EC9A0: Pre-sessional Advanced Mathematics Course Unconstrained Optimisation

Pablo F. Beker Department of Economics University of Warwick

September 2023

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Pablo F. Beker

1 of 19

Lecture Outline

- Infimum and Supremum
 - Properties

Maximisers

- Definitions
- Existence
- 3 Local Maxima
 - Necessary Conditions in ${\rm I\!R}$
 - Sufficient Conditions in ${\rm I\!R}$
 - Necessary Conditions in \mathbb{R}^{K}
 - Sufficient Conditions in \mathbb{R}^{K}
- When is a Local max also a Global Max?
 - Functions in ${\mathbb R}$ with only one critical point
 - Concavity and Quasi-Concavity

Uniqueness

Properties of Infimum and Supremum

Theorem 1

 $\alpha = \sup Y$ if and only if for every $\varepsilon > 0$, (a) $y < \alpha + \varepsilon$ for all $y \in Y$; and (b) there is some $y \in Y$ such that $\alpha - \varepsilon < y$.

Corollary 1

Let $Y \subseteq \mathbb{R}$ and let $\alpha \equiv \sup Y$. Then there exists a sequence $\{y_n\}_{n=1}^{\infty}$ in Y that converges to α .

We need a stronger concept of extremum, in particular one that implies that the extremum lies within the set.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Maximisers

Definition

A point $x \in \mathbb{R}$ is the maximum of set $Y \subseteq \mathbb{R}$, denoted $x = \max A$, if $x \in Y$ and $y \leq x$ for all $y \in Y$.

• Typically, it is of more interest in economics to find extrema of functions, rather than extrema of sets.

Definition

 $\bar{x} \in D$ is a global maximizer of $f : D \to \mathbb{R}$ if $f(x) \leq f(\bar{x})$ for all $x \in D$.

Definition

 $\bar{x} \in D$ is a local maximizer of $f : D \to \mathbb{R}$ if there exists some $\varepsilon > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$.

• When $\bar{x} \in D$ is a local (global) maximizer of $f : D \to \mathbb{R}$, the number $f(\bar{x})$ is said to be a local (the global) maximum of f.

Existence

Existence

Theorem (Weierstrass)

Let $C \subseteq D$ be nonempty and compact. If $f : D \to \mathbb{R}$ is continuous, then there are $\bar{x}, \underline{x} \in C$ such that $f(\underline{x}) \leq f(x) \leq f(\bar{x})$ for all $x \in C$.

Proof: It follows from 5 steps:

- Since C is compact and f is continuous, then f[C] is compact.
- **2** By Corollary 1, there is $\{y_n\}_{n=1}^{\infty}$ in f[C] s.t. $y_n \to \sup f[C]$.
- Since f[C] is compact, then it is closed. Therefore, $\sup f[C] \in f[C]$.
- Thus, there is $\overline{x} \in C$ such that $f(\overline{x}) = \sup f[C]$.
- **(a)** By def. of sup, $f(\overline{x}) \ge f(x)$ for all $x \in C$.

Q.E.D.

Characterising Maximisers in ${\rm I\!R}$

Lemma 1

Suppose $D \subset \mathbb{R}$ is open and $f : D \to \mathbb{R}$ is differentiable. Let $\bar{x} \in int(D)$. If $f'(\bar{x}) > 0$, then there is some $\delta > 0$ such that for each $x \in B_{\delta}(\bar{x}) \cap D$: $f(x) > f(\bar{x})$ if $x > \bar{x}$.

2 $f(x) < f(\bar{x})$ if $x < \bar{x}$.

Proof:
$$\varepsilon \equiv \frac{f'(\bar{x})}{2} > 0$$
. Then, $f'(\bar{x}) - \varepsilon > 0$. By def. of f' , $\exists \delta > 0$ s.t.,
 $|\frac{f(x) - f(\bar{x})}{x - \bar{x}} - f'(\bar{x})| < \varepsilon$, $\forall x \in B'_{\delta}(\bar{x}) \cap D$.
Hence, $\frac{f(x) - f(\bar{x})}{x - \bar{x}} > f'(\bar{x}) - \varepsilon > 0$. Q.E.D.

Corollary 2

Suppose $D \subset \mathbb{R}$ is open and $f : D \to \mathbb{R}$ is differentiable. Let $\bar{x} \in D$. If $f'(\bar{x}) < 0$, then there is $\delta > 0$ such that for every $x \in B_{\delta}(\bar{x}) \cap D$:

1
$$f(x) < f(\bar{x})$$
 if $x > \bar{x}$.

2
$$f(x) > f(\bar{x})$$
 if $x < \bar{x}$.

Characterising Maximisers in IR: FO Necessary Conditions

Theorem (FONC)

Suppose that $f : D \to \mathbb{R}$ is differentiable. If $\bar{x} \in int(D)$ is a local maximiser of f then $f'(\bar{x}) = 0$.

Proof: Suppose $f'(\bar{x}) \neq 0$. WLOG, suppose $f'(\bar{x}) > 0$.

- By Lemma 1, ∃δ > 0 such that f(x) > f(x̄) for all x ∈ B_δ(x̄) ∩ D satisfying x > x̄.
- Since x̄ is a local maximizer of f, ∃ε > 0 such that f(x) ≤ f(x̄) for all x ∈ B_ε(x̄) ∩ D.
- Since $\bar{x} \in int(D)$, $\exists \gamma > 0$ such that $B_{\gamma}(\bar{x}) \subseteq D$.
- Let $\beta = \min\{\varepsilon, \delta, \gamma\} > 0$.
- Clearly, $(\bar{x}, \bar{x} + \beta) \subset B'_{\beta}(\bar{x}) \subseteq D$. Moreover, $B'_{\beta}(\bar{x}) \subseteq B_{\delta}(\bar{x}) \cap D$ and $B'_{\beta}(\bar{x}) \subseteq B_{\varepsilon}(\bar{x}) \cap D$.
- **5** $\exists x \text{ such that } f(x) > f(\bar{x}) \text{ and } f(x) \leq f(\bar{x}), \text{ a contradiction.}$

Characterising Maximisers in \mathbb{R} : SO Necessary Conditions Theorem (SONC)

Let $f: D \to \mathbb{R}$ be \mathbb{C}^2 . If $\bar{x} \in int(D)$ is a local max of f, then $f''(\bar{x}) \leq 0$.

Proof: Since $\bar{x} \in int(D)$, there is a $\varepsilon > 0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.

- Let $h \in B_{\varepsilon}(0)$. Since f is \mathbb{C}^2 , Taylor's Theorem implies $\exists x_h^* \in [\bar{x}, \bar{x} + h]$ such that $f(\bar{x} + h) = f(\bar{x}) + f'(\bar{x})h + \frac{1}{2}f''(x_h^*)h^2$
- **2** $\exists \delta > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\delta}(\bar{x}) \cap D$.

3 Let
$$\beta = \min{\{\varepsilon, \delta\}} > 0$$
. By construction, for any $h \in B'_{\beta}(0)$
$$f'(\bar{x})h + \frac{1}{2}f''(x_h^*)h^2 = f(\bar{x} + h) - f(\bar{x}) \le 0.$$

• By Theorem FONC, $f'(\bar{x}) = 0$ and so $f'(\bar{x})h = 0$.

- 6 Hence, $f''(x_h^*)h^2 \leq 0 \implies f''(x_h^*) \leq 0.$
- ◎ $\lim_{h\to 0} f''(x_h^*) \le 0$, and hence that $f''(\bar{x}) \le 0$, since f'' is continuous and each x_h lies in the interval joining \bar{x} and $\bar{x} + h$. Q.E.D.

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Characterising Maximisers in \mathbb{R} : Sufficient Conditions

Theorem (FOSC & SOSC)

Suppose that $f : D \to \mathbb{R}$ is \mathbb{C}^2 . Let $\bar{x} \in int(D)$. If $f'(\bar{x}) = 0$ and $f''(\bar{x}) < 0$, then \bar{x} is a local maximizer.

Proof: Since $f: D \to \mathbb{R}$ is $\mathbb{C}^2 \& f''(\bar{x}) < 0$, by Corollary $2 \exists \delta > 0$ s.t. (a) $f'(x) < f'(\bar{x}) = 0$, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x > \bar{x}$; and (b) $f'(x) > f'(\bar{x}) = 0$, for all $x \in B_{\delta}(\bar{x}) \cap D$ for which $x < \bar{x}$.

1 Since $\bar{x} \in int(D)$, there is $\varepsilon > 0$ such that $B_{\varepsilon}(\bar{x}) \subseteq D$.

2 Let $\beta = \min{\{\delta, \varepsilon\}} > 0$. By the MV Theorem, $\exists x^* \in [\bar{x}, x]$ s.t.

$$f(x) = f(\bar{x}) + f'(x^*)(x - \bar{x})$$
 for all $x \in B_{\beta}(\bar{x})$

 $\textbf{3} \ x > \bar{x} \Rightarrow x^* \geq \bar{x}. \ \text{Hence, (a)} \Rightarrow f'(x^*)(x - \bar{x}) \leq \textbf{0} \Rightarrow f(x) \leq f(\bar{x}).$

- $\ \, {\bf 0} \ \, x<\bar x\Rightarrow x^*\leq \bar x. \ \, {\rm Hence,} \ \, ({\bf b})\Rightarrow f'(x^*)(x-\bar x)\leq 0\Rightarrow f(x)\leq f(\bar x). \ \, \blacksquare \ \,$
 - We use $f''(\overline{x}) < 0$ to show $f'(x^*)(x \overline{x}) \le 0$. Why $f''(\overline{x}) \le 0$ is not enough?

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course

Example in \mathbb{R}

• Consider $f(x) = x^4 - 4x^3 + 4x^2 + 4$.

Note that

$$f'(x) = 4x^3 - 12x^2 + 8x = 4x(x-1)(x-2).$$

• Hence,
$$f'(x) = 0 \iff x \in \{0, 1, 2\}.$$

• Since $f''(x) = 12x^2 - 24x + 8$,

$$f''(0)=8>0, f''(1)=-4<0, \ {
m and} \ f''(2)=8>0$$

- x = 0 and x = 2 are local min of f and x = 1 is a local max.
- x = 0 and x = 2 are global min but x = 1 is not a global max.

Characterising Maximisers in \mathbb{R}^{K} : Necessary Conditions

Suppose $D \subset \mathbb{R}^{K}$

Theorem

If $f : D \to \mathbb{R}$ is differentiable and $x^* \in int(D)$ is a local maximizer of f, then $Df(x^*) = 0$.

Theorem

If $f : D \to \mathbb{R}$ is \mathbb{C}^2 and $x^* \in int(D)$ is a local maximizer of f, then $D^2 f(x^*)$ is negative semidefinite.

Sufficient Conditions in \mathbb{R}^{K}

Characterising Maximisers in \mathbb{R}^{K} : Sufficient Conditions

Suppose $D \subset \mathbb{R}^{K}$

Theorem

Suppose that $f : D \to \mathbb{R}$ is \mathbb{C}^2 and let $\bar{x} \in int(D)$. If $Df(\bar{x}) = 0$ and $D^2f(\bar{x})$ is negative definite, then \bar{x} is a local maximizer.

Example in \mathbb{R}^2

- Consider $f(x, y) = x^3 y^3 + 9xy$.
- Note that

$$f'_x(x, y) = 3x^2 + 9y f'_y(x, y) = -3y^2 + 9x$$

• Hence,

$$f'_x(x,y) = 0 \text{ and } f'_y(x,y) = 0 \iff (x,y) \in \{(0,0), (3,-3)\}.$$

$$D^2 f(x) = \begin{pmatrix} f_{xx}'' & f_{yx}'' \\ f_{xy}'' & f_{yy}'' \end{pmatrix} = \begin{pmatrix} 6x & 9 \\ 9 & -6y \end{pmatrix}.$$

- $f''_{xx} = 6x$ and $|D^2 f(x, y)| = -36xy 81$.
- At (0,0) the two minors are 0 and -81. Hence, $D^2f(0,0)$ is indef.
- At (3, −3) the two minors are 18 and 243. Hence, D²f(3, −3) is positive definite and (3, −3) is a local min.
- (3, -3) is not a global min since $f(0, n) = -n^3 \rightarrow -\infty$ as $n \rightarrow \infty$.

Functions in ${\rm I\!R}$ with only one critical point

First let's note that any derivative has the intermediate value property, a result due to Darboux.

Theorem (Darboux)

If a function $f : [a, b] \to \mathbb{R}$ is differentiable on (a, b), then for every γ between f'(a) and f'(b) there exists an $x \in [a, b]$ for which $f'(x) = \gamma$.

Theorem

Suppose that $f : D \to \mathbb{R}$ is differentiable in the interior of $D \subset \mathbb{R}$ and:

• the domain of f is an interval in \mathbb{R} .

- 2 x is a local maximum of f, and
- x is the only solution to f'(x) = 0 on D.

Then, x is the global maximum of f.

Concavity and Quasi-Concavity: Definitions

Definition

Let D be a convex subset of \mathbb{R}^K . Then, $f: D \to \mathbb{R}$ is

- concave if for all $x, y \in D$, and for all $\theta \in [0, 1]$, $f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$
- strictly concave if for all $x, y \in D$, $x \neq y$, and for all $\theta \in (0, 1)$, $f(\theta x + (1 - \theta)y) > \theta f(x) + (1 - \theta)f(y)$
- quasi-concave if for all $x, y \in D$, and for all $\theta \in [0, 1]$, $f(x) > f(y) \implies f(\theta x + (1 - \theta)y) > f(y)$

strictly quasi-concave if for all
$$x, y \in D, x \neq y$$
, and for all $\theta \in (0, 1)$,
 $f(x) \ge f(y) \implies f(\theta x + (1 - \theta)y) > f(y)$

Ordinal Properties

Theorem

Suppose $f : D \to \mathbb{R}$ is quasi-concave and $g : f(D) \to \mathbb{R}$ is nondecreasing. Then $g \circ f : D \to \mathbb{R}$ is quasi-concave. If f is strictly quasi-concave and g is strictly increasing, then $g \circ f$ is strictly quasi-concave.

Proof: Since f is quasi-concave, $f(\theta x + (1 - \theta)y) \ge \min\{f(x), f(y)\}$. Since g is nondecreasing,

$$g(f(\theta x + (1 - \theta)y)) \ge g(\min\{f(x), f(y)\}) = \min\{g(f(x)), g(f(y))\}.$$

If f is strictly quasi-concave, $x \neq y$, $f(\theta x + (1 - \theta)y) > \min\{f(x), f(y)\}$. Since g is strictly increasing,

$$g(f(\theta x + (1 - \theta)y)) > g(\min\{f(x), f(y)\}) = \min\{g(f(x)), g(f(y))\}.$$

Q.E.D.

When is a Local Max also a Global Max? - Concavity Theorem Suppose that $D \subset \mathbb{R}^{K}$ is convex and $f : D \to \mathbb{R}$ is a concave function. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

Proof: Suppose that $\bar{x} \in D$ is a local but not a global maximizer of f.

- $\exists \varepsilon > 0$ such that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$ and
- $\exists x^* \in D$ such that $f(x^*) > f(\bar{x})$.
- $x^* \notin B_{\varepsilon}(\bar{x})$, which implies that $||x^* \bar{x}|| \ge \varepsilon$.
- Since D is convex and f is concave, we have that for $\theta \in [0, 1]$,

$$f(\theta x^* + (1-\theta)\bar{x}) \ge \theta f(x^*) + (1-\theta)f(\bar{x}).$$

- Since $f(x^*) > f(\bar{x}), \, \theta f(x^*) + (1 \theta) f(\bar{x}) > f(\bar{x})$ for all $\theta \in (0, 1]$.
 Hence, $f(\theta x^* + (1 \theta) \bar{x}) > f(\bar{x})$.
- Let $\theta^* \in (0, \varepsilon/||x^* \bar{x}||)$. $\theta^* \in (0, 1)$ & $f(\theta^* x^* + (1 \theta^*)\bar{x}) > f(\bar{x})$.
- By convexity of D, $(\theta^* x^* + (1 \theta^*)\bar{x}) \in B_{\varepsilon}(\bar{x}) \cap D$. This contradicts the fact that $f(x) \leq f(\bar{x})$ for all $x \in B_{\varepsilon}(\bar{x}) \cap D$. Q.E.D.

When is a Local Max also a Global Max?-Quasi-Concavity

Theorem

Suppose that $D \subset \mathbb{R}^{K}$ is convex and $f : D \to \mathbb{R}$ is strictly quasi-concave. If $\bar{x} \in D$ is a local maximizer of f, then it is also a global maximizer.

• Can we prove the last theorem assuming only quasi-concavity?

Uniqueness

Suppose $D \subset \mathbb{R}^{K}$.

Theorem Suppose $f: D \to \mathbb{R}$ attains a maximum.

(a) If f is quasi-concave, then the set of maximisers is convex.(b) If f is strictly quasi-concave, then the maximiser of f is unique.