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Abstract

Intepret a set of players all playing the same pure strategy and
all with similar attributes as a society. Is it consistent with self in-
terested behaviour for a population to organise itself into a relatively
small number of societies? By introducing the concept of approximate
substitute players in non-cooperative games we are able to put a bound
on the rationality of such social conformity for an arbitrary game and
arbitrary number of societies.

*The main results of this paper were presented at the the 2002 General Equilibrium
Conference held in Athens in May 2002 and at Northwestern University in August 2002.
We thank the participants for their interest and comments.



1 Introduction

The economic literature is increasingly addressing the question of whether
a population of boundedly rational individuals can learn to behave as if ra-
tional or nearly rational. A standard way to look at this issue is to study
the evolution of play when players are repeatedly matched to play a stage
game and where, in each period, each player use a simple heuristic or ‘rule of
thumb’ (Young 1993, Blume 1993, Ellison and Fudenberg 1995). Underlying
most such heuristics are two characteristics that seem intuitively appealing
in any model of bounded rationality, namely, that players (1) only use pure
strategies and (2) there is social conformity. By social conformity we mean
that individuals conform to observed strategy choices of some group of sim-
ilar individuals. In this paper, we ask whether, and when, such behavior
can be consistent with individual rationality. We address this issue by de-
termining, for an arbitrary game: (a) a bound on the irrationality of using
pure strategies, that is, more technically, how large ¢ must be, as a function
of the parameters describing a game, for the existence of an e-equilibrium in
pure strategies and; (b) a bound on the irrationality of using pure strategies
that exhibit social conformity as a function of the parameters describing the
game. In modelling social conformity we introduce the notion of endoge-
nous roles and discuss how the existence of these roles may imply social
conformity amongst individuals who are not necessarily playing the same
actions. In characterising games we also lead to provide a de...nition of simi-
larity amongst players or, in other words, to de..ne when players can be seen
as near substitutes for each other. In a companion paper (Cartwright and
Wooders 2002) the results of this paper are applied to provide a general class
of large games where the use of both pure strategies and social conformity
can be consistent with boundedly rational behavior.

There are two fundamental observations motivating the notion that peo-
ple only use pure strategies and not (non-degenerate) mixed strategies. The
..rst observation is the fact that a person never has a strictly positive incen-
tive to play a mixed strategy; given the strategies of the other players, the
payoa from playing a mixed strategy can always be achieved by playing one
of the pure strategies in the support of that mixed strategy.! The second

1 This rationale will depend on the game in question. Von Neumann and Morgentsern
(1944), for example, point out that in zero sum games, such as matching pennies, random-
ization can be a deliberate ploy to leave ones opponent guessing ones intentions. In many
games, however, mixed strategy equilibria retect the inability of players to coordinate
actions, as in, for example, the battle of the sexes. Justifying the use of mixed strategy
equilibria in these cases is much harder.



observation is the seeming inability of people to generate random sequences.
Thus, even when players use strategies that may look like mixed strategies
in terms of the variance in observed actions the actions may not actually
be chosen at random (see Kagel and Roth 1995 and Walker and Wooders
2001).

There is little experimental literature in economics questioning whether
social conformity plays a role in individual choice behavior. The psychology
literature, however, supports the idea that people do have a tendency to
conform to the actions of similar people. In an economic context there are
many ways to explain such behavior. For example, if a person is bound-
edly rational or has imperfect information then he may imitate a person
he believes is better informed (Gale and Rosenthal 1999, Schieifer 2000).
Alternatively, in a coordination game with multiple equilibria, a player may
be able to make a more informed strategy choice by observing the actions
of others (Scharfstein and Stein 1990 Ellison and Fudenberg 1995, Young
2001). Finally, due to normative infuences, a person may be motivated
by desires for prestige, popularity or acceptance or more generally, to ‘.t
in” with a social norm (Bernheim 1994). It is worth highlighting that the
psychology literature suggests that players only conform with the actions of
others who they see as similar to themselves. With respect to the causes for
conformity above, we can see some justi..cation for this. For example, a per-
son may not seek to gain prestige amongst those he views as very dicerent
to himself.

It would appear, from the above, that the use of pure strategies and
conformity may appropriately be elements of models of bounded rationality,
particularly, in games with many players. Wooders, Cartwright and Selten
(2001), WCS, demonstrate that for a broad class of large games such be-
havior can be consistent with boundedly rational behavior. There are two
important limitations to WCS. First, only games of complete information
are treated; the limitations of this approach will become clear as we pro-
ceed. Second, the framework is restricted to noncooperative pregames. A
noncooperative pregame, like a cooperative pregame or a pre-economy is a
structure that enables one to treat large ..nite games.? The shortcoming of
the pregame framework is that it does not treat an individual game in terms
of parameters describing the game. Moreover the results have limitations

2By a pre-economy we mean simply a space of endowments of private commodities
and preferences. This is a familiar sort of construct in economics; see, for example,
Hildenbrand (1974). As in the cooperative and noncooperative pregame frameworks, given
a set of agents, these are described by their attributes — in the case of a pre-economy, their
endowments and preferences.



imposed by the pregame framework. One such limitation is that the social
conformity result of WCS cannot treat social conformity in games where,
ex-post, all players are identical.

In this paper we treat individual games and, in terms of the parameters
describing a game, determine the lowest possible bound on ¢ for a given game
to have a Nash e-equilibrium in pure strategies exhibiting social conformity.
To describe a game, we ..rst introduce the notion of approximate substitute
players of a non-cooperative game. This is a counterpart to the notion
of approximate substitutes in cooperative games (Kovalenkov and Wooders
2001, for example). We also de..ne the concept of a (6, @)-class game. A
(6,Q)-class game has the property that the player set can be partitioned
into  classes of players. Players in the same class are seen as approximate
substitute players, where the dissimilarity of players in a class is bounded by
the parameter 6. A (6, Q)-class game also is required to have a sort of ‘large
game’ property; the emect of a change in strategy of just one member of a
class on the remaining players in the game must be small. This would be
a natural property of standard models of large exchange economies games
or large economies with local public goods or clubs, as in Kovalenkov and
Wooders (1997), for example. We note that any ..nite game is a (8, Q)-class
game for any () and some 6. An advantage, therefore, of introducing the
notion of a (4, Q)-class game is that it allows us to draw conclusions on
arbitrary games for an arbitrary level of conformity, as measured by Q.

The ..rst conclusion we draw relates to the use of pure strategies and can
be, informally, stated as if a game T is a (6, Q) class game then, for any
e > 46 the game has a Nash e-equilibrium in pure strategies. This result
allows us to put a lower bound on the size of £ permitting existence of an
e-equilibrium in pure strategies for an arbitrary game (with a ..nite player
set). Alternatively, the value of 26 could be interpreted as a bound on the
distance from full rationality of players using pure strategies as opposed to
mixed strategies.

To address social conformity, we de..ne a society as a collection of players
in the same class and playing the same strategy. An immediate consequence
of Theorem 1 is that if a game T is a (6, Q) class game then, for any ¢ > 46
there exists a Nash e-equilibrium in pure strategies that induces a partition
of the player set into no more than QK societies, where K is the number
of strategies. This is essentially the analogue of the social conformity result
due to WCS.

In the context of incomplete information there are other natural notions
of social conformity. In particular, we may wish to permit the possibility
that players in the same society perform dicerent actions. We motivate this
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view with two examples. First, consider the example of driving automobiles
on roadways with the choice of whether or not to give way at road junctions.
We may think of the strategies in this instance as ‘to give way’ or ‘not give
way’. We would not want to interpret those players who give way as being
part of a dizerent society to those who do not give way. It may be that each
player in the population conforms to the behavior of ‘agree to a classi..cation
into major and minor roads and obey a highway code that dictates giving
way at minor roads and not giving way at major roads’. What we observe in
this scenario is that players who use digerent actions can still be thought of
as belonging to the same society; their choice of action is conditional upon
the role they are playing in society at any one instance, i.e. whether they
are on a minor road or road.

As a second example consider the division of labour within a large ..rm
(or university, or economy). Let the choice of job be the strategy. In equi-
librium we may ..nd a variety of strategy choices, with some people working
in ..nance and others in engineering for example. The interpretation that
there exists a society of ..nance workers and a distinct society of engineers is
a much more intuitively justi..able one in this instance; there may be distinct
..nance and engineering departments, for instance. We may still, however,
wish to take the view that all of the members of this ..rm belong to the same
society, namely, the ..rm; the fact that dicerent people have dicerent jobs
merely retects the dizering roles they take within the ..rm or society.

In both the above examples the ‘aggregate strategy’ of the society looks
like a mixed strategy. Indeed the players within the society may also play
mixed strategies. If we do not require that players choose pure strategies
we demonstrate that if a game T is a (6, @) class game then for any ¢ > 46
there exists a Nash e-equilibrium that induces a partition of the player set
into no more than () societies. That is, there exists a Nash e-equilibrium
with the property that any two players of the same class play the same
mixed strategy. The key point to note is how the number of societies no
longer depends on the number of strategies K. This suggests a higher level
of social conformity.

A large literature, which we review in a later section, is concerned with
the puri..cation of mixed strategy equilibria through incomplete information.
In particular, in a game of incomplete information a player’s action can be
made conditional on her randomly determined type. In this way a player’s
chosen action may vary, and resemble a mixed strategy, even though she
may play a pure strategy. It is conventional to assume that there is some
exogenous uncertainty that makes this possible, for example uncertainty
over payoos (Harsanyi 1973). In contrast, we assume that players within a



society can endogenously create incomplete information by creating a set of
roles to which players in that society are randomly assigned. The players
within the society choose the probability distribution with which they are
assigned to roles. We now interpret a society as a set of players with the
property that all players in the society (a) are in the same class, (b) have
the same probability of being assigned each role, and (c) play the same pure
strategy, where action choice may be conditional on role. We derive the
following result if a game I" is a (6,Q) class game then for any ¢ > 106
there exists a Nash e-equilibrium in pure strategies that induces a partition
of the player set into no more than @ societies.

We see that if players have some way of endogenising types, that is allo-
cating players to dizerent roles within the society, then each player can play
a pure strategy and yet the number of societies need not be conditional on
the number of strategies. This result suggests a higher level of conformity
is possible than shown by WCS. We should, however, check that in allowing
players to endogenise roles we still retain an interpretable and intuitive no-
tion of a society. One key point to highlight in terms of the de..nition of a
society is that two players within a society have the same probability distri-
bution with which they are assigned to roles. It is non-trivial that players
should desire this and it seems to be a criterion that requires players within
a society to share some ‘common plan’ even if they perform dicerent actions
within that plan. In the driving example, for instance, this requirement
could be interpreted as requiring that everybody in the population agrees
on a classi..cation on roads into major and minor roads.

The division of labour example raises a further issue. It is possible that
players are only likely to ever take one role within the society. This raises
the question of whether expected utility is a relevant criteria on which to
judge individual rationality. In particular, while all members of the society
agree before the allocation to roles, will there be the same agreement ex-post
once players are aware of the role that they have been allocated? Recent
results due to Kalai (2000) suggest that this issue need not be a concern. In
particular, any Nash e-equilibrium is likely to be ex-post stable in the sense
that following the allocation of players to roles no one individual will have
an incentive to change her behavior.

The approximate substitute framework allows us to draw conclusions
about arbitrary games. It is also useful to have some general examples
of (6,Q) class games for arbitrary values of 6. In a companion paper
(Cartwright and Wooders 2002) we extend the pregame framework of WCS
to allow incomplete information and to permit local interaction. We are
able to connect the concept of games with approximate substitutes to that



of games induced by a pregame satisfying the large game property. This
allows us to apply the results of this paper in terms of arbitrarily small «.

We proceed as follows: Section 2 introduces the notation and Section 3
de..nes the notion of approximate substitutes. Section 4 looks at approxi-
mate puri..cation and Section 5 considers social conformity. Section 6 looks
at social conformity in pure strategies, Section 7 looks at related literature
and Section 7 concludes.

2 A Bayesian Game - de..nitions and notation

A Bayesian game T is given by the tuple (N, A, T,p,u) where N is a ..nite
player set, A is a set of action pro..les, T is a set of type pro..les, p is a set of
player beliefs and « the a set of utility functions. We de..ne these in turn.

Let N = {1,...,n} be a ..nite player set. For all i € N there exists a
..nite set T; of feasible types of player i and a ..nite set A; of feasible actions
of player i (independent of type). Let T' = x,T; be the set of type pro..les
and let A = x;A; be the set of action pro..les. We assume throughout, for
convenience, that 7, = 7 and A; = A for all ¢ € N and for some ..nite sets
7T and A. We will typically index a type as t* € 7 and an action as o’ € A.

Each player can make their action conditional on their type. Thus, a
pure strategy of a player i is given by a vector s = {s*(¢!),..., s* (t71)}
where s*(t?) is interpreted as the action chosen by player i when she is of
type t*. For any player i we allow choice of any pure strategy consistent with
the set of feasible types 7 and actions .A.2 Denote the set of pure strategies
by S where we let K = |A|‘T| = |S| be the number of pure strategies.

A strategy (possibly non-degenerate) of a player i is given by a vector
o; ={0a,....,0ik } Where o s interpreted as the probability player i plays
pure strategy s € S. A strategy o implies a vector {o;(:|t1), ..., 0(:|t/7;))}
where o;(-|t;) is interpreted as a probability distribution over the set of
actions A to be used by player i when of type ¢;. The value o;(a;|t;) is
interpreted as the probability player i uses action a; given he or she is of
type t;. Let A(S) denote the set of strategies for player i. Given strategy
o; let support(o;) denote the pure strategies played with strictly positive
probability. Let S = x;cnyA(S) denote the set of strategy vectors. We refer
to a strategy vector o as degenerate if o; places unit weight on a unique

3We assume that every player can be of any type and can choose any action. This
greatly simpli..es the analysis but could be relaxed. The complicating issue is how we
can say that two players are playing the same strategy when they can potentially be of
dicerent types or choose dicerent actions.



pure strategy for all i € N.

Let C = 7 x A denote the feasible compositions of player i. That is,
a composition is a type-action pair. Let C' = x;cnC denote the set of
composition pro..les. For each player i € N there exists a utility function
u; : C — R. The interpretation is that u;(c) denotes the payoz of player
1 if the composition pro..le is c. We will typically index a composition as
" eC. Let u={uy,....,u,} denote the set of player utility functions.

Each player i € N forms her own beliefs about the types of other players
as given by a function p;. The function p; is a probability distribution over
the set of type pro..les T. The value p;(t) is interpreted as the probability
player i puts on the type pro..le being t. We refer to p; as the beliefs of player
i about the type pro..le. With a slight abuse of notation let p;(t_;|t;) denote
the probability that player i puts on the type pro..le being t = (t_;,t;) € T
given that he is of type ¢;. We assume the marginal distribution p;(¢; = t*) is
strictly positive for all t* € 7 and all : € N. That is, player i puts a strictly
positive probability on being of each possible type. Let p = {p1,...,pn} be
the set of beliefs about the type pro..le.

For the most part we make no assumptions about beliefs as given by
set p. We occasionally, however, will make reference to two some standard
assumptions on player beliefs. For each player i € N there exists some prior
probability distribution over types g;. That is, g;(¢;) denotes the probability
that player 7 is of type ¢; € 7 if the types of the remaining players N\{i}
are undetermined. Let g denote a probability function over the set of type
pro..les. Thus, ¢(t) denotes the probability of type pro.le ¢t € T. Two
standard assumptions are*

1. Independent type allocation: for all i € N, g; is independent of the
type pro..le over the remaining players. That is, g(t) = [[; :(t;) where
t=(t1,..r tn).

2. Consistent beliefs: for all : € N and for all ¢; € 7,
g(t—i, i)

ZlfieT—i g(lf’ia tz) .

Players are assumed to act according to expected payowgs. In particular,
knowing his type (but not the type of the other players), a player is assumed

pi(t_ilt;) =

4In fact, because this paper treats ..nite Bayesian games permitting general utility
functions, these two assumptions could be made without loss of generality. This follows
from the fact that any ..nite Bayesian game I' is equivalent to some ..nite Bayesian game
I'® in which beliefs are consistent and the type allocation is independent (see, for example,
Myerson 1997 pp 72-73).



to choose an action which maximizes his expected payo=. Given a strategy
vector o and beliefs about the type pro..le p; a player can form expectations
about the likely composition pro..le. For instance, the probability that player
i puts on composition ¢ = ((a1,t1), .., (an, t,)) is given by

prob(c) = pi(t1,....,tn)o1(a1]tr)...on(an|tn).

Let U;(-|p;) denote the expected utility function of player i given beliefs p;
mapping strategy vectors into the real line.

We note how the function U; accounts for both the uncertainty over
player types, and the uncertainty due to mixed strategy vectors.

A strategy vector o is a Bayesian Nash e-equilibrium if,

UZ(O') > UZ'(Sk,Gfi) — &

for all s* € S and for all i € N. We say that a Bayesian Nash ¢ equilibrium
m is a Bayesian Nash e-equilibrium in pure strategies if m; is degenerate for
all i.

3 Approximate substitutes

Given a Bayesian game I' = (N, T, A,p,u) we consider partitioning the
player set N into subgroups with the property that any two players in the
same group can be viewed as approximate substitutes for each other. This
requires us to formulate a metric by which to compare players. In coopera-
tive game theory the distance between players is typically measured by the
maximum dizerence in value that players can add to coalitions. Informally,
in cooperative game theory a §-substitute partition has the property that,
given any coalition structure, ‘swapping’ players who are §-substitutes be-
tween coalitions, has an exect of less than 6 on the worth of the coalitions. In
proposing the analogue in non-cooperative games we consider two dicerent
ways of measuring the distance between players. Informally, we say that two
players 7 and j are interaction substitutes if 7 and j are seen as similar by
those with whom they interact. In contrast, we say that players i and j are
individual substitutes if they have similar payo= functions. Combining both
measures together, we refer to players ¢ and j as approximate substitutes if
they are both interaction and individual substitutes. We formally introduce
these terms below.

We consider two players i and j as being approximate interaction substi-
tutes when the payor to any player k is relatively invariant if player’s 7 and



J exchange strategies. Formally, a partition {/NVy,..., Ng} is a é-interaction
substitute partition for Bayesian game I" when for any two strategy vectors
ol,o2 e S, if

1 _ 2
2 7= D %y

ieN, ieN,
for all N, and all s* € A(S), then,

‘Ui(Sk, 0'1_1) - U@'(Sk, 0'2_1)

<é

for any player i € N and any strategy s* € A(S).

A second measure we put on the distance between players is the similarity
of their payom functions. In particular, a partition {Ni,...,Ng} is a 6-
individual substitute partition for Bayesian game I" when for any V,, for any
two players i,j € N, and for any strategy vector o € S such that o; = 0

Ui(s¥,0_5) = Uj(s*,0_5)| < 6

for any strategy s* € A(S).

We say that a partition N = {Ny, ..., Ng} is a é-substitute partition if
N is both a é-interaction substitute partition and a é-individual substitute
partition. In this instance we say that two players belonging to a subset 1V,
are 6-substitutes for each other.

We make some observations. First, it is trivial that any Bayesian game
I has a 0O-substitute partition {{1},...,{N}}. That is, each player is a 0-
substitute for themselves. We also note that for any Bayesian game I and
any @ < N there exists a ¢-substitute partition for some ..nite 6 > 0.
Further, partitions into a larger number of subsets will typically reduce the
minimum value of § for which there exists a §-substitute partition. Formally,
if game I" has a Q member §-substitute partition then for any Q where
N > @Q > Q there exists a & < § such that I" has a Q member § substitute
partition. This is an immediate consequence of the fact that players are
0-substitutes for themselves.

3.1 A (4,Q)-class Bayesian game

We begin this section by de..ning a third type of partition. This can be seen
as a measure of how invariant a player’s payo= can be to changes in the
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strategy vector. Formally, a partition {Vy,...., Ng} is a é-strategy switching
partition when for any two strategy vectors o', 02 € S if

Yo lo—ohl <1, )

i€N,
for all NV, and all s* € S then

Ui(s*,0L5) = Ui(s*,02)| < 6

for any player i € N and any strategy s* € A(S).

The de..nition of a é-strategy switching partition requires us to put a
maximum bound on the change in payoas when, essentially, Q players, one
from each class, change strategy. It should be clear that, unlike the previous
two types of partition, the smaller is Q then the smaller is likely to be
the value of § for which there exists a ¢-strategy switching partition. It is
unlikely that there will be a 0-strategy switching partition. In contrast to
de..ning §-substitutes there is no real intuitive justi..cation for putting two
players together into a subset of a é-strategy partition. We note, however,
that how the player set is partitioned can signi..cantly ecect the minimum
6 for which the partition is a é-strategy partition. Also, as we show in
example A it is often the case that ‘opposites’ should be grouped together.
That is, players we would see as opposite in terms of the two similarity
criteria above. This would suggest that a partition of the player set into
approximate substitutes need not be a ‘good’ partition when viewed on the
criteria of a strategy switching partition. This is an issue we explore in the
next sub-section after de..ning a (6, @)-class Bayesian game.

We say that a Bayesian game IT" is a (67, 6p, ¢, @Q)-Class Bayesian game
if there exists a () member partition {Ny,...., Ng} that is a §;-interaction
substitute partition, a 6 p-individual substitute partition and a 6c-strategy
switching partition. We say that a Bayesian game I" is a (6, )-class Bayesian
game if I is a (67, 6p, 8¢, @)-class Bayesian game where 67,6p,6c < 6. We
refer to each IV, as a class of player and say that two players ¢, j € IV, are
the same class of player.

In summary, if a game is a (6, Q)-class Bayesian game then the popula-
tion can be partitioned into classes such that any two players in the same
class are §-substitutes. Furthermore, a player’s payoe changes by at most 6
if ‘one player’ from each class changes strategy.

11



3.2 Discussion

To illustrate the notion of a (6, Q)-class Bayesian game consider the two
extreme cases highlighted below. For this discussion we assume the game
is one of complete information with player set N where |[N| = n. Let
{N1,,,.Ng} denote a partition of the player set into classes. First, suppose
that [N,| =1 for all i € N and so Q = n. As we have highlighted, this is a
0-substitute partition. Note, however, that ..nding a 6 for which there exists
a 6-strategy switching partition would require comparing strategy vectors
o' and o2 in which any player i € N can change their strategy any way they
wish. Thus, unless the game is trivial, it cannot be a (8, NV)-class Bayesian
game for any meaningful value of 6. Indeed, in general 6 would have to be
as large as the maximum possible dicerence between the expected payoas
of a player.

In contrast, suppose that | N;| = n and so there is only one class of player.
It is now much more unlikely that there will exist a §-substitute partition
for a relatively small value of 6. This would require that payo=s depend only
on the ‘population average’ or the number of players playing each strategy.
This is plausible (such an assumption is used in Kalai 2000, for example),
and not as restrictive as it may seem but in general is a strong assumption.
Suppose, however, there does exists a 1-member 6-substitute partition of
I'. It seems likely that in this scenario I" will be a (6, 1)-class Bayesian
game. The reason being that if | V| is ‘large’ then ..nding a ¢ for which there
exists a 6-strategy switching partition would only require comparing strategy
vectors ¢! and o2 in which the strategies of players are slightly perturbed.
Informally, if payoms are only a function of the population average then we
would expect players to be relatively indicerent to small changes in this
population average.

Between these two extremes we clearly ..nd a trade oo between a small
or large number of classes . In particular, for an arbitrary game T, ..nding
the minimum 6 for which T" is a (6, @)-class Bayesian game would seem to
involve a trade-oa when varying the size of Q. If @ is large then it seems
more plausible there should exist a §-substitute partition for small § while
if @ is small then it seems more likely that there should exists a §-strategy
switching partition for large 6. This issue is illustrated by Example A which
appears in the appendix. This example also serves to demonstrate how
for any game I' and for any @ the minimum value of § such that I' is a
(6,Q)-class game can be calculated.

12



3.3 Games with incomplete information

In de..ning a (6, Q)-class Bayesian game the role of incomplete information is
not explicit. It is useful to ozer an illustration of the possible role incomplete
information can play. We assume throughout this subsection that beliefs
are both independent and consistent. We highlight the following issue: if
two players i and j use the same or similar strategies then this does not
necessarily imply that their expected composition is similar. This is because
the prior probability distribution over types of players i and j; may dizer.
Thus, even though players i and j play similar strategies the expectations of
what will be realized, in terms of their type and action, may be dissimilar.

Consider the de..nition of a §-interaction substitute partition. This def-
inition requires comparison of the dicerence in payoa from two strategy
vectors o', 0% € S where,

Zaz‘lk: ZUZZk’ (2)

i€N, iENg

for every member of the partition N,. Given two such strategy vectors
we can compare the probability that a typical player of any class N, will
have type t* and play action a!. Formally, given strategy vector o, let
pr(o, Ny, t%,a') denote the expected probability that a player of class N,
will be of type t* and play action a'!. We note that,

pr(o, Ny, t7,a) ZO‘Z (al[t*)gi (t7).
ZEN
Thus,
1 z 1 2 z 1
[pr(c*, Ny, a!) = pr(o?, Ny, ') ®)
]' z z z z
< W > o (@dt)gi(t?) = > oF (d[t)gi(t)
91 |ieN, i€N,
< — tZ ltz — 2(d'1#?
< g e s — a9} 32 (oA a'he) = B
q
< max {|g;(t%) — gx(t7)]}- (4)

j,kEN,

It is clear that this inequality may be binding. For example, suppose that
there are two players 1 and 2 in a class N,. Player 1 is always of type ¢!
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and player 2 is always of type t2. That is, g1(t') = g2(t?) = 1.5 There are
two actions a' and a?. Let o' be such that player 1 plays the strategy ‘if
type t! play action o' and if type t? play action a®’ and player 2 plays the
strategy ‘if type ¢! play action ? and if type t? play action a!’. Consider
a strategy o2 in which both players exchange strategies. It is clear that (2)
holds and (3) holds with equality. Thus, even though the aggregate strategy
of the class is invariant between strategy vectors o' and o2 the expectations
of what will happen, in terms of actions, change completely.

What we learn from this discussion is how the de...nition of a é-interaction
substitute partition, and also a ¢-strategy switching partition, implicitly
measures the variability in prior operability distributions over types and
the importance of such variations on payoss. In particular, if a game is
to be a (8, Q)-class Bayesian game for small 6, then we would expect that
either players of the same class have similar prior probability distributions
over types or payoss are relatively invariant to the type pro..le. This, how-
ever, seems a reasonable assumption; an assumption of common priors, for
example, makes such issues irrelevant.

4 Puri..cation of mixed strategies

Our ..rst result places a bound on the rationality of using pure strategies.
To derive this result we require three lemmas which are stated and proved
in the Appendix.

Theorem 1: Let ' = (N,A,T,p,u) be any Bayesian game that is a
(61,6p,6¢c,Q)-Class Bayesian game. Let ¢ be a positive real number where
e > 2(6r + 6¢). The game I' has a Bayesian Nash e-equilibrium in pure
strategies.

Proof: Using Nash’s Theorem there must exist a Nash Equilibrium strategy
o*. This implies, for all i € N, that,

Ui(Uivaii) > Ui(skvaii) (5)

for all o; where support(o;) Csupport(o}) and for all s* € A(S).

Given thatI"is a (67,6p, 8¢, Q)-class game there is a partition of N into
@ classes. Let {Ny,..., No} be a such a partition of N. We apply Lemma
2 in turn to each NV,. Doing so implies that there exists a strategy vector

>To be in keeping with the analysis of the rest of the paper we require g;(t*) > 0 for
all ¢*. This could clearly be done without changing the substance of the example.
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m € S where support(m;) Csupport (o), m; is degenerate for all : € N and
where,

Zaf ZZmiZ Zaf

i€Ng i€Ng i€Ng

forall g =1,...,Q. Thus,

Zmz’k—zaf <1

iEN, €N,

for all s* € S and all . By Lemma 3 this implies that there exists a strategy
vector & such that ZieNq Tik = ZieNq o}, and EiENq |7 — mx| < 1 for
all s* and all N,.

From the de..nition of a §-interaction substitute partition we have that,

Ui(s*,5_3) = Ui(s",0%)| < 61

for any player i € N and any strategy s* € A(S). By the de..nition of a
o-strategy switching partition we have that,

Ui (s¥,5_5) — Ui(s®,m_;)| < ¢

for any player i € N and any strategy s* € A(S). Thus, for any s* € A(S)
and for all i € N

Ui(sk,a*,i) — Ui(sk,m_i)

<ér+6c.
Therefore, given (5),

Ui(mi, m,i) — Ui(Sk, m—z’)

v

— {Ui(mi, o*;) — Ui(m;, mfi)‘ -

—2(5] + (50) > —€

Ui(sk, o) — Ui(sk, m—;)

Vv

for all i € N and all s* € A(S).R

We note that the value of §p has no eacect on the bound for which
there exists a Bayesian Nash e-equilibrium. That is, the existence of an
approximate Bayesian Nash equilibrium in pure strategies does not require
that players in the same class should have similar payo= functions. This will
not be the case when we consider social conformity below.
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As previously remarked, any game I' is a (67, 6p, 6c, @)-class Bayesian
game for some 6. Theorem 1 allows us, therefore, to put a bound on the
rationality of using pure strategies as opposed to mixed strategies. An im-
portant issue is, of course, how useful this bound is. Two simple examples
illustrate some of the issues.

Example 1.

The number of players is given by 1,000,001. Player 1 is labelled the
leader and players 2 to 1,000,001 are labelled citizens. The citizens play a
sort of matching pennies game with the leader. There are two pure strategies
H and T'. The strategy of the citizens is de..ned as the mean average strategy
of the citizens; thus, if 500, 000 citizens choose to play H and 500, 000 choose
T the strategy of the citizens is to play H with probability one half and to
play T' with probability one half. The payoa matrix is as follows where a
citizen receives a payor according to the strategy of the citizens,

strategy of citizens

H T
leader H 1,-1 -1,1
T -1,1 1,-1

Thus, if the leader chooses H and the strategy of the citizens is T' the
leader gets a payor= of —1 and each citizen gets a payo= of 1.

This game has no Bayesian Nash e-equilibrium in pure strategies for any
value of ¢ < 2. It is trivial to note that there is no strategy 6c-switching
partition of the player set for any value of §< signi..cantly below 2. Thus,
Theorem 1 shows there exists a Bayesian Nash 4-equilibrium.4

The ..rst thing we observe in this example is that the use of pure strate-
gies does not appear to be boundedly rational. The primary reason for this
is that one player, namely the leader, can signi..cantly alter the payoos of
other players. We also see that the bound provided by Theorem 1 is a signif-
icant overestimate. Indeed, given that payozs only range between 1 and —1
we can immediately conclude there exists a Bayesian Nash 2-equilibrium.®

Generally, as in Example 1, the bound on ¢ given in Theorem 1 is unlikely
to be binding. To explain, we begin by highlighting that the method of

®For the reader with an interest in cooperative game theory, it may be interesting to
observe that here we have the failure of “small group negligibility” — a small group of
players (one, in this instance) can have a signi..cant eaect on aggregate payoss.
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proof is one of ‘purifying’ a Bayesian Nash equilibrium in mixed strategies.
With this in mind we see that while the de..nition of a (8, Q)-class Bayesian
game requires us to compare any two strategy vectors of a game, in reality,
demonstrating the existence of a pure strategy Bayesian Nash e-equilibrium
merely requires us to look at strategy vectors ‘near to’ any mixed strategy
Bayesian Nash equilibrium. A second reason why Theorem 1 is unlikely
to be binding is motivated by an example. Suppose there exists a mixed
strategy Bayesian Nash equilibrium in which a player i plays a pure strategy
A with probability 0.01 and a strategy B with probability 0.99. The proof
of Theorem 1 allows for the possibility that player i, after the puri..cation,
may end up playing strategy A with probability 1. Indeed, while one player
having to switch in this manner is plausible, the proof of Theorem 1 permits
that every player in the population may have to switch strategies to this
extent. This seems unlikely to ever have to be the case.

That the bound on ¢ provided by Theorem 1 will typically be an overes-
timate does not prevent Theorem 1 of being of use in demonstrating cases
where the use of pure strategies is boundedly rational. A simple example
illustrates this point.

Example 2.

The situation is virtually identical to that in Example 1 except the game
is now played between two dimerent groups of citizens, that is, there is
no longer a leader. Suppose that there are 1,000,002 players with equal
numbers in each group. The game has no Bayesian Nash s-equilibrium in
pure strategies for any value of ¢ below 1/500,001. Theorem 1 implies that
there exists a Bayesian Nash 4/500,0001 equilibrium.4

In Cartwright and Wooders (2002) by using a pregame framework we
provide a general class of large game for which Theorem 1 shows the ex-
istence of an approximate equilibrium in pure strategies. We discuss this
further in Section 7.

5 Social conformity

We begin by de..ning a society. Take as given a game I' = (N, A, T, p,u), a
partition of IV into classes {/Vi, ..., Ng} and a strategy vector o € S. For
any strategy s* € A(S) and any ¢, de..ne the subset N} of N such that
i€ NFifandonly if i € N, and o; = s*. If N¥ is non-empty then we refer
to the set N(f as a society. Thus, a society is (a maximal set) such that every

17



player belonging to that society plays the same strategy and has the same
class.

Given a partition of N into classes N = {Ny,..., No} and a strategy
vector o € S there exists a unique partition { Ny, ...., No} of the player set
N into societies. We say that N and o induce the partition into societies
{Ny,...., Nc}.

Given a Q member partition into classes N we say that a Bayesian Nash
e-equilibrium m is a Bayesian Nash e-equilibrium with social conformity if
N and o induce a partition into Q societies. That is, any two players in the
same class play the same strategy.

Suppose that players can choose mixed strategies. This may appear
unmotivated in view of the previous focus of the paper. The main motivation
will become clear, however, in the following section. Theorem 2 is also
an interesting result in its own right in focussing purely on the bounded
rationality of social conformity.

Theorem 2: Let I' be any (67,6p,6¢)-Class Bayesian game. Let ¢ be a
positive real number where ¢ > 2(6; + ép). The game I' has a Bayesian
Nash ¢ equilibrium m with social conformity.

Proof: By Nash’s existence of equilibrium Theorem there exists a Bayesian
Nash equilibrium o* of the game I". Given that T' is a (67,6p, 6¢)-class
Bayesian game there exists a partition N' ={ Ny, ..., Ng} that is both a 6;-
interaction substitute and ¢ p-individual partition. For each N, and for each
sk € S let 0*(q, k) be de..ned as

ot (g, k) = o
i€N,

Consider a strategy vector m satisfying the property that, for all i € N,
if i € Ny then m;;, = o*(q, k); the strategy vector m assigns each player
some pure strategy in his best response set. Clearly N/ and m induce a
partition into societies { Ny, ..., Ng}.

It is trivial that
> oie= 3 ma
i€N, i€N,

for all ¢ and all s* € S. Given that o* is a Bayesian Nash equilibrium and
N a ér-interaction substitute partition

Ui(of,m—i) > Ui(s®,m_;) — 261
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for all i € N and all s* € A(S). Given that A is a 6;-individual substitute
partition

Ui(sk,m,i) - Uj(Sk,m,]’) < 6p

for any players i,5 € N, for some ¢ and for any s* € A(S). Given the
construction of m it must be the case that

Ul(m) > Ui(sk,m_i) — 2(6[ + (5p)
for all i € N and all s* € A(S). This completes the proof.l

Theorem 2 shows that if players are allowed to use mixed strategies then
each class can be taken as a society; thus, the number of societies can be
bounded by the number of classes. That is, if I' is a (6, Q) class game then
for any ¢ > 46 there exists a Bayesian Nash e-equilibrium such that any two
players belonging to the same class play the same strategy. We note that
the value of é¢ is irrelevant for the bound on which there exists a Bayesian
Nash e-equilibrium with social conformity.

We note that Theorem 2 encompasses the special case in which Q = n. In
this case, there exists a 0-substitute partition and so there exists a Bayesian
Nash equilibrium in which there are n societies. This is, of course, just an
immediate application of the Nash Existence Theorem. In interpretation of
Theorem 2 this observation makes clear that we need to have some notion
of how large classes need to be.

Making judgements on how many people a class should have is clearly
somewhat arbitrary. Indeed a class size of one may not be unreasonable; this
may retect players who choose not to conform. The model of conformity
used by Bernheim (1994), for example, leads, in some instances, to a ‘central’
group of people who conform around a standard norm with other ‘extreme’
individuals choosing ‘to do their own thing’ by not conforming to such a
norm.

We propose two ways in which the issue of class size can be, at least
partially, overcome. First, by moving to a pregame framework the number
of classes can be ..xed independently of the size of the player set. This is
pursued further in Cartwright and Wooders (2002) as discussed in Section
7. Second, the concept of ex post stability can be used to give a criterion
for judging how large a class need be. We pursue this further in the next
section.

Before continuing we briety return to consider Example 1. It is trivial
that for the game in example 1 there is a partition into 2 classes which
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is both a O-interaction substitute partition and a 0-individual substitute
partition. Thus, Theorem 2 shows that there exists a Bayesian Nash 0-
equilibrium in which the population is partitioned into two societies. We
..nd in Example 1 a game for which the use of pure strategies cannot be
considered boundedly rational while social conformity can be. This appears
to be a fairly general property as illustrated in Cartwright and Wooders
(2002) by applying Theorems 1 and 2.

6 Social conformity in pure strategies

Having considered the rationality of using pure strategies in Section 3 and
the rationality of social conformity in Section 4, we now turn to the ratio-
nality of both social conformity and the use of pure strategies. We can begin
with a result that follows immediately from Theorem 1 and should need no
proof.

Corollary 1: Let T be a (67,6p, 8¢, @)-class Bayesian game. Let ¢ be a
positive real number where ¢ > 2(6;+6¢). The game I' has a Bayesian Nash
e-equilibrium m in pure strategies and partition of A/ into @ classes such
that \V and m induce a partition into societies { N1, ..., Nc } where C < QK.

This is clearly an immediate consequence of the fact that any partition
of the player set IV into societies induced by a partition of NV into @ classes
must have no more than QK societies. This result, however, can still be of
interest if the number of societies can be ..xed independently of the size of
the player set. This is possible using the pregame framework of Wooders et
al. (2000).”

We note that given the type of conformity in Corollary 1 there may
be players in the same class who are playing dicerent pure strategies. We
interpret such players as belonging to dicerent societies. As highlighted in
the introduction, in certain circumstances such a distinction may not be
appropriate. We thus wish to suggest alternative notions of conformity in
pure strategies.

A large literature (reviewed in Section 7) has shown that incomplete
information may permit the puri..cation of mixed strategies. In particular,
given that action choice can be conditional on type, a player can use the
randomness in his type to randomize over his actions even when playing a

" As we note in Wooders et al. (2001), this can also be established in the framework of
Kalai (2000).
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pure strategy. The possibility of such puri..cation is dependent on su¢cient
randomness of the type pro..le (Aumann et al. 1983); for example, such
puri..cation is not possible if there is perfect information.

We now assume that players can endogenously create imperfect informa-
tion if su€cient randomness does not exist. In particular, given a Bayesian
game I' we consider a Bayesian game with endogenous roles I'(f). We as-
sume that there exists a set of roless R = {r!',...,7X}. The number of
roles is as large as the number of actions. Let R = R"™ be the set of role
pro..les. We assume that there exists a probability distribution over the
set of role pro.les f : R — [0,1]. We also assume, throughout the re-
mainder of the paper, that beliefs are consistent and independent. Given a
Bayesian game I' = (N, A, T, g,u) a Bayesian game with endogenous roles

T(f) = (N, A, T(f), 9(f), u(f)) is de..ned to satisfy:
1. 7(f)=7 xR forall i € N,

2. g(f)(t,7) =g(t)f(r) forall t € T and all r € R,
3. ui(f)(a,t,r) =ui(a,t) forallae A, t € T, r € Rand all i € N.

The reader can observe that roles are basically equivalent to types. A
player can, for instance, make action choice conditional on her role. Further,
players are assumed to have consistent beliefs with respect to the conditional
distribution over role pro..les. One important distinction between a role and
a type is that a player’s role can have no emect on his payoa or the payosn
of any other player.

Roles are signals through which players can coordinate their actions.
There is an equivalence between the roles as de..ned here and the signals
players are assumed to receive in de..ning correlated equilibria. We discuss
this equivalence further in Section 7. We will not provide a ‘story’ of how
these roles come to be an accepted means of coordination, or how they are
assigned to players, but merely take as given the set R and function f. As
we will discuss in section 7, this is not atypical in the literature.

We place an important restriction on the form that the probability dis-
tribution over roles f can take. To do so, we take as given a partition
{N1,..., Ng} of the player set into classes. A probability distribution over
roles f satis..es within class anonymity if the probability that a player from
a class N, will have role »* is identical for all players belonging to the class.
Formally, if ¢, 5 € N, for some ¢ then,

Y =) f)

reR:r;=rk reRurj=rk
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for all ¥* € R. We assume that any Bayesian game with endogenous
roles I'(f) has a probability distribution of roles f satisfying within class
anonymity.

The importance of within class anonymity lies in how we interpret a
society. A society, in a Bayesian game with endogenous roles, is de..ned,
as before, as a maximal set of players such that every player in the society
plays the same strategy and is of the same class. Given that actions can be
conditional on role, in such a Bayesian game, we have to be careful to retain
a meaningful notion of a society. In particular, does the fact that players
within the same society play the same strategy imply that they can be seen
as conforming to some norm or of sharing some common identity? The
assumption of within class anonymity would suggest so. This is because,
while there are dicerent roles within the society and players with dicerent
roles may perform dicerent actions, each player is equally likely to take each
role within the society.

The presence of roles implies that mixed strategies can be puri..ed by
making action conditional on role. This allows us to model conformity in
pure strategies more generally. Indeed an immediate corollary of Theorem
2 is the following.

Corollary 2: Let T" be any (61,6p,6¢c, Q)-Class Bayesian game. Let ¢ be a
positive real number where ¢ > 2(6;+6p). There exists a partition A/ of the
player set into @ classes and a Bayesian game with endogenous roles T'(f)
(where f is within class anonymous) such that I'(f) has a Bayesian Nash ¢
equilibrium m in pure strategies with social conformity.

This result demonstrates that if players have some endogenous system
by which players can be assigned roles then we can conceive of societies in
which players play dicerent actions. Within this framework the number of
societies is again equal to the number of classes. Thus, any two players of
the same class play the same strategy.

Example 1 raises some questions about how to interpret Corollary 2. In
particular, Corollary 2 suggests that roles can be used to imply the existence
of a pure strategy Bayesian Nash equilibrium in the game of Example 1.
This is a conclusion that is di¢cult to justify. A Bayesian Nash equilibrium
requires the leader to play each strategy with probability one half and the
existence of roles really seems to do nothing to purify this strategy.

To try and overcome such problems we use the concept of ex-post infor-
mation proofness as introduced by Kalai (2000). A composition pro..le ¢ is
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said to be ¢ information proof if for all i € N
ui(c) > ui(a¥, ti,c_s) — €

for all a* € A. A strategy pro.le o is said to be a Bayesian Nash ¢ in-
formation proof equilibrium if it yields an ¢ information proof composition
pro..le with probability one. If a strategy is a Bayesian Nash information
proof equilibrium then, as discussed further by Kalai (2000), no player would
wish to change their action after knowing the types (roles) and the actions
of the other players. This seems to be a highly desirable property. We note
that the Bayesian Nash equilibrium of Example 1 is not information proof;
once the action of the leader is revealed some of the citizens would wish to
change their strategy.

In seeking to show the existence of a Bayesian Nash information proof
equilibrium we assume a particular form to the probability distribution over
types. Given a partition into classes {N,..., No} and given a role pro..le
r let h(r,k,q) be the number of players in class ¢ who have role 7*. We
say that a probability distribution over roles f is within class determined if
for any class ¢ and for any two role pro..les » and 7, if f(r), f(7) > 0 then
h(r,k,q) = h(F, k,q) for all classes ¢ and for all r* € R. Thus, irrespective
of the role pro..le, the number of players in each class that will have each
role is determined. For example, a husband and wife may have the choice
of going out to work or doing the housework. If the distribution of roles is
within class determined then it follows that one of them stays at home and
does the housework while the other goes out to work. Chance will decide
which person takes which role.

Consider a game I'(f) where f is within class determined and within
class anonymous and consider a Bayesian Nash e-equilibrium with social
conformity m of that game. The equilibrium m is such that every player
within the same class has the same probability of being assigned each role.
Further, two players of the same class assigned the same role will play the
same action. Finally, the number of players in each class who will be assigned
each role is known with certainty. It seems intuitive that we could interpret
m as an equilibrium with social conformity; certainly the players appear to
be conforming to some standard of behavior and it also appears that players
could learn by imitation in such a society.

We note that a probability distribution over the set of role pro..les f
that is within class determined suggest a high level of coordination amongst
members of a society. It would appear to suggest the presence of some
central coordinating body. This is, however, not unrealistic as Example
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3 below illustrates. We should also note that players can receive higher
payoss from a Bayesian Nash equilibrium of game T'(f), if f is within class
determined, than they could from game I". This is similar to the way in which
payogrs form a correlated equilibria can exceed those of Nash equilibrium in
the same game. This suggests a reason why roles may endogenously evolve.

We now state our ..nal result. We note that the values of 67,6, and é6¢
all ..gure in the bound on rationality provided in Theorem 3. This contrasts
with Theorems 1 and 2. We also note that we assume I' is a game of perfect
information; this could easily be relaxed subject to a relaxation on the level
of information proofness.

Theorem 3: Let T be any (67, 6p, 6c, @)-class Bayesian game with perfect
information. Let ¢ be a positive real number where ¢ > 2(26; + ép + 26¢).
There exists a partition N of the player set into ) classes and a Bayesian
game with endogenous roles T'(f) (where f is within class anonymous and
within class determined) such that I'(f) has a Bayesian Nash ¢ information
proof equilibrium m in pure strategies with social conformity.

Proof: From Theorem 1 the game I' has a Bayesian Nash 2(6; + é¢)
equilibrium in pure strategies m. Given that game I' is a (67,6p, 8¢, Q)-
class game let V' = {Ny,..., Ng} be a partition of IV into classes. For any
strategy pro..le s let h(s,k, c) be the number of players i such that ¢ € N,
and s; = s*.

Consider any strategy pro..le m such that h(m, k, q¢) = h(m, k,q). Pick
an arbitrary player i € N,. Suppose that m; = s*. There must exist some
player j € N, such that,

Uj(mj,m—j) > Uj(s*,m_;) — 2(61 + 6¢)
for all s* A(S). Thus, given that \V is a 6 -interaction substitute partition,
Uj(mj,m—;) > Uj(s*,m_5) — 2(261 + é¢)

for all s* € A(S). Let m be such that m; = m; and m; = m; for all [ # j.
We note that

Uj(mj,m_;) > U;(s*, m_;) — 2(261 + 8¢)

for all s* € A(S).
It follows, given N is a § p-individual substitute partition, that,

Uj(Sk,ﬁ_j) — Ui(sk,ﬁ_i) < (Sp

24



for all s* € A(S). Further, given that \V is a §o-strategy switching partition,
Ui(s*,m_;) — Ui(s®,m_y)| < éc
for all s* € A(S). Thus,
Us(Ti, ) > Ui(s®, ;) — 2(261 + 6p + 26¢)

for all s¥ € A(S).

The statement of the theorem is now more or less immediate. Let f be
such that for any role pro..le r € R, if f(r) > 0 then h(r,k,q) = h(m,k, q).
Then let everybody in the population have the pure strategy (for Bayesian
game with endogenous roles I'(f)) which says ‘play action ! if role '’

We ..nish this section with an example.
Example 3:

This example concerns driving on roadways. The players choose between
two actions - ‘give way’ (G) or ‘not give way’ (N). Players from a large
population are randomly matched to play the stage game with payoa matrix

player 2

G N

player 1 G 0,0 0,2
N 2,0 -2,-2

Players are not able to distinguish amongst each other. Thus they must
play the same strategy against any opponent they meet. A player’s payo=
is the sum of payoss received from playing each stage game.

Without any roles the only outcome we would expect is the unique
Bayesian Nash equilibrium in which each player randomizes in giving way
half of the time and not giving way otherwise. The result is a lack of coor-
dination with ‘crashes’ happening on one in four occasions.

Suppose there exists two roles - ‘to be on a major road’ and ‘to be on a
minor road’. On each meeting one player is selected to be on a major road
and one to be on a minor road. Each player can play the pure strategy ‘if on
a minor road give way and if on a major road do not give way’. Using these
roles we see conformity in pure strategies amongst the whole population. ¢

This example highlights many issues. First, players are able to realize
average payowns of 1 which would not be possible without roles. This in
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turn suggests a reason why a set of roles, or a highway code, would evolve.
We note, however, that for such a set of roles to evolve we would ultimately
appear to need some central coordinating body to classify roads as major and
minor. Finally, we note that the probability distribution over role pro..les
in this example is within class determined; there is always one person on a
minor road and one on a major road.

7 Relationships to the literature

A large related literature addresses the possible motivations for players to
use mixed strategies (a recent paper on this topic is Govindan, Reny and
Robson 2002). The central issue is whether a mixed strategy equilibrium
can be seen as approximately equivalent to a pure strategy equilibrium.
This is plausible because imperfect information, and the resultant exoge-
nous uncertainty, make explicit randomization unnecessary. Aumann at el.
(1983) provide su€cient conditions, on the exogenous uncertainty, such that
any mixed strategy vector can be approximately puri..ed. Harsanyi (1973)
argues that a game with perfect information should be considered as an
idealization of nearby games in which there is a small amount of payo= un-
certainty. Harsanyi (1973) shows that such uncertainty implies any mixed
strategy equilibrium can be approximately puri..ed.

This literature would suggest that for a wide class of games and for
any mixed strategy equilibrium of such games there exists an approximately
equivalent pure strategy equilibrium. This may appear to generalize the
results in this paper as our results suggest there are games for which an
approximate equilibrium in pure strategies does not exist. Further, this re-
mains the case even when we allow players to introduce some exogenous
uncertainty. The literature, however, is concerned with questioning the mo-
tivations of rational players while the focus of this paper is one of questioning
the bounded rationality of using pure strategies. The implications of this
dicerent approach are felt in both the assumptions of social conformity and
that the number of roles is no larger than the number of actions. For exam-
ple, it is typical of the literature, as in Aumann et al (1983) and Harsanyi
(1973), to assume a continuum of types. It is di¢cult to envisage a bound-
edly rational player being able to condition actions on a continuum of types.

The model of this paper is also related to the literature on correlated
equilibria (for an introduction see Myerson 1997). Correlated equilibrium
are motivated as retecting the incentives on players to coordinate their ac-
tions. For example, in a Battle of the sexes game the two players can
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coordinate their actions by utilizing exogenous signals. Such signals may
refect pre-play communication or readily observable ‘sunspots’. Theorem 3
could be interpreted as showing the existence of an approximate correlated
equilibrium with conformity. As above, however, we can point to a slight
dicerence in emphasis between this paper and the literature. In particular,
the literature on correlated equilibria is motivated by considerations of how
rational players can coordinate their actions. Roles, as introduced in this
paper, are motivated by considerations of how boundedly rational players
may be able to approximate rational behavior through conformity.

A further related literature concerns the evolution of institutions (see,
for example, Durlauf and Young 2001, Young 2001 and references therein).
This literature addresses the question of how conventions or institutions can
evolve, through individual interactions, to create coordination on a large
scale. Such a literature helps in understanding how roles could become
endogeneised in the way we assume in this paper.

We conclude this section by relating the results of this paper to those of
Wooders, Cartwright and Selten (2001) and Cartwright and Wooders (2002).
Wooders, et al (2001) take as given a non-cooperative pregame, consisting
of three elements — a space of attributes, €2, a set of pure strategies .S, and a
payoa function h. A component of attribute space () is a complete descrip-
tion of the possible characteristics of a player. The set of pure strategies .S is
assumed to be ..nite. The payor function / determines a payoe function for
any player in any game derived from the pregame. Given any ..nite player
set N and and an attribute function « ascribing an attribute to each player,
the pregame induces a game I'(N, ) on the population (N, «) determined
by N and «a. A set of players, all with attributes in some convex subset of
attribute space and all playing the same pure strategy is interpreted as a
society. Roughly, the main result of WCS demonstrates that for any ¢ > 0,
for any succiently large game induced by the pregame satisfying a certain
‘large game property,” there exists an e-Nash equilibrium in pure strategies
and this equilibrium induces a partition of the player set into at most J(¢) K
societies, where J(¢) is ..xed independently of the size of the player set. This
result establishes properties of a set of games where both the use of pure
strategies and social conformity can be consistent with rational behavior.

The approach of Wooders et al. (2001) has the virtue of providing a
general class of games where the use of pure strategies and social conformity
is boundedly rational. This contrasts with the results of this paper which,
while applying to any game, only provide a bound on the rationality of such
behavior given certain properties of the game. In Cartwright and Wooders
(2002) we connect the concepts of a pregame induced by a large game prop-
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erty and that of a (6, Q)-class game. Doing so allows us to apply the results
of this paper. In particular, it allows us provide a general class of game that
are (6, Q)-class games for arbitrarily small 6 and ..xed number of societies Q.
By applying the results of this paper we are also able to signi..cantly gener-
alise the results of WCS. For example, we demonstrate conformity in pure
strategies even if all players are identical. Further, we relax the requirement
of a global interaction assumption to one of local interaction.

8 Conclusion

This paper introduces the concept of approximate substitutes in non-cooperative
games. Doing so allows us to put a bound on the rationality, or irrational-
ity, of using pure strategies and of social conformity. We us a de..nition
of a society which allows players within the same society to perform dicer-
ent actions. Thus, players who are conforming to some norm may perform
dicerent actions. This is possible through imperfect information and the
existence of roles. In particular, players can make action choice conditional
on their role and roles are assigned to players randomly. Thus, players in the
same society can play the same strategy and yet perform dicerent actions.
To retain a meaningful notion of society we impose two restrictions on how
roles are allocated; ..rst, while roles are assigned randomly the number of
players in a society who will have each role is not random; second, any player
in the same society must have the same probability of being assigned each
role. We argue that players within the same society can be seen to conform
to some norm or convention. In research in progress, we relate our results
to the experimental research of Friedman (1996) and Van Huyck, Battalio
and Rankin (1997).

9 Appendix

9.1 Example A

The player set is given by N = {1, ..., 10}. The attribute of player ¢, denoted
a(7), is given by the pair (i,11 — i) = (a1(i), a2(2)) for all i« € N. Each
player has a unit of time to devote to production. A player chooses between
two actions - ‘to produce good A’ or ‘to produce good B’. The attribute of
a player is a measure of how much of the good she is capable of producing
in a unit of time. In particular, given any strategy vector ¢ the amount of
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the good A that will be produced is given by,
a(o) = ZUiAOél(i)-
ieN
The amount of good B produced is given by,
b(o) = oipas(i).
ieN
Each player i € N has the same payo= function. The payoe function for
any player i € N is given by,

a(o_;) + blo_;) + "4 (1) + s*Bas(i)

Ui(s®,0_;) =
[N

for any s* € A(S) and any strategy vector o. That is, a player’s payoa is
simply the per capita amount of both goods produced. This completes the
de..nition of the game.

Given any partition N\ of the player set into ) classes we can calculate
the minimum ¢ for which the game above is a (¢, @)-class game. We illustrate
with three partitions.

First, suppose that @@ = 1; that is, there exists a unique class. Consider
the two strategy vectors 0!, 0% € Y suchthato! = (B, B, B, B, B, A, A, A, A, A)
and o2 = (A, A, A A A, B,B,B, B, B). For example, given strategy o'
player 1 produces good B with probability 1. Given that a(c!) = b(c!) = 40
and a(o?) = b(c?) = 15 we have that,

{Ug,(al) — Us(o2, 02_5)‘ =4.9.

This shows that for () = 1 there exists no é-interaction substitute partition
for any 6 < 4.9. It is clear that there does exist a é-interaction substitute
partition for any 6 > 4.9. It is easily checked that this also implies T" is a
(6,1)-class game for any 6 > 4.9.

Moving to the other extreme suppose that Q = 10; that is, each player
is there own class. We have already noted there will exist a 0-substitute
partition. By re-using the two strategy vectors ¢! and o2 above we see,
however, that I" is not a (¢, 10)-class Bayesian game for any 6 < 4.9. Itis a
(6,10)-class for any ¢ > 4.9.

Suppose, ..nally that we set @@ = 3 where N; = {1,2,3,4} and Ny =
{5,6}. To ..nd a é-interaction substitute partition we compare a strat-
egy vector o! with o2 where, o' = (B,B, A, A,B,A,B,B, A, A) and 02 =
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(A,A,B,B, A, B, A, A, B, B). We note that a(c!) = b(c!) = 32 and a(c?) =
b(c?) = 23. Thus,

|Us(0") = Us(a},0%,)] = 1.7.

It follows that there is a §-substitute partition for any value of § > 1.7.
Compare two strategy vectors o' = (B, B, B, B, B, A, A, A, A, A) and ¢% =
(A,B,B,B,B,B, A, A, A, B). We can calculate that,

|Us(0") = Us(a}, 0%,)] = 1.9.

This leads us to claim that I" is a (6, 3)-class Bayesian game for any ¢ > 1.9.

For each value of @, by looking at all partitions of the player set into
subsets we can calculate the minimum value of § such that the game is a
(6,Q)-class game. This value of ¢, as a function of @, is plotted in Figure
1 below with more details given in Table 1. The minimum value of §, for
which there exists a §-substitute partition or §-strategy switching partition
can also be calculated as a function of . These are also plotted in ..gure 1
with more details given in Tables 2 and 3.

In Figure 1 we see the trade-oa between a large and small value of Q.
If @ is large then there exists §-substitute partition for small §. These
partitions, however, do not imply the game is a (¢, Q)-class game for small
6. Each class has relatively few players and so payo=s are not near-invariant
when one player from each class changes strategy. By contrast, if () is small
then the 6 for which there exists a é-substitute partition is larger. This
simply retects the fact that we are grouping together players with more
diverse attributes. Given, however, that the number of players in a class is
now relatively large any é-substitute partition is likely to be a (6, @)-class
game.

It is interesting to highlight that the Q member partition which implies
the minimum § for which there is a §-substitute partition may dicer from the
@ member partition consistent with the minimum §é for which the game is a
(6,Q)-class game. For example, set @ = 9. The partition in which players 5
and 6 are put in the same subset is a 0.2-substitute partition. By using this
same partition we can say that the game is a (4.9, 9)-class game but cannot
put a lower bound on ¢ than 4.9. Consider the partition in which players
1 and 10 are put together. This partition is only a 1.8-substitute partition,
however, this partition demonstrates that the game is a (4.1, 9)-class game.
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Table 1:

Q
1

2

10

partition

{1,2,3,4,5,6,7,8,9,10}
{1,2,3,4,5}
{6,7,8,9,10}
{1,2,3,4}, {5,6},
{7,8,9,10}
{1,2,3,4},{5},
{6},{7,8,9,10}
{1,2,3},{4,7}, {5},
{6},{8,9,10}
{1,2,3},{4},{5},
{6},{7},{8,9,10}
{1,10},{2,3}, {4},
{5}, {6}, {7}, {8,9}
{1,10},{2,9}, {3},
{4}, {5}, {6}, {7}, {8}
{1,10}, {2}, {3}, {4},
{5}, {6}, {7}, {8},{9}
{1},{2}, {3}, {4}, {5},
{6}, {7}, {8}, {9}, {10}

values of § such that
a (6,Q)-class game
> 4.9

> 2.4
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Table 2:

Q
1

2

10

partition

{1,2,3,4,5,6,7,8,9,10}
{1,2,3,4,5}
{6,7,8,9,10}
{1,2,3},{4,5,6,7},
{8,9,10}
{1,2},{3,4,5},
{6,7,8},{9,10}
{1,2},{3,4},{5,6},
{7,8},{9,10}
{1,2},{3},{4,5,6},
{7,8},{9}, {10}

{1}, {2}, {3},{4,5,6},
{7,8},{9}, {10}

{1}, {2}, {3}, {4,5}
{6, 7}, {8}, {9}, {10}
{1}, {2}, {3}, {4}, {10}
{5,6},{7},{8},{9}
{1}, {2}, {3}, {4}, {5},
{6}, {7}, {8}, {9}, {10}

values of § such that

a 6-substitute partition

> 4.9
> 2.4

> 1.6

> 1.2

> 1.0

> 0.8

> 0.6

> 0.4

> 0.2

>0
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Table 3:

values of ¢ such that

a é-strategy switching partition
1 {1,2,3,4,5,6,7,8,9,10} >0.9

2 {1,2,3,4,5,7,8,9,10},{6} >1

{1,2,3,4,7,8,9,10},

() partition

S [51{6) =t
Vo M
R THER R L
e 2
S L
g 11,10},{2,9}. {3}, >34

o) 12113, 1,
T
0 e s {0y, 10y =40

33



9.2 Proof of Theorem 1

First, we introduce some notation. Given a strategy vector o = (o1, ..,0p,)
(where o; = (01, ...,05k) € AF for i = 1,...,n) let M(c) denote the set of
strategy vectors m = (my,..,my) such that foralli =1,..., N,

1. support(m;) Csupport(c;) for all i € N and,

2. m; is degenerate.

Informally, given a strategy vector o the strategy vector m € M/(o)
if, for all 4, strategy m; is such that player ¢ plays some pure strategy
sk esupport (o;) with probability one.

Our main result makes use of the following Lemma from Wooders, Cartwright
and Selten (2001),

Lemma 1 (Wooders, Cartwright, Selten): For any strategy vector
o = (01,...,0,) and for any vector g € Z such that >_, o; > g, there exists
a vector m = (myq, ..., my) € M(o) such that:

> mi >3
i

We extend Lemma 1. First, we introduce further notation. Given real
number & let |h| denote the nearest integer less than or equal to 4 and [h]
the nearest integer greater than or equal to 4 (i.e. [9.5] =9 and [9.5] =10
etc.). Given vector h denote by | k] the vector such that |h|, = |hy] for all
k with a similar de..nition for [A].

Lemma 2: For any strategy vector o = (o1, ...,0,,) there exists a strategy
vector m = (my, ...,my) € M(o) such that:

Proof: Denote by M*(o) the set of vectors m = (my, ..., my) € M(0o) such
that > ,m; > [ ,0:]. By Lemma 1 this set is non-empty. Proving the
Lemma thus amounts to showing that there exists a vector m € M*(o) such
that [)".0;] > >, m;. Suppose not. Then, for every vector m € M*(o)
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there exists some strategy s* € S such that >, m;, > [>, 04 ] . Choose a
vector m® € M*(o) such that

S (T [ne)

s’“:E,-mip[

C

is minimized. That is, m® comes as close as any vector to satisfying the
statement of the Lemma. Denote by s* a pure strategy such that

n n
=1 =1
We then introduce the following sets Wt and Lf, t = 0,1,2, ...,

W = {i:mgz=1}
L' = {s*:04 >0forsomeiec W'} fort>0
Wt = {i:mg =1 for some s* € L'} for ¢t > 0.
For some t*, W¥" = W¥+! = W and L' = L*'*! = L. The construction

of W and L* imply that for any s** € L*" there must exist a set of players
{ig,i1,...,i} € W and set of strategies {s*1, ..., s*} such that,

0 —
m. o= 1 and oy, > 0,

0w = landoy.,, >0forallr=1,.t—1,
mgy, = 1land ok >0,

where we allow the possibility that ¢ = 0,1. Suppose there exists a k* € L
such that

n n
§ My < g Oik*-
i=1 i=1

Given the chain of players {ig,i1,...,i+} € W given above, consider the
vector m* constructed as follows,

* . * .
m.. = 0 and mj ;, =1,
* _ * _ _ *
mi, = 0andm;, ~=1forallr=1.1 -1,
* _ * _
m; .k, = 0andm; . =1,

mY, = mY, for all other s* € Sand i € N.
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It is easily checked that the vector m* € M(o) leads to the desired contra-
diction by reducing by one the value C. We note, however, that

n
DD mk=Wl=)_ > ow
i=1 gke €W skeL
Thus, if
n n
domg>Y 05> og
i=1 i=1 iew
there must exist some s** € L such that
n n
Zmik* < Zaik* < Z%k*
=1 ieW =1
giving the desired contradiction.ll

We require one ..nal preliminary result.

Lemma 3: Given any two strategy vectors m and o where m is degenerate
and where

<1

n n
g Mik — g Oik
i=1 i=1

for all k, there exists a strategy vector & such that,

n n
§ Eik=§ Oik
i=1 i=1

and

n
> [T —mal <1
=1

for all k.
Proof: Given such a o and m we proceed by constructing an appropriate @.

Let K~ denote the set of pure strategies for which >~ | m = [>°0 o]
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and let K denote the set of strategies for which """, my, = [> 1| ok
We note that for every s* either s* € K~ or s* € K*. For each s* let,

A(R) = o — {Z UikJ :
i=1 i=1
and let,

At = 3" Ak

k:ske K+

Provisionally, set 7; = m; for all <. Then, for each sk e K+ identify a
player iz such that m;. = 1. For each sk € K+ re-allocate player iz the
strategy de..ned, for each k, as follows,®

Ak)ifk=F
5 . =1{ Oifs"e K" andk#k

- S
A(k)&ﬂ#_(i)z otherwise.

We conjecture that this strategy vector & satis..es the required condi-
tions. First, we should check that & as de..ned above is indeed a strategy
vector. For those players i for whom &; = m; there is nothing to check. Con-
sider a player iz for some sk € K+. We begin by noting that 1 > Gizk > 0

forall kas |[K*|— AT > (1 — A(k)). We also note that

|

-3 (3
= n—(n—|KT"|)
K.

Thus,

> A(k) =Kt - AT,
k:skeS—

If |[KT| = AT then set &; = m; for all i.
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Therefore,

_ (1 A(E))
2% = AR+ (KT = AN

= 1.

Thus,  is a strategy vector. We note that for all s* € K,

> Tk = {ZUWJ Kﬂ A+ > (1=A®)
1=1 sFCK+
= ZO’ik.
i=1

Clearly, for all s* € KT we have that >0, 55 = Y | o
Finally, for all s* € K~

Z|Uzk mzk| |K+| A+ Z 1a

spEKT

and for all s* ¢ K+
Y 17 —ma| = (1 - A(k)) < 1.
=1

This completes the proof.ll
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