upper bound of Y , denoted α = supY , if:

1 α is an upper bound of Y ; and

2 γ ≥ α for any other upper bound γ of Y .

Definition

β ∈ R is the greatest lower bound of Y , denoted β = inf Y , if:

1 β is a lower bound of Y ; and

2 if γ is a lower bound of Y , then γ ≤ β.

The Completeness Axiom: Every nonempty subset S of R that is bounded
from above has a supremum in R.
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Sets The Euclidean Space

The Euclidean Space
For any K ∈N, the K -dimensional real (Euclidean) space is the
K -fold Cartesian product of R, denoted by RK .

x ∈ RK =⇒ x = (x1 x2 . . . xK ).

The origin of RK is the vector zero given by (0, 0, ..., 0).

Given any pair x , y ∈ RK where K ≥ 2,
1 x � y if xi > yi for all i = 1, . . . ,K ,
2 x > y if x 6= y and xi ≥ yi for all i = 1, . . . ,K ,
3 x = y if xi ≥ yi for all i = 1, . . . ,K .

The non-negative orthant of RK is RK
+ := {x ∈ RK | x = 0};

The positive orthant of RK is RK
++ := {x ∈ RK | x � 0};

No special notation for the set RK
+ \ {0} = {x ∈ RK | x > 0};

Define vector addition by x + y = (x1 + y1 x2 + y2 . . . xK + yK );

Define scalar multiplication by αx = (αx1 αx2 . . . αxK ).
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Sets Fields

Fields
Definition

A set F is said to be a field if there are two binary operations (x , y) 7→ x ⊕ y
from F×F to F and (x , y) 7→ x ⊗ y from F×F to F called addition and
multiplication, respectively, such that for all x , y , z ∈ F:

1 x ⊕ y = y ⊕ x (addition commutes);

2 (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) (addition is associative);

3 There exists an element 0 ∈ F, such that x ⊕ 0 = x (additive identity);

4 For each x ∈ F, there is a unique element in F, denoted -x , such that
x ⊕ (−x) = 0 (negative);

5 x ⊗ y = y ⊗ x (multiplication is commutative);

6 (x ⊗ y)⊗ z = x ⊗ (y ⊗ z) (multiplication is associative);

7 There is an element 1 ∈ F s.t. 1 6= 0 and 1⊗ x = x ; (multiplicative identity)

8 If x ∈ F and x 6= 0, there is an element 1
x ∈ F such that x ⊗ ( 1

x ) = 1

9 x ⊗ (y ⊕ z) = x ⊗ y ⊕ x ⊗ z (distributive law);
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Sets Vector Spaces

Vector Spaces
Definition

A set L is said to be a vector (or linear) space over the scalar field F if there are
two binary operations (x , y) 7→ x ⊕ y from L× L to L and (λ, x) 7→ λ⊗ x from
F× L to L called addition and scalar multiplication, respectively, and a unique
null vector θ ∈ L, such that for all x , y , z ∈ L and λ, µ ∈ F:

1 x ⊕ y = y ⊕ x (addition commutes);

2 (x ⊕ y)⊕ z = x ⊕ (y ⊕ z) (addition is associative);

3 x ⊕ θ = x (additive identity);

4 for each x ∈ L, there is a unique inverse −x such that x ⊕ (−x) = θ;

5 λ⊗ (µ⊗ x) = (λ · µ)⊗ x (scalar multip. is associative);

6 1⊗ x = x (multiplicative identity);

7 0⊗ x = θ;

8 (λ + µ)⊗ x = λ⊗ x ⊕ µ⊗ x (first distributive law);

9 λ⊗ (x ⊕ y) = λ⊗ x ⊕ λ⊗ y (second distributive law).
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Sets Vector Spaces

Vector Spaces: Examples

Examples

RK is a vector space over the field R.

The set R∞ consisting of all infinite sequences {x0, x1, x2...} is a
vector space.

The unit circle in R2 is not a vector space over the field R.

The set of all nonnegative functions on [a, b] is not a vector space
over the field R.

The set R with x ⊕ y ≡ x + y + 7 and r ⊗ x ≡ rx + 7(r − 1), is a
vector space over the field R.
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Sets Metric Spaces

Metric Spaces: Distance Function

Definition

Given any set X , the function d : X × X → R is a metric or distance
function on X if the following properties hold:

Positivity: d(x , y) ≥ 0 for all x , y ∈ X , with d(x , y) = 0 iff x = y .

Symmetry: d(x , y) = d(y , x).

Triangle Inequality: d(x , z) ≤ d(x , y) + d(y , z), ∀x , y , z ∈ X .

Example

Euclidean distance: d(x , y) =
(
∑i∈K (xi − yi )2

)1/2
.

Example

Let p ∈ R+ and dp : RK ×RK → R by dp(x , y) = (∑i∈K |xi − yi |p)
1
p .

dp is a distance iff p ≥ 1.
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Sets Metric Spaces

Metric Spaces: Definition

Definition

A metric space is (X , d) where X is a set and d : X × X → R is a metric.

Examples

1 the set of integers with d(x , y) = |x − y |.
2 the set of integers with

d(x , y) =

{
0 if x = y
1 if x 6= y .

3 R with d(x , y) = f (|x − y |), where f : R+ → R+ is strictly increasing, and
strictly concave, with f (0) = 0.

Definition

A neigborhood with radius ε around x ∈ X is the set Bε(x) ≡ {y ∈ X : d(x , y ) ≤ ε}
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Sets Normed Vector Spaces

Normed Vector Spaces: Norms

Definition

Given any vector space X , a norm on X is a function ‖·‖ : X 7→ R such
that for all x , y ∈ X and α ∈ R:

1 ‖x‖ ≥ 0, with equality if and only if x = θ;

2 ‖αx‖ = |α| ‖x‖ ; and

3 ‖x + y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality)

In order to measure how far from 0 an element x of RK is, we use the
Euclidean norm which is defined as

‖x‖ =
(

K

∑
k=1

x2
k

)1/2

.
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Sets Normed Vector Spaces

Normed Vector Spaces: Definition

Definition

A normed vector space is a pair (X , ‖·‖) where X is a vector space and
‖·‖ : X 7→ R is a norm.

It is standard to view any normed vector space (X , ‖·‖) as a metric
space where the metric d(x , y) = ‖x − y‖ for all x , y ∈ X .

Examples

1 X = RK , with ‖x‖ =
[
∑K

k=1 x
2
k

] 1
2

(Euclidean Space)

2 X = RK , with ‖x‖ = maxi |xi |.
3 X = RK , with ‖x‖ = ∑K

k=1 |xk |.
4 X is the set of all bounded infinite sequences {xk}∞

k=1 with
‖x‖ = supk |xk |. (This space is called l∞)
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Sequences Sequences in RK

Sequences in RK

Definition
A sequence in RK is a function f : N→ RK .

(a1, a2, . . .) or (an)∞
n=1, where an = f (n), for n ∈N.

(an)∞
n=1 is
nondecreasing (increasing) if an+1 ≥ (>)an for all n ∈N;
nonincreasing (decreasing) if an+1 ≤ (<)an for all n ∈N;
bounded above if there exists ā ∈ RK such that an ≤ ā for all n;
bounded below if there exists a ∈ RK such that an ≥ a for all n;
bounded if it is bounded both above and below.

Definition

Given a sequence (an)∞
n=1, a sequence (bm)∞

m=1 is a subsequence of
(an)∞

n=1 if there exists an increasing sequence (nm)∞
m=1 such that nm ∈N

and bm = anm for all m ∈N.

Example

(1/
√

2m+ 5)∞
m=1 is a subsequence of (1/

√
n)∞

n=1 for (nm)∞
m=1 = (2m+ 5)∞

m=1.
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Sequences Limits of Sequences

Limits of Sequences

Definition

A sequence (an)∞
n=1 in RK converges to a ∈ RK (written an → a), if for

each ε > 0 there exists some Nε ∈N such that

d(an, a) < ε for all n ≥ Nε.

Theorem

Let d be the Euclidean distance. Then, (an)∞
n=1 in RK converges to a if

and only if (ak,n)
∞
n=1 in R converges to ak for all k = 1, . . . ,K.

Theorem

Sequence (an)∞
n=1 in RK converges to a ∈ RK if and only if every

subsequence of (an)∞
n=1 converges to a.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Pablo F. Beker 19 of 38



Sequences Limits of Sequences

Limits of Sequences

Definition

For a sequence (an)∞
n=1 in R, we say that limn→∞ an = ∞ if for all ∆ > 0

there exists some n∗ ∈N such that an > ∆ for all n ≥ n∗. We say that
limn→∞ an = −∞ when limn→∞(−an) = ∞. We say that a sequence
(an)∞

n=1 in R diverges to ∞ (−∞) if limn→∞ an = ∞(−∞).

Examples

1 Does ((−1)n)∞
n=1 converge? Does (−1/n)∞

n=1?

2 Does the sequence ( 3n√
n
)∞
n=1 have a limit? Does it converge?
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Sequences Limits of Sequences

Limits of Sequences: Properties I

Theorem

If an → x and an → y, then x = y.

Theorem

For sequences (an)∞
n=1 in R such that an > 0 for all n ∈N,

lim
n→∞

an = ∞⇔ lim
n→∞

1

an
= 0.
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Sequences Limits of Sequences

Limits of Sequences: Properties II

Theorem (Arithmetic of Limits)

Let (an)∞
n=1 and (bn)∞

n=1 be sequences in R. Suppose that a, b ∈ R, we
have that limn→∞ an = a and limn→∞ bn = b. Then,

1 limn→∞(an + bn) = a+ b;

2 limn→∞(αan) = αa, for all α ∈ R;

3 limn→∞(anbn) = ab;

4 if b 6= 0 and bn 6= 0 for all n ∈N, then limn→∞(an/bn) = a/b.

Theorem (Weak Inequalities are Preserved under Sequential Limits)

If an ≤ α, for all n ∈N, and limn→∞ an = a, then a ≤ α.

Can we strengthen the last Theorem to strict inequalities?
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Sequences Limits of Sequences

Limits of Sequences: Properties III

Theorem

Every sequence (an)∞
n=1 has a monotone subsequence.

Theorem

If sequence (an)∞
n=1 in R is convergent, then it is bounded.

Theorem

If a sequence (an)∞
n=1 is monotone and bounded, then it is convergent.

Theorem (Bolzano-Weierstrass)

If sequence (an)∞
n=1 is bounded, then it has a convergent subsequence.
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Sequences Limits of Sequences

Cauchy Sequences

Definition
A sequence {an}∞

n=1 is a Cauchy sequence (or satisfies the Cauchy
criterion) if for each ε > 0, there exists Nε such that

d(an, am) < ε, for all n,m ≥ Nε.

Example
Is the sequence (1/

√
n)∞

n=1 in R Cauchy?

Theorem
1 If a sequence is convergent, then it is a Cauchy sequence.
2 If a sequence is Cauchy, then it is bounded.

Definition
A metric space (X , d) is complete if every Cauchy sequence in X
converges to an element of X .

Fact: R with d(x , y) = |x − y | is a complete metric space.
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Topology of RK Open Sets

Open Sets

Definition

Set X is open if for all x ∈ X , there is some ε > 0 for which Bε(x) ⊆ X .

Theorem

The empty set, the open intervals in R and RK are open.

Theorem

The union of any collection of open sets is an open set. The intersection
of any finite collection of open sets is an open set.

Exercise
1 Do we really need finiteness in the second part of the last Theorem? Consider

In = (− 1
n , 1

n ) for all n ∈N. Find the intersection of all those intervals, denoted ∩∞
n=1In . Is it an open set?

2 Whether or not a set is open depends on the metric space. So changing either the
set or the metric can change the openness of a set.
For example, {1} is open in N under the Euclidean metric. However {1} is not open in R under the Euclidean metric.
But it is open in R under the discrete metric
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Topology of RK Closed Sets

Closed Sets

Definition

Set X ⊂ RK is closed if for every sequence (xn)∞
n=1 ∈ X that converges to

x̄ , then x̄ ∈ X .

Theorem

The empty set, the closed intervals in R and RK are closed.

Theorem

A set X is closed if and only if X c is open.

Theorem

The intersection of any collection of closed sets is closed. The union of
any finite collection of closed sets is closed.
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Topology of RK Compact Sets

Compact Sets

Definition

A set X ⊆ RK is said to be bounded above if there exists α ∈ RK such that
x ≤ α for all x ∈ X ; it is said to be bounded below if for some β ∈ RK one has
that x ≥ β is true for all x ∈ X ; and it is said to be bounded if it is bounded
above and below.

Definition

A set X ⊆ RK is said to be compact if it is closed and bounded.

Exercise
Prove the following statement: if (xn)∞

n=1 is a sequence defined on a compact set
X , then it has a subsequence that converges to a point in X .

Theorem

A set X ⊂ <K is compact if and only if every sequence in X has a subsequence
that converges to a point in X .
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Topology of RK Compact Sets

Limit Points

Definition

Let x ∈ RK and δ > 0. The open ball of radius δ around x , denoted
Bδ(x), is the set

Bδ(x) = {y ∈ R : d(y , x) < δ}.

Definition

The punctured open ball of radius δ around x , denoted B ′δ(x), is the set
B ′δ(x) = Bδ(x) \ {x}.

Definition

A point x̄ ∈ RK is a limit point of X ⊆ RK if for all ε > 0, B ′ε(x̄) ∩ X 6=∅
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Topology of RK Limits of Functions in R

Limits of Functions in R

Definition

Consider f : X → R, where X ⊆ RK . Suppose that x̄ ∈ RK is a limit
point of X and that ȳ ∈ R. We say that limx→x̄ f (x) = ȳ when for all
ε > 0 there exists δ > 0 such that d(f (x), y) < ε for all x ∈ B ′δ(x̄) ∩ X .

Definition

Consider f : X → R, where X ⊆ RK . Suppose that x̄ ∈ RK is a limit
point of X . We say that limx→x̄ f (x) = ∞ when for all ∆ > 0, there exists
δ > 0 such that f (x) ≥ ∆ for all x ∈ B ′δ(x̄) ∩ X . We say that
limx→x̄ f (x) = −∞ when limx→x̄ (−f )(x) = ∞.
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Topology of RK Limits of Functions in R

Limits of Functions: Examples

Example

Suppose that X = R and f : X → R is defined by

f (x) =

{
1/x , if x 6= 0,
0, otherwise.

What is limx→5 f (x)? What is limx→0 f (x)?

Example

Let X = R \ {0} and f : X → R is defined by

f (x) =

{
1, if x > 0,
−1, otherwise.

In this case, we claim that limx→0 f (x) does not exist.
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Topology of RK Limits of Functions in R

Limits of Functions and Sequences

Theorem

Consider a function f : X → R, where X ⊆ RK . Suppose that x̄ ∈ RK is
a limit point of X and that ȳ ∈ R. Then, limx→x̄ f (x) = ȳ if and only if
for every (xn)∞

n=1 ∈ X \ {x̄} that converges to x̄, limn→∞ f (xn) = ȳ .
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Topology of RK Limits of Functions in R

Limits of Functions: Properties I

Define:

(f + g) : X → R by (f + g)(x) = f (x) + g(x).

(αf ) : X ×R→ R by (αf )(x) = αf (x).

(f · g) : X → R by (f · g)(x) = f (x)g(x)

( fg ) : X ∗g → R by ( fg )(x) =
f (x)
g (x)

, where X ∗g = {x ∈ X |g(x) 6= 0}.

Theorem
Let f : X → R and g : X → R. Let x̄ be a limit point of X . Suppose that
ȳ1, ȳ2 ∈ R and that limx→x̄ f (x) = ȳ1 and limx→x̄ g(x) = ȳ2.

1 limx→x̄ (f + g)(x) = ȳ1 + ȳ2;

2 limx→x̄ (αf )(x) = αȳ1, for all α ∈ R;

3 limx→x̄ (f · g)(x) = ȳ1 · ȳ2;

4 if ȳ2 6= 0, then limx→x̄ (f /g)(x) = ȳ1/ȳ2.
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Topology of RK Limits of Functions in R

Limits of Functions: Properties II

Theorem

Consider f : X → R and ȳ ∈ R, and let x̄ ∈ RK be a limit point of X . If
f (x) ≤ γ for all x ∈ X, and limx→x̄ f (x) = ȳ , then ȳ ≤ γ.

Corollary

Consider f : X → R and g : X → R, let ȳ1, ȳ2 ∈ R, and let x̄ ∈ RK be a
limit point of X . If f (x) ≥ g(x), for all x ∈ X, limx→x̄ f (x) = ȳ1 and
limx→x̄ g(x) = ȳ2, then ȳ1 ≥ ȳ2.
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Topology of RK Continuity of Functions

Continuity of Functions

Definition

Function f : X → R is continuous at x̄ ∈ X if for every ε > 0, there exists
δ > 0 such that |f (x)− f (x̄)| < ε for all x ∈ Bδ(x̄) ∩ X . It is continuous
if it is continuous at all x̄ ∈ X .

Theorem

Suppose that f : X → R and g : X → R are continuous at x̄ ∈ X, and let
α ∈ R. Then, the functions f + g, αf and f · g are continuous at x̄ .

Moreover, if g(x̄) 6= 0, then
f

g
is continuous at x̄ .
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Topology of RK Continuity of Functions

Properties of Continuous Functions

Theorem

The image of a compact set under a continuous function is compact.

Theorem

Function f : RK → R is continuous if and only if for every open set
U ⊆ R the set f −1[U ] is open.

Theorem (The Intermediate Value Theorem in R)

If function f : [a, b]→ R is continuous, then for every number γ between
f (a) and f (b) there exists an x ∈ [a, b] for which f (x) = γ.
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Topology of RK Continuity of Functions

Left- and Right- Continuity

Definition

One says that limx↘x̄ f (x) = `, if for every ε > 0 there is a number δ > 0
such that |f (x)− `| < ε whenever x ∈ X ∩ Bδ(x̄) and x > x̄ . In such
case, function f is said to converge to ` as x tends to x̄ from above.
Similarly, limx↗x̄ f (x) = `, when for every ε > 0 there is δ > 0 such that
|f (x)− `| < ε for all x ∈ X ∩ Bδ(x̄) satisfying that x < x̄ . In this case, f
is said to converge to ` as x tends to x̄ from below.

Definition

Function f : X → R is right-continuous at x̄ ∈ X , where x̄ is a limit point
of X , if limx↘x̄ f (x) = f (x̄). It is right-continuous if it is right-continuous
at every x̄ ∈ X that is a limit point of X . Similarly, f : X → R is
left-continuous at x̄ if limx↗x̄ f (x) = f (x̄), and one says that f is
left-continuous if it is left-continuous at all limit point x̄ ∈ X .
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Topology of RK Differentiability

Differentiability

Definition

Let f : R 7→ R be a function defined in a neighbourhood of x0. Then f is
said to be differentiable at x0 with derivative equal to the real number
f ′(x0) if for every ε > 0 there exists δ > 0 such that |x − x0| < δ implies∣∣∣∣ f (x)− f (x0)

x − x0
− f ′(x0)

∣∣∣∣ ≤ ε

Since x − x0 6= 0, multiply the inequality above by |x − x0| to obtain∣∣f (x)− f (x0)− f ′(x0)(x − x0)
∣∣ ≤ ε |x − x0|

to see that |f (x)− f (x0)− f ′(x0)(x − x0)| goes to zero faster than
|x − x0| .
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Topology of RK Mean Value Theorem and Taylor’s Theorem

Mean Value Theorem and Taylor’s Theorem
Theorem (Mean Value Theorem)

Let f be a continuous function on [a, b] that is differentiable in (a, b). Then

there exists x0 ∈ (a, b) such that f ′(x0) =
f (b)−f (a)

b−a .

Theorem (Taylor’s Theorem)

Let f be Cn in a neighborhood of x0, and let

Tn(x0, x)=f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 + ... +
1

n!
f n(x0)(x − x0)

n.

Then for any ε > 0, there exists δ such that |x − x0| ≤ δ implies

|f (x)− Tn(x0, x)| ≤ ε |x − x0|n .

Theorem (Lagrange Remainder Theorem)

Suppose f is Cn+1 in a neighborhood of x0. Then for every x in the
neighbourhood there exists x1 between x0 and x such that

f (x) = Tn(x0, x) +
1

(n+ 1)!
f n+1(x1)(x − x0)

n+1
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