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Abstract

Quantile forecasts are central to risk management decisions because of the widespread

use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to

forecast volatility, and the method of computing quantiles from the volatility forecasts. In

this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns

of �ve currencies. The forecasting models that have been used in recent analyses of the

predictability of daily realized volatility permit a comparison of the predictive power of

di¤erent measures of intraday variation and intraday returns in forecasting exchange rate

variability. The methods of computing quantile forecasts include making distributional

assumptions for future daily returns as well as using the empirical distribution of predicted

standardized returns with both rolling and recursive samples. Our main �ndings are that

the HAR model provides more accurate volatility and quantile forecasts for currencies which

experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical

distribution to calculate quantiles can improve forecasts when there are shifts.
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1 Introduction

The increasing availability of high-frequency intraday data for �nancial variables such as stock

prices and exchange rates has fuelled a rapidly growing research area in the use of realized

volatility estimates to forecast daily, weekly and monthly returns volatilities and distributions.

Andersen and Bollerslev (1998) showed that using realized volatility (obtained by summing

the squared intraday returns) as the measure of unobserved volatility for the evaluation of

daily volatility forecasts from ARCH/GARCH models1, instead of the usual practice of proxy-

ing volatility using daily squared returns, suggests such forecasts are more accurate than had

hitherto been found. Recent contributions have gone beyond the use of realized volatility as a

measure of actual volatility for evaluation purposes, and consider the potential value of intraday

returns data for forecasting volatility at lower frequencies (such as daily). Andersen, Boller-

slev, Diebold and Labys (2003) set out a general framework for modelling and forecasting with

high-frequency, intraday return volatilities, drawing on contributions that include Comte and

Renault (1998) and Barndor¤-Nielsen and Shephard (2001).2 The (log of) the realized volatility

series can be modelled using autoregressions, or vector autoregressions (VARs) when multiple

related series are available. As an alternative measure to realized volatility, Barndor¤-Nielsen

and Shephard (2002) and Barndor¤-Nielsen and Shephard (2003) have proposed realized power

variation - the sum of intraday absolute returns - when there are jumps in the price process.

Authors such as Blair, Poon and Taylor (2001) have investigated adding daily realized volatil-

ity as an explanatory variable in the variance equation of GARCH models estimated on daily

returns data.

Rather than modelling the aggregated intraday data (in the form of realized volatility or

power variation), Ghysels, Santa-Clara and Valkanov (2006) use the high-frequency returns

directly: realized volatility is projected on to intraday squared and absolute returns using the

MIDAS (MIxed Data Sampling) approach of Ghysels, Santa-Clara and Valkanov (2004) and

Ghysels, Sinko and Valkanov (2006).

In the approaches exempli�ed by Andersen et al. (2003) and Ghysels et al. (2004), and in a

recent contribution by Koopman, Jungbacker and Hol (2005), the volatility predictions are typ-

ically compared to future realized volatilities using a loss function such as mean-squared error.

The future conditional variance is taken to be quadratic variation, measured by realized volatil-

1See Engle (1982), Bollerslev (1986), and Bollerslev, Engle and Nelson (1994).
2Related contributions include: Andersen, Bollerslev, Diebold and Labys (2000) and Andersen, Bollerslev,

Diebold and Labys (2001), with applications to exchange rates; Barndor¤-Nielsen and Shephard (2002) and

Barndor¤-Nielsen and Shephard (2003), on asymptotic theory and inference. See Poon and Granger (2003) for

a recent review.
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ity. Andersen et al. (2003) justify the use of quadratic variation to measure volatility. They

show that, in the absence of microstructure e¤ects, as the sampling frequency of the intraday

returns increases, the realized volatility estimates converge (almost surely) to quadratic varia-

tion. But when there are microstructure e¤ects, the appropriate intraday sampling frequency

is less clear - sampling at the highest frequencies may introduce distortions.

Instead of comparing model forecasts as previously described, we compare models in terms

of estimates of the quantiles of the distributions of future returns, such as estimates of Value-

at-Risk (VaR). Our paper is closer to Giot and Laurent (2004), who compare an ARCH-type

model and a model using realized volatility in terms of forecasts of Value-at-Risk. Evidently,

a quantile forecast is the product of two factors: the model used to forecast volatility, and the

method of computing quantiles from the volatility forecasts. In this paper we calculate and

evaluate quantile forecasts of the daily exchange rate returns of �ve currencies. We consider

the contributions of the volatility forecasting models and the method of obtaining quantiles to

the overall accuracy of the quantile forecasts. We evaluate models based on estimates of daily

volatility obtained from the intraday data, and models that use the intraday data directly,

along with an autoregression in realized volatility as a benchmark. These models are chosen as

they have been used in recent analyses of the predictability of daily realized volatility to good

e¤ect, although there are many other models that could have been included: see for example

the models in Giot and Laurent (2004). Our aim is to focus on the factors that appear to give

good high-frequency quantile forecasts of exchange rates. For this purpose, a small number of

volatility forecasting models will su¢ ce.

We will assess in addition the implications of di¤erent ways of computing quantiles from the

volatility estimates and forecasts, including making distributional assumptions about expected

daily returns, as well as using the empirical distribution of predicted standardized returns using

both rolling and recursive samples. We also take into account the role of updating the models�

parameter estimates during the out-of-sample period as a way of countering potential breaks

in the volatility process, and the impact this has on the quantile forecasts. Our main �ndings

are that the HAR model provides more accurate volatility and quantile forecasts for currencies

which experience shifts in volatility, such as the Canadian dollar, and that the use of the

empirical distribution to calculate quantiles can improve forecasts when there are shifts.

The plan of the remainder of the paper is as follows. The next section brie�y reviews

intraday-based volatility measures, and the data. Section 3 discusses the leading volatility

forecasting model in the recent literature, and section 4 the computation and evaluation of

quantile forecasts. Section 5 presents the empirical results, and section 6 some concluding

remarks.
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2 Data and Volatility Measures

2.1 Exchange rate data

We have used �ve spot exchange rates: the Australian dollar (AU), Canadian dollar (CA), Euro

(EU), U.K. pound (UK), and Japanese yen (JP), all vis-à-vis the U.S. dollar, from 4 Jan. 1999

to 31 October 2003. Following Andersen et al. (2001) and Andersen et al. (2003), 30-minute

intraday returns are used to calculate the realized volatility estimates, implying that M = 48:

This sampling frequency provides a balance between the market microstructure frictions (or

noise) from high frequency sampling and the accuracy of the continuous record asymptotics

from low frequency sampling. The intraday returns are calculated as the �rst di¤erence of

the logarithmic average of the bid-ask quotes over the 30-minute interval. Weekends, public

holidays, and other inactive trading days are excluded from the sample, following Andersen

et al. (2003). This gives a total of 1240 trading days, each with 47 intraday observations for a

24-hour trading day.3

2.2 Estimates of volatility

In the recent literature, volatility is often measured using realized volatility, which for daily

volatility is calculated by summing up intraday squared returns:

RVi = [yM ]
[2]
i �

MX
j=1

y2j;i; (1)

where yj;i is the jth of M intra-day returns on day i. In the absence of microstructure e¤ects,

as M increases to in�nity, the realized volatility given in (1) converges to the underlying inte-

grated volatility, which is a natural volatility measure. Similarly, �ve-day realized volatility is

calculated by summing squared returns over a �ve-day period.

logRVt;t+5 = log

5X
i=1

RVt+i:

A number of studies have suggested that lags of measures of intraday variation other than

realized volatility may have predictive power for realized variation. Ghysels, Santa-Clara and

Valkanov (2006) and Forsberg and Ghysels (2004) propose the absolute and power variation,

whilst Andersen, Bollerslev and Diebold (2005) argue for separating out a �jump�component

from the measure of intraday variation.

3The data source is the SIRCA (Securities Industry Research Centre of Asia-Paci�c),

http://www.sirca.org.au/.
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Realized absolute variation is de�ned as:

RAVi = f(1=M)1=2g
MX
j=1

jyj;ij:

Forsberg and Ghysels (2004) argue for RAV as a predictor of the volatility of stock returns, on

the grounds that it may be better able to capture the persistence of stock-return volatility. It

can be shown that RAV is immune to jumps and the sampling error is better behaved than for

RV. Notwithstanding the theoretical and empirical arguments in support of RAV as a predictor

of stock-return volatility, there is no evidence on whether RAV is a useful predictor of exchange

rate return volatility. We �ll in the empirical evidence.

Another measure of intraday variation is bipower variation (BPV), proposed by Barndor¤-

Nielsen and Shephard (2003). This is de�ned as:

BPVi = (1=M)

M�1X
j=1

jyj;ijjyj+1;ij:

BPV has been used to separate the continuous and the jump components of RV (Andersen

et al., 2005). The jump component can be consistently estimated by the di¤erence between the

RV and BPV:

fJMgi = maxhRVi �BPVi; 0i:

However, the jumps estimated in this way may be too small to be statistically signi�cant. To

identify statistically signi�cant jumps, Andersen et al. (2003) suggested the use of:

fZMgi =
log(RVi)� log(BPVi)p

M�1(��4 + 2��2 � 5)fTQMgi(BPVi)�2
;

which is asymptotically distributed standard normal. In the above statistic, fTQMgi is the
realized tri-power quarticity, calculated as:

fTQMgi =M��34=3

MX
j=1

jyj;ij4=3jyj+1;ij4=3jyj+2;ij4=3;

where �4=3 = 2
2=3�(7=6)=�(0:5) and �(:) denotes the gamma function. The signi�cant jumps

are then estimated as:

fJM;�gi = I(fZMgi > ��)(RVi �BPVi);

and the continuous component as:

fCM;�gi = I(fZMgi � ��)RVi + I(fZMgi > ��)BPVi;
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where I(:) is the indicator function, and �� denotes the critical value of the standard normal

for a (1� �) level test.
We estimate jump and continuous components using � = 0:95. We �nd that jumps are

present at around 28% of the sample, with some di¤erences across currencies.

2.3 Summary Statistics

Figure 1 plotsRVi, its two components fC48;0:95gi and fJ48;0:95gi, andRAVi (for i = 1; : : : ; 1240),
in standard deviation form, for Australian and Euro dollars. To conserve space, only the �gures

associated with these two currencies are reported. Figures for the other currencies, which can

be obtained on request, show similar features. From RVi and fC48;0:95gi, the stylized features
of the conditional volatility of �nancial time series, documented in the ARCH literature, are

evident for both currencies. The �uctuations of the volatility estimates over time are consis-

tent with the presence of positive serial correlation, as are the jump estimates fJ48;0:95gi. The
estimates based on the power variation, RAVi, are more conservative than RVi and fC48;0:95gi
for both currencies.

Rather than modelling RVi directly, we specify and estimate models for the log of the

square root of realized volatility, log(RV 1=2t ). The log transformation has been found to result

in series which are closer to being normal (see Andersen et al. (2003)), facilitating modelling

using standard autoregressions, for example. Table 1 presents some descriptive statistics for

the daily and �ve-day realized volatility estimates. The values of skewness and kurtosis of

log realized volatility are similar to those found by Andersen et al. (2003), Table II, for daily

volatility, except for the UK pound which has higher negative skewness than the others. The

realized volatility estimates show strong evidence of long-range dependence, as evidenced by

the Ljung-Box test rejections. Visual inspection of the autocorrelation functions (not reported)

show very slow declines, consistent with the observations made by Andersen et al. (2003) that

the realized volatility estimates can be characterized by a long memory process.

We also report the same statistics for standardized returns - daily (�ve-day) returns divided

by the square root of the daily (�ve-day) estimates of realized volatility. These match the

�ndings for standardized returns of Andersen et al. (2000). Although we reject the null that log

volatility and standardized returns are Gaussian, in most cases the departures from normality

are likely to be small, and in terms of modelling log realized volatility at both daily and �ve-day

frequencies we proceed as in the earlier studies.

Compared to earlier studies of exchange rates, we consider a greater number of series,4

4 Andersen et al. (2003) analysed the US Dollar - Deustch Mark and Dollar - Japanese Yen rates. We are not
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and as will become apparent, the exchange rates exhibit di¤erent characteristics which creates

variation in the performance of di¤erent models and methods across currencies.

3 Models for Volatility Forecasting

Ghysels, Santa-Clara and Valkanov (2006) and Forsberg and Ghysels (2004) evaluate the pre-

dictability of the volatility of equity returns (measured by realized volatility) over 5-day and

1-month horizons using a number of the recently proposed models. One of these models is a

simple autoregression in the log of realized volatility, logRV 1=2i . The benchmark autoregressive

model for direct calculation of h-step ahead forecasts is then:

log(RV
1=2
t;t+h) = �+

 
p�1X
s=0

 sL
s

!
log(RV

1=2
t�s�1;t�s) + "t;t+h: (2)

We consider two regression models that use alternative measures of intraday variation as ex-

planatory variables: the Heterogenous Autoregressive model (HAR) proposed by Corsi (2004),

and the MIxed Data Sampling (MIDAS) approach of Ghysels et al. (2004). The HAR model

was used by Corsi to model the volatility of Swiss exchange rates, and has been extended by

Andersen et al. (2005) to include jump components. These two models are discussed below.

3.1 MIDAS

The MIDAS approach uses highly parsimonious distributed lag polynomials to enable intraday

data to be used to forecast daily data. The information content of the higher-frequency returns

data is thus exploited in tightly parameterised models, and the problem of selecting the appro-

priate lag orders is in part automatically taken care of: see the references for details. Consistent

estimates of the model�s parameters result even though the data frequencies of the regressand

and regressors di¤er: see Ghysels et al. (2004). The MIDAS regression to forecast the log of

realized volatility using intraday squared returns has the form:

logRV
1=2
t;t+h = �0 + �1 log

h
B
�
L1=M ; �

� ey2t i1=2 + e"t+h (3)

where B
�
L1=M ; �

�
=
PK
k=0 b (k; �)L

k=M , Lk=Mey2t�1 = ey2t�k=M . Here the tilde under a variable
such as y indicates that the series is at the intraday frequency. For example, when k = 0,eyt�k=M = eyt refers to the last intraday return of day t, whereas yt refers to the day t daily
return. When K > M intraday observations covering more than just the preceding day will

aware of forecasts of realized volatility for the Euro.
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be included. In our application, the number of intraday squared returns is M = 47; so if

K = 235, we use information of the past �ve days in forecasting, which is equivalent to p = 5

in equation (2). Instead of having
�ey2t 	 on the RHS of (3), we also experiment with absolute

intraday returns, jeytj, as Forsberg and Ghysels (2004) found improvements in the predictability
of stock return volatility from using absolute returns. Our work will determine which of absolute

returns or squared returns are the more useful for predicting daily exchange rate volatility. We

parameterise the lag polynomial B
�
L1=M ; �

�
as an �Exponential Almon Lag�following Ghysels,

Sinko and Valkanov (2006), whereby:

b (k; �) =
exp(�1k + �2k

2)PK
k=1 exp(�1k + �2k

2)

In a sense the MIDAS model is more general than the autoregressive model in daily realized

volatility (equation (2)). In the AR model, the implicit coe¢ cients on all the intraday squared

returns (or absolute returns) of the same day are constrained to be equal. Further, if the models

were speci�ed in terms of RV rather than logRV
1
2 (and there was no log of the distributed lag

on the RHS of (3)) then the MIDAS model would nest the AR. Viewed as a MIDAS model,

the AR has a very speci�c lag polynomial structure, whereby the weights are given by a step

function.

3.2 Heterogenous Autoregressive (HAR) Model

The heterogenous autoregressive model for realized volatility (HAR-RV) of Corsi (2004) and

Andersen et al. (2005) speci�es the current value of realized volatility as a linear function of

past realized volatilities over di¤erent horizons, and can also be viewed as a restricted MIDAS

model with step functions (see Forsberg and Ghysels (2004) and Ghysels, Sinko and Valkanov

(2006)). The HAR-RV model can be written using the following simplifying notation. De�ne

the normalized multi-period realized volatility as:

RV
1=2
i;i+s = s�1(RV

1=2
i+1 + :::+RV

1=2
i+s );

so that s = 5 and s = 22 are the weekly and monthly realized volatilities, respectively. Then the

daily HAR-RV model that incorporates weekly and monthly realized volatility (in logarithmic

form) can be written as:

log(RV
1=2
t;t+h) = �0 + �Dlog(RV

1=2
t ) + �W log(RV

1=2
t�5;t) + �M log(RV

1=2
t�22;t) + �t+h:

Ignoring logs, it is clear that the coe¢ cient on the intraday squared returns during the previous

day is equal to �D+�W +�M , on the intraday returns during days t�4 to t�1 is �W +�M , and
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during days t�21 to t�5 is �M . Assuming that �D; �W ; �M > 0, this corresponds to a MIDAS

model in which the lag coe¢ cients decline as a step function. However, it would be infeasible

using an unrestricted MIDAS regression to allow for the monthly e¤ect that is parameterised

in the HAR-AR by the variable log(RV 1=2t�22;t). Consequently, a potential advantage of the

HAR-AR, or step-function MIDAS model, is that it is better able to capture long-range serial

dependence in volatility.

The HAR-AR model can be extended to include jump components calculated using the

notion of bipower variation of Barndor¤-Nielsen and Shephard (2004). This gives the HAR-RV

model, written as:

log(RV
1=2
t;t+h) = �0+�Dlog(RV

1=2
t )+�W log(RV

1=2
t�5;t)+�M log(RV

1=2
t�22;t)+�J log(1+J

�
t )+�t+h;

where J�i � fJMgi. Andersen et al. (2005) found the �J coe¢ cient to be statistically signi�-
cant in most of their empirical examples. In addition to adding the jump component as above,

the explanatory variables of the HAR-RV model can be decomposed into continuous and jump

components. To simplify the notation again, let Ci � fCM;�gi and Ji � fJM;�gi. The nor-
malized multi-period jump and continuous components of realized volatility are respectively

written as Ci;i+s = s�1(Ci+1 + ::: + Ci+s); and Ji;i+s = h�1(Ji+1 + ::: + Ji+s). Utilising the

multi-period jump components separately gives the daily HAR-RV-CJ model of Andersen et al.

(2005), written (in logarithmic form) as:

log(RVt;t+h) = �0 + �CDlog(Ct) + �CW log(Ct�5;t) + �CM log(Ct�22;t)

+�JC log(1 + Jt) + �JW log(1 + Jt�5;t) + �JM log(1 + Jt�22;t) + �t+h:

Andersen et al. (2005) �nd that most of the jump component coe¢ cients in the HAR-RV-CJ

model are statistically insigni�cant, and that the continuous components provide most of the

predictability of the model.

The HAR can easily be speci�ed for absolute returns, e.g.,:

log(RV
1=2
t;t+h) = �0 + �Dlog(RAV t) + �W log(RAVt�5;t) + �M log(RAV t�22;t) + �t+h;

where RAV t�s;t is the normalized multi-period absolute variation.

4 Methods for Computing and Evaluating Quantile forecasts

The models in the previous section deliver forecasts of log daily volatility over the next h days.

Following Forsberg and Ghysels (2004), we obtain predicted volatility using the approximation:

dRV 1=2t;t+h = exp� dlog(RV )1=2t;t+h� :
8



Conditional quantiles qt;t+h can be obtained by �inverting�the distribution function Ft (y) =

Pr (yt;t+h � y j Ft), where yt;t+h is the sum of daily exchange rate returns from day t + 1 to

t+ h, and Ft is the information set at t. They are computed for a given probability � so that
Ft (qt;t+h) = �. Assuming that the returns are unpredictable, we have the following process for

the returns yt;t+h = "t;t+h, where "t;t+h =dRV 1=2t;t+hzt+h and zt+h is iid. The predicted �-quantile
is:

q̂t;t+h =dRV 1=2t;t+hF�1t (�) :

Therefore, the predicted quantiles are based on the predicted volatility but they also depend

on the assumption on the predictive density Ft (yt;t+h) :

4.1 Methods for Computing the Predictive Density

The simplest method to compute F�1t (�) is to assume a distribution for the daily returns.

Table 1 presented descriptive statistics of the standardized return yt;t+h=RV
1=2
t;t+h, and suggests

that a standard normal distribution may be a reasonable approximation. In this case, we can

assume that daily returns are N(0; RVt;t+h); so that zt is standard normal, we have that Ft = �.

Then the quantiles with probabilities � is:�
z�dRV 1=2t;t+h;� (4)

where z = ��1 (). The assumptions of Gaussianity of the predictive density and the un-

predictably of returns underlie the popular Riskmetrics model of J.P. Morgan (1995), wheredRV 1=2t;t+h is computed recursively by a EWMA.
The assumption of normality could be replaced by a Student t assumption, or any other

parametric distribution. See Bao, Lee and Salto¼glu (2004) for a discussion of some of the

possibilities. In this paper, we also use a Student t with 8 degrees of freedom to capture fatter

tails than the normal, although there is no strong evidence of this characteristic in the statistics

of Table 1, at least for the full sample.

If standardized returns are reasonably well approximated by a normal distribution, then

setting Ft = � should mean that improvements in volatility forecasting accuracy are associated

with quantile coverage rates closer to nominal levels. That is, there is a close association between

good volatility forecasts, and good quantile forecasts. If the speci�c distributional assumption

that is adopted is poor, quantile forecasts may be improved by using instead the empirical

distribution function (EDF) of the standardized returns. If the EDF is used, then it seems likely

that the association between the performance of the volatility and derived quantile forecasts

may be looser, in the sense that the quantile forecasts of models with relatively inaccurate
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volatility forecasts may not be much worse than the quantiles from models with more accurate

volatility forecasts.

Granger, White and Kamstra (1989a) suggest calculating quantiles from bQ, the EDF of the
standardized returns, yt;t+h=dRV 1=2t;t+h, such that the � quantile is given by:� bQ�1 (�)dRV 1=2t;t+h� (5)

Here, bQ�1 () is the -quantile of the EDF of the standardized returns, assuming that daily
returns are unpredictable in mean.

We calculate EDFs in two ways: using recursive and rolling samples of previous forecasts. To

see what this means, assume that the complete sample is divided into T in-sample and n out-of-

sample observations. The predicted quantiles q̂t;t+h are computed for t = T; T+1; : : : ; T+n�h,
giving n � (h� 1) forecasts of length h. The EDF bQt employed to compute q̂t;t+h uses rT
observations of the standardized returns yt;t+h=dRV 1=2t;t+h where r�(0; 1). In our empirical exercise,
we have r = 0:23 implying that we use 200 observations. These observations are obtained using

h-step ahead forecasts of volatilitydRV 1=2t;t+h from t = rT +1; : : : ; T �h, assuming that the model
was estimated on the the sample up to T . The di¤erence between the rolling and recursive

schemes for the computation of bQt is the inclusion of the past observations of the standardized
returns yt+h=dRV 1=2t;t+h while computing q̂t;t+h: the rolling scheme (qrol) uses moving windows of
size rT and the recursive (qrec) always increases the sample adding the new observation of the

standardized return at each forecast origin.

4.2 Evaluating predicted quantiles

However obtained, the quantile forecasts are evaluated by comparing their actual coverage

against their nominal coverage rates. The actual coverage rates are given by C�;h= E[1(yt;t+h <

qt;t+h)], which are estimated by Ĉ�;h = 1
n

Pn
t=1 1 (yt;t+h < q̂t;t+h), where t = 1; : : : ; n indexes

the forecasts. Correct unconditional coverage can be tested by a simple likelihood ratio test of

whether Ĉ�;h is signi�cantly di¤erent from the nominal proportion �: see e.g., Christo¤ersen

(1998), Granger et al. (1989a). In this paper we evaluate the accuracy of VaR forecasts using

the �tick�or check function. The expected loss of an h-step ahead forecast made by forecaster

m is de�ned as:

L�;h;m = E
�
�� 1

�
yt;t+h < qmt;t+h (�)

�� �
yt;t+h � qmt;t+h (�)

�
(6)
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which is estimated by:

L̂�;h;m =
1

n

nX
t=1

�
�� 1

�
yt;t+h < q̂mt;t+h (�)

�� �
yt;t+h � q̂mt;t+h (�)

�
:

The weight given to the di¤erence between the observed return and forecasted quantile is 1��
when the observed return is lower than the �-quantile, but only � when the observed return

exceeds the quantile. This loss function is the basis for the conditional quantile encompassing

test of Giacomini and Komunjer (2005). Their test compares two rival sets of quantile forecasts

to see whether either encompasses the other. However, preliminary results (unreported) indicate

that the di¤erences in the loss function for quantile forecasts from di¤erent models/methods

across time are typically small given the size of the out-of-sample period that we use in this

paper (n = 340). Another di¢ culty is that their test is based on the numerical estimation

of parameters inside discontinuous moment conditions, which is numerically challenging given

that the di¤erences are small. Instead our forecast evaluation focuses on an unconditional test

of equal forecast accuracy.

In order to see whether di¤erences in the value of (6) across di¤erent sets of VaR forecasts

are signi�cantly di¤erent from each other, we use the testing procedure of Diebold and Mariano

(1995) to make pairwise comparisons5 between sets of VaR forecasts using the tick loss function.

The loss di¤erential is de�ned as:

dt;�;h =
�
�� 1

�
yt < q̂at;t+h (�)

�� �
yt � q̂at;t+h (�)

�
�
h
�� 1

�
yt < q̂bt;t+h (�)

�i h
yt � q̂bt;t+h (�)

i
:

The null that forecaster a is as accurate as forecaster b can be tested using:

d�;hq
var(d�;h)

� N(0; 1);

where �d�;h is the average over t of dt;�;h. Under the alternative, we specify a one-sided test,

so that rejection of the null indicates that forecaster b is more accurate than forecaster a. For

h > 1 we use the Newey-West estimator for the variance, and a truncation lag of h � 1. By
allotting only a relatively small fraction of our total observations to the forecast period, we are

able to side-step issues related to the e¤ects of in-sample parameter estimation uncertainty on

the distribution of the test statistic (see West (2006) for a discussion).

5 If we had a larger set of rival forecasts, it would be sensible to use the reality-check approach of White (2000).

As it is, pairwise comparisons of the small set of rival forecasts enables us to more clearly see which features of

the data help explain the relative forecast performances of the models.
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5 Empirical Results

The objective of this empirical section is to observe which forecasting models of realized volatil-

ity and methods for computing quantile forecasts are more accurate, and to relate these �ndings

to the underlying properties of the exchange rate series. In the �rst section, we focus on fore-

casting the volatility of exchange rate returns. In the second section we consider volatility and

quantile forecasting and the potential bene�ts of updating the parameters of the forecasting

models over the out-of-sample period. The third section evaluates the di¤erent methods of

computing quantile forecasts for a given volatility forecasting model, and the fourth compares

these results to those for the AR model. The �nal section relates the results to the properties

of the individual exchange rates.

The available sample is divided into two, so that the out-of-sample period is around 1/4 of

the total sample (a bit more than a year). Similar divisions into in and out-of-sample observation

periods are made by Andersen et al. (2003) and Ghysels, Santa-Clara and Valkanov (2006).

5.1 Comparing Volatility Forecasts with Fixed Forecasting scheme

In this section we present both an in and out-of-sample comparison of the accuracy of volatility

forecasts using the models and predictors discussed in section 3. Table 2 presents the in-sample

R2 and out-of-sample root mean squared forecast errors (RMSFE) for daily and weekly forecast

horizons (h = 1; 5). Results are presented for an AR(5), MIDAS and HAR models. We compute

forecasts from MIDAS regressions using squared and absolute returns. For the HAR, we use

the basic speci�cation, as well as speci�cations with separate continuous and jump components,

and we also use RAV as the predictor. Average estimates over the currencies are also recorded.

The HAR is the best forecasting model overall, with more accurate forecasts on RMSE for

AU, CA and UK. For the �ve-day volatility forecasts, gains of almost 30% can be found in

comparison with the AR(5). The ability of HAR to capture the long-lag e¤ects in a simple way

is a likely reason for this success. The MIDAS forecasts are also better than the AR(5) for CA

and the UK for the �ve-day horizon. Because the MIDAS(RV) and the AR(5) are based on the

same information set, we conclude that there are gains to allowing the estimation procedure to

choose how to aggregate the intraday data, rather than enforcing the daily averaging implicit

in the AR model.

In contrast to the results of Forsberg and Ghysels (2004) for stock returns, there is no

signi�cant gain to using log(RAV ) instead of the log(RV 1=2) as the explanatory variable. Even

in-sample, the average di¤erence in R2 between HAR using RAV instead of RV at h = 5 is less

than 10 percentage points.
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The forecast comparisons reported in this section are based on a �xed scheme - i.e., �xed

coe¢ cients in the out-of-sample period. This is standard practice in the volatility forecasting

literature e.g., Giot and Laurent (2004), Andersen et al. (2003), and Ghysels, Santa-Clara and

Valkanov (2006), but less so more generally. Breaks in the volatility process during the out-of-

sample period, or parameter drift, may adversely a¤ect forecast performance. Re-estimation

of the models�parameters during the out-of-sample period may prove bene�cial in these cir-

cumstances: see Clements and Hendry (2006) for a general discussion of structural breaks and

forecasting. The next section considers two forms of updating.

5.2 Comparing Forecasting Models using Rolling and Recursive Samples

As we did not �nd signi�cant di¤erences from using di¤erent measures of intraday variation

as explanatory variables in the forecasting models, in the following tables we present results

using squared returns. Table 3 presents out-of-sample RMSFEs for the three forecasting models

under �xed (as in Table 2), rolling (makes use of �xed windows of data to re-estimate the pa-

rameters over the out-of-sample period) and recursive (using increasing windows to re-estimate

the models) forecasting schemes. In addition, we also compare the loss in predicting VaR at

the 5% level with the tick function (eq. 6). The VaR calculations are based on the assumption

that standardized returns are normally distributed.

With the exception of CA, the improvement in RMSFE accuracy of the volatility forecasts

from updating the parameter estimates is relatively small at h = 1 for all three models. Large

improvements are recorded at h = 5, and these are largest for the AR(5) model, and especially

for CA. Di¤erences of accuracy of forecasts between the rolling and recursive samples are

virtually nonexistent. The e¤ect of updating on the accuracy of the VaR forecasts is also small,

with the exception of CA.

5.3 Predicting Quantiles with Di¤erent Distributional Assumptions

For a given volatility model, we calculate the tick loss of VaR forecasts based on di¤erent dis-

tributional assumptions. Because updating parameter estimates over the forecast period had

little e¤ect on quantile forecasts (with the exception of CA), we proceed to compare di¤erent

methods of computing quantiles assuming a �xed forecasting scheme. The methods are de-

scribed in section 4.1. We let qnorm denote the method that assumes a normal distribution,

and qt8 a t-distribution with 8 degrees of freedom. The other two methods use the EDF of the

standardized returns to compute quantiles. qroll computes the empirical quantiles using rolling

samples of size 200 and qrec uses an increasing window of observations from 200 up to 200+n.

13



Table 4 presents the results. The entries are the ratios of the loss using the speci�ed

distributional assumption to the loss when the predicted quantiles are computed assuming

the normality of standardized returns. The results indicate that the normality assumption

is adequate for weekly VaR calculations (h = 5), but that for the daily VaR�s, alternative

methods, such as the assumption that returns follow a t-distribution, or the use of the empirical

distribution, are more accurate. For h = 1 and CA, the null that VaR forecasts calculated

assuming normality are as accurate as those calculated using the EDF is rejected at the 10%

level for each of the three models for � = 0:05 and � = 0:025. For EU there are fewer

formal rejections but the value of loss tends to be lower when an alternative to the normality

assumption is used.

Because these improvements in accuracy for CA and EU do not depend on the model of

volatility, we conclude that the choice of distributional assumption to compute VaR may depend

more on the behavior of the returns in the out-of-sample period than on the model selected for

forecasting volatility.

5.4 Predicting Quantiles with Di¤erent Distributional Assumptions Relative

to the AR Benchmark Model

Table 5 is similar to Table 4, in that it reports the tick loss of VaR forecasts based on di¤erent

distributions, but the benchmark is now the AR(5) model (using the same distributional as-

sumption as for the HAR or MIDAS). That is, the denominators of the ratios reported in Table 5

are always the loss for the quantiles computed using AR(5) volatility forecasts and the indicated

method. This allows a cross-model comparison for a speci�c distributional assumption.

The results indicate that the choice of method (i.e., the distributional assumption) does not

a¤ect the choice of forecasting model. When a given model is more accurate than another, it

remains so for whatever method is used to compute quantiles. Consider the h = 1 forecasts.

The HAR model is more accurate than the AR(5) in forecasting the VaR of CA and UK, while

MIDAS is more accurate for AU. At h = 5 the �ndings are more mixed, but there is some

support in favour of HAR for EU and CA.

5.5 Explaining Country-Speci�c Di¤erences in Forecast Performance

Our results indicate the largest di¤erences across models and methods are for CA. Figure 2

presents the daily returns in the out-of-sample period (July 4, 2002 to October 27, 2003) and

four di¤erent combinations of method/model. Using the normal distribution, we compute 5%

VaR forecasts with volatility forecasts from the AR(5) and the HAR. We also use the rolling
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method to compute the empirical distribution for obtaining quantiles with these same models.

Figure 2 shows that after April 2003, the frequency of large negative returns increased. Before

this point, there is almost no di¤erence across models and methods in the VaR forecasts. After

April 2003 it is apparent from the �gure that there are marked di¤erences between the HAR

and AR model VaR forecasts. Figure 3 shows the 1-step ahead forecasts of realized volatility

(and outturns) for all �ve countries. From this �gure, it is clear that the good performance

of the HAR model VaR forecasts stems from the superior performance of the HAR volatility

forecasts over this period. The HAR forecasts are better able to capture the general upturn in

volatility. It is also apparent from �gure 3 that currencies other than CA do not show such a

clear level shift.

The reason why the HAR model volatility forecasts adapt more quickly than those of the AR

to the higher level of volatility in the later part of the forecast period can be understood with

a simplifying example. Suppose the true volatilty process can be represented as an AR(2), and

that the comparison of interest is of the AR(2) models forecasts with those of a mis-speci�ed

AR(1) model. Over the estimation sample period, the AR(2) is:

yt = �+ �1yt�1 + �2yt�2 + "t

and the AR(1) is yt = � + �yt�1 + ut. Then the population values of [�; �] can be shown to be

� = �1 (1� �2)�1, and � = (1� �)� (1� �1 � �2)�1. Suppose now there is an upward shift
in the unconditional mean of yt over the forecast period to �0 (from � = � (1� �1 � �2)�1 =
� (1� �)�1). Some time after the shift has occured, the (unconditional) forecast of the AR(2)
will be: � + (�1 + �2)�0, versus for the AR(1): � + ��0. Provided that �1, �2 > 0, and the

AR(2) is stationary, we can show that the AR(2) forecasts are closer to �0 than those of the

AR(1). The HAR is akin to the AR(2), as it captures the longer-range dependence in volatility

than the AR model (which corresponds to the AR(1) in our example). Since the sum of the

AR coe¢ cients in the HAR exceeds that of the AR (this is con�rmed empirically for CA), the

HAR forecasts exhibit greater adaptivity to the shift in the level of volatility.

Another result that arises from Figure 2 is that the use of the EDF (based on rolling

windows), in place of an assumption of normality, to compute VaR improves the performance

of both models, but especially that of the AR model (see Table 4).

In general, we �nd that a simple model for realized volatility (an AR(5)) and the use of

the normal distribution give reasonable VaR estimates for the majority of the currencies we

consider. However, when exchange rates are subject to unexpected increases in volatility, as in

the case of CA, the HAR model is better able to adapt. We have provided a simple argument

of how this might happen. When there are shifts, the use of the empirical distribution is better
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than the normality assumption.

6 Conclusions

We have evaluated the forecast performance of a number of models that have recently been

proposed to exploit the informational content of intraday data. The goal is initially to predict

daily exchange rate volatility, and week-ahead exchange rate volatility. Relative to recent work,

we have considered whether some of the results for stock market volatility also hold for exchange

rate volatility, namely that absolute intraday returns have more predictability than squared

returns. This does not appear to be the case. We also �nd that the method of parameterizing

intraday returns implicit in the step-function MIDAS (i.e., HAR model) is generally superior

to the MIDAS model which is not parameterized in this way. This appears to be due in part

to the inclusion of monthly realized volatility in the former.

We then go beyond much of the recent literature to consider quantile forecasts. Quantile

forecasts are the product of two factors: the model used to forecast volatility, and the method

of computing quantiles from the volatility forecasts. However, the two aspects can be combined

to generate a quantile forecast by either assuming a particular distributional assumption for

expected future returns, or by using the volatility forecasts to obtain standardised returns from

which an empirical distribution function can be estimated. One of our main �ndings is that

a simple model for realized volatility (such as an AR(5)) combined with the assumption of a

normal distribution for expected future returns yields reasonable VaR estimates for the majority

of the currencies. The exception is CA, and we explain the di¤erent �ndings for CA in terms

of a structural break in the underlying level of volatility, which appears to have been speci�c

to CA.

From the point of view of a risk manager, the results of this paper suggest that realized

volatility can be useful for computing Value-at-Risk forecasts. The combination of a simple

autoregressive model for log realized volatility, together with the empirical distribution of (past)

returns standardized by (past) predicted volatility, will in �normal times�generate competitive

Value-at-Risk forecasts with reasonable coverage rates, although there are preferred alternatives

when there are structural shifts.
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Table 1: Descriptive Statistics for Daily Realized Volatility and Standardized Returns (4 
Jan. 1999 to 31 October 2003) 
 

 Mean StDev Skewness Kurtosis Q(20) BJ(2) 
log(RVt,t+1)

(1/2) 
AU -5.04 0.34 0.07 3.73 2862.1 24.14 
CA -5.61 0.34 0.08 3.36 3412.1 7.29 
EU -5.11 0.31 -0.008 3.99 1414.8 40.64 
UK -5.38 0.29 -0.37 3.89 1138.5 37.03 
JP -5.18 0.35 0.11 4.38 1715.3 70.91 

log(RVt,t+5)
(1/2) 

AU -4.18 0.26 0.23 2.80 9945.0 17.89 
CA -4.76 0.25 0.25 3.18 112333. 131.72 
EU -4.25 0.22 0.22 3.39 7333.43 24.64 
UK -4.53 0.19 0.08 3.17 7045.5 2.85 
JP -4.31 0.26 0.72 3.58 6759.5 130.11 

Rt,t+1/(RVt,t+1)
(1/2) 

AU -0.06 0.89 -0.05 2.65 19.40 7.58 
CA -0.04 0.91 -0.03 2.48 15.86 16.35 
EU -0.01 0.96 -0.05 2.61 32.56 9.31 
UK -0.03 0.92 0.11 2.68 11.26 5.62 
JP -0.01 0.92 0.11 2.48 7.93 21.18 

Rt,t+5/(RVt,t+5)
(1/2) 

AU -0.11 0.88 -0.01 2.33 1512.9 29.14 
CA -0.07 0.91 0.07 2.55 1432.7 13.83 
EU -0.04 0.95 0.01 2.58 1720.6 24.34 
UK -0.06 0.95 0.07 2.61 1604.0 9.84 
JP -0.04 0.99 0.01 2.56 1565.6 1098 

 
Note. Q(20) is the Ljung-Box test statistic for serial correlation up to 20 (Chi(20)) and 

BJ(2) is the statistic of the normality test (skewness =0 and kurtosis=3) for small 

samples. T = 1240.  
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Table 2: Comparing Forecasting Models: AR, MIDAS and HAR with RV, 

RAV and CJ as Predictors.  

 
 R2  

(T = 900) 
RMSFE  
(T=900; n = 337) 

 AR(5) M(RV) M(RAV)  H(RV) H(RAV) H(CJ) AR(5) M(RV) M(RAV)  H(RV) H(RAV) H(CJ) 
 h =1 
AU 0.32 0.968 0.988 1.042 1.029 1.038 0.175 0.999 0.992 0.987 0.985 0.984 
CA 0.12 0.918 0.991 1.034 1.066 1.041 0.161 1.035 0.957 0.879 0.836 0.877 
EU 0.23 0.973 1.000 1.003 1.000 0.998 0.149 0.982 0.989 0.982 0.988 0.993 
UK 0.20 1.000 0.976 1.032 1.003 1.042 0.114 0.989 0.991 0.992 0.992 0.991 
JP 0.24 1.008 1.072 1.029 1.025 1.016 0.169 0.996 0.978 0.994 0.988 0.991 
Av 0.221 0.978 1.007 1.028 1.021 1.026 0.154 1.001 0.981 0.966 0.956 0.966 
 h = 5 
AU 0.43 1.006 1.013 1.107 1.082 1.096 0.140 1.019 1.004 0.892 0.896 0.897 
CA 0.17 0.963 0.993 1.274 1.282 1.319 0.157 0.890 0.835 0.706 0.656 0.703 
EU 0.33 1.023 1.061 1.178 1.178 1.182 0.095 1.042 1.057 0.964 0.984 0.963 
UK 0.38 0.990 1.003 1.027 1.020 1.036 0.086 0.872 0.882 0.850 0.860 0.850 
JP 0.31 1.047 1.122 1.142 1.135 1.124 0.126 1.033 1.041 0.957 0.966 0.956 
Av 0.325 1.009 1.039 1.127 1.118 1.128 0.121 0.971 0.959 0.863 0.857 0.863 

 

Note: The entries for AR(5) are actual values. The entries for all other models are ratios over the AR(5) 

value. M is for MIDAS regression and H is for the Heterogeneous regression. Details are presented in section 

3. Emboldened entries have ratios that indicate a difference larger than 10%. Av indicates the values 

computed for the average over currencies.  
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Table 3: Comparing RMSFE of volatility forecasting and Loss Function of VaR forecasts 
under different forecasting schemes 
 

 Fixed Rolling Recursive 
 AR(5) M(RV) H(RV) AR(5) M(RV) H(RV) AR(5) M(RV) H(RV) 
 h = 1 
 RMSFE 
AU 0.175 0.175 0.173 0.171 0.169 0.169 0.171 0.169 0.169 
CA 0.161 0.167 0.142 0.139 0.141 0.128 0.141 0.143 0.129 
EU 0.149 0.147 0.147 0.148 0.146 0.147 0.147 0.146 0.146 
UK 0.114 0.112 0.113 0.111 0.110 0.110 0.111 0.111 0.110 
JP 0.169 0.169 0.168 0.163 0.161 0.163 0.163 0.161 0.163 
Av 0.154 0.154 0.148 0.146 0.146 0.143 0.147 0.146 0.144 
Ratio    0.948 0.948 0.966 0.954 0.948 0.972 

VaR Loss Function 
AU 6.345 6.378 6.276 6.382 6.395 6.333 6.376 6.399 6.320 
CA 5.457 5.084 5.542 5.123 4.945 5.182 5.143 4.958 5.193 
EU 6.600 6.597 6.651 6.612 6.602 6.684 6.626 6.615 6.670 
UK 5.181 5.135 5.190 5.189 5.140 5.198 5.180 5.140 5.193 
JP 5.612 5.655 5.614 5.618 5.642 5.664 5.617 5.660 5.615 
Av 5.839 5.770 5.854 5.785 5.745 5.812 5.788 5.754 5.798 
Ratio    0.991 0.996 0.993 0.991 0.997 0.990 
 h = 5 

RMSFE 
AU 0.140 0.143 0.125 0.123 0.123 0.115 0.122 0.122 0.115 
CA 0.157 0.140 0.111 0.099 0.107 0.090 0.100 0.109 0.091 
EU 0.095 0.099 0.091 0.089 0.091 0.087 0.088 0.090 0.086 
UK 0.086 0.075 0.073 0.067 0.068 0.068 0.067 0.068 0.068 
JP 0.126 0.130 0.121 0.111 0.109 0.110 0.112 0.111 0.111 
Av 0.121 0.117 0.104 0.098 0.100 0.094 0.098 0.100 0.094 
Ratio    0.810 0.961 0.903 0.810 0.961 0.903 

VaR Loss Function 
AU 11.730 12.148 11.640 11.823 12.212 11.715 11.822 12.208 11.706 
CA 8.990 8.551 9.190 8.707 8.772 8.654 8.658 8.723 8.624 
EU 11.585 11.631 11.762 11.621 11.691 11.790 11.589 11.656 11.744 
UK 10.881 10.866 11.041 10.883 10.873 11.042 10.881 10.869 10.999 
JP 11.378 11.612 11.643 11.367 11.583 11.524 11.407 11.614 11.575 
Av 10.913 10.962 11.055 10.880 11.026 10.945 10.872 11.014 10.930 
Ratio    0.997 1.006 0.990 0.996 1.005 0.989 

 
Note: Emboldened entries have ratios that indicate a difference larger than 10%. T = 900 and n= 337. The 

RMSFEs for the fixed forecasting scheme are the same as in Table 1. The entries are loss*1000. For the 

rolling scheme, the sample size is kept constant using a rolling window. For the recursive scheme, the 

sample size is increasing over the out-of-sample period. The rows marked `Ratio’  compare the rolling and 

the recursive schemes with the fixed scheme for the average over the currencies.   
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Table 4: Comparing Accuracy of VaR forecasts with Different Methods of Computing the Predictive Quantiles with Normal 
distribution as benchmark.  

 AR(5) HAR MIDAS 
 qt8 qroll qrec qt8 qroll qrec qt8 qroll qrec 

h =1 
 α=0.05                   
AU 1.004 [.58] 1.013 [.72] 1.000 [.51] 1.001 [.53] 1.021 [.78] 0.997 [.40] 1.006 [.60] 1.011 [.71] 1.000 [.49]
CA 0.924 [.00] 0.916 [.01] 0.946 [.00] 0.958 [.05] 0.963 [.07] 0.976 [.05] 0.922 [.00] 0.908 [.00] 0.940 [.00]
EU 0.959 [.06] 0.969 [.16] 0.965 [.10] 0.957 [.05] 0.968 [.16] 0.962 [.08] 0.955 [.04] 0.972 [.17] 0.963 [.11]
UK 1.006 [.61] 1.024 [.99] 1.014 [.99] 1.007 [.63] 1.016 [.94] 1.015 [1.0] 1.002 [.53] 1.020 [.96] 1.012 [.99]
JP 1.018 [.81] 1.008 [.74] 1.008 [.89] 1.010 [.68] 1.010 [.73] 1.006 [.76] 1.023 [.88] 1.006 [.81] 1.005 [.86]
 α=0.025                   
AU 1.008 [.57] 1.022 [.75] 1.004 [.66] 0.995 [.45] 1.007 [.57] 0.999 [.49] 1.010 [.59] 1.024 [.76] 1.005 [.66]
CA 0.904 [.03] 0.892 [.07] 0.958 [.06] 0.921 [.07] 0.950 [.18] 0.979 [.19] 0.902 [.02] 0.883 [.07] 0.950 [.05]
EU 0.975 [.29] 0.976 [.20] 0.965 [.10] 0.960 [.20] 0.958 [.12] 0.955 [.11] 0.965 [.23] 0.964 [.13] 0.956 [.09]
UK 1.010 [.59] 1.012 [.95] 1.005 [.83] 1.013 [.62] 1.018 [.99] 1.005 [.88] 1.003 [.52] 1.009 [.73] 1.004 [.61]
JP 1.014 [.63] 1.020 [.71] 1.014 [.93] 0.999 [.49] 1.003 [.53] 0.994 [.37] 1.008 [.57] 1.006 [.56] 1.010 [.75]

h = 5 
 α=0.05                   
AU 1.054 [.95] 1.033 [.85] 1.024 [.83] 1.031 [.81] 1.030 [.88] 1.019 [.81] 1.060 [.97] 1.029 [.82] 1.020 [.77]
CA 0.956 [.15] 0.997 [.46] 0.981 [.19] 1.023 [.74] 1.069 [1.0] 1.027 [.96] 0.942 [.09] 0.980 [.28] 0.970 [.12]
EU 1.059 [.98] 1.025 [.98] 1.008 [.87] 1.045 [.93] 1.027 [.97] 1.007 [.94] 1.054 [.97] 1.038 [.99] 1.022 [.97]
UK 0.979 [.28] 1.018 [.76] 0.994 [.37] 0.983 [.32] 1.036 [.91] 1.015 [.79] 0.970 [.22] 1.014 [.68] 0.996 [.44]
JP 1.035 [.89] 1.130 [1.0] 1.043 [.92] 1.019 [.72] 1.090 [.97] 1.035 [.82] 1.040 [.92] 1.131 [1.0] 1.040 [.85]
 α=0.025                   
AU 1.141 [1.0] 1.029 [.68] 1.006 [.53] 1.110 [.99] 1.046 [.79] 1.007 [.56] 1.144 [1.0] 1.002 [.51] 0.986 [.41]
CA 1.036 [.69] 1.144 [1.0] 1.036 [1.0] 1.064 [.82] 1.129 [1.0] 1.049 [.99] 1.012 [.56] 1.125 [1.0] 1.022 [.88]
EU 1.115 [1.0] 1.061 [.91] 1.005 [.58] 1.116 [1.0] 1.049 [.93] 1.009 [.65] 1.118 [1.0] 1.059 [.92] 1.019 [.74]
UK 1.032 [.75] 1.018 [.75] 1.014 [.70] 1.028 [.71] 1.020 [.73] 1.014 [.68] 1.025 [.70] 1.019 [.78] 1.011 [.69]
JP 1.12 [1.0] 1.250 [1.0] 1.257 [1.0] 1.096 [.99] 1.216 [1.0] 1.209 [1.0] 1.114 [1.0] 1.225 [1.0] 1.248 [1.0]

Note: The entries are ratios of the tick loss from using the indicated predictive density to using the normal distribution for the indicated 
model. The values in brackets are p-values for the null that VaR forecasts computed with normal distribution are at least as accurate as 
forecasts computed with the indicated predictive density. Emboldened entries indicate the null is rejected at the 10% level, implying that 
use of the specified method yields statistically more accurate VaRs  than the normal distribution (for the given volatility forecasting 
model).    
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Table 5: Comparing Accuracy of Forecasting Models under Different Assumptions on the Predictive Density with AR(5) as benchmark.  
 qnorm qt8 qroll qrec 
 H(RV) M(RV H(RV) M(RV H(RV) M(RV H(RV) M(RV 

H = 1 
α=0.05                 
AU 1.005 [.72] 0.989 [.09] 1.002 [.61] 0.990 [.04] 1.013 [.87] 0.987 [.07] 1.002 [.56] 0.989 [.06]
CA 0.932 [.00] 1.015 [.99] 0.967 [.05] 1.014 [.97] 0.979 [.04] 1.007 [.85] 0.961 [.01] 1.009 [.93]
EU 0.999 [.48] 1.008 [.88] 0.997 [.39] 1.003 [.73] 0.999 [.46] 1.011 [.92] 0.997 [.38] 1.006 [.90]
UK 0.991 [.09] 1.002 [.62] 0.993 [.08] 0.997 [.30] 0.984 [.06] 0.998 [.38] 0.992 [.22] 1.000 [.49]
JP 1.008 [.78] 1.000 [.52] 1.000 [.48] 1.005 [.85] 1.009 [.86] 0.999 [.44] 1.006 [.74] 0.998 [.41]
α=0.025                 
AU 1.008 [.72] 0.991 [.16] 0.995 [.35] 0.993 [.16] 0.993 [.28] 0.992 [.09] 1.004 [.62] 0.992 [.18]
CA 0.927 [.01] 1.020 [.97] 0.944 [.06] 1.018 [.93] 0.987 [.21] 1.011 [.76] 0.947 [.04] 1.012 [.87]
EU 1.005 [.60] 1.008 [.80] 0.989 [.13] 0.998 [.39] 0.986 [.26] 0.995 [.33] 0.994 [.38] 0.999 [.47]
UK 0.989 [.10] 0.997 [.38] 0.992 [.18] 0.990 [.17] 0.995 [.28] 0.994 [.34] 0.989 [.09] 0.996 [.37]
JP 1.010 [.71] 1.007 [.78] 0.995 [.37] 1.001 [.56] 0.993 [.37] 0.992 [.17] 0.990 [.29] 1.003 [.61]

H = 5 
α=0.05                 
AU 1.036 [.93] 0.992 [.32] 1.013 [.74] 0.998 [.40] 1.032 [.98] 0.988 [.18] 1.031 [.92] 0.989 [.25]
CA 0.951 [.04] 1.022 [.96] 1.018 [.82] 1.007 [.75] 1.020 [.95] 1.005 [.73] 0.996 [.42] 1.011 [.85]
EU 1.004 [.67] 1.015 [.94] 0.991 [.03] 1.010 [.97] 1.006 [.72] 1.028 [.99] 1.002 [.58] 1.029 [.98]
UK 0.999 [.45] 1.015 [.90] 1.003 [.70] 1.005 [.70] 1.016 [.91] 1.011 [.78] 1.020 [.94] 1.017 [.92]
JP 1.021 [.85] 1.023 [.92] 1.004 [.61] 1.028 [1.0] 0.984 [.02] 1.024 [.99] 1.012 [.79] 1.020 [1.0]
α=0.025                 
AU 1.035 [.82] 1.001 [.55] 1.007 [.64] 1.004 [.79] 1.052 [.91] 0.976 [.10] 1.036 [.92] 0.981 [.21]
CA 0.997 [.47] 1.003 [.59] 1.024 [.79] 0.980 [.00] 0.984 [.25] 0.987 [.09] 1.010 [.66] 0.990 [.13]
EU 0.989 [.01] 1.009 [.83] 0.989 [.02] 1.012 [.97] 0.978 [.07] 1.007 [.72] 0.993 [.16] 1.022 [.98]
UK 1.007 [.84] 1.003 [.58] 1.003 [.72] 0.997 [.36] 1.008 [.86] 1.004 [.61] 1.007 [.86] 1.000 [.50]
JP 1.017 [.74] 1.028 [.99] 0.999 [.49] 1.026 [.99] 0.989 [.26] 1.007 [.75] 0.978 [.05] 1.020 [.99]

Note: The entries are ratios of tick loss of the indicated volatility forecasting model against the AR model, when the predicted density is as indicated for 
both models for computing VaRs. The values in brackets are p-values for the null that VaR forecasts of the indicated model are no more accurate than 
forecasts of the AR(5). Emboldened entries signify the null is rejected at the 10% level. 



 

 25  
 

0

0.005

0.01

0.015

0.02

0.025

             
0

0.005

0.01

0.015

0.02

0.025

0.03

 
 

0

0.005

0.01

0.015

0.02

0.025

            
0

0.005

0.01

0.015

0.02

0.025

0.03

 
 

0

0.005

0.01

0.015

0.02

0.025

          
0

0.005

0.01

0.015

0.02

0.025

0.03

 

0

0.005

0.01

0.015

0.02

0.025

           
0

0.005

0.01

0.015

0.02

0.025

0.03

 
Figure 1: Estimates of Daily Realized Volatility (std. dev) with Australian and Euro Intraday Exchange Rate Returns: Realized Quadratic Variation (RV); 
Realized Power Variation (RPV); Continuous and Jump Components. (Jan 4, 1999 — Oct. 31, 2003) 
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Figure 2: One-step-ahead Forecasts of VaRs at 5% of Canadian Dollar with AR and HAR models with 
Normal and Rolling Distributions 
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Figure 3: Realized Volatility and 1-step-ahead forecasts with AR(5), HAR and MIDAS for the five currencies.  

 


