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Infimum and Supremum Properties

Properties of Infimum and Supremum

Theorem 1

α = supY if and only if for every ε > 0,
(a) y < α + ε for all y ∈ Y ; and
(b) there is some y ∈ Y such that α− ε < y .

Corollary 1

Let Y ⊆ R and let α ≡ supY . Then there exists a sequence {yn}∞
n=1 in

Y that converges to α.

We need a stronger concept of extremum, in particular one that implies
that the extremum lies within the set.
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Maximisers Definitions

Maximisers

Definition

A point x ∈ R is the maximum of set Y ⊆ R, denoted x = maxA, if
x ∈ Y and y ≤ x for all y ∈ Y .

Typically, it is of more interest in economics to find extrema of
functions, rather than extrema of sets.

Definition

x̄ ∈ D is a global maximizer of f : D → R if f (x) ≤ f (x̄) for all x ∈ D.

Definition

x̄ ∈ D is a local maximizer of f : D → R if there exists some ε > 0 such
that f (x) ≤ f (x̄) for all x ∈ Bε(x̄) ∩D.

When x̄ ∈ D is a local (global) maximizer of f : D → R, the number
f (x̄) is said to be a local (the global) maximum of f .
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Maximisers Existence

Existence

Theorem (Weierstrass)

Let C ⊆ D be nonempty and compact. If f : D → R is continuous, then
there are x̄ , x ∈ C such that f (x) ≤ f (x) ≤ f (x̄) for all x ∈ C .

Proof: It follows from 5 steps:

1 Since C is compact and f is continuous, then f [C ] is compact.

2 By Corollary 1, there is {yn}∞
n=1 in f [C ] s.t. yn → sup f [C ].

3 Since f [C ] is compact, then it is closed. Therefore, sup f [C ] ∈ f [C ].

4 Thus, there is x ∈ C such that f (x) = sup f [C ].

5 By def. of sup, f (x) ≥ f (x) for all x ∈ C .

Q.E.D.
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Local Maxima Necessary Conditions in R

Characterising Maximisers in R

Lemma 1

Suppose D ⊂ R is open and f : D → R is differentiable. Let x̄ ∈ int(D).
If f ′(x̄) > 0, then there is some δ > 0 such that for each x ∈ Bδ(x̄) ∩D:

1 f (x) > f (x̄) if x > x̄ .

2 f (x) < f (x̄) if x < x̄ .

Proof: ε ≡ f ′(x̄)
2 > 0. Then, f ′(x̄)− ε > 0. By def. of f ′, ∃δ > 0 s.t.,

| f (x)−f (x̄)x−x̄ − f ′(x̄)| < ε, ∀x ∈ B ′δ(x̄) ∩D.

Hence, f (x)−f (x̄)
x−x̄ > f ′(x̄)− ε > 0. Q.E.D.

Corollary 2
Suppose D ⊂ R is open and f : D → R is differentiable. Let x̄ ∈ D. If
f ′(x̄) < 0, then there is δ > 0 such that for every x ∈ Bδ(x̄) ∩D:

1 f (x) < f (x̄) if x > x̄ .

2 f (x) > f (x̄) if x < x̄ .
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Local Maxima Necessary Conditions in R

Characterising Maximisers in R: FO Necessary Conditions

Theorem (FONC)

Suppose that f : D → R is differentiable. If x̄ ∈ int(D) is a local
maximiser of f then f ′(x̄) = 0.

Proof: Suppose f ′(x̄) 6= 0. WLOG, suppose f ′(x̄) > 0.
1 By Lemma 1, ∃δ > 0 such that f (x) > f (x̄) for all x ∈ Bδ(x̄) ∩D

satisfying x > x̄ .
2 Since x̄ is a local maximizer of f , ∃ε > 0 such that f (x) ≤ f (x̄) for

all x ∈ Bε(x̄) ∩D.
3 Since x̄ ∈ int(D), ∃γ > 0 such that Bγ(x̄) ⊆ D.
4 Let β = min{ε, δ, γ} > 0.
5 Clearly, (x̄ , x̄ + β) ⊂ B ′β(x̄) ⊆ D. Moreover, B ′β(x̄) ⊆ Bδ(x̄) ∩D and

B ′β(x̄) ⊆ Bε(x̄) ∩D.

6 ∃x such that f (x) > f (x̄) and f (x) ≤ f (x̄), a contradiction.

Q.E.D.
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Local Maxima Necessary Conditions in R

Characterising Maximisers in R: SO Necessary Conditions
Theorem (SONC)

Let f : D → R be C2. If x̄ ∈ int(D) is a local max of f , then f ′′(x̄) ≤ 0.

Proof: Since x̄ ∈ int(D), there is a ε > 0 such that Bε(x̄) ⊆ D.

1 Let h ∈ Bε(0). Since f is C2, Taylor’s Theorem implies ∃x∗h ∈ [x̄ , x̄ + h]
such that

f (x̄ + h) = f (x̄) + f ′(x̄)h+
1

2
f ′′(x∗h )h

2

2 ∃δ > 0 such that f (x) ≤ f (x̄) for all x ∈ Bδ(x̄) ∩D.

3 Let β = min{ε, δ} > 0. By construction, for any h ∈ B ′β(0)

f ′(x̄)h+
1

2
f ′′(x∗h )h

2 = f (x̄ + h)− f (x̄) ≤ 0.

4 By Theorem FONC, f ′(x̄) = 0 and so f ′(x̄)h = 0.

5 Hence, f ′′(x∗h )h
2 ≤ 0 =⇒ f ′′(x∗h ) ≤ 0.

6 limh→0 f
′′(x∗h ) ≤ 0, and hence that f ′′(x̄) ≤ 0, since f ′′ is continuous and

each xh lies in the interval joining x̄ and x̄ + h. Q.E.D.
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Local Maxima Sufficient Conditions in R

Characterising Maximisers in R: Sufficient Conditions

Theorem (FOSC & SOSC)

Suppose that f : D → R is C2. Let x̄ ∈ int(D). If f ′(x̄) = 0 and f ′′(x̄) < 0,
then x̄ is a local maximizer.

Proof: Since f : D → R is C2 & f ′′(x̄) < 0, by Corollary 2 ∃δ > 0 s.t.
(a)f ′(x) < f ′(x̄) = 0, for all x ∈ Bδ(x̄) ∩D for which x > x̄ ; and
(b)f ′(x) > f ′(x̄) = 0, for all x ∈ Bδ(x̄) ∩D for which x < x̄ .

1 Since x̄ ∈ int(D), there is ε > 0 such that Bε(x̄) ⊆ D.

2 Let β = min{δ, ε} > 0. By the MV Theorem, ∃x∗ ∈ [x̄ , x ] s.t.

f (x) = f (x̄) + f ′(x∗)(x − x̄) for all x ∈ Bβ(x̄)

3 x > x̄ ⇒ x∗ ≥ x̄ . Hence, (a) ⇒ f ′(x∗)(x − x̄) ≤ 0⇒ f (x) ≤ f (x̄).

4 x < x̄ ⇒ x∗ ≤ x̄ . Hence, (b) ⇒ f ′(x∗)(x − x̄) ≤ 0⇒ f (x) ≤ f (x̄). �

We use f ′′(x) < 0 to show f ′(x∗)(x − x̄) ≤ 0. Why f ′′(x) ≤ 0 is not
enough?
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Local Maxima Sufficient Conditions in R

Example in R

Consider f (x) = x4 − 4x3 + 4x2 + 4.

Note that

f ′(x) = 4x3 − 12x2 + 8x = 4x(x − 1)(x − 2).

Hence, f ′(x) = 0 ⇐⇒ x ∈ {0, 1, 2}.
Since f ′′(x) = 12x2 − 24x + 8,

f ′′(0) = 8 > 0, f ′′(1) = −4 < 0, and f ′′(2) = 8 > 0

x = 0 and x = 2 are local min of f and x = 1 is a local max.

x = 0 and x = 2 are global min but x = 1 is not a global max.
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Local Maxima Necessary Conditions in RK

Characterising Maximisers in RK : Necessary Conditions

Suppose D ⊂ RK

Theorem

If f : D → R is differentiable and x∗ ∈ int(D) is a local maximizer of f ,
then Df (x∗) = 0.

Theorem

If f : D → R is C2 and x∗ ∈ int(D) is a local maximizer of f , then
D2f (x∗) is negative semidefinite.
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Local Maxima Sufficient Conditions in RK

Characterising Maximisers in RK : Sufficient Conditions

Suppose D ⊂ RK

Theorem

Suppose that f : D → R is C2 and let x̄ ∈ int(D). If Df (x̄) = 0 and
D2f (x̄) is negative definite, then x̄ is a local maximizer.
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Local Maxima Sufficient Conditions in RK

Example in R2

Consider f (x , y) = x3 − y3 + 9xy .

Note that

f ′x (x , y) = 3x2 + 9y

f ′y (x , y) = −3y2 + 9x

Hence,
f ′x (x , y) = 0 and f ′y (x , y) = 0 ⇐⇒ (x , y) ∈ {(0, 0), (3,−3)}.

D2f (x) =

(
f ′′xx f ′′yx
f ′′xy f ′′yy

)
=

(
6x 9
9 −6y

)
.

f ′′xx = 6x and |D2f (x , y)| = −36xy − 81.

At (0, 0) the two minors are 0 and −81. Hence, D2f (0, 0) is indef.

At (3,−3) the two minors are 18 and 243. Hence, D2f (3,−3) is
positive definite and (3,−3) is a local min.

(3,−3) is not a global min since f (0, n) = −n3 → −∞ as n→ ∞.
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When is a Local max also a Global Max? Functions in R with only one critical point

Functions in R with only one critical point

First let’s note that any derivative has the intermediate value property, a
result due to Darboux.

Theorem (Darboux)

If a function f : [a, b]→ R is differentiable on (a, b), then for every γ
between f ′(a) and f ′(b) there exists an x ∈ [a, b] for which f ′(x) = γ.

Theorem

Suppose that f : D → R is differentiable in the interior of D ⊂ R and:

1 the domain of f is an interval in R.

2 x is a local maximum of f , and

3 x is the only solution to f ′(x) = 0 on D.

Then, x is the global maximum of f .
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When is a Local max also a Global Max? Concavity and Quasi-Concavity

Concavity and Quasi-Concavity: Definitions

Definition

Let D be a convex subset of RK . Then, f : D → R is

concave if for all x , y ∈ D, and for all θ ∈ [0, 1],

f (θx + (1− θ)y) ≥ θf (x) + (1− θ)f (y)

strictly concave if for all x , y ∈ D, x 6= y , and for all θ ∈ (0, 1),

f (θx + (1− θ)y) > θf (x) + (1− θ)f (y)

quasi-concave if for all x , y ∈ D, and for all θ ∈ [0, 1],

f (x) ≥ f (y) =⇒ f (θx + (1− θ)y) ≥ f (y)

strictly quasi-concave if for all x , y ∈ D, x 6= y , and for all θ ∈ (0, 1),

f (x) ≥ f (y) =⇒ f (θx + (1− θ)y) > f (y)
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When is a Local max also a Global Max? Concavity and Quasi-Concavity

Ordinal Properties

Theorem

Suppose f : D → R is quasi-concave and g : f (D)→ R is nondecreasing.
Then g ◦ f : D → R is quasi-concave. If f is strictly quasi-concave and g
is strictly increasing, then g ◦ f is strictly quasi-concave.

Proof: Since f is quasi-concave, f (θx + (1− θ)y) ≥ min{f (x), f (y)}.
Since g is nondecreasing,

g(f (θx + (1− θ)y)) ≥ g(min{f (x), f (y)}) = min{g(f (x)), g(f (y))}.

If f is strictly quasi-concave, x 6= y , f (θx + (1− θ)y) > min{f (x), f (y)}.
Since g is strictly increasing,

g(f (θx + (1− θ)y)) > g(min{f (x), f (y)}) = min{g(f (x)), g(f (y))}.

Q.E.D.
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When is a Local max also a Global Max? Concavity and Quasi-Concavity

When is a Local Max also a Global Max? - Concavity
Theorem
Suppose that D ⊂ RK is convex and f : D → R is a concave function. If
x̄ ∈ D is a local maximizer of f , then it is also a global maximizer.

Proof: Suppose that x̄ ∈ D is a local but not a global maximizer of f .

∃ε > 0 such that f (x) ≤ f (x̄) for all x ∈ Bε(x̄) ∩D and
∃x∗ ∈ D such that f (x∗) > f (x̄).

1 x∗ /∈ Bε(x̄), which implies that ‖x∗ − x̄‖ ≥ ε.
2 Since D is convex and f is concave, we have that for θ ∈ [0, 1],

f (θx∗ + (1− θ)x̄) ≥ θf (x∗) + (1− θ)f (x̄).

3 Since f (x∗) > f (x̄), θf (x∗) + (1− θ)f (x̄) > f (x̄) for all θ ∈ (0, 1].
4 Hence, f (θx∗ + (1− θ)x̄) > f (x̄).
5 Let θ∗ ∈ (0, ε/‖x∗ − x̄‖). θ∗ ∈ (0, 1) & f (θ∗x∗ + (1− θ∗)x̄) > f (x̄).

6 ‖(θ∗x∗ + (1− θ∗)x̄)− x̄‖ = θ∗‖x∗ − x̄‖ <
(

ε
‖x∗−x̄‖

)
‖x∗ − x̄‖ = ε,

7 By convexity of D, (θ∗x∗ + (1− θ∗)x̄) ∈ Bε(x̄) ∩D. This contradicts
the fact that f (x) ≤ f (x̄) for all x ∈ Bε(x̄) ∩D. Q.E.D.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Pablo F. Beker 17 of 19



When is a Local max also a Global Max? Concavity and Quasi-Concavity

When is a Local Max also a Global Max?-Quasi-Concavity

Theorem

Suppose that D ⊂ RK is convex and f : D → R is strictly quasi-concave.
If x̄ ∈ D is a local maximizer of f , then it is also a global maximizer.

Can we prove the last theorem assuming only quasi-concavity?
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Uniqueness

Uniqueness

Suppose D ⊂ RK .

Theorem

Suppose f : D → R attains a maximum.
(a) If f is quasi-concave, then the set of maximisers is convex.
(b) If f is strictly quasi-concave, then the maximiser of f is unique.
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