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Abstract

The iPhone 4 was introduced into the UK market on 24th June 2010 to significant consumer interest.

This clearly exceeded supply through conventional channels, since there was very extensive activity

in terms of bidding on eBay auctions for the product. We monitored all eBay transactions on the

iPhone 4 for six weeks from introduction, with total transactions amounting to around £1.5m. We

analyse determinants of the winning bid in terms of characteristics of the phone, the seller and the

buyer. Our most notable and novel finding relative to previous studies is a very significant premium

over list price being paid in almost all cases, with positive uplift factors including whether the phone

was unlocked and whether it could be sold overseas. Demand fell over time, as evidenced by lower

achieved prices, but the fall in price was relatively modest. A significant premium of 32GB over 16GB

versions is revealed.
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1. Introduction

As eBay has grown in the 21st century into an internationally recognized forum for consumer-to-

consumer sales (as well as business-to-consumer sales), academic researchers have made extensive

use of the information available through its auctions in order to examine various hypotheses, both

on specific predictions from auction theory and on matters such as reputation.1 Our paper focuses

on a lesser-examined but possibly more important issue, revelation of information on consumer

valuations for an object and the business implications of that information. The chosen object is

Apple’s iPhone 4 at the time of its introduction into the UK market. We investigate determinants of

the magnitude of the winning bid on eBay, the leading e-commerce site in the UK.2

The extent of eBay activity on this product is extraordinary. On conservative assumptions, over £1.5

million pounds worth of business was transacted on the iPhone 4 on ebay.co.uk over our period of

observation, from 24th June 2010, the day it was available in the UK, to 7th August. It is important to

recall that Apple had created considerable prior consumer interest and anticipation regarding the

product, which had been available in the USA since 7th June.3 Demand was heightened by the

iPhone 3GS (the immediately previous model) being discontinued in the versions most closely

substitutable for the iPhone 4 on exactly the same day. As a consequence of the interest, Apple took

significant pre-orders and both it and its resellers (principally the mobile phone companies O2,

Vodafone and Orange at this stage) experienced continuing shortages until at least mid-August 2010.

In total, we recorded almost 30,000 bids across over 2,500 auctions for one or other version of the

iPhone 4 within our data sampling period.

Our key finding is quite remarkable. The vast majority of the winning bids were substantially in

excess of the list price for the phone, revealing consumer willingness to pay (amongst a self-selected

1
For an early but authoritative survey, see Bajari and Hortacsu (2004).

2
According to Nielsen, quoted in Cabral and Hortacsu (2010).

3
As an example of the hype, consider Apple’s slogan for the iPhone 4 “This changes everything. Again.”
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group of consumers) up to at least double the list price. To our knowledge, this finding is not

reported elsewhere in the eBay or similar auction literature.4

Table 1 lists key information coming from the auctions we work with. To draw out some highlights,

we use 1256 completed sales of the 16GB version, which has a list retail price at the Apple store of

£499. Of these sales, the maximum achieved value was £1180 and 1235 sales, that is 98% of them,

completed at a value in excess of the list price. The average price was £640.35. The figures for the

32GB version are similarly remarkable. We use 927 completed cases, with a maximum achieved

auction value of £1551 and an average price of £778.73 for a product with a list price of £599, 97%

of the auctions ending above the list price.

The plan of the paper is as follows. In section 2, we have a brief literature survey, drawing out issues

for analysis. Section 3 covers the data, section 4 the model, section 5 the results and the paper

concludes with some brief interpretations.

2. Lessons from the literature

A detailed description of the eBay auction process is available in Lucking- Reiley et al. (2007). As Roth

and Ockenfels (2002) have pointed out, although eBay auctions have many of the features of second

price Vickrey-style auctions, the “hard close” feature leads to a good deal of bidding activity (and

“sniping”, specifically) taking place in the closing minutes of the auction- this may have an impact on

the extent of demand revelation, as discussed below. Amongst the institutional features that have

been found by some researchers to matter to the final achieved price are that minimum bids and

reserve prices (where known) can have an influence, that longer auctions have a positive effect and

that seller reputation has an impact (see e.g. Lucking- Reiley et al., 2007).

4
This is not to say the finding is unique. A previous example on a much smaller dataset concerning a

fashionable shoehorn is reported briefly in a mimeo note by Waterson and Coombes (2010), available from the
corresponding author.
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Seller reputation in particular has been examined in a number of papers in the form of an analysis of

the relationship between seller price and seller feedback, measured in various ways (e.g. Meinik and

Alm, 2002; Houser and Wooders, 2005; Jin and Kato, 2006; also the extensive survey in Bajari and

Hortacsu, 2004). Interesting recent examples of analyses of reputation on eBay include Resnick et

al.’s (2006) controlled field experiment and Cabral and Hortacsu’s (2010) study on the dynamics of

reputation. The broad conclusion of these studies is that there is an asymmetry between positive

and negative feedback. Additional positive feedback has a markedly lower impact on achieved price

(or in Cabral and Hortacsu’s case, on sales) than even a small amount of negative feedback.

We turn now to the question of demand revelation in an eBay auction. It is commonly argued that a

Vickrey auction, that is a second-price sealed bid auction, leads in principle to accurate revelation of

willingness to pay (e.g. Hoffman et al., 1993). At the same time, there may be practical difficulties in

administering such an auction in a way that elicits true valuations (Wertenbroch and Skiera, 2002).

This is at least equally true of data from eBay auctions, which may either overestimate or

underestimate willingness to pay. It is clear that at the lower end of the distribution of willingness to

pay, eBay is likely to overestimate consumer valuations, because consumers with valuations lower

than the current bid will not enter bids (Barrot et al., 2010). Further, it has been argued (e.g.

Zeithammer and Adams, 2010) that eBay does not yield accurate estimates of true willingness to pay

because some bidders are “reactive” – rather than using a proxy bid that is capable of revealing their

true willingness to pay, they bid a little above the previous bid, but below their valuation. It is this

phenomenon that may give rise to the extensive activity observed in the closing stages.

When we consider the winning bid, and not the losing bids, only the second of these issues arises.5

Thus, the winning bid will not be an overestimate of that bidder’s true willingness to pay, but may be

an underestimate6, to the extent that the key bidders are reactive rather than “incremental”

(Zeithammer and Adams, 2010). This is of particular interest in cases like ours where the product is

5
See also Anwar et al. (2006) for complications relating to the winning bid implied by cross-bidding.

6
This is even after accounting for the fact that the winning bid is the second highest valuation, not the highest.
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not freely available at a list price. If it were freely available, there would be no reason for those

customers with valuations above list price to reveal these. In our case, we can be assured that, for

whatever reason, those who bid, won and paid above the list price, had valuations at least equal to

that amount.7

Subject to these caveats, identification is based upon the following observation. At the time when

the retail outlet is out of stock of the item, and its reappearance is unclear, supply to individual

consumers moves from being perfectly elastic at list price (so that price reveals nothing about the

nature of the demand curve above list price) to being (much more nearly completely) inelastic at any

time, based on the number of items offered for sale via alternative means. We treat this number,

for the present, as being exogenous. As this inelastic supply moves around, it will trace out points on

the demand curve for the product. Thus achieved auction prices reveal the nature of demand.

This information concerning the nature of consumer valuations is potentially useful to the ultimate

seller of the good, in this case, Apple. Like any seller of a new product, it has to gauge an

appropriate level of price. One strategy in doing this (with a durable good) is to pitch price high, and

reduce it over time, hoping to move down the demand curve. Alternatively, it may wish to set price

conservatively, in order to encourage early adoption and market interest and to avoid reputational

loss. In this case, it is useful for the seller to get some insight into the direct money loss involved, to

compare with the potential benefits. In our particular case, as we see later, the seller is also able to

gain important insight into the profitability of its bundling strategy.

3. Characteristics of the dataset

The sample of auctions from which to capture our data was constructed as follows: The iPhone4

went on sale in the UK on 24th June 2010.8 We started monitoring sales on eBay from this date and

continued until early August 2010, the last recorded sale closing on 7th August, 44 days later. There

7
At least at the time of sale; there may be a “snob” value in being an early adopter.

8
This was shortly after the US but before a number of key markets including Hong Kong and Australia.



6

was considerable activity regarding both iPhone4 16GB and 32GB versions, so that in order to

preserve all the cases two research assistants were used. One attempted to capture all relevant

cases by “watching” then subsequently recording them (it is possible to “watch” up to 200 auctions

at any one time, so there is time to record the information on each) whilst the other engaged in

screen scrapes using Python, a computing language, parsing the HTML pages- this latter approach

leaves a good deal of data cleaning to be done.9 Comprehensive information regarding all bids made

on either iPhone4 were collected, including bidder identities, seller identities (both these are

truncated by eBay to preserve anonymity), bidder and seller experience, seller’s record, bid values,

total number of bids per item, all available details of the item including whether “new” or not,

whether “locked” or not, postage, whether deliverable outside the UK, etc. Table 2 lists the

variables and their definitions.

We collected information on over 2,500 auctions. However, it became apparent that a proportion of

these may not have completed in the normal manner. A significant number of “winning” bids were

from bidders with very short records on eBay and a proportion of the winners are now classified as

“no longer registered” (NLR). Not all NLR cases concerned bidders with short records, but we made

the decision to exclude all such cases because we felt there was a significant possibility that

someone NLR had reached this status by failing to honour their bid. We therefore take as an

implication of a winner’s NLR status that the demand expressed in that bidder’s price may not be a

true reflection of their willingness to pay. Of course it is possible that the item then went to the

second highest bidder through the established eBay mechanism (the “second chance offer”), but we

are not able to know that. Statistics on the excluded cases are given in table 1.

Since we are concerned mainly with demand revelation, we did not attempt to exclude potentially

dubious sellers, although the problem appeared not to be anywhere near as significant on this side.

In our analysis, we take the position of including variables that are likely to measure whether the

9
We can easily avoid double counting by using the 11-digit eBay ID number as a marker.
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seller indeed has the product for sale, so that demand is revealed subject to that qualification. The

eBay reputation system has the property that sellers face significant potential penalties to future

trading activity including having Paypal transactions reversed in their account for listing

misdemeanours, losing their reputation (Cabral and Hortacsu, 2010) and having to build it up afresh,

through failing to complete their side of the bargain. Given the prior literature findings, we

incorporate asymmetries into our measures of reputation

Because of the very significant consumer interest, expressed in excess demand for the product,

achieved sale prices were very high, but with a significant variance, as we pointed out in Table 1.

4. The model

Our model takes a fairly conventional form, as represented in the equation below.

, ( , , , ," ", , , , , )i tP f t i locking characteristics UK only new seller reputation bidder nos start P bin returns

We seek to explain the winning bids made, Pi,t, primarily through factors influencing the demand for

the product.10 Demand differs as between the 16GB and 32GB products (the i variable). Clearly, it is

possible that demand is influenced by immediacy (or “snob value”)- although the product was in

short supply in the early period, this was unlikely to persist. Therefore, demand may depend on the

period elapsed since the product arrived, the t variable. “News” also has a potential impact- there

was a widely reported issue, embarrassing to Apple, regarding the antenna when the phone was

held in a certain manner. This reached a crescendo in mid July and Apple held a press conference on

10
A note on postage: We decided against including the figure for postage in our analysis. This was for several

reasons. First, the data on postage charges shows rather little variation- the minimum price being zero and the
maximum £9, with £7 being the modal figure. Notice that this amounts to around 1% of the achieved price
(and the correlation of delivered price with net price is extremely high). Second, there are some missing
observations on postage and some sellers proposed the buyer collect- it is difficult to know what figure to
insert here. Third, there is some evidence that postage is treated differently by buyers (e.g. Hossain and
Morgan, 2006).
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16th July 2010 in connection with the issue. We attempt to capture time effects through the means

of a non-linear relationship with time in the regression and a specific “news” dummy.

An “unlocked” phone is likely to be more valuable than a “locked” one, since the purchaser has

freedom to use any network and need not bear the potential expense/ concern about unlocking the

product to use it on an alien network. Being locked to different providers may matter- because of

the initial exclusivity policy set by Apple in selling the iPhone 3 it is overwhelmingly O2 users who

have most experience of the previous iPhone in the UK and may be nearing the end of their current

contract. A “new” phone, under eBay’s definition, may be slightly more valuable than one that has

never been used (although of course, none is old). Since the rollout of the iPhone 4 was gradual

around the world, and some countries had not yet had the opportunity to purchase, sales where the

supplier was willing to send the phone abroad might achieve a higher price.

Some purchasers may be concerned that the seller does not have the good or is supplying a look-

alike. Real (ie non-stock) photos may be convincing here, 11 as will an excellent previous reputation.

We develop and experiment with three separate measures of reputation to capture the potentially

asymmetric effect, namely the percentage good feedback, whether the feedback score of the seller

is perfect, and a count of the number of “stars” the seller has- we report results relating to the last

two of these three.

In line with the established literature, we include the minimum bid (i.e. the starting price), the

duration of the auction and the “buy-it-now” (bin) price (as a possible proxy for reserve price).

Although they have a relatively limited role in theoretical models, we include the number of bidders

bidding for the auction, the number of bids and whether there is a returns possibility.12

11
Given that our interest is in willingness to pay, we are not over-concerned about whether the transaction

failed to complete due to a fault on the seller’s side, although what evidence is available suggests the seller
acted in good faith in the vast majority of cases.
12

A larger number of bidders will tend to raise the price nearer to the winning bidder’s valuation. The reserve
price, which can influence the outcome, is generally unknown but must be distinguished from the start price,
which we do know.
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The supply side

Assume the (genuine) seller obtains their phone on the UK market, probably through pre-ordering,

at list price. Acting in an arbitrage role, the seller wishes to create a floor under their likely revenue

at the list price. In practice, auctions with an opening bid this high are unlikely to generate much

interest; a hidden reserve may be better.13 The seller could introduce a “buy-it-now” price, and some

do; under the eBay system, this disappears once/ if bidding starts. The other major instrument at the

seller’s disposal and not covered already is when to offer the good for sale. In this particular case,

the seller faces a tradeoff between a desire to capture the market early when snob value is high,

versus potential problems of the market being too crowded or adverse news having an impact on

the price. It is likely that, following reports of problems with the iPhone 4, sellers will temporarily

hold back stock in the hope that Apple finds a solution quickly. This is exactly what appears to

happen. Figure 1 shows cumulative sales closed against elapsed days in this market- both versions

are very similar in that there is a distinct hiatus after around day 20 (14th July) that lasts for a week or

so before there is a second takeoff in (offers for) sales again until around day 33, when there

appears to be a more natural cooling off in the market.14 We also introduce the number of sales

closing on that day into the regression explaining price, although the impact is potentially

ambiguous.

5. Results

The regression results, either separately for each version or for both versions combined, provide a

good fit and broadly sensible coefficient values, in line with existing studies of eBay auction

behaviour. Table 3 lists the main results for the regression analysis. Because there is evidence of

heteroskedasticity in the residuals, we report the results on the basis of robust standard errors. We

13
Casual observation of conventional open-outcry auctions shows that the auctioneer normally needs to warm

up the bidding by starting low, or going below an initial suggestion, before the price starts to rise through that
point again.
14

Of course, the day the sale closed is at least one day after the product was put up for sale.
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report regressions explaining both the winning price (winpr) and the natural log of the winning price

(lnwinpr). Specification tests and histograms of the price distribution suggest the semi log form of

the regression is more acceptable, but unfortunately it makes interpretation of coefficients less

straightforward.15 In columns 3 and 4 we report semilog results for the 16GB and 32GB models

separately, as well as together, but as can be seen in table 3 they are rather similar to each other so

we focus on the results for the whole sample and all the numerical magnitudes are derived using this

combined sample result on the log version.

The variables that are statistically significant and positive include the condition (whether it is “new”

or not), whether there is a real photo, whether it is unlocked, whether the feedback is perfect, the

amount of time elapsed since the phone was released (but affected negatively by the news of an

aerial problem), the number of bidders and possibly the number of bids, the start price and whether

it is a 32GB model. Being confined to UK only has a negative impact, as do the phone being on

Vodafone, the number of phones on sale that close that day, and the number of “stars” a seller has.

Longer auctions do not yield significantly higher prices, in our case.

However, not all these things have an economically significant impact, and the interpretation of

some is a little complex. To make evaluation easier, assume the base case is a 16GB phone that is

new, real and unlocked but confined to the UK (the implicit condition a phone purchased from the

Apple store would be in, if freely available). Using our point estimates in the semilog form, this

would be valued on average at £608.85. If instead it was a 32GB model, it would be valued on

average at £711.73, other things equal.16 These values are both, of course, substantially in excess of

the price charged in an Apple store (and in excess of the observed means across our samples), but

that would involve a wait of indefinite time for the phone, at least three weeks depending on version

15
In the linear functional form case, the coefficients can be read directly as premia applied to a particular

characteristic (e.g. whether the phone is unlocked), but with the log form, the impact of a particular feature
depends on the other features with which it is associated.
16

Notice this is very similar to the figure obtained from the linear functional form.
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and source. If the phone could be taken/ sent overseas, then the value would increase significantly,

to £676.08 and £790.32 respectively.

Returning to the base case of a 16GB phone, new and real but now assuming it is locked to

Vodafone, the model suggests its value would fall to £502.61, a very significant fall indeed. Being

locked to O2 leads to a significantly lesser fall in price than this, which makes sense given the

institutional position discussed in section 4 above. Going back to the base case, adding five more

bidders (a little above one standard deviation) raises the price to £618.24, that is rather slightly, and

in line with the idea that more bidders will lead to the winning bidder paying somewhat nearer to

their valuation for the good. Adding more bids leads to a similar conclusion. The impact of a

different start price is statistically but not economically significant, in line with general presumptions

of auction theory. Statistically, the number of stars a seller has influences price negatively which is a

puzzle, but economically it is not significant in size. However we should recall that this is conditioned

on the feedback being “perfect”, which did have an economically as well as statistically positive

impact; the overall impact of a better reputation is still positive (and non-linear). It makes sense that

the more sales closing that day, the lower the achieved price, although the measured impact is

small.

As a final influence on the outcome, consider the effect of time. The values above were generated

assuming purchase at day 1. The elapsed time and its square are both statistically significant, but of

opposite sign, suggesting an increasing value over time, but at a decreasing rate. To this must be

added the impact of the negative news regarding the aerial problem. Thus the effect is a little

complex. Taking the base case again, by day 15 the value of the phone has risen to an average of

£676.03. By day 20, the news effect has kicked in and the value is now £654.35. In doing this

calculation (and indeed previous ones), we have not taken into account the effect of different

numbers of auctions closing on any particular day, although as pointed out already, these shrink

around the period of the news. Considering this effect separately in relation to the base case, if we
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assume the mean number of (approximately) 50, the base case value would move to £592.81.17 One

standard deviation (24 sales) either side, the values are £600.45 (with 26 closing) and £585.26 (with

74 closing).

6. Some Interpretations

The modelling confirms the obvious impression from the raw figures of the eBay auctions leading to

a very substantial average premium on the price of the phone, indicating significant excess demand

for the phone translating in turn into the auctions being won by people with valuations for it

substantially in excess of the Apple’s listed retail price(s). The model confirms a number of existing

findings on eBay auctions and yields sensible values for factors such as seller reputation, the number

of bidders, auction start price etc. However, beyond this, in the context of most existing work on

eBay auctions, the significant excess demand, arguably leading to a significant extent of revelation of

the nature of demand above market price by individuals, is a novel finding. It naturally leads to the

question of why Apple did not charge more for the phone, at least initially. Possibly, total demand at

these prices is relatively thin, so that it was not worthwhile to engage in a time discrimination

strategy. Or perhaps Apple was concerned about negative publicity.

Nevertheless, the results also cast an interesting light on the discrimination strategy that Apple is

practising, in respect of price differentials between the 16GB and 32GB versions of the phone. With

the iPhone, memory is bundled with the phone and cannot be changed. The list price differential

between versions is £100. This is large in relation to Apple’s likely cost difference between them.

Many other broadly similar “smartphones”, for example the HTC Legend running Android, allow the

user to determine the amount of memory to insert in the phone. The HTC Legend can take up to

32GB of micro SDHC memory. This size memory is widely available on the internet. In mid-August

2010, the postage paid price of a 32GB micro SDHC memory card of reputable make was around £82

17
Clearly, in the base case of purchase from the Apple store, this variable makes no sense- it only makes sense

in the auction context.
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(e.g. on Amazon, £84). This contrasted with 16GB of micro SDHC at around £30. So the difference in

price between purchasing one and the other is only just over one half of the difference Apple

charges. The eBay auction results suggest that, at least with these early customers, the substantial

£100 price differential was fully justified (in management terms) by the difference in willingness to

pay as between the different versions.
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Figure 1: The pattern of sales across time in our samples
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Characteristics of the samples Version

16GB 32GB

Auction numbers used in analysis 1256 927

No longer registered/ dropped* 223 94

15.1% 9.2%

Mean transaction price £640.35 £778.73

Min price observed £100 £480

Max price observed £1,180 £1,551

Apple website price (sim free) £499 £599

In excess of Apple retail price 1235 903

98.3% 97.4%

Max daily sales 118 71

*See the Data section for more details

Table 1: Characteristics of the samples of iPhone 4 auctions analysed
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Variable definitions

Name Definition

winpr Final winning price to buyer, excluding postage

ID 11 digit item number on eBay

nonstock
photo Number of non-stock photos

total photo Number of photos of any type

realphoto dummy takes value 1 where there is at least one non-stock photo

network network to which the phone is locked, according to seller

unlockdum phone declared to be unlocked

o2dum locked to O2 network

vodadum locked to Vodafone network

orangedum locked to Orange network

(The default is that the phone is locked to another network, eg AT&T, or is not declared)

worldwide deliverable anywhere in the world = 1, 0 otherwise

ukonlydum deliverable to UK only =1 (remaining case is deliverable in, say, EU, or US)

postage postage charge for UK delivery

returns Will seller accept a returned product?

condition declared condition, according to eBay definitions (eg used)

conditnd condition declared as new = 1, 0 otherwise

userid The (middle truncated) identity number of the eBay seller

posfeedbak Proportionate feedback on seller to date

feedbkd is 1 if feedback = 1, 0 otherwise

star eBay seller's "star" rating (a measure of the number of transactions undertaken)

duration number of days for which auction lasts

biddernum number of discrete bidders

bidsnum total number of compliant bids (not including proxy bids)

startp price at which auction commences

bidderid
The (middle truncated) identity number of the eBay buyer (together with
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information about bidder experience)

Endtime
time and date of end of auction (time/ date of final bid and of start also
recorded)

bindum product has buy-it-now price

elapst time in days since 24th June (introduction date into UK)

elapstsq square of the above

closingnum number of auctions closing some time in that particular day

lxxx natural log of variable xxx

Table 2: Definitions of the variables employed
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Dependent Variable

winpr lwinpr lwinpr16 lwinpr32

Variable coeff t-stat coeff t-stat coeff t-stat coeff t-stat

conditnd 41.87 4.09 0.0629 4.31 0.0579 2.72 0.7283 3.99

returnsd 4.01 0.67 0.0069 0.86 0.0123 1.60 0.0009 0.08

realphoto 21.38 6.31 0.0328 6.20 0.0313 4.13 0.0342 4.80

ukonlydum -37.40 -4.17 -0.0545 -4.28 -0.0678 -4.02 -0.0388 -1.98

unlockdum 95.52 11.52 0.1394 11.51 0.1331 8.53 0.1468 7.43

o2dum -6.22 -0.74 -0.0061 -0.50 -0.0089 -0.58 -0.0034 -0.16

vodadum -32.98 -3.60 -0.0527 -3.90 -0.0564 -3.36 -0.0493 -2.20

orangedum -14.73 -1.71 -0.0223 -1.77 -0.0302 -1.95 -0.0084 -0.37

feedbkd 13.79 3.33 0.0201 3.33 0.0195 2.56 0.0217 2.15

elapst 9.22 12.73 0.0131 11.79 0.0136 7.91 0.0134 9.64

elapstsq -0.29 -13.32 -0.0004 -13.15 -0.0004 -9.34 -0.0004 -10.91

bindum 8.78 1.15 0.0082 0.81 0.0133 0.92 0.0042 0.27

newsdum -25.95 -3.11 -0.0403 -3.53 -0.0459 -3.33 -0.0344 -2.03

closingnum -0.40 -4.87 -0.0005 -4.63 -0.0005 -3.36 -0.0006 -2.23

worldwide 46.42 4.40 0.0502 3.52 0.0355 1.83 0.0655 3.05

star -0.0003 -3.69 -2.98E-07 -3.41 -2.72E-07 -0.10 -3.32E-07 -0.17

duration 0.72 0.81 0.0008 0.71 0.0014 0.88 0.0003 0.17

biddernum 2.01 2.22 0.0031 2.49 0.0021 2.49 0.0005 2.13

bidsnum 1.55 3.24 0.0019 2.89 0.0021 1.40 0.0015 1.43

startp 0.08 8.25 0.0001 7.78 0.0001 4.32 0.0001 6.69

32gbdum 109.91 32.34 0.1561 32.01 - -

const 484.50 23.78 6.2310 208.52 6.2551 146.39 6.3463 149.54

R sq 0.6914 0.6826 0.5190 0.5908
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F 195.19 262.69 110.40 68.90

Observations 2183 2183 1256 927

Note: t-statistics based on robust standard errors. For coefficient definitions, see Table 2.

Table 3: Regression results on the iPhone 4


