
 
 
 

 
 

Smooth Particle Filters  
for Likelihood Evaluation and Maximisation 

 
 
 

Michael K Pitt 
 
 

No 651 
 
 
 
 
 
 
 
 
 

 

WARWICK  ECONOMIC  RESEARCH  PAPERS 
 
 
 
 
 

DEPARTMENT OF ECONOMICS 
 
 

 



Smooth particle filters for likelihood evaluation and maximisation

Michael K Pitt

Department of Economics, University of Warwick, Coventry CV4 7AL
M.K.Pitt@warwick.ac.uk

July 16, 2002

Abstract

In this paper, a method is introduced for approximating the likelihood for the unknown
parameters of a state space model. The approximation converges to the true likelihood as
the simulation size goes to infinity. In addition, the approximating likelihood is continuous
as a function of the unknown parameters under rather general conditions. The approach
advocated is fast, robust and avoids many of the pitfalls associated with current techniques
based upon importance sampling. We assess the performance of the method by considering
a linear state space model, comparing the results with the Kalman filter, which delivers
the true likelihood. We also apply the method to a non-Gaussian state space model, the
Stochastic Volatility model, finding that the approach is efficient and effective. Applications
to continuous time finance models are also considered. A result is established which allows
the likelihood to be estimated quickly and efficiently using the output from the general
auxilary particle filter.

Some key words: Importance Sampling, Filtering, Particle filter, Simulation, SIR, State space.1

1The author is grateful for the comments on an early draft of this paper presented at the Tinbergen Institute,
Amsterdam, March 2000 and for the more recent comments recieved at the American Statistical Association,
Atlanta 2001.
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1 Introduction

In this paper we address the problem of likelihood evaluation for state space models via particle

filters. We model a time series {yt, t = 1, ..., n} using a state space framework with the {yt|αt}
being independent and with the state {αt} assumed to be Markovian. Particle filters use simu-
lation to estimate f(αt|Ft), t = 1, ..., n, where Ft = {y1, ..., yt} is contemporaneously available
information. In this paper we assume a known ‘measurement’ density f(yt|αt) and the ability

to simulate from the ‘transition’ density f(αt+1|αt). We shall further assume that this state

space model is indexed, possibly in both the transition and state equations, by a vector of fixed

parameters, θ.

The task we are concerned is the estimation of the likelihood, its log being given by

logL(θ) = log f(y1, ..., yn|θ)
=

n∑
t=1

log f(yt|θ;Ft−1),

via the prediction decomposition. In order to estimate the log-likelihood we exploit the rela-

tionship

f(yt|θ;Ft−1) =
∫
f(yt|αt; θ)f(αt|Ft−1; θ)dαt. (1·1)

Since we have a filtering device, the particle filter, which delivers samples from f(αt−1|Ft−1; θ),

and we can sample from the transition density f(αt|αt−1; θ) then it is clear that we can estimate

(1·1).
The task in this paper is two fold. Firstly, we consider how we can estimate (1·1) efficiently,

statistically and computationally, by using the output from general particle filters. Secondly,

we address the problem of providing an estimator for the likelihood which is continuous as a

function of the parameters, θ. The second issue is important because it means that the task of

performing maximum likelihood inference is greatly facilitated.

The structure of this paper is as follows. In Section 2, we describe particle filters in general

and detail the auxiliary particle filter in particular. Section 2·1 introduces a new and effective
way of estimating the prediction density (1·1) by using the output which arises from the auxiliary
particle filter. We go on, in Section 3, to consider resampling methods which allow likelihood

estimation which is continuous as a function of the parameters θ. Section 4 describes how the

basic SIR filter of Gordon et al. (1993) may be altered to allow continuous likelihood estimation.

Within this section a simple Gaussian state space model is considered and the performance of

the proposed simulated method for obtaining the likelihood is compared to the true likelihood,

given by the Kalman filter. A number of models are considered within Section 4, including the
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stochastic volatility model, Section 4·3. We also consider why the method works well for large
time series models, giving an informal justification in Section 4·4.
In Section 5, we move on to consider “fully-adapted” models, which yield more efficient

estimation than the standard SIR based procedure. Various models are considered in this

section and the GARCH plus error model is examined in depth. Section 6 examines methods

of more efficient estimation for quite general models. The details of the methodology is worked

out for the stochastic volatility (SV) model.

Section 7 considers an adjustment to the smooth particle filter which allows us to consider

continuous time volatility models, see Section 7·1, and locally adapted auxiliary particle filter
methods, Section 7·2. Finally, in Section 8 we conclude.

2 Particle Filtering

Simulation based filters are based on the principle of recursively approximating the filtering

density f(αt|Ft) by a large sample α1
t , ..., α

M
t with weights π1

t , ..., π
M
t . If this approximation is

regarded as perfect then this leads to the empirical filtering density at time t+ 1,

f(αt+1|Ft+1) ∝ f(yt+1|αt+1)
M∑

k=1

πk
t f(αt+1|αk

t ). (2·1)

Then the task is to approximate the left hand side by a sample α1
t+1, ..., α

M
t+1 with weights

π1
t+1, ..., π

M
t+1. These samples and weights go through to form the empirical filtering density for

the next time step and so the process continues, providing filtered samples through time. In

the particle filtering literature various methods for producing samples from (2·1) are proposed.
Important references include Gordon et al. (1993), Kitagawa (1996), Berzuini et al. (1997),

Liu & Chen (1998), Isard & Blake (1996) and Hurzeler & Kunsch (1998). A good review

is provided in Doucet et al. (2000b) and in the collection of articles in Doucet et al. (2000a).

Recent important work by Andrieu & Doucet (2002) has focused on the analysis of conditionally

Gaussian state space models. Filtering by numerical integration procedures have also been

developed, an important reference from statistics being Kitagawa (1987) who applied the filter

to many non-Gaussian models, including a stochastic volatility model for earthquake data. The

particle filtering literature has centred on the on-line filtering of the states and little work

has been carried out on parameter estimation via this methodology. An exception is Liu &

West (2000) who consider the problem of jointly updating the posterior of the states and fixed

parameters in a sequential manner. Before dealing with the issue of parameter estimation we

shall focus of the details of particle filtering, regarding the parameters as fixed.

The
{
πk

t

}
and

{
πk

t+1

}
are typically taken as being equal. From this point on, for notational
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convenience, we shall assume that all the πk
t = 1/M. In this paper we shall follow the approach

of Pitt & Shephard (1999), henceforth PS, using the rather general approach of auxiliary particle

filtering.

PS showed that the sampling issues raised in particle filtering are best addressed by intro-

ducing an auxiliary variable. Such methods are generically called auxiliary particle filters. To

avoid any ambiguity, let us denote the transition density as f2(αt+1|αt) and the measurement

density as f1(yt+1|αt+1). The innovation in PS is to write down the joint density with marginal

given by (2·1). Let us start by assuming we have a sample of sizeM from the filtering density at

time t, αk
t ∼ f(αt|Ft), k = 1, ...,M . We then wish to sample from the following target density

f(αt+1, k | Ft+1) ∝ f1(yt+1|αt+1)f2(αt+1|αk
t ), k = 1, ...,M (2·2)

� g(k, αt+1) = g1(yt+1|αt+1, k)g2(αt+1|αk
t )

= g(yt+1|k)g(αt+1|k, yt+1) = C.g(k, αt+1).

We have denoted unnormalised densities with a bar. So we now have a joint density g(k, αt+1),

which approximates the target and that we can sample from, where

g(yt+1|k) =
∫
g(k, αt+1)dαt+1, g(αt+1|k, yt+1) =

g(k, αt+1)
g(yt+1|k) ,

and C =
∑M

i=1 g(yt+1|i). So for our joint density g(k, αt+1), we have

g(k) =
g(yt+1|k)∑M
i=1 g(yt+1|i)

, g(αt+1|k) = g(αt+1|k, yt+1). (2·3)

Note that we design our approximations via g(k, αt+1), see Table 1, so that g(k) can be calculated

directly and g(αt+1|k, yt+1) is easy to simulate from. We refer to g(yt+1|k) as the first stage
weights and g(k) as the first stage of probabilities from our SIR scheme. In practise for particular

proposals these expressions quickly become simple, as shown in Table 12. For example, for

ASIR0, g(yt+1|k) = 1 so g(k) = 1/M and g(αt+1|k) = f2(αt+1|αk
t ). For ASIR1, g(yt+1|k) =

f1(yt+1|α̂k
t+1) and g(αt+1|k) = f2(αt+1|αk

t ). The sampling from g(k, αt+1) in all cases is simple.

To get a sample of size R, we sample kj ∼ g(k) then αj
t+1 ∼ g(αt+1|k), for j = 1, ..., R.

Having sampled from our joint proposal density (2·3) R times we then allocate weights to

the resulting samples
(
αj

t+1, k
j
)
, j = 1, ..., R,

ωj = ω(αj
t+1, k

j), πj =
ωj∑R
i=1 ωi

.

where

ω(αt+1, k) =
f1(yt+1|αt+1)f2(αt+1|αk

t )
g1(yt+1|αt+1, k)g2(αt+1|αk

t )
. (2·4)

2fT1
1 (yt+1|αt+1)|

α̂k
t+1

represents the exponential of a first order Taylor expansion of f1(yt+1|αt+1) around α̂k
t+1.

Similarly fT2
1 (yt+1|αt+1)|

α̂k
t+1

represents the second order Taylor expansion.
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Method Restrictions
g(k, αt+1) =

g1(yt+1|αt+1, k)× g2(αt+1|αk
t )

g(k, αt+1) = g(k)× g(αt+1|k)

ASIR0 None 1× f2(αt+1|αk
t )

1
M × f2(αt+1|αk

t )

ASIR1 None f1(yt+1|α̂k
t+1)× f2(αt+1|αk

t )
f1(yt+1|α̂k

t+1)∑M

i=1
f1(yt+1|α̂i

t+1)
× f2(αt+1|αk

t )

ASIR2 f2 Gaussian. fT1
1 (yt+1|αt+1)|α̂k

t+1
× f2(αt+1|αk

t ) see PS

ASIR3 f2 Gaussian. fT2
1 (yt+1|αt+1)|α̂k

t+1
× f2(αt+1|αk

t ) see PS

Table 1: Some different proposals arising from the ASIR procedure. The third column shows
the unnormalised approximating form to the unnormalised target. The final column shows the
normalised approximating joint density as g(k)× g(αt+1|k). This is a little bit more involved to
write down for the last two columns, see Pitt & Shephard (1999). Typically α̂k

t+1 is the mean,
the mode, a draw, or some other likely value associated with the density of αt+1|αk

t .

We then sample from this discrete distribution, using the normalised weights, πj , yielding ap-

proximate samples from f(αt+1|Ft+1). We refer to the ωj as our second stage weights, and the

πj as our second stage probabilities. Again these quantities become very simple for particular

proposals. For the ASIR0 method, which reduces to the method of Gordon et al. (1993), we

have simply ωj = f1(yt+1|αj
t+1). The hope, and frequently the realisation (see PS), is that as we

take better approximations than ASIR0 the second stage weights become less variable leading

to more efficient filtering estimation.

Before resampling from the discrete distribution on the R particles, it is more efficient,

at each time step, to estimate moments under the filtering density f(αt+1|Ft+1) by using the

importance sampler approach. We estimate µ = E[h(αt+1)|Ft+1] using the usual importance

sample estimator

µ̂ =
R∑

j=1

πjh(α
j
t+1).

So far we have advocated the sample-importance-resample (SIR) algorithm of Rubin (1988).

Different algorithms, for example MCMC, based upon the auxiliary proposals may also be used,

see Pitt & Shephard (2000).

2·1 Efficient likelihood estimation

In Section 3, we shall explore methods for estimating likelihoods which are continuous in the

parameters. However, prior to this, it is necessary to explore efficient methods for calculating

the likelihood. Whilst efficient estimation methods will yield gains in later Sections, the issue
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is important in its own right. For instance, we may be interested in estimating the likelihood

at single points in the parameter space. We may wish to compare models by evaluating their

likelihoods. In addition, we may require to compute the Bayes factor associated with a model.

For a time series application see, for instance, Kim et al. (1998). In this case, for model M we

require,

f(y|M) = f(y|θ;M)f(θ|M)
f(θ|y;M) .

For non-Gaussian state space models this problem is non-trivial. The estimation of the denom-

inator at a single parameter value θ is dealt with in Kim et al. (1998) via Markov chain Monte

Carlo schemes. However, it is also important that the likelihood in the numerator f(y|θ;M)
be estimated well at the point θ. Efficient estimation also features in the adaptable models

considered by PS and their smooth analogues considered in later sections of this paper.

At each time step we wish to estimate the prediction density f(yt+1|Ft), given by (1·1). Of
course since we only have the samples from the filtering density at time t, we actually wish to

estimate the empirical analogue,

f̂(yt+1|Ft) =
∫
f1(yt+1|αt+1)

{
M∑

k=1

f2(αt+1|αk
t )
1
M

}
dαt+1. (2·5)

This integral cannot, in general, be evaluated directly and so needs to be estimated. There are

two aspects to consider at this point. Firstly, we wish to make our method as computationally

efficient as possible. Therefore, we would ideally wish to simply use the sample values given

in the output from our chosen auxiliary particle filter in the estimation of (2·5). Secondly, we
would like to exploit any knowledge, which enabled statistical efficiency in our particle filter, in

this estimation. The following theorem addresses both of these concerns.

Theorem 1:

f̂(yt+1|Ft, θ) =

[
1
M

M∑
i=1

g(yt+1|i)
]
E [ω(αt+1; k)]

where ω(αt+1; k) is given by (2·4) and the expectation is with respect to g(k, αt+1) given by

(2·3).
Proof: See Appendix, Section 10·2.

This above result is useful practically because it means we can take the sample mean of

the first stage weights and the sample mean of the second stage weights. So the likelihood

f̂(yt+1|Ft, θ) is unbiassedly estimated as[
1
M

M∑
i=1

g(yt+1|i)
]  1

R

R∑
j=1

ωj

 . (2·6)
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For the ASIR0 method of Gordon et al. (1993) this reduces to the standard Monte Carlo

estimator
1
R

R∑
j=1

ωj =
1
R

R∑
j=1

f1(yt+1|αj
t+1).

When we are able to perform complete adaption, see PS and Section 5, that is we can write

f1(yt+1|αt+1)f2(αt+1|αk
t ) = f(yt+1|αk

t )f(αt+1|αk
t ; yt+1),

then we simply set our joint proposal as g(k, αt+1) = f(yt+1|αk
t )f(αt+1|αk

t ; yt+1). In this case

(2·6) becomes 1
M

∑M
i=1 f(yt+1|i) so that we are calculating (2·5) directly.

In general, when the ωj have small variance (our criterion for an efficient particle filter) our

estimator will be efficient statistically. In our sampling method we have to evaluate both of

the elements of the above product to perform filtering so that the quantities in (2·6) can be
regarded as a free bi-product of our auxiliary sampling scheme. The proof also extends quite

straightforwardly to fixed lag filtering. Fixed lag filtering is used for robustness and is described

in Pitt & Shephard (2000). The efficient estimation method above is exploited in the smooth

likelihood designs used later in the paper, see Section 5. We also employ bias correction to

estimate the log-likelihood, see Section 10·2.
Before outlining the smooth particle filter approach adopted presently, it is worth noting

that there have been numerous alternative attempts to provide algorithms which approximate

the filtering densities. Important recent work includes Kitagawa (1987), West (1992), Gerlach

et al. (1999) and those papers reviewed in West & Harrison (1997, Ch. 13 and 15). Likelihood

maximisation for latent variable time series has also been considered from an importance sam-

pling perspective, see for instance Danielsson & Richard (1993), Durbin & Koopman (1997) and

Shephard & Pitt (1997). The importance sampling approach can be problematic as the variance

of the importance weights rises rapidly as the dimension (the length of the time series) increases.

The advantage of the approach suggested in this paper is that it provides a reasonably general

method based on particle filtering. The problem of dimensionality which arises in importance

sampling appears not to be a problem for this method. In the following section, a simple approach

is introduced which allows continuous likelihood estimation. Section 4 describes a simple filter

which produces continuous likelihood estimation. The example which is examined in Section

4.1 is the AR(1) model which is observed with Gaussian additive noise. This provides a good

comparison as we know have the true filter and likelihood solution via the Kalman filter. The

model also provides a fair test of the method, as no knowledge of the conjugate relationships are

exploited in using the simulation filter. Therefore the performance of the method on this model

is informative about the performance on models for which there is no exact likelihood solution.
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The model also has a very similar structure to the stochastic volatility model, examined in

Section 4·3. In Section 4·2, we consider examples of other models which may be analysed using
this framework. In particular, continuous time stochastic differential equations (SDEs) which

are observed with noise are considered. This type of model illustrates the advantages of the

particle filter approach to likelihood estimation, as importance sampling methods are extremely

difficult to apply to such models, and MCMC methods can be very inefficient. In Section 4·3 we
consider the basic stochastic volatility model in detail. In Section 4·4, a heuristic justification
is proposed for the good performance of the simulated filter approach for long time series.

3 Smooth Likelihood estimation

At present, despite being efficient, our estimator of the likelihood is not continuous as a function

of the parameters, θ. This can be quite easily seen for the ASIR0 method for example. Suppose

the samples αk
t , k = 1, ...,M , from the filtering density f(αt|Ft; θ) are changed by a very small

quantity. Then the proposal samples αj
t+1, j = 1, ..., R will also change by a very small amount.

However, the discrete probabilities, proportional to f(yt+1|αj
t+1), attached to these particles will

have changed as well. Since the resampling stage essentially works by generating a uniform

and inverting this discrete cumulative distribution function, it is immediately clear that, even

with the same uniform variables, the resampled particles will not be close. This illustrates an

inherent problem with the bootstrap method for smoothness; it is not smooth. From a practical

viewpoint, maximising the resulting rough surface will be extremely problematic, expensive and

probably not routinely possible. In order to get around this difficulty a very simple alternative

to the discrete resampling is now proposed. This, on its own, is a sufficient innovation to allow

continuous likelihood estimation by using the ASIR0 method. However, it can be combined with

other adaptions in order to be used in conjunction with the ASIR1 method and for complete

adaption problems.

3·1 Smooth bootstrapping

We record l̂t+1 as our estimate of log f(yt+1|Ft), using the method of Section 2·1 combined with
our bias correction, see Section 10·2. After running through time, we calculate

l̂(θ) =
T∑

t=1

l̂t.

As we change the parameters θ, we must use the same random numbers and rerun the

particle filter again calculating l̂(θ) at the new value. In order for the likelihood to be smooth

as a function of θ, we require that the samples of αt from the filter be smooth as a function of θ.
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We must consider a smooth analogue of the usual bootstrap procedure which is computationally

efficient to sample from in a smooth manner.

Let us think of the bootstrap operating on an R×1 vector x with sorted univariate elements,
xi and picture the corresponding cumulative distribution function (cdf), see Figure 1. Then

instead of the discrete (steps) cdf that we usually use, it is proposed here that we replace it

by a smooth cdf. The reason for this is that this will enable smooth sorted samples to be

generated. Of course, we are not free to use any smooth cdf we require. A natural choice

would be to use the smooth bootstrap approach adopted by, for instance, Efron & Tibshirani

(1993) which uses a kernel density approach, see Silverman (1986). However, whilst appealing,

this would not enable smooth sorted samples without an expensive O(R2) algorithm. This is

prohibitive, so for univariate data we propose to use a piecewise linear approach. Just as the

discrete cdf approaches the true cdf, so our smooth cdf will approach the true cdf as R → ∞.
Our construction is simple, although different approaches based upon the partitioning idea here,

could be employed. Suppose for each xi we have probability πi. Then we define a region i, Si as

follows: Si = [xi, xi+1], i = 1, ..., R−1. These regions form a partition of the sample space for x.
We have different densities g(x|i) within each region i, Si. We shall assign Pr(i) = 1

2(πi+πi+1),

i = 2, ..., R−2 and Pr(1) = 1
2(2π1+π2), Pr(R−1) = 1

2(πR−1+2πR). Clearly, these probabilities

sum to 1. Within each region we shall define the conditional densities as follows,

g(x|i) = 1
(xi+1 − xi)

, x ∈ Si, i = 2, ..., R− 2,

and

g(x|1) =


π1
2π1+π2

,

π1+π2
2π1+π2

1
(x2−x1)

,

x = x1

x ∈ S1

g(x|R− 1) =


πR
πR−1+2πR

,

πR−1+πR

πR−1+2πR

1
(xR−xR−1)

,

x = xR

x ∈ SR−1.

Figure 1 shows a discrete cdf with the continuous interpolation for R = 8. Note that the

continuous cdf passes through the mid-point of each step in the discrete cdf. As R becomes

larger, the two cdfs become indistinguishable. The validity of the resampling method for SIR is

preserved. Denoting our continuous cdf by F̃ and the discrete SIR cdf by F̂ , it can be seen that

as R → ∞,
F̃ (z)→ F̂ (z)→ F (z),

where F (z) is the true cdf. The justification for the convergence of F̂ (z) to F (z) is given rather

succinctly by Smith & Gelfand (1992).
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The partitioning of the state space means that sampling from this continuous density is very

efficient. We simply select the region i with Pr(i) and sample from g(x|i). The form of g(x|i)
has been chosen to be linear. In effect we are simply inverting the smooth cdf given a uniform

random variable, which remains fixed as we change the parameters. This ensures continuity and

allows very fast sampling but there is no reason why a quadratic or cubic interpolation could not

be used within each region, provided of course we maintain the monotonic non-decreasing shape.

Indeed differentiability could be achieved by using a higher order interpolation. The algorithm

for sampling from this distribution is given in the Appendix and is no more computationally

demanding than standard multinomial sampling.

4 Likelihood estimation using ASIR0

Equipped with the new method of resampling, we may now proceed to generating continuous

likelihood estimates via the ASIR0 particle filter of Gordon et al. (1993). For clarity, we shall

outline the specific form of this scheme. It is, of course, simply a special case of the scheme

of Section 2. However, before describing the scheme, it is necessary to spell out a couple of

additional computational details which surround it. Firstly, we fix the random seeds for a

particular complete run (through time) of the filter. So for different parameters θ we will be

running the filter to estimate log f(y|θ) using the same random numbers for each run. Secondly,
we will be sorting the filtered samples prior to the next SIR step. Finally, when generating

from both the proposals and the resampling density, we will be using stratified sampling. This

stratification scheme is briefly described in Pitt & Shephard (2000) and uses the suggestion

of Carpenter et al. (1999). Liu & Chen (1998) and Kitagawa (1996) also discuss methods of

stratification. The stratification scheme used here works on the uniform variables which are

used to invert our empirical cdf and is detailed in the Appendix. Stratification enables more

efficient estimation and can reduce the problem of sample impoverishment. Pitt & Shephard

(2000) demonstrate that using this approach at both the sample and resample stages produces

efficient estimation for the filtered means.

The computational details out of the way, we can now outline the specific form of the ASIR0

scheme. In the usual way, see Section 2, let us assume that at time t we have the sorted (in

ascending order) samples αk
t ∼ f(αt|Ft), k = 1, ...,M . Of course this filtering density is indexed

by θ but for brevity we shall drop this from our notation. Using our stratified sampling method

we sample R of these and pass through the transition density. We then sort in ascending order

to obtain αj
t+1, j = 1, ..., R. These will be distributed according to f(αt+1|Ft). We attach to
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each of these samples the probability πj defined through

ωj = f(yt+1|αj
t+1), πj =

ωj∑R
i=1 ωi

.

We now apply the smooth bootstrap approach of Section 3·1. We use a set ofM sorted stratified

uniforms and invert the continuous cdf corresponding to the density of Section 3·1. Hence we now
have a sorted sample of size M , αi

t+1, i = 1, ...,M . In the usual way, these arise approximately

from f(αt+1|Ft+1) and we can proceed to the next time step. We record l̂t+1 = ̂log f(yt+1|Ft, θ)

as our estimate of log f(yt+1|Ft), using the method of Section 2·1 combined with our bias
correction, see Section 10·2. After running through time, we calculate

l̂(θ) =
T∑

t=1

l̂t.

Provided that the transition density and the measurement density are continuous in αt+1 and

θ, then this is sufficient to ensure that l̂(θ) is continuous in θ. It should be noted that we need

to sort once for each time update. This is the only computational addition to the algorithm

of Gordon et al. (1993). Indeed it is O(R logR). However, this is found to be a relatively

innocuous problem as part of these algorithms, largely because the sorting algorithm exploits

the fact that the variables are close to being sorted prior to being sorted. Timings indicate that

with the numbers concerned the sorting takes less than 1% of the CPU time. It is only when R

becomes extremely large that this consideration will play a part.

4·1 Example 1: AR(1) + noise model

To assess the performance of the ASIR0 method we shall consider the AR(1) plus noise model.

This is a linear state space form model, see Harvey (1993), the likelihood for which can be

evaluated via the Kalman filter. The model is,

yt = αt + εt, εt ∼ N(0, σ2
ε)

αt+1 = µ+ φ(αt − µ) + ηt, ηt ∼ N(0, σ2
η).

(4·1)

To mimic the stochastic volatility (SV) model, see Section 6·1.1 we have σ2
ε = 2, σ

2
η = 0.02,

φ = 0.975 and µ = 0.5. The choice of σ2
η, φ and µ are chosen as typical values for the SV

model, φ representing the persistence in variance, whilst σ2
ε is chosen from the curvature for

the measurement density in the SV model (the second derivative of log f(yt|αt) with respect to

αt). Thus the AR(1) plus noise model above provides a fair test of our method. “Fair” because

we are not exploiting any particular features of the conjugate Gaussian updating relations that

exist. This assessment is therefore extremely informative about the performance of the smooth

ASIR0 procedure for non-Gaussian models. Before examining the behaviour of our estimator,

we shall first take a preliminary glance at the output from the ASIR0 filter compared with the
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true output. We simulate one reasonably large time series, T = 5000, and examine the results

for differingM and R. In Figure 2, we take small values of M and R as 300 and 400 respectively.

We plot the true filter mean, based on the true values of the parameters, from the Kalman filter

mt = E[αt|Ft] together with its estimate m̂t from the smooth ASIR0 procedure. Similarly we

look at the log-likelihood component lt, from the Kalman filter and the corresponding estimate

l̂t from the ASIR0 method, see previous section. The error l̂t − lt is also displayed. Finally a

slice through the log-likelihood for µ is taken, keeping the remaining parameters fixed at their

true values. The profile log-likelihood against µ, from both the Kalman filter and the estimator

of the log-likelihood are displayed. Figure 3 shows the same results as Figure 2, except that M

and R are now taken as 3500 and 5000 respectively.

Several things are clear from these plots. The estimated filter mean m̂t remains very close

to mt, even with the large time series. Also, the estimates of l̂t appear to be unbiassed for lt, as

indicated by the zero mean of the error l̂t − lt. The variation in this error, although apparently

changing over time, does not increase but appears stable. This variation also goes down in the

manner we would expect by increasing both M and R, as is apparent by comparing the error

l̂t−lt in the two figures. As far as the profile log-likelihoods are concerned, the estimator appears

to do rather well, even for small M and R, being very close in both figures to the true Kalman

filter log-likelihood. We also found this to be true when looking at the profiles of the other two

parameters, σ2
η and φ.

We now examine an extremely long time series, of length T = 20000. The resulting profile

likelihood and log-likelihood for the three parameters are displayed in Figure 4. Clearly, the

estimation is remarkably good for each of the parameters considering the length of the time

series.

The fact that the method performs well even for small sample values over such a long series

is encouraging indicating the scheme is robust. The errors is the log-likelihood components lt are

stable over time and the variance, although changing, appears stationary. This contrasts with

importance sampling for which the variation in the likelihood estimator can increase dramatically

with the time series length. A heuristic justification for why this is the case is given in Section

4·4.

4·1.1 Estimator performance

We now examine the behaviour of our estimator by simulating two time series of length 150 and

550 from the above model. We then estimate via maximum likelihood using the Kalman filter to

obtain the correct maximum likelihood estimate. The estimation is with respect to θ = (ση, µ, φ)

keeping σ2
ε fixed at the true value of 2. We then run the smooth ASIR0 filter 50 times, with
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different random number seeds for each run, maximising3 the resulting estimated log-likelihoods

for each run with respect to θ. Recorded in Table 2 are the results for T = 150, using varying

values of M and R. The average of the 50 simulated maximum likelihood estimates, the 50

variance estimates and the mean squared error are displayed for each set of M,R. The variance

estimates are obtained by taking the negative of the inverse of the matrix of second derivatives

for θ at the mode. It can be seen that the biases in all cases are not significantly4 different

from 0. The mean squared errors in Table 2 are small relative to the variation in the data, and

become smaller as M,R increase. In addition the variance-covariance matrix is well estimated

even for small M,R. These results are very encouraging.

The results for the case T = 550, Table 3, gives an insight into how the method might behave

for the SV model for which the data is reasonably long. The results are displayed in an identical

fashion to Table 2. If an importance sampler were used to estimate the likelihood, we might

expect a rapid decline in the performance as T becomes larger. This is not the case here. The

biases are again not significant given our simulation number of 50, suggesting the estimator is,

at least approximately, unbiassed for the true ML estimator. The mean squared errors become

smaller as M,R increase. Indeed the magnitude of the mean squared errors suggests that the

method is workable for practical ML estimation of non-linear, non-Gaussian models in state

space form.

4·2 More general models

There are many models which may be placed in a similar form. The exponential measurement

models considered in West & Harrison (1997, Ch. 13 and 15), for instance, where we have

αt+1 = µ+ φ(αt − µ) + ηt,

and a link function relating the evolving state to the measurement. For instance, for count data

we may have

yt ∼ Po(exp(β′xt + αt)).

The smooth ASIR0 method above may be used to estimate this model, a Poisson model with a

time varying intercept, straightfowardly.

Also we may apply the smooth filter to problems involving a stochastic differential equation

(SDE) observed with noise. For instance we may have the following model,

y(τi) ∼ f(y(τi) | x(τi))
3We use the BFGS()routine within Ox, a matrix language. See http://hicks.nuff.ox.ac.uk/Users/Doornik/.
4We have to test bias ∼ N

(
0, MSE

50

)
.
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dx(t) = µ(x(t))dt+ σ(x(t))dW (t),

where observations are made a times τ1, τ2, ..., τn. In this case we can simulate smoothly from

f(x(τi+1) | x(τi)) by exploiting the Euler approximation. Letting δ = (τi+1 − τi)/M , zo = x(τi)

we simulate through

zt+1 = zt + µ(zt)δ + δ
1
2σ(zt)ut, t = 0, ...,M − 1, (4·2)

where ut is a standard Gaussian random variable. Then we set x(τi+1) = zM , which will be

distributed according to f(x(τi+1) | x(τi)) as M −→ ∞, as the Euler approximation becomes
exact. Now that we have a simple method for simulating from f(x(τi+1) | x(τi)) the ASIR0

method can be applied straightforwardly.

This is an important application as analysis of such models is difficult using MCMC or

importance sampling methods. Another, purely time series, application is to stochastic volatility

(SV) models. We shall examine this model in greater detail below.

4·3 Example 2: SV model

We can examine the method by considering the stochastic volatility (SV) model,

yt = εt exp(αt/2), αt+1 = µ+ φ(αt − µ) + ηt, (4·3)

where εt and ηt are independent Gaussian processes with variances of 1 and σ2 respectively.

This is a non-linear time series model of evolving scale. Here µ has the interpretation long run

mean of the log volatility, φ the persistence in the volatility shocks and σ2
η is the volatility of

the volatility. This model has attracted much recent attention in the econometrics literature as

a way of generalizing the Black-Scholes option pricing formula to allow volatility clustering in

asset returns; see, for instance, Hull & White (1987), Harvey et al. (1994) and Jacquier et al.

(1994). MCMC methods have been used on this model by, for instance, Jacquier et al. (1994),

Shephard & Pitt (1997) and Kim et al. (1998). In addition, Shephard & Pitt (1997) and Durbin

& Koopman (1997) consider importance sampling to obtain the likelihood.

In this case we have,

log f(yt+1|αt+1) ≡ l(αt+1) = c− 1
2
y2

t+1 exp(−αt+1)− 1
2
αt+1.

We have apply the ASIR0 method by first simulating a single series of length 550 with θ =

(ση, µ, φ) = (
√
0.02, 0.5, 0.975), typical values for daily returns. We then carry out a Monte

Carlo experiment, taking the number of Monte Carlo replications as 50, in a similar fashion
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to the previous section. We use the variance of the scores, the outer-product estimator, for

estimating the variance covariance matrix. The results are reported, again for varying values

of M and R in Table 4. The corresponding histograms of the Monte Carlo output are given in

Figures 5 to 7. It is informative to consider the ratio of the mean squared error to the variance of

each parameter with respect to the data. For the case M = 300, R = 400 this is (0.035, 0.0172,

0.0307) for each of the parameters θ = (ση, µ, φ). This reduces to (0.0060, 0.0027, 0.0064) when

M = 1000, R = 1300. When M = 3000, R = 4000, the ratio is just (0.00167, 0.00111, 0.00143).

The histograms of Figures 5 to 7 show that there are no extreme results from the Monte Carlo

experiment. Indeed the histograms do not appear to be far from normality. This is encouraging

as it means that our simulated maximum likelihood procedure is robust.

The stochastic volatility model can be extended in a number of directions without any

particular difficulty. A simple extension would be to include a risk premium term for stock

returns so that

yt ∼ N(µy + β exp(αt); exp(αt)).

This may also be expressed as

yt = µy + β exp(αt) + exp(αt/2)εt.

A further extension is to allow shocks to returns and volatility to move together so that(
εt

ηt

)
∼ N

((
0
0

)
;

(
1 ρση

ρση σ2
η

))
,

where ρ is the correlation between the two shocks. Additionally, heavy tailed conditional distri-

butions, for εt, can be used without posing any difficulty for the methods advocated here.

The stochastic volatility model above follows from an Euler discretisation of the Ornstein-

Uhlenbeck (OU) process. Alternative models for the evolution of volatility in continuous time

have been proposed and their treatment is considered in Section 7·1.

4·4 Estimator for large time series

We shall now give a heuristic justification for the good performance of the particle filter for large

time series, see the results of Section 7. Essentially, the accuracy for large time series in the

estimation of the likelihood is due to the fact that the errors in the score have a mean which

is zero and arise as the addition of the score error associated with each data point. The region

in which the likelihood is appreciable contracts as N , the sample size, becomes larger and this

counteracts the summation of score errors which also takes place over the sample size.

Consider the true log-likelihood which is given by,

lN (θ) =
N∑

t=1

li(θ),
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where N is the time series length and where li(θ) = log f(yi|θ) and yi ∼ f(yi|θ), θ being the
true parameter. Now let us suppose that we obtain our estimated likelihood as,

l̂N (θ) =
N∑

t=1

l̂i(θ), l̂i(θ) = li(θ) + εi(θ),

where the random error term εi(θ) is a smooth differentiable function of θ and E[εi(θ)] = c, a

constant. We get

l̂N (θ) = lN (θ) +
N∑

t=1

εi(θ) = lN (θ) + ε(θ),

l̂′N (θ) = l′N (θ) + s(θ)

The score error s(θ) = ∂ε/∂θ, is given by

s(θ) =
N∑

t=1

si(θ),

which has mean 0 (since we may differentiate the expectation for εi(θ)) and variance Nσ2. Note

that the variance goes up only linearly with N . This is exactly what we require as we are

interested in the distance,

d = l̂N (θ +∆)− lN (θ +∆)− {l̂N (θ)− lN (θ)}.

Intuitively this gives us the error in the shape. Since we are concerned with distances which are

local for likelihood estimation, we may consider distances ∆ = δ/
√
N, as on asymptotic grounds

this is the scale of interest. Taking δ −→ 0, we obtain,

d =
δ × (l̂′N (θ)− l′N (θ))√

N
=

δ × s(θ)√
N

.

Hence

E[d] = 0, V ar[d] = σ2.

This indicates that the local error, d, is independent of the sample size N . This means that

the local error in our likelihood remains the same. The likelihood estimation method should

therefore work as well for large samples (for which we are concerned with small distances) as it

will for small samples.

We now look at a Monte Carlo simulation to see how the variance and mean of the score

changes as N increases. We examine the AR(1) plus noise model of (4·1) comparing the true
derivative (with respect to ση) with the results of 50 runs of the smooth particle filter with

differing M and R. The results are given in Table 5. The variance in the derivative is small in

all cases compared to the magnitude of the true derivative. We notice that as the time series

varies in length the variance does appear to go up linearly with N . Also the variance goes down

as M increases in the manner which we would expect.
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5 Full adaption

In the case of full adaption, as described in PS, we can draw directly from f(αt+1|αt, yt+1) and

also evaluate f(yt+1|αt). This situation actually arises in a number of important special cases of

the general model considered. Suppose, as before that we have sorted samples α1
t , ..., α

M
t from

f(αt|Ft). We associate with each of these samples the weight ωj = f(yt+1|αi
t), i = 1, ...,M . We

then resampleM times, using the smooth bootstrap, yieldingM sorted samples αj
t , j = 1, ...,M .

Clearly, these samples are approximately drawn from f(αt|Ft+1). We now simply pass each of

these samples through the density f(αt+1|αt, yt+1) to produce a sample α
j
t+1 ∼ f(αt+1|Ft+1), j =

1, ...,M . Since we have smoothness in our samples as a function of our parameters, the estimated

likelihood will be continuous in the parameters. The fully adapted algorithm is optimal, one

step ahead, since we are directly sampling from (2·1).
In fact the empirical prediction density, (2·5) is exactly obtained as

f̂(yt+1|Ft, θ) =
1
M

M∑
k=1

f1(yt+1|αk
t ),

where αk
t ∼ f(αt|Ft). As in the remainder of this paper, the computational additions considered

in Section 4, such as stratified sampling, are again used. This method should be extremely

efficient for fully adapted models such as the ARCH plus noise model described presently.

5·1 Example 1: ARCH with error

An example of full adaption is for the ARCH model observed with Gaussian error. The au-

toregressive conditional heteroskedasticity (ARCH) models, see Engle (1995), are used to model

the slowly changing variance commonly observed, for example, in equity and exchange rate re-

turns. Consider the simplest Gaussian ARCH model, the ARCH(1), observed with independent

Gaussian error, see Shephard (1996). So we have

yt|αt ∼ N(αt, σ
2), αt+1|αt ∼ N(0, β0 + β1α

2
t ).

It has received a great deal of attention in the econometric literature as it has some attractive

multivariate generalizations: see the work by Diebold & Nerlove (1989), Harvey et al. (1992)

and King et al. (1994). This model is exactly adaptable. It is clear to see that,

yt+1|αt ∼ N(0, β0 + β1α
2
t + σ2), αt+1|αt, yt+1 ∼ N(a, b2),

where

b2 =
σ2(β0 + β1α

2
t )

β0 + β1α2
t + σ2

, a = b2
yt+1

σ2
.
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As far as we know no likelihood methods currently exist in the literature for the analysis of

this type of model (and its various generalizations) although a number of very good approxima-

tions have been suggested.

5·2 Example 2: Threshold models

Let us consider the following binary threshold model,

yt =

{
1, αt > 0
0, αt < 0

αt+1 = µ+ φ(αt − µ) + ηt, ηt ∼ N(0, σ2
η).

We have marginally,

Pr(yt = 1) = Φ

(
µ

σ

)

where σ2 = σ2
η

1−φ2 . This can be fully adapted. If yt+1 = 1,

Pr(yt+1|αt) = Φ

(
µ+ φ(αt − µ)

ση

)
, f(αt+1|yt+1, αt) = TN>0(µ+ φ(αt − µ);σ2

η).

If yt+1 = 0,

Pr(yt+1|αt) = 1− Φ
(
µ+ φ(αt − µ)

ση

)
, f(αt+1|yt+1, αt) = TN<0(µ+ φ(αt − µ);σ2

η).

Again, this model is exactly adaptable allowing efficient estimation of the likelihood.

5·3 Example 3: GARCH with error

As a realistic example to consider, we examine the GARCH with error model. This is a more

general model than the one previously outlined. We can write this model in the following form,

yt|αt ∼ N(αt, σ
2), (5·1)

αt|σ2
t ∼ N(0, σ2

t )

σ2
t+1 = β0 + β1α

2
t + β2σ

2
t .

We can equivalently write the above model as

yt|σ2
t ∼ N(0, σ2 + σ2

t ), (5·2)

αt|σ2
t , yt ∼ N

(
b2yt

σ2
; b2

)
,

σ2
t+1 = β0 + β1α

2
t + β2σ

2
t ,

where b2 = σ2σ2
t

σ2+σ2
t
. This is may be thought of as the “adaptable” form of the model since σ2

t

is a deterministic function of α2
t−1 and σ2

t−1. Of course, in either specification it is immediate
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that as σ2 −→ 0 we obtain the GARCH(1,1) model. In fact, the second equivalent form of the

model involves a univariate Markov chain in σ2
t which is observed with noise. It is immediately

apparent from the form of (5·2) that σ2 represents a lower bound on the overall variance of

yt. Suppose that at time t, we have M samples from f(σ2
t |Yt). We sample from f(αt|yt, σ

2
t ),

given above, R times, where we choose the σ2
t randomly from our sample from f(σ2

t |Yt). In this

way since we obtain R samples σ2(i)
t+1, i = 1, ...,M from f(σ2

t+1|Yt). Regarding these as being

sorted in ascending order we now apply the smooth bootstrap method where we have weights

ωi = f(yt+1|σ2(i)
t+1), i = 1, ...,M .

We illustrate this method by estimating the four parameters. We simulate a time series of

length 500 and perform 100 different ML estimation procedures using the above method. The

four parameters (β0, β1, β2, σ)′ are set to (0.01, 0.2, 0.75, 0.1)′ in the single simulation. The pro-

cedure is then run 100 times withM = 500, R = 600. The results are shown in Table 6. Clearly,

unlike the Gaussian state space form model, we cannot analytically assess the performance of

our estimator by comparison with the true ML estimator. However, for all 100 runs (started

with different random number seeds), we encountered no problem with convergence to the mode.

The variance of the simulated maximum likelihood are many hundreds of times smaller than

the variance obtained by inverting the matrix of second derivatives at the mode. In addition,

the true values of the parameters lie well within their 95% confidence limits. This suggests our

approach is a fast, simple and reliable procedure for a problem for which a likelihood solution

is non-trivial. The smooth likelihood procedure, of course, allows testing to be carried out. For

instance, likelihood ratio tests can be routinely undertaken.

We shall illustrate this by examining an actual time series of length 500, consisting of the

continuously compounded daily returns on the Pound versus the US dollar from the second of

January 1981 to the twelfth of December 1982. The maximum likelihood results for both the

GARCH and GARCH plus error models are reported in Table 7. The GARCH model is nested

within the GARCH + error model, arising from the restriction that σ = 0. Therefore using the

likelihood ratio test we can reject the null hypothesis that σ = 0 at the 1% level of significance.

We therefore favour our richer GARCH(1,1) plus error model for this dataset.

6 Partial adaption

The number of models for which full adaption is possible is fairly limited. Partial adaption may

be carried out for more general models. In the following sections we shall consider local partial

adaption methods which exploit knowledge of the mixture component αk
t . Whilst these methods

represent the natural smooth analogue of the auxiliary methods of PS, their design is a little
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more involved. Global partial adaptions, which do not exploit knowledge of αk
t , are more easily

dealt with and shall be considered here. From Section 2, we have

f(αt+1, α
k
t |Ft+1) ∝ f1(yt+1|αt+1)f2(αt+1|αk

t ), k = 1, ...,M (6·1)
� g1(yt+1|αt+1)f2(αt+1|αk

t ),

where we have constructed g1(yt+1|αt+1), the global approximation to f1(yt+1|αt+1), to be con-

jugate to f2(αt+1|αk
t ). Therefore our joint proposal becomes

g(αt+1, α
k
t ) ∝ g(yt+1|αk

t )g(αt+1|αk
t , yt+1).

We have a mass function g(αk
t ) = g(yt+1|αk

t )/
∑M

i=1 g(yt+1|αi
t). We can apply our smooth boot-

strap yielding ordered samples, αj
t , j = 1, ..., R. This is very efficient as the αk

t are sorted prior

to the smooth bootstrap. We then propagate each of these through g(αt+1|αt, yt+1), and sort,

to give a sorted sample of αj
t+1, j = 1, ..., R. The smooth bootstrap is applied, with weights

ω(αj
t+1), where

ω(αt+1) =
f1(yt+1|αt+1)
g1(yt+1|αt+1)

. (6·2)

Note that in (6·1) we could have, if necessary, approximated f2(αt+1|αk
t ) by g2(αt+1|αk

t ) without

changing the fundamental nature of the resulting algorithm. Following the results of Section 3,

the likelihood f̂(yt|Ft−1, θ) is unbiassedly estimated as[
1
M

M∑
k=1

g(yt|αk
t )

]  1
R

R∑
j=1

ωj

 . (6·3)

We shall illustrate the application of this algorithm for Gaussian transition densities in the

underlying Markov chain.

6·1 Gaussian transitions

The reasonably general situation in which we have a Gaussian transition density shall now be

considered. A comprehensive discussion of dynamic models of this kind may be found in West

& Harrison (1997).

Let us suppose that αt+1|αt ∼ N
{
µ (αt) , σ2 (αt)

}
and that f1(yt+1|αt+1) = exp{l(αt+1; yt+1)}.

Then we form g1(yt+1|αt+1) above as

log g1(yt+1|αt+1) = l′(α̂t+1; yt+1)(αt+1 − α̂t+1) +
1
2
l′′(α̂t+1; yt+1)(αt+1 − α̂t+1)2

the last two terms in a second order expansion of l(αt+1; yt+1) in αt+1 around α̂t+1
5. We would

5If l′′ > 0 we may replace this term by a negative constant or discard the second order term altogether.
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generally choose α̂t+1 to be α̂t+1 =
∑M

k=1 µ(α
k
t ), the forecast mean for αt+1. We then obtain

g(yt+1|αk
t ) = σ∗

σ(αt)
exp

(
1
2

µ∗2
σ∗2 − 1

2
µ(αt)

2

σ2(αt)

)
,

g(αt+1|αt, yt+1) = N
(
αt+1|µ∗;σ∗2) ,

where σ∗2 =
(

1
σ2(αt)

− l′′
)−1

, µ∗ = σ∗2
(

µ(αt)
σ2(αt)

+ l′ − l′′ × α̂t+1

)
.

This expansion technique is valuable as it leads to more efficient filtering and more efficient

likelihood estimation. The efficiency of our procedure may be illustrated by examining the

second stage weights ω(αt+1). An efficient algorithm will have normalised weights which are as

even as possible, see for instance Liu & Chen (1998). For the standard ASIR0, we have that

ω(αt+1) = f1(yt+1|αt+1). We now have that

logω(αt+1) = l(αt+1; yt+1)− l′(α̂t+1; yt+1)(αt+1 − α̂t+1)− 1
2
l′′(α̂t+1; yt+1)(αt+1 − α̂t+1)2.

As a function of αt+1, this should not be very variable. The variability will be extremely small

if l(αt+1; yt+1) is close to a quadratic in αt+1. For instance, suppose we have a conditionally

Poisson model where the state follows a Gaussian autoregression and, conditionally, we have

yt ∼Po(θ). As the counts, yt, become larger then l(αt+1; yt+1) approaches a quadratic function

in αt+1. Our weights will therefore be fairly even and this partial adaption approach will

perform much more effectively than a standard SIR method. This result also holds for many

conditionally exponential family observation models, such as the binomial (as n −→ ∞). A first
order expansion may also be used leading to similar conjugate relationships.

6·1.1 Example: SV(1) model

We can examine the partial adaption method for Gaussian transitions by again considering the

stochastic volatility (SV) model,

yt = εt exp(αt/2), αt+1 = µ+ φ(αt − µ) + ηt, (6·4)

where εt and ηt are independent Gaussian processes with variances of 1 and σ2 respectively. In

this case, we have

l(αt+1) = −1
2
y2

t+1 exp(−αt+1)− 1
2
αt+1.

We may apply the general Gaussian transition partial adaption approach, yielding second stage

weights ω(αt+1), where

logω(αt+1) = c− 1
2
y2

t+1{exp(−αt+1) + (αt+1 − α̂t+1) exp(−α̂t+1)

−1
2
(αt+1 − α̂t+1)2 exp(−α̂t+1)}.
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These second stage weights will be much less variable than for the standard, unadapted, particle

filter. The procedure is simple to apply and results in superior performance in estimation whilst

still ensuring smoothness in the estimated likelihood. It is no more computationally demanding

than the standard smooth SIR filter.

7 Adjustments for local adaption and integrated processes

So far we have dealt with the case where the second stage ωt+1 is only a function of the corre-

sponding state so that ωt+1 = ωt+1(αt+1).When ωt+1 is a smooth function of αt+1, the methods

of the previous section, which employ smooth resampling, are sufficient to ensure smoothness in

the resulting likelihood. However, in a number of models, which we shall consider presently, the

weights ωt+1 are a function not only of αt+1 but also of some additional information associated

with the sample It+1, so that ωt+1 = ωt+1(αt+1, It+1). Regarding our samples α1
t+1, ..., α

R
t+1

as sorted in ascending order we have the associated (generally unordered) samples I1
t+1, ..., I

R
t+1

and the weights ω1
t+1, ..., ω

R
t+1. Even if two points α

i
t+1 and α

i+1
t+1 are arbitrarily close, the corre-

sponding weights ωi
t+1 and ωi+1

t+1 will not be as they also depend upon Ii
t+1 and Ii+1

t+1 , which in

general will be quite different. Let us assume that ωi
t+1 >> ωi+1

t+1. As the parameters θ change

slightly to become θ̃ = θ + ε the order of the two points may change, in which case we have

α̃i
t+1 = αi+1

t+1 + gi+1(ε) < α̃i+1
t+1 = αi

t+1 + gi(ε). However, for the new associated weights we have

ω̃i+1
t+1 >> ω̃i

t+1. The resulting smooth cdf we constructed will have changed significantly, despite

the arbitrarily small change in the parameters and the states. This results in a likelihood that

is not estimated smoothly.

The problem is not necessarily particularly dramatic in applications as the change to our

smooth cdf is only a very local one, particularly when R is large. Also the variability of the

weights ωt+1 may be small which again minimises this difficulty. However, for numerical max-

imisation schemes this may cause difficulties and it is necessary to ensure smoothness. We only

have to ensure that very small changes in the order of the states leads to small changes in the

weights ωt+1. To do this we use a kernel approach to smooth our weights, and therefore the

probabilities π∗, prior to sampling via

ω∗
j =

∑R
i=1 ωiφ

∗ ((xj − xi)/h)∑R
i=1 φ

∗ ((xj − xi)/h)
, π∗

j =
ω∗

j∑R
i=1 ω

∗
i

, j = 1, ..., R,

where φ∗ is the density for a standard Gaussian random variable, and xi = αi
t+1 for notational

convenience. In practise, for computational efficiency, we truncate this at values where |xj−xi| >
3h allowing very fast computation. We make h very small as this is sufficient to ensure continuity
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and makes the computations very close to linear in R. We make h a function of R6, so that

h = cR− 1
2 , where c is a very small number. When R is very large, h will be very small but

the smoothing will still take place over approximately the same number of points. The efficient

algorithm is given in the Appendix. In the following applications, we found a negligible overhead

from using this presmoothing technique on the weights.

7·1 Continuous time models

We shall now consider estimation of partially observed stochastic differential equations (SDEs).

We focus on the specific example of a stochastic volatility model. Let us allow the log of a price,

y(t), to evolve as
dy(t) = {µ+ βσ2(t)}dt+ σ(t)dW1(t)

dσ2(t) = a(σ2(t))dt+ b(σ2(t))dW2(t).
(7·1)

A discussion of these models is provided in Campbell et al. (1997, Chapter 9). The models may

be used to proce options in the presence of stochastic volatility, see for instance Heston (1993).

The β parameter represents a risk premium term. We would expect this to be positive as higher

volatility should lead to higher expected returns. Reviews of special cases of this model are

given in Taylor (1994), Ghysels et al. (1996) and Shephard (1996). Note that we may also have

a linear term in y(t) in the drift and that we can have non-linear functions of σ2(t) in both the

drift and volatility terms without affecting our analysis. Let us suppose that we observe the log

price at times τ1 < τ2 < τ2 < ... < τn < τn+1. We therefore have n returns rs = y(τs+1)− y(τs),

for s = 1, ..., n. Note that we now have,

rs ∼ N(µ∆s + βσ2∗
s ;σ

2∗
s ),

regardless of the process for σ2(t), where

∆s = τs+1 − τs, σ2∗
s =

∫ τs+1

τs

σ2(v) dv.

We refer to σ2(t) as the instantaneous volatility and σ2∗
s as the integrated volatility, for reasons

which are clear. The important aspect to notice from the point of view of our particle filter is

that we no longer have simple dependence on the corresponding state. Rather it is the integral

of the path of the state between two points which is crucial.

We shall now use a very fine Euler approximation to the process. We shall placeMs−1 latent
points between our instantaneous volatilities σ2(τs) and σ2(τs+1). We shall define our points as

σ2
s,1, ..., σ

2
s,Ms−1 where for notational convenience we will set σ

2
s,0 = σ2(τs) and σ2

s,Ms
= σ2(τs+1).

6As R becomes larger, the original smooth cdf is less affected by changes in the parameters.
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These latent points are evenly spaced in time by δ = ∆s/Ms. We now have the Euler evolution,

σ2
s,0 = σ2

s−1,Ms
,

σ2
s,m+1 = σ2

s,m + a(σ2
s,m)δ + b(σ2

s,m)
√
δum, m = 0, ...,Ms − 1. (7·2)

where um ∼ NID(0, 1).We have a Markov chain in σ2
s,m, and having approximated our volatility

evolution, we may write

rs ∼ N(µ∆s + βσ̂2∗
s ; σ̂

2∗
s ), (7·3)

where we now have,

σ̂2∗
s = δ

Ms−1∑
m=0

σ2
s,m. (7·4)

Note that as δ → 0, we have that σ̂2∗
s → σ2∗

s . Note that (7·3) can also be derived from the

aggregation of the Euler discretisation of the measurement equation of (7·1),

ys,m+1 = ys,m + {µ+ βσ2
s,m}δ + σs,m

√
δηm, m = 0, ...,Ms − 1,

where ys,0 = y(τs) and ys,Ms = y(τs+1) and ηm ∼ NID(0, 1).
We note that the particle filter approach is straightforward. Our state at time τs is σ2(τs)

and we can simulate from the transition f(σ2(τs+1) | σ2(τs)) by using (7·2). Suppose at time
τs we have our sample σ2,1(τs), ..., σ2,M (τs) from f(σ2(τs) | r1, ..., rs−1). Then we propagate

from our Euler transition density R times, as usual in a stratified manner, to get our new

states σ2,1(τs+1), ..., σ2,R(τs+1) from f(σ2(τs+1) | r1, ..., rs−1) and record the associated estimated

integrated volatilities σ̂2∗,1
s , ..., σ̂2∗,R

s . We then attach to the sorted sample the weights and

probabilities,

ωj = f(rs| σ̂2∗,j
s ), πj =

ωj∑R
i=1 ωi

, j = 1, ..., R,

where f(rs | σ̂2∗
s ) is given by (7·3). We use the smoothing device on these weights and then

sample using our smooth bootstrap method. It is worth noting that the aggregation result

allowing us to directly calculate f(rs| σ̂2∗
s ) is particularly helpful in this application, making the

particle filter relatively simple to implement.

The above analysis assumed that the terms dW1(t) and dW2(t) were independent. We note

that it is straightforward to consider correlated disturbances. If we have(
dW1(t)
dW2(t)

)
∼ N

{(
0
0

)
;

(
dt ρdt
ρdt dt

)}
,

then we obtain, (
ηm

um

)
∼ N

{(
0
0

)
;

(
1 ρ
ρ 1

)}
.
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so that ηm|um ∼ N(ρum ; 1− ρ2). Our Euler measurement equation again aggregates to become

ys,M = ys,0 + µ∆s + βσ̂2∗
s +

√
δ

Ms−1∑
m=0

σs,mηm

= ys,0 + µ∆s + βσ̂2∗
s +

√
δ

Ms−1∑
m=0

σs,m(ρum +
√
1− ρ2ξm).

So we obtain,

rs = ys,M − ys,0

∼ N

{
ys,0 + µ∆s + βσ̂2∗

s + ρ
√
δ

Ms−1∑
m=0

σs,mum; δ(1− ρ2)
Ms−1∑
m=0

σ2
s,m

}
,

noting of course that the shock to the volatility term,

um =
(σ2

s,m+1 − σ2
s,m − a(σ2

s,m)δ)

b(σ2
s,m)

√
δ

.

So given our volatility path σ2
s,0, σ

2
s,1, ..., σ

2
s,Ms

, the measurement density is easily calculated. The

correlation is important as it captures the leverage hypothesis which suggests that innovations

to volatility are negatively correlated to shocks in returns.

The reweighting only has to be carried out when actual returns are observed, not at the

frequency of our discretisation. Simulating forward from an Euler approximation is clearly fast

and straightforward. It is also easy to keep the same random number stream as we are simply

using Gaussian variates.

7·1.1 Example 2: Nelson process

As an illustration, we shall consider the following model,

dy(t) = σ(t)dW1(t)

dσ2(t) = k(θ − σ2)dt+
√
ξσ2dW2(t),

(7·5)

where dW1(t), dW2(t) are considered independent.

This is essentially the model of Hull & White (1987), which they use to price options by

assuming volatility is uncorrelated with aggregate consumption. It is briefly discussed in Camp-

bell et al. (1997, Chapter 9). The volatility equation is the limit of a standard GARCH(1,1)

as the frequency of observation tends to infinity, see Nelson (1990). The stationary distribution

for the volatility is inverse gamma, IGa(υ, β) where υ = 1 + 2k/ξ and β = 2kθ/ξ, as shown by

Nelson (1990).

Regarding the returns as being observed at unit frequency, we carry out the simulation of

the time series with δ = 0.01. We fix the parameters for the simulation, of length n = 4000,
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at Ψ = (k, θ, ξ)′ = (0.02, 0.5, 0.0178)′. These values reflect the marginal distribution of the

volatility (mean is 0.5, variance 0.2) and the persistence for a unit of one day in the returns.

In our likelihood analysis we fix δ = 0.05 and take M = 1000, R = 1300. In order to examine

the performance of our sampler we examine the profile of the estimated likelihood on a grid

of points in the parameter space. We carry out three different runs (using different random

number seeds for each) of the smooth particle filter on each parameter in Ψ and plot a profile

of the estimated likelihood function, keeping the remaining two parameters fixed at their true

values. Due to the fairly large sample, we would hope to be in the vicinity of the true values.

The results are displayed in Figure 8 which plots the likelihood function and its log. There is

very little variability in the three estimates of the likelihood which are entirely smooth, even

when viewed more locally. In addition, the estimated likelihoods are centred around the true

values quite tightly indicating that the method is working well.

The advantage of this type of approach is that any SDE in σ2 can be considered. Heston

(1993) considers a Feller process in σ2, in which the volatility term in σ2 is replaced by b(σ2) =
√
ξσ. Other authors assume that log(σ2) follows an Ornstein-Uhlenbeck process so that b(σ2) =

√
ξ. Jumps, see for instance Eraker et al. (2003), may also be included in the return and

volatility processes without many additional complications.

7·2 The ASIR method

At the beginning of this paper, Section 2, general auxiliary particle filter methods of PS were

outlined which exploit the local adaption. That is, information about the mixture component,

αk
t , is used to form the proposal within the sampling importance resampling procedure. We

have,

f(αt+1, k | Ft+1) ∝ f1(yt+1|αt+1)f2(αt+1|αk
t ), k = 1, ...,M (7·6)

� g(k, αt+1) = g1(yt+1|αt+1, k)g2(αt+1|αk
t )

= g(yt+1|k)g(αt+1|k, yt+1) = C.g(k, αt+1).

We can proceed in the usual way by sampling from the joint proposal density below

g(k) =
g(yt+1|k)∑M
i=1 g(yt+1|i)

, g(αt+1|k) = g(αt+1|k, yt+1),

ensuring that the αk
t which are sampled are chosen in ascending order. This is a linear operation

as the αk
t are sorted prior to sampling. We sort the samples α

j
t+1, k

j by αj
t+1 where j = 1, .., R,and

associate with each of the samples the weights

ωj = ω(αj
t+1, k

j), πj =
ωj∑R
i=1 ωi

.
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where

ω(αt+1, k) =
f1(yt+1|αt+1)f2(αt+1|αk

t )
g1(yt+1|αt+1, k)g2(αt+1|αk

t )
.

These weights will not necessarily be smooth as a function of αt+1 so we presmooth using

the kernel smoothing method described previously associated smoothed weights ω∗
j , and the

corresponding normalised probabilities π∗
j , with each sample α

j
t+1. We now apply the smooth

bootstrap procedure which yields the sorted sample αi
t+1where j = 1, ..,M. In most applications

the weights ωj , by construction, will be close to constant across the samples j.

8 Conclusions

In this paper we have attempted to tackle two related issues. Firstly, we have provided an

effective and simple method for efficiently estimating the prediction density f(yt+1|Yt) from the

standard output of the auxiliary particle filter. Secondly, we have shown how the prediction

density and therefore the likelihood can be estimated so that the estimator is continuous as

a function of the parameters. The ASIR0 technique is fast and allows any models considered

in this paper to be estimated. The computational implementation is reasonably simple. In

particular, we only need to be able to simulate from the transition density, a considerable

advantage when focusing on, for instance, models expressed in continuous time. Applications

to models in continuous time are highlighted in Section 4·2, in which an stochastic differential
equation is observed with error, and in Section 7·1 where we observe an integrated process with
error. The methods are shown to be robust and accurate even for large time series.

The advantages over importance sampling are evident. Firstly, the consideration of a pro-

posal density over the whole state space is not necessary. This is fortunate as many of the

importance sampling schemes, see for instance Durbin & Koopman (1997), rely on a Gaussian

proposal. Whilst Gaussian proposals may be quite effective when applied to cases in which

f(α|Y ) is close to Gaussian, they are going to be ineffective when applied to models which
depart dramatically from being linear Gaussian. Secondly, importance samplers lead to much

more variable estimation as more data are included. This can create serious problems in time

series of a reasonable length. Particle filters to some extent circumvent this problem with the

variance of estimators being linear in the observation size.

An advantage of using particle filters to estimate non-Gaussian state space models is that,

as a by-product of the estimation scheme we also obtain the filtered path of the states and can

perform diagnostics straightforwardly, see Pitt & Shephard (1999).
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10 Appendix

10·1 Multinomial sampling

The following algorithm is discussed in Carpenter et al. (1997). Suppose we have x1, ..., xR with

probability of π1, ..., πR. Then the task will be to draw a sample of size M from this discrete

distribution in O(M) computations. We carry this out by sampling an ordered version of these

variables, so that we obtain y1 ≤ y2 ≤ ... ≤ yM−1 ≤ yM as our sample, assuming that our

x values are sorted by ascending order7. Drawing order variables will be carried out by first

drawing order uniforms (see, for example, Ripley (1987, p. 96)). Let u1, ..., uM ∼UID(0, 1), then

u(M) = u
1/M
M , u(k) = u(k+1)u

1/k
k , k =M − 1,M − 3, ..., 2, 1,

where u(1) < u(2) < ... < u(M−1) < u(M). This is most easily carried out in logarithms. Then

we obtain the ordered y using the following trivial algorithm,

Algorithm 1:

set s=0,j=1;

for (i=1 to R)

{
s=s+πi;

while (u(j) ≤ s AND j ≤ M)

{
yj = xi;

j=j+1;

}
}
We generally use stratification, as discussed in Pitt & Shephard (2000). For the application

in this paper we generate the M sorted uniforms as u(j) = (j − 1)/M + u/M , where the single

random variate is u ∼UID(0, 1). Algorithm 1 is then implemented.
7When we have sorted univariate x values, we may interpret this algorithm as simply inverting our cumulative

distribution function. The algorithm is still valid if the x values are not sorted.
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10·1.1 Smooth resampling

Suppose we have our x in ascending order, x1 ≤ x2 ≤ ... ≤ xR−1 ≤ xR, again with associated

probabilities π1, ..., πR. As seen in Section 3·1 we define a region i, Si as follows: Si = [xi, xi+1],

i = 1, ..., R − 1. These regions form a partition of the sample space for x. We have different

conditional densities g(x|i), given in Section 3·1 conditional upon each region i, Si. We shall

assign Pr(i) = π̃i = 1
2(πi + πi+1), i = 2, ..., R − 2 and Pr(1) = π̃1 = 1

2(2π1 + π2), Pr(R − 1) =
π̃R−1 = 1

2(πR−1 + 2πR). Here we have two algorithms which together efficiently implement

the smooth sampling, see Section 3·1 and Figure 1. This samples, smoothly, M times from

the empirical cdf. This produces an ordered sample y1 ≤ y2 ≤ ... ≤ yM−1 ≤ yM . Again, as

above, we generate the M sorted uniforms as u(j) = (j − 1)/M + u/M where j = 1, ...,M. The

first algorithm, algorithm 2, samples the index (corresponding to the region) storing these as

r1, r2, ..., rM and storing u∗1, u∗2, ..., u∗M .

Algorithm 2:

set s=0,j=1;

for (i=1 to R-1)

{
s=s+π̃i;

while (u(j) ≤ s AND j ≤ M)

{
rj = i;

u∗j=(u(j) - (s - π̃i))/π̃i;

j=j+1;

}
}

Having obtained the region we are in rj , j = 1, ...,M, we then sample conditional upon that

region from g(x|rj), given in Section 3·1, using the corresponding uniform u∗j . We have region

rj , Srj = [x
rj , xrj+1]. If rj = 2, ..., R−2 then we set yj = (xrj+1 −xrj )×u∗j +xrj since g(x|rj) is

simply a uniform distribution. Similarly we can directly simply invert the cdf, given in Section

3·1, for g(x|rj = 1) or for g(x|rj = R− 1).

10·1.2 Presmoothing algorithm

Suppose we have our ordered sample (x1, ..., xR)′ with associated weights (ω1, ..., ωR)′. Then we

wish to calculate the smooth weights,
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ω∗
j =

∑R
i=1 ωiφ

∗ ((xj − xi)/h)∑R
i=1 φ

∗ ((xj − xi)/h)
, π∗

j =
ω∗

j∑R
i=1 ω

∗
i

,

for j = 1, ..., R where π∗
j represent the corresponding probabilities. We have initially set h =

cR− 1
2 , this ensures the efficiency of our method together with the trucation choice below:

set min = 0;

for j = 1 to R

{
set sum1 = 0, sum2 = 0;

set max = R;

for i =min to max

{
sum1 = sum1 + ωiφ((xj − xi)/h);

sum2 = sum2 + φ((xj − xi)/h);

if (|xj − xi| < −3h) set min = j;

if (|xj − xi| > 3h) set max = j;

}
set ω∗

j =sum1/sum2;

}
Typically we choose c = 0.6

√
var(x), so that for example when var(x) = 1, R = 100, we

have h = 0.06.

10·2 Proof of Theorem 1

Let I = f̂(yt+1|Ft), then from (2·5) we have

I =
∫
f1(yt+1|αt+1)

{
M∑

k=1

f2(αt+1|αk
t )
1
M

}
dαt+1

=
M∑

k=1

∫
f1(yt+1|αt+1)f2(αt+1|αk

t )
1
M

dαt+1

=
M∑

k=1

∫
f1(yt+1|αt+1)f2(αt+1|αk

t )
g(k, αt+1)

1
M

g(k, αt+1)dαt.

Using the expressions for C and for ω(αt+1, k) from Section 2, we obtain

I =
M∑

k=1

∫
ω(αt+1, k)

1
M

C.g(k, αt+1)dαt+1

=

{
1
M

M∑
i=1

g(yt+1|i)
} {

M∑
k=1

∫
ω(αt+1, k)g(k, αt+1)dαt+1

}
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=

{
1
M

M∑
i=1

g(yt+1|i)
}
E[ω(αt+1, k)],

where the expectation is with respect to g(k, αt+1) as required.

Bias Correction Note that at present the log-likelihood will not be unbiassed. To correct

this to first order we use the usual Taylor expansion method. Abstracting from likelihoods we

have the large sample result that our estimated likelihood, X is unbiassed for the true likelihood,

µ with we obtain E[X] = µ, V ar[X] = σ2

R We therefore have

E[logX] � logµ− 1
2
σ2

Rµ2
,

an approximation which is very good for large R. Therefore we may bias correct by substituting

µ as X, setting ̂logµ = logX +
1
2

σ̂2

RX
2 .
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Figure 1: Plot of the distribution function associated with the bootstrap (step function solid line)
and the linear interpolation approach (dotted line). Here the number of points to be resampled
is 8 .
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Figure 2: TOP: left is sample filter mean and true KF mean for AR(1) plus noise example,
right is the true log-likelihood component together with estimated component. BOTTOM: left is
the error in the estimate of the log-likelihood component, right is the Kalman filter log-likelihood
slice for µ (solid line), together with its estimate both plotted against µ (dashed line). T = 5000,
M = 300, R = 400. True parameters in simulation φ = 0.975, ση =

√
0.02, µ = 0.5, σε =

√
2.

Smooth particle filter with stratification used.
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Figure 3: TOP: left is sample filter mean and true KF mean for AR(1) plus noise example,
right is the true log-likelihood component together with estimated component. BOTTOM: left is
the error in the estimate of the log-likelihood component, right is the Kalman filter log-likelihood
slice for µ (solid line), together with its estimate both plotted against µ (dashed line). T = 5000,
M = 3500, R = 5000. True parameters in simulation φ = 0.975, ση =

√
0.02, µ = 0.5, σε =

√
2.

Smooth particle filter with stratification used.
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Kalman Filter

ML (ση, µ, φ)
′ V ar (ση, µ, φ)

′ × 103
0.07543
0.58276
0.96626

3.814 −0.089 −0.722
. 40.31 0.140
. . 2.050

SIR Particle Filter; M = 300, R = 400, SIM = 50.

MLS V ar × 103 MSE(MLS)× 104
0.07574
0.58170
0.96610

3.155 −0.067 −0.688
. 35.02 0.112
. . 1.846

0.182
2.217
0.103

SIR Particle Filter; M = 1000, R = 1300, SIM = 50.

MLS V ar × 103 MSE(MLS)× 104
0.07502
0.58360
0.96623

3.524 −0.083 −0.708
. 35.75 0.135
. . 1.950

0.0628
0.5295
0.0450

SIR Particle Filter; M = 3000, R = 4000, SIM = 50.

MLS V ar × 103 MSE(MLS)× 104
0.07520
0.58177
0.96629

3.693 −0.076 −0.715
. 37.00 0.124
. . 1.988

0.0190
0.1495
0.0123

Table 2: Performance of standard smooth SIR particle filter for T = 150. The model is AR(1)
+ noise with true parameters φ = 0.975, ση =

√
0.02, µ = 0.5. Additionally the measurement

noise is fixed at σε =
√
2. The off diagonal elements of the variance matrix are are reported as

correlations not covariances covariances.
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Kalman Filter

ML (ση, µ, φ)
′ V ar (ση, µ, φ)

′ × 104
0.08080
0.45900
0.98398

7.670 0.019 −0.698
. 429.1 −0.036
. . 1.223

SIR Particle Filter; M = 300, R = 400, SIM = 50.

MLS V ar × 104 MSE(MLS)× 104
0.08077
0.45380
0.98395

7.702 −0.003 −0.697
. 450.8 −0.035
. . 1.241

0.1347
4.666
0.02287

SIR Particle Filter; M = 1000, R = 1300, SIM = 50.

MLS V ar × 104 MSE(MLS)× 104
0.08075
0.45965
0.98398

7.754 0.006 −0.699
. 437.3 −0.020
. . 1.224

0.0307
1.02
0.00439

SIR Particle Filter; M = 3000, R = 4000, SIM = 50.

MLS V ar × 104 MSE(MLS)× 104
0.08061
0.45812
0.98405

7.459 0.014 −0.689
. 437.0 −0.036
. . 1.1882

0.0101
0.3253
0.00150

Table 3: Performance of standard smooth SIR particle filter for T = 550. The model is AR(1)
+ noise with true parameters φ = 0.975, ση =

√
0.02, µ = 0.5. Additionally the measurement

noise is fixed at σε =
√
2. The off diagonal elements of the variance matrix are are reported as

correlations not covariances covariances.
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Figure 4: The true and estimated log-likeliood (left) and likelihood (right) profiles for the AR(1)
model plus noise for (from top to bottom) ση, φ,µ. Length of series T=20000. True parameters
ση =

√
0.02, µ = 0.5, φ = 0.975. M=1000, R=1300.
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Figure 5: Histogram of the Monte Carlo samples of the ML estimates for (σ, µ, φ)′, from top
to bottom, for the SV model for T = 550. True parameters ση =

√
0.02, µ = 0.5, φ = 0.975.

M=300, R=400.
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Figure 6: Histogram of the Monte Carlo samples of the ML estimates for (σ, µ, φ)′, from top
to bottom, for the SV model for T = 550. True parameters ση =

√
0.02, µ = 0.5, φ = 0.975.

M=1000, R=1300.
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Figure 7: Histogram of the Monte Carlo samples of the ML estimates for (σ, µ, φ)′, from top
to bottom, for the SV model for T = 550. True parameters ση =

√
0.02, µ = 0.5, φ = 0.975.

M=3000, R=4000.
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Figure 8: The log-likeliood (left) and likelihood (right) profiles for the Nelson volatility model. The
parameters are (k, θ, ξ) from top to bottom. n = 4000, true parameters Ψ = (0.02, 0.5, 0.0178).
M=1000, R=1300.

SIR Particle Filter; M = 300, R = 400, SIM = 50.

MLS V ar × 104 V ar(MLS)× 104
0.11042
0.35993
0.98417

10.945 0.004 −0.678
. 865.20 −0.135
. . 1.2707

0.3831
14.910
0.0390

SIR Particle Filter; M = 1000, R = 1300, SIM = 50.

MLS V ar × 104 V ar(MLS)× 104
0.10944
0.35377
0.98442

10.816 0.0066 −0.673
. 882.06 −0.148
. . 1.2410

0.06516
2.4167
0.007897

SIR Particle Filter; M = 3000, R = 4000, SIM = 50.

MLS V ar × 104 V ar(MLS)× 104
0.10941
0.35497
0.98441

10.843 0.0084 −0.674
. 879.65 −0.147
. . 1.239

0.0182
0.978
0.0018

Table 4: Performance of standard smooth SIR particle filter for T = 550. The model is SV with
true parameters φ = 0.975, ση =

√
0.02, µ = 0.5. The off diagonal elements of the variance

matrix are are reported as correlations not covariances.
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T True deriv
M = 300, R=400
(mean, var)

M = 1000, R=1300
(mean, var)

M = 3000, R=4000
(mean, var)

250 -24.419 (−0.4210, 5.0619) (−0.0276, 0.8721) (0.02201, 0.1766)
500 -46.428 (−0.8541, 8.9987) (0.0200, 1.5193) (0.011169, 0.34916)
1000 -90.289 (−1.1570, 21.478) (−0.00945, 2.4145) (0.017049, 0.71764 )
10, 000 -285.93 (5.4056, 201.51) (0.085527, 27.430) (−0.10459, 8.799)

Table 5: Monte Carlo assesement of the error in score estimation for the AR(1) + noise model
with σε =

√
2, φ = 0.975, ση =

√
0.02, µ = 0 .5 . The score is with respect to ση. Number of

Monte Carlo replications = 50.

GARCH plus noise model: M = 500, R = 600, SIM = 100, n = 500.

MLS(β0, β1, β2, σ)′ V ar × 104 V ar(MLS)× 104
0.01080
0.22563
0.71723
0.14436

0.23094 −0.3984 0.0365 −0.6078
. 49.540 −0.8860 0.7468
. . 39.018 −0.6539
. . . 70.991

0.000718
0.158110
0.082196
0.36961

Table 6: Monte Carlo results for GARCH + error model.

GARCH model. Log-lik = −548.60.

Par ML Var× 10−4

β0

β1

β2

0.00602
0.02703
0.96220

0.25517 0.16912 −0.65797
. 1.1312 −1.3720
. . 2.6044

GARCH+error model. M = 3000, 4000. Log-lik = −545.26.
β0

β1

β2

σ

0.000644
0.12874
0.86911
0.55315

0.00437 −0.0149 0.00096 −0.0765
. 7.725 −7.672 2.398
. . 7.692 −2.183
. . . 7.225

Table 7: Estimation of both GARCH and GARCH + error models from 1/2/1981 to 12/29/1982.
T=500.
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