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Abstract

In this paper, we study nonclassical measurement error in the continuous dependent variable of a
semiparametric transformation model. The latter is a popular choice in practice nesting various non-
linear duration and censored regression models. The main complication arises because we allow the
(additive) measurement error to be correlated with a (continuous) component of the regressors as well
as with the true, unobserved dependent variable itself. This problem has not yet been studied in the
literature, but we argue that it is relevant for various empirical setups with mismeasured, continuous
survey data like earnings or durations. We develop a framework to identify and consistently estimate
(up to scale) the parameter vector of the transformation model. Our estimator links a two-step control
function approach of Imbens and Newey (2009) with a rank estimator similar to Khan (2001) and is
shown to have desirable asymptotic properties. We prove that ‘m out of n’ bootstrap can be used to
obtain a consistent approximation of the asymptotic variance and study the estimator’s finite sample
performance in a Monte Carlo Simulation. To illustrate the empirical usefulness of our procedure, we
estimate an earnings equation model using annual data from the Health and Retirement Study (HRS).
We find some evidence for a bias in the coefficients of years of education and age, emphasizing once
again the importance to adjust for potential measurement error bias in empirical work.
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1 Introduction

The paper considers identification and estimation of the parameter vector of the monotone

transformation model (Han, 1987) when the continuous dependent variable is subject to non-

classical measurement error, where ‘nonclassical’ refers to a potential correlation of the measure-

ment error with the true, unobserved dependent variable itself and a (continuous) component

of the regressor vector. This setup is of interest from an empirical perspective as survey data

is commonly subject to measurement error (Bound, Brown, and Mathiowetz, 2001). In partic-

ular for earnings and duration data, which is often analysed using models nested within the

monotone transformation model, evidence suggests that nonclassical measurement error is the

rule rather than the exception: Bricker and Engelhardt (2007) for instance study measurement

error in matched earnings data of older workers in the Health and Retirement Study (HRS).

Their findings suggest a strong negative (‘mean-reverting’) relationship between the extent of

measurement error and true earnings. In addition, this measurement error is found to rise with

reported (years of) education. Cristia and Schwabish (2007) confirm both results using the Sur-

vey of Income and Program Participation (SIPP) Panel matched to administrative records.1

In the duration context, Jaeckle (2008) reveals a similar pattern for benefit recipient histories

in the British Household Panel Survey (BHPS), where individuals with lower educational at-

tainment tend to over-report (i.e. to report durations that exceeded the ones they actually

experienced) more excessively and under-reporting of the benefit duration generally increases

with spell length. Since both, durations and earnings, are typically used as ‘left-hand side’

variables in censored regression or duration models, both examples can be accomodated by our

framework.2

The main contribution of this paper is to provide the researcher with a tool to deal with non-

classical (as defined above) measurement error in continuous survey data such as earnings or

durations if the model of interest is the monotone transformation model (or any other model

nested therein). To the best of our knowledge, such a tool does not yet exist. While correlation

between the unobserved dependent variable and measurement error seems to be the more com-

mon finding in practice (see Torelli and Trivellato, 1989; Bound and Krueger, 1991), the main

theoretical complication in the identification and estimation process of the parameter vector

actually arises from the correlation of the measurement error and the continuous component

of the regressors. We solve this ‘endogeneity problem’ by proposing a three-step identification

and estimation procedure: first, we employ a two-step control function approach (see Imbens

and Newey, 2009; Hahn, Hu, and Ridder, 2008) to estimate the conditional mean of our (mis-

measured) dependent variable conditional on all covariates and the estimated control function.

1In addition, the study also provides evidence for a correlation of measurement error with other demographic
variables such as gender, age, or marital status.

2Notice that in order to apply the framework of this paper, education needs to be modelled as a continuous
variable (‘years of schooling’).
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Subsequently integrating over the support of the control function reduces the measurement

error to a numerical constant. In a third step, we then use a rank-type argument comparing

pairs of observations to eliminate this numerical constant. Since we employ a control function

method in the first place, our procedure requires the existence of a suitable instrument vector.

We argue that for the examples given before, instrumental variables typically suggested by the

empirical literature for Mincer-type earnings equations such as parental education, minimum

school-leaving age, or (same sex) sibling’s educational qualification should also be applicable in

this context as they are likely to be correlated with the observed schooling level of the individ-

ual, but unlikely to affect the individual’s actual response to the survey question (see section

2.1).3

From a technical point of view, the main innovation of the paper is to combine a nonparamet-

ric mean estimator with a rank estimation procedure and to derive its asymptotic properties.4

Since duration models are arguably one of the most relevant application field of the transfor-

mation model in practice, we extend the estimator to allow for random right censoring. The

additional estimation step required to accomodate censoring and to obtain the mean function

further complicate the asymptotic variance expression, which depends on first and second order

derivatives of certain conditional expectations. Thus, in order to construct confidence intervals

for our parameter estimates, we suggest the use of ‘m out of n’ bootstrap for these intervals

and show its first order validity. Finally, to illustrate our methodology empirically, we examine

annual earnings data from the HRS, which has been found to be subject to nonclassical mea-

surement error (Bricker and Engelhardt, 2007). We estimate the reduced version of an earnings

equation and find that our estimator differs substantially from other estimators obtained for

comparison purposes. Together with evidence for a mean-reverting non-classical measurement

error in annual earnings in the HRS (see Bricker and Engelhardt, 2007), this underlines the

need to adjust for measurement error bias when examining the determinants of annual labour

income of older workers in the HRS as estimates appear to be strongly affected.

Our paper complements the existing literature on nonlcassical measurement error, which has

been rather limited regarding measurement error in the response variable of nonlinear mod-

els. Within the duration setup for instance, researchers have limited attention to either

fully parametric duration models or classical forms of measurement error (e.g. Skinner and

Humphreys, 1999; Augustin, 1999; Abrevaya and Hausman, 2004; Dumangane, 2007), both of

which are problematic once the restrictive setup fails to hold. A notable exception is the paper

by Abrevaya and Hausman (1999), who consider nonadditive, classical measurement error in

the dependent variable. Relative to our approach, however, their setup cannot incorporate

3Notice that this argument is valid even when measurement error is actually not related to cognitive ability
as in the earnings example in the introduction, where correlation with educational attainment is more likely to
be due to its link with higher earnings.

4Concurrently to this work, Jochmans (2010) developed a two-step weighted rank estimator with nonpara-
metric controls for the monotone transformation model.
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a correlation of the measurement error with the true, unobserved dependent variable itself,

which often appears to be the more relevant problem in practice. Abstracting from the dura-

tion context, Chen, Hong, and Tamer (2005) have considered various semiparametric models

under nonclassical measurement error (in the dependent as well as the independent variable(s))

using auxiliary data. Matzkin (2007) examines a completely nonparametric framework, but

her identification result hinges on the independence of the response error and other model

(un-)observables. Hoderlein and Winter (2007) on the other hand use a structural approach

to identify marginal effects of linear and nonlinear models under measurement error in either

the dependent or the independent variable(s). While their methodology allows them to make

detailed statements about the determinants and implications of such a measurement error, the

validity of these claims clearly relies on the underlying model assumptions.

The paper is organised as follows: Section 2.1 outlines the identification strategy. Section 2.2

deals with the corresponding multi-step estimation procedure, its asymptotic distribution is

derived in Section 2.3 and the validity of the bootstrapped confidence intervals is established in

Section 2.4. Finally, Section 3 explores the finite sample properties in a small scale simulation

study and Section 4 concludes with an empirical illustration on annual earnings data from the

HRS Survey. All tables and proofs are postponed to the appendix.

2 Setup

2.1 Identification

The monotone transformation model (Han, 1987), which nests several duration and censored

regression models, is given by:

Y ∗j = m(X ′jβ0 + εj) (1)

where Y ∗j is an unobserved, continuous scalar dependent variable, X
′
j = {X(c)

j , X
(d)
j }

′
is a (dx×

1)-dimensional covariate vector with X
(c)
j

(
X

(d)
j

)
containing continuous (discrete) elements,

and εj is a scalar unobservable (independent of Xj). m(·) is a strictly increasing transformation

function giving the model its flexibility and name.5 Within this setup, we incorporate an

additively separable6, nonclassical measurement error ηj (scalar):

Yj = Y ∗j + ηj (2)

5Notice that the flexible structure of m(·) only allows identification up to a location and size normalization
(Sherman, 1993).

6Notice that if Y ∗j is a duration variable, which can only take on positive values, the expression in (2) can be

interpreted as the log-transformation of Ỹj = Ỹ ∗j · η̃j , where both Ỹ ∗j and η̃j have support [0,∞) and Ỹ ∗j , η̃j > 0
except for a set of measure zero. Thus, the assumption of additive separability is not as restrictive as it might
appear at first sight and has in fact been adopted by several authors in the literature (e.g Chesher, Dumangane,
and Smith, 2002).
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‘Nonclassical’ here refers to a potential correlation of the measurement error with the true,

underlying dependent variable and a (continuous) component of Xj. That is, letting “⊥”

denote statistical independence of two random variables and “ 6⊥” dependence, we have:

• εj 6⊥ ηj and

• X1j 6⊥ ηj, where X1j ∈ X(c)
j .

The fact that we only allow for a correlation of the measurement error with one continuous

component of Xj is due to the nonparametric regression at the first stage and certainly re-

strictive. We believe, however, that our setup is still covering a sufficiently large number of

interesting applications (see introduction) to be of relevance. Combining (1) and (2) yields the

observed equation:

Yj = m(X ′jβ0 + εj) + ηj (3)

Our object is to identify β0 from (3). We assume the existence of an instrument vector Zj:

A1 there exists a (dz × 1)-dimensional, continuous vector Zj (with dz ≥ 1) such that

X1j = g(Zj) + Vj (4)

with g(·) a real-valued, continuous function, E[Vj|Zj] = 0, and

Zj ⊥ εj, ηj, Vj

.

Condition A1 is the “exclusion restriction” typically imposed in the control function literature.

It specifies that the correlation between X1j and ηj only runs through a function Vj, the so

called control function. Moreover, notice that we require the instrumental variables to be

continuous due to the use of kernel methods at the first-stage of our estimator.7 Concerning

the examples given in the introduction, instruments suggested in the context of (Mincer-type)

earnings equations (Glewwe and Patrinos, 1999; Butcher and Case, 1994; Card, 2001; Ichino and

Winter-Ebmer, 1999) should also be applicable here. However, in line with Hu and Schennach

(2008), we stress that also a repeated measurement of Y ∗j could be understood as an instrument

if it satisfied the independence assumption in A1 (i.e. if the second observation was independent

of the measurement error ηj in Yj conditional on the regressors Xj).
8 Finally, since our setup

7In practice, if some components of the instrument vector Zj were discrete, nonparametric estimation of g(·)
could proceed by splitting the sample according to the different values of that component and by estimating
g(·) separately for these values.

8If one believes that an alternative measurement is independent of the original measurement error (possibly
conditional on other variables), repeated measurements could be employed as suitable instruments. See Chalak
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is entirely nonparametric, it is well known that identification condition A1 does not imply nor

is it implied by the assumptions usually imposed in the nonlinear instrumental variable (NIV)

literature.

The second condition we require for identification is a “large support condition”, which ensures

sufficient variation in Vj given X1j (see Hahn, Hu, and Ridder (2008) for details).

A2 W = X ×Z ×V is a compact, non-empty subset in the interior of the joint support of X,

Z, and V . Assume that the joint density on W is everywhere continuous and bounded

away from zero.

The third and fourth condition sufficient for identification of β0 are:

A3 {Xj, Zj, εj, ηj}nj=1 is an i.i.d. sample, where Yj and the endogenous component X1j are

generated according to (3) and (4), respectively.

A4 Let µ(x) :=
∫
E[Yj|Xj = x, Vj = v]fV (v)dv with fV (·) the marginal density of Vj. For

every x ∈ X , µ(x) is strictly increasing in x
′
β0.

Condition A3 is a standard i.i.d. assumption, while A4 serves to make the restrictions imposed

on m(·) and the index x′β0 explicit.9 That is, condition A4 follows from Yj = m(X ′jβ0 + εj)+ηj

with m(·) being strictly increasing in X ′jβ0 and the argument used in the proof of Lemma 1,

which can be found in the appendix.

Given this setup, we obtain the following lemma, which ensures that the limit of the objective

function introduced in the next section is uniquely maximized:

Lemma 1. Under assumptions A1, A2, A3, and A4 and given (3) and (4), we have for every

x, x̃ ∈ X :

µ(x) > µ(x̃) if x′β0 > x̃′β0

The proof of this lemma proceeds in two steps: using A1 and A2 and an iterated expectation

argument, one can show that for every x ∈ X (see Imbens and Newey (2009)):

µ(x) = E[m(x′β0 + εj)] + E[ηj] (5)

where the expectation is taken w.r.t. εj and ηj, respectively. Notice that E[ηj] is ‘reduced’ to a

numerical constant and that µ(x), by A4, is strictly increasing in x′β0 for all x ∈ X . The latter

and White (2007) for a detailed discussion of identification under various instrument concepts.
9Notice that a further support condition similar to Cavanagh and Sherman (1998) will ensure that identifi-

cation is not lost by restricting ourselves to the set W.
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motivates the use of a rank-type argument (see Cavanagh and Sherman, 1998), which together

with the i.i.d. assumption A3 allows for identification of β0. That is, by A3 we have for every

x ∈ X and i, j ∈ 1, . . . , n:

E[m(x′β0 + εj)] + E[ηj] = E[m(x′β0 + εi)] + E[ηi]

Thus, given x, an inequality will only arise for differing β-values.

2.2 Estimation

We suggest a three-step estimation procedure that follows from the previous result:

(i) Recover V̂j from a nonparametric first-stage regression of X1j on Zj.

(ii) Estimate µ(x, v) := E[Yj|Xj = x, Vj = v] nonparametrically using Yj, Xj, V̂j.

Compute the average: µ̂(x) = 1
n

n∑
i=1

µ̂(x, V̂i) for every x ∈ X .

(iii) Use a modified version of the two-step rank estimator of Khan (2001) to recover β0 (up

to scale).

The last step requires the use of a modified version of Khan’s (2001) rank estimator, which uses

a conditional quantile function as transformation of the dependent variable. We replace this

conditional quantile function and its estimator by the conditional mean µ(x) and µ̂(x), respec-

tively. The replacement (together with the introduction of a control function and censoring)

affects the asymptotic variance of our estimator, which will be different from the expression

derived in Khan (2001). The estimated control functions V̂j stem from the regression equivalent

of (4), that is:

V̂j = X1j − ĝ(Zj)

To estimate g(·), we use the Nadaraya-Watson estimator (for simplicity, assume that dz = 1)

with

ĝ(Zj) =

n∑
k=1

X1kkh(Zj − Zk)
n∑
k=1

kh(Zj − Zk)

where

kh(Zj − Zk) = k

(
Zj − Zk

h

)
and h is a deterministic sequence satisfying h −→ 0 as n −→ ∞, while k(·) is a standard

kernel function defined in B3 in Appendix A.1. Notice that g(·) could also be estimated by

series estimators (splines, power series) or local linear smoothers, but the use of the Nadaraya

Watson estimator will facilitate several proofs in the appendix. Moreover, we obtain a lim-
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iting distribution that does not depend on the nonparametric first step estimators (a similar

was obtained by Newey (1994) for smooth objective functions with a nonparametric plug-in

estimate).

The conditional mean function µ(x) can be estimated using again the Nadaraya-Watson kernel

estimator. Since we have a dx-dimensional covariate vector Xj and a univariate V̂j, we define

the following d = (dx + 1) dimensional product kernel (for simplicity assume that: h = h1 =

h2 = ... = hd):

Kh,j(x, v) = k

(
x1 −X1j

h

)
× . . .× k

(
xdx −Xdxj

h

)
× k

(
v − V̂j
h

)

and introduce the following shorthand notation for the first dx elements:

Kh(x−Xj) = k

(
x1 −X1j

h

)
× . . .× k

(
xdx −Xdxj

h

)

To ensure uniform consistency and to bound the denominator away from zero, we introduce a

nonrandom trimming function:

Ixi := I[x ∈ X , Vi ∈ V ] and Îxi := I[x ∈ X , V̂i ∈ V ]

We refrain from using random trimming, but different trimming techniques might be used in

practice. Finally, we also allow for random (right) censoring in the estimation of the conditional

mean by using the so called “synthetic data” approach. As outlined in section 1, duration data

is typcially subject to (random) right censoring. Instead of observing the mismeasured duration

Yj for each individual, we observe:

Uj = min{Yj, Cj} and ∆j = I{Yj ≤ Cj}

where Cj is the censoring time and ∆j a censoring indicator. We assume {Cj,∆j} to be

independent of the other model covariates. This assumption, albeit debatable in some settings,

is standard in the literature and often justified in practice. In addition, define:

UjG =
Uj∆j

1−G(Uj−)

and

UjĜ =
Uj∆j

1− Ĝ(Uj−)

where G(·−) is the left-continuous distribution function of Cj and Ĝ(·−) the corresponding

Kaplan-Meier estimator (Kaplan and Meier, 1958) with Ĥ(·−) the left-continuous empirical
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distribution function of Uj:

Ĝ(c) = 1−
∏
i:Ci≤c

(
1−

∑n
j=1 I[(1−∆j) = 1, Cj ≤ Ci]

1− Ĥ(Ui−)

)1−∆i

Replacing the partially unobserved Yj by UjG, Koul, Susarla, and van Ryzin (1981) showed

that under condition B1 in the appendix:

E[UjG|Xj = x, Vj = v] = E[Yj|Xj = x, Vj = v] (6)

Since UjG is unobserved, we can replace it by UjĜ and estimate (6) as:

µ̂(x, V̂i) =

n∑
j=1

ÎxiUjĜKh,j(x, V̂i)

n∑
j=1

ÎxiKh,j(x, V̂i)
(7)

while:

µ̂(x) =
1

n

n∑
i=1

µ̂(x, V̂i) (8)

is the average of µ̂(x, V̂i) over V̂i. The last stage recovers the parameter vector β0. As rank

estimators only allow an identification of β0 up to scale, we require a normalization of an

arbitrary component of the parameter vector. Following standard procedures, we normalize

the first component to one, i.e. β(θ) ≡ (1, θ).10 Thus, the third stage rank estimator is given

by:

β(θ̂) = arg max
θ∈Θ

1

n(n− 1)

∑
k 6=l

I[Xk ∈ X ]× µ̂(Xk)× I[X ′kβ(θ) ≥ X ′lβ(θ)] (9)

where
∑

k 6=l stands for the double sum
∑n

k=1

∑n
l>k assuming that observations are in ascending

order.11 The form of (9) is almost identical to the two-stage rank estimator of Khan (2001) using

a conditional mean instead of a conditional quantile function. We notice that for the above

estimator to work we require that µ̂(Xk) > 0 for everyXk in X . Thus, if Yj also takes on negative

values, we require an upfront transformation of the data, e.g. Y j = Yj − min{Y1, . . . , Yn}, to

ensure positivity.

10Accordingly, the true parameter vector is β(θ0) ≡ (1, θ0).
11Summations appearing in the following that involve more than two indices will be defined according to the

same logic.
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2.3 Asymptotic Properties

This subsection considers the asymptotic properties of our estimation procedure. The proba-

bility limit of (9) evaluated at θ0 is:

β(θ0) =

∫
I[Xk ∈ X ]× µ(Xk)× I[X ′kβ(θ0) ≥ X ′lβ(θ0)]dFX(Xk, Xl) (10)

where FX(·, ·) in this case denotes the distribution function of Xk, Xl. Since the conditions for

consistency,
√
n-consistency, and asymptotic normality are standard and rather lengthy (see

Cavanagh and Sherman (1998) or Khan (2001) for details), we refer the reader to Appendix

A.1, where we outline conditions B1 to B8 used in the theorems below together with a short

discussion of non-standard assumptions. Notice that we employ a higher order kernel function

in order to allow for a fairly large dimension of the covariate vector Xj. That is, with an

increasing number of covariates used in the estimation of the conditional mean, we require a

kernel function with an increasing number of moments equal to zero in order to control the

bias.

Theorem 2. Under conditions A1-A4, B1-B5, B7, and B8, we have:

θ̂
p→ θ0

The proof of Theorem 2 parallels the proof of Theorem 3.1 in Khan (2001). The main differ-

ence with respect to the latter, who uses a conditional quantile instead of a conditional mean

estimator, is to show that replacing µ̂(Xk) by its probability limit µ(Xk) results in an error

of smaller order for every Xk ∈ X . Unlike Khan (2001), however, we also need to control for

the estimated terms V̂j, UjĜ, and Îj. One difficulty arises as the V̂j also enter the indicator

function Îj, which in turn prevents a Taylor expansion. We borrow an argument from Corradi,

Distaso, and Swanson (2010) to show that this term can infact be bounded by an expression

approaching zero at rate ln(n)
1
2/(nhdz)

1
2 −→ 0. Together with the convergence rates of UjĜ

and V̂j, we obtain the overall rate:

µ̂(x)− µ(x) = Op

((
ln(n)

nhdz

) 1
2
)

= op(1)

for every x ∈ X .

Given consistency of θ̂ for θ0, we can replace the parameter space Θ by a shrinking set around

θ0 to establish
√
n-consistency and asymptotic normality using results of Sherman (1993). To

simplify notation in the next theorem, we define the following expression (see Khan, 2001;
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Sherman, 1993):

ψ1(x, θ) =

∫
µ(x)× I[x ∈ X ]I[x′β(θ) > u′β(θ)]− I[x′β0 > u′β0]dFx(u)+∫
µ(u)× I[u ∈ X ]I[u′β(θ) > x′β(θ)]− I[u′β0 > x′β0]dFx(u)

(11)

Moreover, denote:

ψ2(x, θ) =

∫
I[x ∈ X ]I[x′β(θ) > u′β(θ)]dFx(u) (12)

Theorem 3. Under conditions A1-A4 and B1-B8, we have:

√
n(θ̂ − θ0)

d→ N(0,Σ)

where Σ = J−1ΩJ−1 with:

J =
1

2
E
[
∇θθ′ψ1(Xk, θ0)

]
The diagonal elements of the matrix Ω are given by the sum of the following expressions:

(i)

Ω0 =

∫ (
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)
×
(
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)′
dFUG,X,V (UmG, Xm, Vm)

(ii) Ω1 = E1Φ1E
′
1 with:

Φ1 =

∫
V 2
i dFV (Vi)

and

E1 =
(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X(UjG, Xk)

where a, b are real numbers and F
(1)
V (·) denotes the first-order derivative of the distribution

function FV (·) of V .

(iii) Ω2 = E2Φ2E
′
2 with

Φ2 = Φ1

and

E2 = −
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UjG, Xk, Vi)

(iv) Ω3 = E3Φ3E
′
3 and

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))
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and

E3 =

∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Xl, Vi)

where φY is defined in B1 and Ht1(s) = E
[
U1GI[s < U1]

]
/{(1− FY (s−))(1−G(s−))}.

The proof of Theorem (3) follows the proof of Theorem 3.2 in Khan (2001). We explicitly

verify the conditions of Lemmata A.1 and A.2 therein, which establish
√
n-consistency and

asymptotic normality, respectively. The main differences to Khan (2001) consist in the use

of a conditional mean rather than a conditional quantile function and in the estimated first

and second stage terms V̂j, Îj, and UjĜ, which complicate the asymptotic analysis in our case

further. Both, the estimation of the conditional mean function as well as the estimated V̂j, Ij,

UjĜ yield the extra pieces Ω0, Ω1, Ω2, and Ω3 in the variance-covariance matrix Σ that differ

from the expression derived by Khan (2001). The first step in the proof of the above theorem

is to replace µ̂(Xk) in (9) by µ(Xk). The term involving µ(Xk) can be expanded to yield the

gradient J = 1
2
E
[
∇θθ′ψ1(Xk, θ0)

]
plus terms that are of order op(n

−1) once
√
n-consistency of

‖θ̂− θ0‖ has been established (notice that Lemmata B.1 and B.2 are verified concurrently and

hence expressions shown to be of order op(‖θ̂ − θ0‖/
√
n) for instance automatically become

op(n
−1) once ‖θ̂ − θ0‖ = Op(1/

√
n) has been established via Lemma B.1). The second term

containing the estimation error (µ̂(Xk)−µ(Xk)) on the other hand can be further expanded to

give the different variance pieces plus terms that are again of order op(n
−1) on a set around θ0

shrinking at rate
√
n.

2.4 Bootstrapping Confidence Intervals

The asymptotic variance depends on moments of the derivatives of the unknown functions

ψ1(·, ·) and ψ2(·, ·), which can be estimated using either numerical derivatives (e.g. Sherman,

1993; Cavanagh and Sherman, 1998) or kernel-based methods (Abrevaya, 1999). However,

since these moments may be difficult to estimate in practice, we propose to use the ‘m out of n’

bootstrapping procedure as an alternative to construct confidence intervals for our parameter es-

timates. The ‘m out of n’ bootstrapping procedure is a widely applicable methodology allowing

to approximate the sampling distribution under fairly weak assumptions. Moreover, since other

bootstrapping procedures fail to replicate U-statistic degeneracy (Arcones and Gine, 1992), they

are not applicable in our setup.

The procedure works as follows: we sampleX∗1 , . . . , X
∗
m and Z∗1 , . . . , Z

∗
m from our original sample

of size n (with m < n) and obtain V̂ ∗1 , . . . , V̂
∗
m. We construct 1, . . . , B of these bootstrap

samples of size m. For each of these samples, we compute the bootstrap equivalent of our

11



estimator:

β(θ∗) = arg max
θ∈Θ

1

m(m− 1)

∑
k 6=l

I[X∗k ∈ X ]× µ̂∗(X∗k)× I[X∗k
′β(θ) ≥ X∗l

′β(θ)] (13)

where

µ̂∗(X∗k) =
1

m

m∑
i=1

{ m∑
j=1

Î∗kiU
∗
jĜ

Kh∗,j∗(X
∗
k , V̂

∗
i )

m∑
j=1

Î∗kiKh∗,j∗(X∗k , V̂
∗
i )

}

and the bandwidth sequence h∗ is in lieu of h from Section 2.2 shrinking to zero at a rate

depending on m (rather than n). Hence we obtain θ∗1, . . . , θ
∗
B. Our aim is to construct a 1− α

confidence interval (CI) from the empirical bootstrap distribution. Thus, we need to recover

standard errors from the bootstrap covariance matrix, which is given by:

Σ∗ =
m

B

B∑
i=1

(
θ∗i −

1

B

B∑
i=1

θ∗i

)(
θ∗i −

1

B

B∑
i=1

θ∗i

)′
The next theorem establishes that Σ∗ is a consistent estimator for Σ:

Theorem 4. Let P∗ denote the probability distribution induced by the bootstrap sampling. Under

assumptions A1-A4 and B1-B8 with h∗ and m in place of h and n, respectively, and letting

m,n, n
m
−→∞, we have for all ε > 0:

P
(
ω : P∗

(∣∣∣∣Σ∗ − Σ

∣∣∣∣ > ε

))
−→ 0

In order to prove the above theorem, we firstly verify that
√
m(θ∗ − θ̂) has the same limiting

distribution as
√
n(θ̂ − θ0) in a similar manner to before. However, since first order validity

is not sufficient to justify the use of the variance of the bootstrap distribution to consistently

estimate the asymptotic variance (e.g. Goncalves and White, 2004), we show that also a slightly

higher moment condition holds. This in turn gives us consistency of the bootstrap variance

estimator.

3 Monte Carlo Simulations

To shed some light on the small sample properties of the estimator in 9, we conduct various

Monte Carlo simulations in this section. The results are displayed in Table 1 and 2 of Appendix

C. We consider four different measurement error designs, two without censoring (Design I and

II) and two with censoring of different degree (Design III and IV). In all four cases, the data

12



generating process is linear and incorporates two independent variables X1j and X2j:

Yj = X1j +X2jθ0 + εj + ηj

with the coefficient of X1j normalized to one and θ0 set equal to .5. X2j is chosen to be the

endogenous variable, which is driven by the following first stage model:

X2j = α · Zj + Vj

with α = 1. To ensure compactness of the covariate space, we follow Hahn, Hu, and Ridder

(2008) and simulate Zj and Vj from two uniform distributions U [0, 1] and U [−1, 1], repspec-

tively. Notice that the chosen range of Zj and Vj imply that Vj has full support for 0 ≤ x2j ≤ 1.

Thus, all observations of X2j are sampled from [0, 1] in the second stage. X1j is drawn from

a uniform distribution U [1, 2], while the idiosyncratic error and the measurement error differ

according to the chosen design:

• Design I: εj ∼ U [0, .5] and ηj = κ · Vj + exp(εj) with κ = .6.

• Design II:

(
εj

ηj

)
∼ N

((
0

0

)
;

(
.5 .4

.4 .5

))
.

For Design III and IV, we use the setup of Design I, but introduce an additional censoring

variable Cj, which is sampled from a uniform distribution U [2, 10] (Design III) and U [2, 6]

(Design IV), respectively. Notice that the support of Cj ‘covers’ the support of Yj in both cases

so that only the degree of (right) censoring varies.

We compare our estimation procedure (labelled RankCF) to its ‘closest relative’, the Monotone

Rank Estimator (MRE) introduced by Cavanagh and Sherman (1998)12, and the Maximum

Rank Correlation Estimator (MRC) of Han (1987), which was the first estimator in the liter-

ature using a rank-type argument. A grid search method with 401 equispaced points on the

interval [−2, 2] is employed to optimize the objective functions. The sample size varies from

100, 200, 400 to 600 observations. For every sample size, we conduct 401 replications. The

displayed deviation measures are Mean Bias, Median Bias, Root Mean Square Error (RMSE),

and Mean Absolute Deviation (MAD). They are constructed as averages over the number of

replications. We employ a Gaussian kernel using Silverman’s (1986) rule of thumb for the

bandwidth selection.13

Starting with Table 1, one can observe that the multi-stage estimation procedure outperforms

the MRE and the MRC for both designs at every sample size. In particular for smaller sample

sizes, the RMSE and the MAD are fairly large, which is to be expected given the inconsistency

12We use the identity function as ‘weighting’ function of the dependent variable.
13Simulations with a second order Epanechnikov kernel provided similar results and are not reported here

(available upon request).
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of the MRE and the MRC and the additional estimation steps required for our methodology.

However, while performance remains poor as sample size increases in the case of the former

estimators, precision substantially improves for our estimation procedure.

Turning to the censoring setup in Table 2, we can again see that our procedure performs

relatively well for both Designs III and IV, in particular excelling the MRE and the MRC in

the case of ‘light’ censoring (Design III). As expected, all bias measures become fairly large

once more pronounced censoring is introduced. Once again, however, we observe a substantial

improvement for our method with the size of the sample growing, while the bias measures do

not really change for the MRE and the MRC.

Overall, the results from this small simulation study indicate a good performance of our method-

ology in the linear setup under different forms of nonclassical measurement error and various

degrees of censoring.

4 Empirical Illustration

In a recent study, Bricker and Engelhardt (2007) provided empirical evidence for nonclassical

measurement error in annual earnings data from the Health and Retirement Study, which is

a nationally representative longitudinal survey of the over 50 population in the US.14 The

researchers found a mean-reverting pattern in the data and a significant negative correlation

between higher education and measurement error. Given the negative relationship between

the amount of earnings and the sign of the measurement error, the latter finding is not too

surprising as additional education is typically associated with higher earnings. Unlike in the

paper of Bricker and Engelhardt (2007), we choose the 1998 wave, which also includes the

‘War Babies’ and the ‘Children of the Great Depression’ cohorts to broaden the age range in

our data and to comply with the assumption of a continuous variable in the covariate vector.

The sample is restricted to individuals with positive labour income during that year (i.e. no

self-employed) and individuals that were the actual financial respondents of the household.15

Moreover, to further ensure a certain degree of homogeneity, we only selected white individuals

for our final dataset. The full support requirement in our assumption setup also meant that we

had to exclude persons below the age of 50 and above 70, and those with less than 10 years of

schooling. The final sample size comprised 2,753 observations.

For our earnings equation, we take the (natural) logarithm of annual labour income as de-

pendent variable and consider gender, age (as a rough proxy for experience), and years of

14See the University of Michigan’s webpage http://hrsonline.isr.umich.edu/index.php for a detailed descrip-
tion of the study and the data.

15Annual labour income comprises (i) regular wage or salary income, (ii) bonuses, tips, commissions, extra-
pay from overtime, (iii) professional practice or trade earnings, and (iv) other income earned from a second job
or while in the military reserves.
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schooling as model covariates.16 Using years of schooling as independent variable embeds the

assumption of log earnings being a linear function of education, i.e. each additional year of

education having the same proportional effect on annual earnings. Despite certain criticism

in the literature about this hypothesis, Card (1999) points out that linearity often appears to

fit the data surprisingly well and may thus not be easily rejected. We rule out the possibility

of measurement error in the independent variables (which can certainly be put into question)

and normalize the coefficient of gender to one. As instruments for the respondent’s years of

schooling we choose years of schooling of the mother and the father, respectively. These family

background covariates are correlated with the schooling level of the individual, but unlikely to

be related to the respondent’s actual misreporting or his/ her ability.

The estimation results of our methodology are compared to the ones of the MRE and the

MRC as well as a Least Squares (OLS), a Least Absolute Deviations (LAD), and a Two-Stage

Least Squares (TSLS) estimator. The latter uses the mother’s and the father’s education

as instrumental variables for the respondent’s years of schooling and serves as an additional

reference point for the education coefficient. Due to the discontinuous character of the objective

function, we use a Nelder-Mead Simplex method to optimize the functions of the three rank

estimators. As starting values for the initial simplex we choose an average of the OLS and LAD

estimates.17 To obtain a 95% confidence interval for the parameters, we conducted a ‘m out of

n’ bootstrap with subsample size of 400 and 200 replications.

The education coefficient of our estimator in Table 3 of Appendix C differs from its competitors

and falls substantially below their values hinting at an upwards bias in the education coefficient

of the other estimators. This conjecture is backed by the TSLS estimator, which takes on the

second-lowest value in the coefficient range (despite being potentially inconsistent due to its

linearty restriction). The use of instrumental variables does naturally come at the price of larger

confidence regions for the TSLS and our estimation procedure relative to the OLS and the other

rank estimators (notice however that the point estimate of our procedure is still significantly

different from zero at a 5% level). Moreover, we observe that the age coefficient (which was

not found to be correlated with measurement error in the study of Bricker and Engelhardt

(2007)) is substantially larger for our estimation procedure. Given inconsistency of the MRC

and the MRE estimator and the linearity restrictions implicitly imposed by the OLS and the

LAD estimator, this might once again be interpreted as a sign for measurement error bias in

the coefficient estimate of age.

Summarizing this small illustrative example that looks at a log earnings equation with years of

education, gender, and age as covariates, we find that point estimates provided by the estimation

16Notice that the use of three regressors plus an (estimated) control function requires the application of a
third order kernel in theory. Since our simulation results from the previous section do however not display much
sensitivity towards higher order kernel functions, we continue to employ the Gaussian kernel from Section 3 also
in this empirical illustration.

17Noticce that the results were rather insensitive to small variations in the initial simplex.
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procedure proposed in this paper differ quite substantially from those of its linear and non-

linear competitors. This difference is particularly pronounced for the age coefficient. Together

with evidence in the 1992 wave of the HRS for a mean-reverting non-classical measurement

error in annual earnings that is correlated with education (Bricker and Engelhardt, 2007), this

underlines the need to adjust for measurement error bias when examining the determinants of

annual labour income of older workers in the HRS.

5 Conclusion

This paper proposes a multi-step procedure to identify and estimate the parameter vector

of the monotone transformation model when the continuous dependent variable is subject to

nonclassical measurement error. Empirical evidence examining duration and earnings data

collected via survey questionnaires often suggests that such a measurement error represents the

rule rather than the exception. Combining a modified control function approach with a rank-

type argument, we show that it is possible to recover the aforementioned parameter vector

consistently up to a location and size normalization. We derive the estimator’s asymptotic

properties and also demonstrate the methodology’s good finite sample performance in a small

Monte Carlo Study. Finally, we conclude with an empirical illustration investigating the effect of

years of schooling on annual (log) earnings data from the Health and Retirement Study. We find

substantially different point estimates using our estimation procedure (relative to other linear

and nonlinear estimators) suggesting a potential measurement error problem when employing

conventional estimators in this context.

Extensions of the present paper and topics for future research include the recovery of the

unknown transformation function m(·) (the ‘integrated baseline hazard’ in survival analysis)

and, in the duration context, the consideration of multiple spells. The latter in particular is non-

trivial: despite suitable stationarity assumptions on the measurement error (similar to the ones

used in Abrevaya (2000) for the idiosyncratic error terms), such an extension is more complex

as ‘fixed effects’ estimators typically exploit ‘intra-unit’ variation rendering the integration over

the support of the control function more difficult.
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Appendix A

A.1 Assumptions

Let ‖·‖ denote the Euclidean norm and ∇i the i-th order derivative of a function.

B1 Cj is i.i.d. and independent of Yj . Moreover, Cj satisfies:

(i) P[Cj ≤ Yj |Yj = y,Xj = x, Vj = v] = P[Cj ≤ Yj |Yj = y].

(ii) G(·) is continuous.

(iii) φY ≤ φC
with φY = inf{t : FY (t) = 1}, φC = inf{t : G(t) = 1}, and FY (t) = P[Yj ≤ t], G(t) = P[Cj ≤ t].

(iv) When φY < φC , lim sup
t→φY

(∫ φY

t
(1− FY (s))dG(s))1−ρ/(1− FY (t))

)
<∞, for some 2

5 < ρ < 1
2 .

(v) When φY = φC , for some 0 ≤ ς < 1, (1−G(t))ς = O((1− FY (t−))) as t→ φY .

(vi) Let FU (t) = P[Uj ≤ t] and H(Uj) =
∫ Uj

−∞ dG(s)/({1− FU (s)}{1−G(s)}). Assume that:∫
UjH

1
2 +ε(Uj)[1−G(Uj−)]−1dFU,X,V (U,X, V ) <∞

B2 The elements x in the support of X can be partitioned into subvectors of discrete x(d) and continuous x(c)

components. Let X (d) and X (c) be the corresponding discrete and continuous parts of X ⊂ W. Assume
that the conditional density (given x(d) ∈ X (d)) on W is everywhere continuous and strictly bounded
away from zero. Moreover, assume that X is not contained in any proper linear subspace of Rdx and
that the subset X(1) of one component of the dx-dimensional set X = X (d) ×X (c) contains the interval:[

µ(x)− 3 max
x′
(−1)

θ
|x′(−1)θ| ; µ(x) + 3 max

x′
(−1)

θ
|x′(−1)θ|

]
for any x ∈ X , where x(−1) denotes the remaining (dx − 1) dimensional component and the maximum is
taken over X(−1) ×Θ with max

x′
(−1)

θ
|x′(−1)θ| <∞.

B3 The multivariate kernel function Kh = kh × . . . × kh with Kh : Rd 7−→ R is symmetric, has compact
support, and is differentiable (with bounded derivative). In addition, Kh(·) satisfies (i)

∫
Kh(u)du =

1, (ii)
∫

Kh(u)uγdu = 0 for γ = 1, . . . , r − 1, (iii)
∫

Kh(u)urdu 6= 0 and
∫

Kh(u)urdu < ∞, (iv)∫
|Kh(u)|du <∞, and (v)

∫
K2
h(u)du <∞.

B4 θ0 lies in the interior of the parameter space Θ, a compact subset of Rd−1.

B5 For any value x(d) ∈ X (d), assume that µ(·) is twice differentiable in x(c). In addition, given 0 < γ ≤ 1 and

δ0 > 0, for every x
(c)
1 , x

(c)
2 ∈ X (c) and i = 0, 1, 2:∥∥∇iµ(x

(c)
1 , x(d))−∇iµ(x

(c)
2 , x(d))

∥∥ ≤ δ0∥∥x(c)
1 − x

(c)
2

∥∥γ
where ∇i denotes the order of derivative w.r.t x(c).

B6 Let ψ1(x, θ) and ψ2(x, θ) be defined as in (11) and (12):

• For each x in X , ψ1(x, ·) is twice differentiable with second order Lipschitz derivative.

• E[∇θθ′ψ1(·, θ0)] is negative definite.

• For each x ∈ X , ψ2(x, ·) is twice continuously differentiable in the second argument.

• E[‖UG∇θψ2(X, θ)∇ifX,V (X,V )‖2] < ∞ and E[‖UG∇θθ′ψ2(X, θ)∇ifX,V (X,V )‖2] < ∞ for all θ ∈
Θ (where i denotes the order of derivative of fX,V (·, ·) w.r.t. the first argument).

B7 Assume that E
[
V 2
]
< ∞, E

[
µ(x, V )2

]
< ∞, and E

[
‖UGfX,V (X,V )‖2

]
< ∞. Moreover, suppose that

FV (·) is continuously differentiable in its argument for every V ∈ V.
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B8 Let dz ≤ d ≤ r + 1
2dz (note that r is defined in B3). For d < 3, the bandwidth sequence h satisfies:(

1

n

) 1
(3+d)

< h <

(
ln(n)

n

) 1
2r+dz

and for d ≥ 3: (
1

n

) 1
2d

< h <

(
ln(n)

n

) 1
2r+dz

.

Remark 1: B1 (i) together with the independence assumption of Cj are sufficient for the equality in (6).
Condition (iii) ensures that we observe the entire distribution and, in combination with (iv) and (v), is relevant
for the estimation of G(Uj−)) (see Lu and Cheng (2007) for details). The parameter ρ is determined by the
“heaviness” of censoring, i.e. the smaller ρ, the fewer uncensored observations actually lie close to the “endpoint”
φC . Finally, (vi) is a square integrability condition used in the proof of Theorem 3.

Remark 2: Assumption B2 extends condition A2 in the text, allowing also for discrete components in the
parameter vector. The latter part of the condition ensures that identification is not lost by restricting ourselves
to a compact subset of the support. That is, it is assumed that the set X1 of one regressor is sufficiently large
(relative to the others), see Khan (2001) for details.

Remark 3: The requirement dz ≤ d ≤ r+ 1
2dz of the bandwidth condition B8 allows to neglect the bias of the

higher order kernel defined in B3. For a two dimensional instrument vector Zj (dz = 2) and a four dimensional

covariate vector (three regressors plus the estimated control function V̂j) as in the empirical illustration of
section 4 for instance, we thus require the use of a third order kernel function to meet the above restriction and
to be able to negelect the bias in the asymptotic distribution.

A.2 Proofs

Notice that it is implicitly understood that whenever Kh,j(·, ·) is evaluated at V̂i, we sum over V̂j , while
if the kernel function is evaluated at Vi, we sum over Vj . Moreover, we will suppress the dependency of
I[Xk ∈ X , Vi ∈ V] on Xk in the following and write the indicator function as Ii.

Proof of Lemma 1

By A1, we have that Zj ⊥ ηj , εj , Vj . Since Zj is independent of both Vj and ηj , it follows by standard
arguments:

Zj ⊥ ηj |Vj
Moreover, since Xj = g(Zj) + v given Vj = v is a function of Zj only, this implies:

Xj ⊥ ηj |Vj

By identical arguments and using the fact that εj is independent of Vj , we can also establish that Xj ⊥ εj |Vj .
Hence, we obtain:

E[Yj |Xj = x, Vj = v] = E[m(X ′jβ0 + εj) + ηj |Xj = x, Vj = v]

= E[m(x′β0 + εj)|Xj = x, Vj = v] + E[ηj |Xj = x, Vj = v]

= E[m(x′β0 + εj)|Vj = v] + E[ηj |Vj = v]

where the last equality follows by conditional independence. Using the argument of Hahn, Hu, and Ridder
(2008) or Imbens and Newey (2009), by condition A2 we can integrate over the marginal distribution of V and
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apply iterated expectations to obtain:∫
E[Yj |Xj = x, Vj = v]fV (v)dv =

∫
E[m(x′β0 + εj)|Vj = v]fV (v)dv +

∫
E[ηj |Vj = v]fV (v)dv

=E[m(x′β0 + εj)] + E[ηj ]

for each x ∈ X . The result then follows by A3 and A4. That is, for two observations i, j (i 6= j) with
x, x̃ ∈ X :

E[m(x′β0 + εi)] + E[ηi] > E[m(x̃′β0 + εj)] + E[ηj ] if x′β0 > x̃′β0

Hence, the result follows. �

Proof of Theorem 2

Using the same steps as in Theorem 3.1 of Khan (2001) and Lemma A1 below, the result follows instantly.
�

Lemma A1. Given B1 to B5, B7, and B8, we have that:

µ̂(x)− µ(x) = Op

((
ln(n)

nhdz

) 1
2
)

= op(1)

for every x ∈ X .

Proof of Lemma A1

Notice that: ∣∣∣∣ 1n
n∑
i=1

µ̂(x, V̂i)− µ(x)

∣∣∣∣ ≤∣∣∣∣ 1n
n∑
i=1

µ̂(x, V̂i)−
1

n

n∑
i=1

µ̃(x, Vi)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

µ̃(x, Vi)− µ(x)

∣∣∣∣
=L1n + L2n

(A-1)

where µ̃(x, ·) is defined as (8) in the text with Vj , Ii, UjG replacing V̂j , Îi, UjĜ. We start with L1n, which can
be decomposed as:

L1n =

∣∣∣∣∣ 1n
n∑
i=1

{
ŝx,V (x, V̂i)− s̃x,V (x, Vi)

f̃x,V (x, Vi)
−
f̃x,V (x, Vi)− f̂x,V̂ (x, Vi)

f̃x,V (x, Vi)
× µ̂(x, V̂i)

}∣∣∣∣∣
=L11n + L12n

(A-2)

where

ŝx,V̂ (x, V̂i) =
1

nhd

n∑
j=1

ÎiUjĜKh,j(x, V̂i) (A-3)

and

f̂x,V̂ (x, V̂i) =
1

nhd

n∑
j=1

ÎiKh,j(x, V̂i) (A-4)

with f̃x,V (x, Vi) and s̃x,V (x, Vi) defined analoguously using UjG, Ii, Vj , respectively (recall that d = dx + 1). We
examine L11n first. This term can be further decomposed to tackle the random denominator:

L11n =
1

n

n∑
i=1

{
ŝx,V (x, V̂i)− s̃x,V (x, Vi)

fx,V (x, Vi)
+

[
1

f̃x,V (x, Vi)
− 1

fx,V (x, Vi)

]
(ŝx,V (x, V̂i)− s̃x,V (x, Vi))

}
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By B3 and B8, the second term is of smaller order since sup
x,V ∈W

∣∣∣f̃x,V (x, V )− fx,V (x, V )| = Op((ln(n)/nhd)
1
2 ) =

op(1) with fx,V (x, Vi) denoting the true density evaluated at x, Vi. As for the first term, fx,V (x, V ) is strictly
bounded away from zero for all x ∈ X and V ∈ V by B2. A decomposition of the first term of L11n yields:∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)

{
kh(V̂i − V̂j)− kh(Vi − Vj)

}∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
Ii
(
UjĜ − UjG

)
Kh,j(x, Vi)

∣∣∣
+op(1)

(A-5)

where op(1) captures terms of smaller order containing cross-products. Denote the first, second, and third term
as L111n, L112n, and L113n, respectively. We examine each of these terms separately, starting with L111n. Notice
that by A3, B2, B8, and standard arguments one can show that:

max
1≤j≤n

|V̂j − Vj | = Op

((
ln(n)

nhdz

) 1
2
)

Noting that |Îi− Ii| = |I[a ≤ V̂i ≤ b]− I[a ≤ Vi ≤ b]|, we can use the same argument as in Lemma A3 of Newey,

Powell, and Vella (1999) to show that for ∆n = ((ln(n)/nhdz )
1
2 ) we have:

|Îi − Ii| =|I[a ≤ Vi + (V̂i − Vi) ≤ b]− I[a ≤ Vi ≤ b]|
≤
(
I[|Vi − a| ≤ ∆n] + I[|Vi − b| ≤ ∆n]

)
for 1 ≤ i ≤ n. Turning back to L111n, this term can be expanded as:

L111n ≤
∣∣∣E[ 1

hd
1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

]∣∣∣
+
∣∣∣ 1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

− E
[
fx,V (x, Vi))

(
Îi − Ii

)
UjGKh,j(x, Vi)

]}∣∣∣
=M1 +M2

We consider M1 first. Using the positivity of UjG:

M1 ≤E
[ 1

hd
1

fx,V (x, Vi)
|Îi − Ii|UjG|Kh,j(x, Vi)|

]
≤E

[ 1

hd
1

fx,V (x, Vi)

(
I[|Vi − a| ≤ ∆n] + I[|Vi − b| ≤ ∆n]

)
UjG|Kh,j(x, Vi)|

]
We examine only the first term, the second one follows by identical arguments. Setting a = 0 without loss of
generality and letting u1 = ((x−Xj)/h), u2 = ((Vi − Vj)/h), and fV (·) denote the density of Vi and Vj , after
change of variables we obtain:∫ ∫ ∫ ∫ ∆n

0

UjG|Kh(u1)kh(u2)|fX,V (x+ u1h, Vj + u2h)

fX,V (x, Vj + u2h)
fX,V (x, Vj)dVjdu1du2dFUG

(UG)

=

∫ ∫ ∆n

0

UjG|Kh(u1)kh(u2)|fX,V (x, Vj)dVjdFUG
(UG)(1 +O(h))

=O(∆n)
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Next we consider M2. The variance of this term is given by:

E
[(

1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)− E

[ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

]})2]
+O(∆2

n)

The first expectation above can be dealt with in the same way as before. This yields:

E
[(

1

n2hd

n∑
i=1

n∑
j=1

{ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)− E

[ 1

fx,V (x, Vi)

(
Îi − Ii

)
UjGKh,j(x, Vi)

]})2]

=O

(
1

n2hd
∆n

)
+O

(
∆2
n

)
Using Chebychev’s inequality and B8, M2 = op(∆n), so the overall rate becomes:

L111n = Op

((
ln(n)

nhdz

) 1
2
)

Next we examine the second term of (A-5), L112n. A mean value expansion around (Vi − Vj) yields:

L112n =

∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)k

(1)
h (V i − V j)

(
(V̂i − Vi) + (Vj − V̂j)

)∣∣∣∣
where V i, V j denote intermediate values and k(1)(·) is the derivative of the kernel function w.r.t. its argument.
We can rewrite the expression as:∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
IiUjGKh(x−Xj)k

(1)
h (V i − V j)

((
ĝ(Zi)− g(Zi)

)
+
(
g(Zj)− ĝ(Zj)

))∣∣∣∣
Since (ĝ(Zi)−g(Zi)) and (g(Zj)− ĝ(Zj)) are identical, we only examine the first term involving (ĝ(Zi)−g(Zi)).

Letting K
(1)
h,j(x, V i) = Kh(x−Xj)× k(1)

h (V i − V j), we can decompose the first term into:

L112n ≤

∣∣∣∣∣ 1

nhd+1

n∑
i=1

E
[ 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)

]
×
(
ĝ(Zi)− g(Zi)

)∣∣∣∣∣+∣∣∣∣∣ 1

n2hd+1

n∑
i=1

n∑
j=1

( 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)− E

[ 1

fx,V (x, Vi)
IiUjGK

(1)
h,j(x, V i)

])(
ĝ(Zi)− g(Zi)

)∣∣∣∣∣
=N1n +N2n

We start with N1n. The expectation expression can be shown to be O(1) using iterated expectations, change of

variables, integration by parts, B1, B2, and B3. Moreover, since 1√
n

n∑
i=1

ĝ(Zi)− g(Zi) converges in distribution

(see Proof of Theorem 3), we have that N1n = Op(n
− 1

2 ). The second term N2n is of smaller order and can be

shown to be op(n
− 1

2 ) using similar arguments. Thus:

L112n = Op

(
1√
n

)

It remains to consider L113n of (A-5). Using the non-negativity the indicator function together with the
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decomposition argument of Theorem 2 in Lu and Cheng (2007, p. 1915) for
∣∣UjĜ − UjG∣∣ yields:

L113n ≤
1

n2hd

n∑
i=1

n∑
j=1

1

fx,V (x, Vi)
Ii
∣∣UjĜ − UjG∣∣∣∣Kh,j(x, Vi)

∣∣
≤ sup
t≤φF

|Ĝ(t)−G(t)|

[
1 + sup

t≤max
j
{Uj}

∣∣{Ĝ(t)−G(t)}
∣∣∣∣1− Ĝ(t)

∣∣
]
×

1

n2hd

n∑
i=1

n∑
j=1

∣∣∣ Uj
{1−G(Uj)}2

∣∣∣ 1

fx,V (x, Vi)
Ii

∣∣∣Kh,j(x, Vi)
∣∣∣

By Srinivasan and Zhou (1994, p.199), we have that:

sup
t≤max

j
{Uj}

∣∣{Ĝ(t)−G(t)}
∣∣∣∣1− Ĝ(t)

∣∣ = Op(1)

The term:
1

n2hd

n∑
i=1

n∑
j=1

∣∣∣ Uj
{1−G(Uj)}2

∣∣∣ 1

fx,V (x, Vi)
Ii

∣∣∣Kh,j(x, Vi)
∣∣∣

can again be dealt with in the same way as L112n using B1 and B3 to show that it is Op(1). Finally, by
conditions B1 and the result of Theorem 3.1 in Chen and Lo (1997):

sup
t≤φF

|Ĝ(t)−G(t)| = Op(n
−ρ)

for 2
5 < ρ < 1

2 (where ρ in turn depends on the “heaviness” of censoring). Putting together these results, the
rate of the piece is:

L113n = Op(n
−ρ)

Hence, using B8, the convergence rate of L11n becomes:

L11n = Op

((
ln(n)

nhdz

) 1
2
)

The same argument can be used to show that:

L12n = Op

((
ln(n)

nhdz

) 1
2
)

and hence the overall rate Op((ln(n)/nhdz )
1
2 ) of L1n follows.

Next we consider L2n =

∣∣∣∣ 1
n

n∑
i=1

µ̃(x, Vi)− µ(x)

∣∣∣∣. We examine the following decomposition:

L2n ≤
∣∣∣∣ 1n

n∑
i=1

µ̃(x, Vi)− µ(x, Vi)

∣∣∣∣+

∣∣∣∣ 1n
n∑
i=1

µ(x, Vi)− µ(x)

∣∣∣∣
where µ(x) = E

[
µ(x, Vi)

]
. Since µ̃(x, Vi) is a consistent estimator for µ(x, Vi) and E

[
(µ(x, V )2

]
< ∞, we

have: ∣∣∣∣ 1n
n∑
i=1

µ̃(x, Vi)− µ(x, Vi)

∣∣∣∣ = Op

(
1√
n

)
Likewise, since µ(x, Vi) is continuous (and hence bounded) on W and B7, we have that:∣∣∣∣ 1n

n∑
i=1

µ(x, Vi)− µ(x)

∣∣∣∣ = Op

(
1√
n

)
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Proof of Theorem 3

Let Alk(θ) = I[Xk ∈ X ]
{
I[X ′kβ(θ) > X ′lβ(θ)]− I[X ′kβ(θ0) > X ′lβ(θ0)]

}
. Since the second term involving β(θ0)

does not affect maximization, we note that θ̂ still maximizes:

Qn(θ) =
1

n(n− 1)

∑
k 6=l

µ̂(Xk)Alk(θ) (A-6)

and θ0 its corresponding probability limit:

Q(θ) = E
[
µ(Xk)Alk(θ)

]
(A-7)

Notice in addition that by the normalizations in (A-6) and (A-7), we have that Qn(θ0) = Q(θ0) = 0. We expand
Qn(θ) around the true µ(Xk) yielding:

1

n(n− 1)

∑
k 6=l

µ(Xk)Alk(θ) +
1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ(Xk)

)
Alk(θ)

=S1n + S2n

In the following, we proceed by examining S1n and S2n in turn, starting with S1n. Identical arguments to the
proof of Lemma A.3 in Khan (2001) can be used to show that S1n yields the gradient term plus terms that are
of order op(n

−1) once
√
n-consistency of ‖θ − θ0‖ has been established. That is:

S1n = (θ − θ0)
′
J(θ − θ0) + op

(‖θ − θ0‖√
n

)
+ op

(
‖θ − θ0‖2

)
+ op

( 1

n

)
with

J =
1

2
E
[
∇θθ′ψ1(Xk, θ0)

]
and ψ1(x, θ) defined in (11) of section 2.3.

S2n on the other hand can be further expanded to give:

1

n(n− 1)

∑
k 6=l

(
µ̃(Xk)− µ(Xk)

)
Alk(θ) +

1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ̃(Xk)

)
Alk(θ)

=S21n + S22n

where µ̃(x) is defined analoguously to µ̂(x) using the true UjG, Ii, Vj . S21n and S22n determine the components
of the variance. They can be tackled through Lemma B3 and Lemmata B4 to B6, respectively: using the result
of Lemma B3 below, S21n = (θ−θ0)

′ 1√
n
W0n+op

(
‖θ−θ0‖/

√
n
)
, where W0n is a sum of zero mean vector random

variables that converges in distribution to a random vector defined in Lemma B3. It remains to examine S22n,
which can be expanded as in the proof of Theorem 2:

S22n =
1

n(n− 1)

∑
k 6=l

1

n

n∑
i=1

{
ŝX,V (Xk, V̂i)− s̃X,V (Xk, Vi)

f̃X,V (Xk, Vi)
+
f̃X,V (Xk, Vi)− f̂X,V (Xk, V̂i)

f̃X,V (Xk, Vi)
µ̂(Xk, V̂i)

}
Alk(θ)

=S
(1)
22n + S

(2)
22n

where ŝX,V (·, ·) and f̂X,V (·, ·) are defined in (A-3) and (A-4), respectively, and s̃X,V (·, ·) and f̃X,V (·, ·) follow
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accordingly. We start with S
(1)
22n, which can be further decomposed into:

S
(1)
22n =

1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

(
Îi − Ii

)
UjGKh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

IiUjG
(
Kh,j(Xk, V̂i)−Kh,j(Xk, Vi)

)
1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjĜ − UjG

)
Kh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
×Alk(θ)

+ op(1)

=S221n + S222n + S223n + op(1)

(A-8)

where the op(1) term contains cross-products of smaller order. We examine each of the three terms seperately
starting with S221n, which by Lemma B4 is equal to:

(θ − θ0)
′ 1√
n
W1n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
where W1n is again defined in Lemma B4 below. Likewise, for S222n and S223n, we can apply Lemma B5 and
B6 to obtain:

S222n = (θ − θ0)
′ 1√
n
W2n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
and

S223n = (θ − θ0)
′ 1√
n
W3n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
with W2n and W3n being again sums of zero mean vector random variables that converge to a normal distribution

defined in Lemma B5 and B6, respectively. Next we consider S
(2)
22n. A similar decomposition as for S

(1)
22n and

arguments as in Lemmata B4 and B5 can be used to show that the limiting distribution of this term is the same
as that of S221n and S222n.

Taking these decompositions of S1n and S2n together and using B5, Lemma B1 and B2 below become directly
applicable establishing

√
n-consistency and asymptotic normality. Notice that for (i) of Lemma B1, bn can be set

to be o(1) by the consistency result of Theorem 2. (ii) of the same lemma is satisfied by B2 and B5 in combination
with a second order Taylor expansion of Q(θ) in (A-7) around θ0: Q(θ) = 1

2 (θ − θ0)′∇θθ′Q(θ)(θ − θ0) ≤
−κ‖θ − θ0‖2 for some constant κ and θ ∈ Θ. �

The following two lemmata are from Theorem 3.2 of Khan (2001) (we adapt notation of the original paper to
our setup).

Lemma B1. (Lemma A.1 of Khan (2001)) Let θ̂ maximize Qn(θ) in (A-6) and θ0 maximizes Q(θ) in
(A-7). Let bn, ln −→ 0 as n −→∞. If:

(i) θ̂ − θ0 = Op(bn)

(ii) there exists a neighbourhood N of 0 and a positive constant κ for which:

Q(θ) ≤ −κ‖θ − θ0‖2

for all θ in N ,
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(iii) uniformly over Op(bn) neighbourhoods of 0,

Qn(θ) = Q(θ) +Op(‖θ − θ0‖/
√
n) + op(‖θ − θ0‖2) +Op(ln) (A-9)

then:
‖θ̂ − θ0‖ = Op

(
max

{
l
1
2
n , 1/

√
n
})

Lemma B2. (Lemma A.2 of Khan (2001)) Suppose θ̂ is
√
n-consistent for θ0, an interior point of Θ.

Suppose also that uniformly over Op(1/
√
n) neighbourhoods of 0:

Qn(θ) = (θ − θ0)′J(θ − θ0) +
1√
n

(θ − θ0)′Wn + op(1/n) (A-10)

where J is a negative definite matrix, and Wn converges in distribution to a N(0,Σ) random vector. Then

√
n(θ̂ − θ0)

d→ N(0, J−1ΣJ−1)

.

Lemma B3. Under assumptions A1-A4, B1-B6, and B8, the term 1
n(n−1)

∑
k 6=l

(
µ̃(Xk) − µ(Xk)

)
Alk(θ) is

equal to:

(θ − θ0)
′ 1√
n
W0n + op

(
‖θ − θ0‖√

n

)
= (θ − θ0)

′ 1

n

n∑
m=1

Im(UmG − µ(Xm))∇θψ2(Xk = Xm, θ0) + op

(
‖θ − θ0‖√

n

)
where

1√
n

n∑
m=1

Im(UmG − µ(Xm))∇θψ2(Xk = Xm, θ0)
d−→ N(0,Ω0)

with

Ω0 =

∫ (
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)
×
(
Im(UmG − µ(Xm))∇θψ2(Xm, θ0)

)′
dFUG,X,V (UmG, Xm, Vm)

where ψ2(·, ·) is defined in (12) of section 2.3.

Proof of Lemma B3

Notice that 1
n(n−1)

∑
k 6=l

(
µ̃(Xk)− µ(Xk)

)
Alk(θ) can be rewritten as:

1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)

1
nhd

n∑
j=1

IiKh,j(Xk, Vi)

}
Alk(θ)

=
1

n(n− 1)

∑
k 6=l

{
1

n

n∑
i=1

1
nhd

n∑
j=1

Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)

fX,V (Xk, Vi)

}
Alk(θ) + op(1)

where f̂X,V (Xk, Vi) = 1
nhd

n∑
j=1

IiKh,j(Xk, Vi) and the op(1) term follows as in the proof of Theorem 2 by B3 and

the bandwidth condition B8. As for the first term, fX,V (X,V ) is strictly bounded away from zero for every
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X,V ∈ W by B2 and can be restated as:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ) (A-11)

where omitting terms with k = l = i = j results in an error of magnitude op(‖θ − θ0‖/nhd). The expression
in (A-11) is a fourth order U-statistic for each θ ∈ Θ. Letting ξk = {Ik, UkG, Xk, Vk} (ξl, ξi, ξj are defined
accordingly), (A-11) is:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

qn(ξi, ξj , ξk, ξl; θ) (A-12)

where qn(·, ·, ·, ·; θ) = 1
hd Ii

(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ) is the ‘kernel’ function of the U-statistic. Using

iterated expectations repeatedly, change of variables, together with B1, B3, B5, and B6 one can show that
qn(·, ·, ·, ·) is degenerate in ξk, ξl, and ξi for each θ ∈ Θ since the expectation of (UjG − µ(Xk)) conditional

on Xk is zero. By iterated expectations, this in turn implies that E
[
qn(ξk, ξl, ξi, ξj , θ)

]
= 0. By contrast,

after change of variables, iterated expectations, and dominated convergence, the term E
[
qn(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj]
yields:

lim
n−→∞

E
[
qn(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj] =E
[
q(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj]
=
(
UjG − µ(Xj)

)
Ij E

[
Alk(θ)

∣∣∣Xk = Xj

]
=(θ − θ0)

′
(
UjG − µ(Xj)

)
Ij∇θψ2(Xj , θ0) +O(‖θ − θ0‖2)

where the last equality follows by a second order Taylor expansion of E
[
Alk(θ)

∣∣∣Xk = Xj

]
around θ0. Applying

the Hoeffding decomposition to the degenerate fourth order U-process in (A-12) (Serfling, 1980) and noting
that, by Lemma A.6 in Khan (2001) and the arguments used therein, all terms except the leading term are of

order op

(
‖θ−θ0‖√

n

)
, yields:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

qn(ξi, ξj , ξk, ξl; θ) =
1

n

n∑
m=1

E
[
q(ξk, ξl, ξi, ξj , θ)

∣∣∣ξj = ξm

]
+ op

(
‖θ − θ0‖√

n

)
and hence:

(θ − θ0)
′ 1

n

n∑
m=1

(
UmG − µ(Xm)

)
Im∇θψ2(Xk = Xm, θ0) + op

(
‖θ − θ0‖√

n

)
The expression:

1

n

n∑
m=1

(
UmG − µ(Xm)

)
Im∇θψ2(Xk = Xm, θ0) (A-13)

is a sum of zero mean random variables. Applying Lindberg Levy’s Central Limit Theorem (CLT) yields the
result of the lemma. �

Lemma B4. Under assumptions A1-A4, B1-B8, the term S221n defined in the proof of Theorem 3 is
equal to:

(θ − θ0)
′ 1√
n
W1n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
=(θ − θ0)

′ 1

n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)
)

+ op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
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where

1√
n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
F

(1)
V

(
V a

)
+ F

(1)
V

(
V b

))∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)

)
d−→ N

(
0,Ω1

)
with Ω1 = E1Φ1E

′

1:

Φ1 =

∫
V 2
i dFV (Vi)

and

E1 =
(
F

(1)
V

(
a
)

+ F
(1)
V

(
b
))∫

UjG∇θψ2(Xk, θ0)dFUG,X,V (UjG, Xk, Vi)

where FUG,X,V (·, ·) denotes the joint distribution function of UjG and Xk.

Proof of Lemma B4

As before, we start by replacing f̂X,V (Xk, Vi) with the true density fX,V (Xk, Vi) using B2, B3, and B8. Moreover,

notice that I{a ≤ V̂j ≤ b} − I{a ≤ Vi ≤ b} = I{V̂i ≤ b} + I{V̂i ≥ a} − I{Vi ≤ b} − I{Vi ≥ a} =
(
I{V̂i ≤

b} − I{Vi ≤ b}
)

+
(
I{V̂i ≥ a} − I{Vi ≥ a}

)
. We focus on

(
I{V̂i ≤ b} − I{Vi ≤ b}

)
, the other term will

follow by an identical argument. Let FV (b) denote the distribution function of Vi evaluated at b and Bijkl(θ) =
f−1
X,V (Xk, Vi)UjGKh,j(Xk, Vi)Alk(θ). Then we can decompose S221n as follows:

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

(
I{Vi ≤ b+ (V̂i − Vi)} − I{Vi ≤ b}

) 1

hd
Bijkl(θ)

=
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

{
I{Vi ≤ b+ (V̂i − Vi)} − FV

(
b+ (V̂i − Vi)

)
− I{Vi ≤ b}+ FV

(
b
)}
× 1

hd
Bijkl(θ)

+
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
)) 1

hd
Bijkl(θ)

=T1n(θ) + T2n(θ)

We start with T1n(θ). We examine the term involving FV

(
b
)
−I{Vi ≤ b}, the term with I{Vi ≤ b+(V̂i−Vi)}−

FV

(
b+ (V̂i − Vi)

)
follows by the same argument. Adding and subtracting E

[
1
hd Bijkl(θ)

]
yields:

T1n(θ) =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

(
FV

(
b
)
− I{Vi ≤ b}

)
E
[ 1

hd
Bijlk(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b
)
− I{Vi ≤ b}

)
×

( 1

hd
Bijlk(θ)− E

[ 1

hd
Bijlk(θ)

])
=T11n(θ) + T12n(θ)

We start with the first piece, which can be simplified since no term depends on k,l, or j:

1

n

n∑
i=1

(
FV

(
b
)
− I{Vi ≤ b}

)
E
[ 1

hd
Bijlk(θ)

]
Since E

[
FV

(
b
)
− I{Vi ≤ b}

]
= 0, notice that by change of variables, iterated expectations, and a second order

Taylor expansion of E
[
Alk(θ)

∣∣∣Xk = Xj

]
around θ0, the variance of T11n is E

[(
T11n(θ)

)2]
= O

(
‖θ−θ0‖2

n

)
. Thus,
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using Chebychev’s inequality, we have that T11n(θ) = op(n
−1).

Next, we consider T12n(θ). To derive an upper bound for the convergence rate of T12n(θ) via Rosenthal’s
inequality, we first examine:

E

[(
I{Vi ≤ b} − FV

(
b
))2

{
E
[ 1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)

]2
+ 2

1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)× E

[ 1

hd
1

fX,V (Xk, Vi)
UjGKh,j(Xk, Vi)Alk(θ)

]
+

1

h2d

1

fX,V (Xk, Vi)2
U2
jGK2

h,j(Xk, Vi)A
2
lk(θ)

}]
=T121(θ) + T122(θ) + T123(θ)

We start with T121(θ). Using change of variables, iterated expectations, a second order Taylor expansion of

E
[
Alk(θ)

∣∣∣Xk = Xj

]
around θ0, B3, B7, and the boundedness of the indicator function, we have that T121(θ) =

O(‖θ − θ0‖2) + o(‖θ − θ0‖2). By the same line of argument, the same rates can be obtained for T122(θ). Using
again u1 = (Xk − Xj)/h, u2 = (Vi − Vj)/h, boundedness of the indicator function, B2, B3, B6, B7, and the
equality A2

lk(θ) = |Alk(θ)|, T123(θ) on the other hand is given by:

T123(θ) =

∫ (
I{Vi ≤ b} − FV

(
b
))2 1

hd
1

fX,V (Xj + hu, Vj + hu2)2
U2
jGK2

h,j(Xj + hu1, Vj + hu2)

×
∣∣∣(θ − θ0)

′
∇θψ2(Xj + hu1, θ0)

∣∣∣fX,V (Xj , Vj)fX,V (Xj + hu1, Vj + hu2)

× dxjdu1dvjdu2dUG + o

(
‖θ − θ0‖
hd

)
=O

(
‖θ − θ0‖
hd

)
(1 + h) + o

(
‖θ − θ0‖
hd

)
Moreover, using identical arguments:

E

[∣∣∣∣∣(FV (b)− I{Vi ≤ b})( 1

hd
Bijlk(θ)− E

[ 1

hd
Bijlk(θ)

])∣∣∣∣∣
κ]

= O(‖θ − θ0‖h−d(κ−1)) + o(‖θ − θ0‖h−d(κ−1))

for κ ≥ 1. Applying Rosenthal’s inequality yields:

E
[(
T12n(θ)

)2κ]
≤n−8κΞκ

(
‖θ − θ0‖n4κh−dκ + ‖θ − θ0‖n4h−2κd+d

)
=O
(
‖θ − θ0‖n−4κh−dκ

)
+O

(
‖θ − θ0‖n−8κ+4h−2κd+d)

)
with Ξκ some positive constant. Using B6, we obtain the following rates for κ = 1: O(‖θ−θ0‖n−4h−d)+O(‖θ−
θ0‖n−4h−2d+d) = O(‖θ − θ0‖n−4h−d). By the bandwidth conditions in B8, Markov’s inequality thus implies
T12n(θ) = op(n

−1).

Next, we consider T2n(θ), which can again be decomposed as:

T2n(θ) =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
))

E
[ 1

hd
Bijlk(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
FV

(
b+ (V̂i − Vi)

)
+ FV

(
b
))

×
( 1

hd
Bijlk(θ)− E

[ 1

hd
Bijlk(θ)

])
=T21n(θ) + T22n(θ)

We start with T21n. Using B7, a mean value expansion around (V̂i − Vi) = 0, and a simplification (since T21n
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only depends on j) yield:

1

n

n∑
i=1

F
(1)
V

(
V b

)(
V̂i − Vi

)
E
[ 1

hd
Bijlk(θ)

]
=

1

n

n∑
i=1

F
(1)
V

(
V b

)(
ĝ(Zi)− g(Zi)

)
E
[ 1

hd
Bijlk(θ)

]
(A-14)

where V b ∈ [b, b+(V̂i−Vi)] and F
(1)
V denotes the first derivative w.r.t. its argument. Using iterated expectations,

change of variables, and a second order Taylor expansion of E
[
Alk(θ)|Xk

]
around θ0, the expectation expression

in (A-14) yields:

E
[ 1

hd
Bijlk(θ)

]
= (θ − θ0)

′
∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)(1 +O(h)) + o(‖θ − θ0‖2)

For the random component in (A-14), recall that ĝ(Zi) = (
n∑
j=1

X1jkh(Zi − Zj))/
n∑
j=1

kh(Zi − Zj)). We examine

the following standard decomposition:

1

n

n∑
i=1

ĝ(Zi)− g(Zi)f̂Z(Zi)

f̂Z(Zi)

=
1

n

n∑
i=1

{(
ĝ(Zi)− g(Zi)f̂Z(Zi)

)
fZ(Zi)

+

(
fZ(Zi)− f̂Z(Zi)

fZ(Zi)f̂Z(Zi)

)
×
(
ĝ(Zi)− g(Zi)f̂Z(Zi)

)}

Since sup
Z∈W
|fZ(Zi)− f̂Z(Zi)| = op((ln(n)/nhd)

1
2 ) = op(1) by B3 and B8, the second term is of smaller order than

the first one and will hence be neglected. Moreover, since X1i = g(Zi) + Vi, observe that the first term is can
be restated as:

1

n2h

n∑
j=1

n∑
i=1

(
g(Zj)− g(Zi)

fZ(Zi)

)
kh(Zi − Zj) +

1

n2h

n∑
j=1

n∑
i=1

Vj
fZ(Zi)

kh(Zi − Zj)

Now, notice that omitting observations with i = j results in a negligible error of order op((nh)−1), while
1
2 (Vjf

−1
Z (Zi)− Vif−1

Z (Zj))kh(Zi − Zj) is the ‘symmetrized’ version of the second term and:

1

2h

(
(g(Zi)− g(Zj))

fZ(Zj)
− (g(Zj)− g(Zi))

fZ(Zi)

)
kh(Zi − Zj) =

1

2h

(
$ij −$ji

)
kh(Zi − Zj)

is the ‘symmetrized’ version of the first term with $ij = (g(Zi) − g(Zj))/fZ(Zj) and $ji defined accordingly.
Hence, the above expressions can be rewritten as symmetric second order U-statistics:(

n

2

)−1∑
i 6=j

1

2h
($ij −$ji)kh(Zi − Zj) +

(
n

2

)−1∑
i 6=j

1

2h

(
Vi

fZ(Zj)
− Vj
fZ(Zi)

)
kh(Zi − Zj)

=T211n + T212n

By symmetry of the kernel function and the i.i.d. assumption on one hand, and by independence between

Vi and Zi on the other, one can straightforwardly verify that E
[
T211n

]
= E

[
T212n

]
= 0. Moreover, letting

rn(Zi, Zj) = 1
2h ($ij +$ji)kh(Zi−Zj), one can use B2, B3, B8, and a change of variables to verify that:

E
[∣∣∣rn(ξi, ξj)

∣∣∣2] = o(n)

Thus, since by change of variables E
[
rn(Zi, Zj)

∣∣∣Zi] = E
[
rn(Zi, Zj)

∣∣∣Zj] = O(h), one can use Lemma 3.1 in

Powell, Stock, and Stoker (1989) to infer that T211n = op

(
1√
n

)
. Next, we examine the leading term T212n. Let

pn(ξi, ξj) = 1
2h ((Vi/fZ(Zj)) − (Vj/fZ(Zi)))kh(Zi − Zj) with ξi = {Zi, Vi} and ξj = {Zj , Vj}. By B2, B3, B8,
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and change of variables one can verify that:

E
[∣∣∣pn(ξi, ξj)

∣∣∣2] = o(n)

Using again Lemma 3.1 in Powell, Stock, and Stoker (1989), we have that:

√
nT212n =

√
n

2

n

n∑
i=1

E
[
pn(ξi, ξj)

∣∣∣ξi]+ op(1)

After change of variables with u3 = (Zi − Zj)/h, independence between Zi and Vi, and E
[
Vj

∣∣∣Vi] = E
[
Vj

]
=

0:

E
[
pn(ξi, ξj)

∣∣∣ξi] =

∫
1

2

(
Vi

fZ(Zi + hu3)
− Vj
fZ(Zi)

)
fZ(Zi + hu3)fV (Vj)dvj =

1

2
Vi = E

[
p(ξi, ξj)

∣∣∣ξi]
where E

[
p(ξi, ξj)

∣∣∣ξi] denotes the limit expression. Thus, we have:

√
nT212n =

√
n

2

n

n∑
i=1

E
[
p(ξi, ξj)

∣∣∣ξi]+ op(1) (A-15)

Applying Lindberg Levy’s Central Limit Theorem (CLT) to equation (A-15), we have:

√
nT212n

d−→ N
(

0,

∫
V 2
i dFV (Vi)

)
where FV (·) is the distribution function of Vi. Thus, for (A-14) we obtain (adding the neglected term F

(1)
V

(
V a

)
):

√
n

1

n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
F

(1)
V

(
V a

)
+ F

(1)
V

(
V b

))∫
UjG∇θψ2(Xk, θ0)dFUG,X(UG, Xk)

)
d−→ N

(
0,Ω1

)
where Ω1 was defined in the statement of the lemma.

It remains to show that T22n is of smaller order than the previous term. Using B2, B3, B7, a mean values

expansion and a similar decomposition as for T12n, one can show that E
[∣∣∣T22n

∣∣∣κ] = O(‖θ − θ0‖h−(κd−d)) +

o(‖θ− θ0‖h−(κd−d)). Thus, application of Rosenthal’s inequality (with κ = 1), followed by Markov’s inequality,
and the bandwidth conditions imply that T22n = op(n

−1). �

Lemma B5. Under assumptions A1-A4, B1-B8, the term S222n defined in the proof of Theorem 3 is
equal to:

(θ − θ0)
′ 1√
n
W2n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
= (θ−θ0)

′ 1

n

n∑
m=1

(
ĝ(Zm)−g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
+op

(
‖θ − θ0‖√

n

)
+op

(
1

n

)
where

1√
n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
d−→ N

(
0,Ω2

)
with Ω2 = E2Φ2E

′

2 where
Φ2 = Φ1

and

E2 = −
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UjG, Xk, Vi)

.
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Proof of Lemma B5

Next, we consider S222n. First we replace again f̂X,V (Xk, Vi) by fX,V (Xk, Vi) using B2, B3, and B8. After a
mean value expansion around (Vi − Vj), we have:

S222n =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

1

hd+1
f−1
X,V (Xk, Vi)IiUjGK

(1)
h,j(Xk, V )

((
V̂i − Vi

)
−
(
V̂j − Vj

))
Alk(θ)

where K
(1)
h,j(x, V i) is defined in the proof of Theorem 2. As before

(
V̂i− Vi

)
=
(
ĝ(Zi)− g(Zi)

)
, while the term

involving subscript j follows by an identical argument. Let Cijkl(θ) = f−1
X,V (Xk, Vi)IiUjGK

(1)
h,j(Xk, V )Alk(θ).

Then, we have:

S212n =
1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
ĝ(Zi)− g(Zi)

)( 1

hd+1
Cijkl(θ)− E

[ 1

hd+1
Cijkl(θ)

])
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i6=j

(
ĝ(Zi)− g(Zi)

)
E
[ 1

hd+1
Cijkl(θ)

]
=R1n(θ) +R2n(θ)

We start with R1n(θ). Integration by parts and a similar line of argument to before can be used to show that

E
[∣∣∣R1n(θ)

∣∣∣] = O
(
‖θ− θ0‖h−(dκ−d)−(κ−1)

)
+ o
(
‖θ− θ0‖h−(dκ−d)−(κ−1)

)
, while the leading term of E

[
R1n(θ)2

]
is O

(
‖θ − θ0‖h−(d+1)

)
. Applying again Rosenthal’s inequality yields:

E
[(
R1n(θ

)2κ]
≤ n−8κΞκ

(
‖θ − θ0‖

(
n4κh−dκ−κ + n4h−2dκ−2κ+(d+1)

))
For κ = 1, we have O(‖θ − θ0‖n−4h−d−1). By Markov’s inequality and the bandwidth conditions, we have
that R1n(θ) = op(n

−1). Next, consider R2n(θ). This term only depends on i and can be shown to converge
in distribution as claimed in the above lemma using the same arguments as for T21n(θ) in Lemma B2. That
is:

√
n

1

n

n∑
m=1

(
ĝ(Zm)− g(Zm)

)(
−
∫
IiUjG∇θψ2(Xk, θ0)dFUG,X,V (UG, Xk, Vi)

)
d−→ N

(
0,Ω2

)
where Ω2 was defined in the lemma. �

Lemma B6. Under assumptions A1-A4, B1-B8, the term S223n defined in the proof of Theorem 3 is
equal to:

(θ − θ0)
′ 1√
n
W3n + op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
= (θ − θ0)

′ 1

n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
+ op

(
‖θ − θ0‖√

n

)
+ op

(
1

n

)
where

1√
n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
d−→ N

(
0,Ω3

)
with Ω3 = E3Φ3E

′

3 where

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

and

E3 =

∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

where FX,V (·, ·) denotes the joint distribution function of Xk and Vi.
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Proof of Lemma B6

f̂X,V (Xk, Vi) in the denominator is again tackled using B2, B3, and B8. Let Dijkl(θ) = f−1
X,V (Xk, Vi)IiKh,j(Xk, Vi)Alk(θ).

Then, S213n can be decomposed as:

1

n

n∑
j=1

(
UjĜ − UjG

)
E
[ 1

hd
Dijkl(θ)

]
+

1

n(n− 1)(n− 2)(n− 3)

∑
k 6=l 6=i 6=j

(
UjĜ − UjG

)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

])
=U11n(θ) + U12n(θ)

Consider U11n(θ). We define the following notation, which we keep as close as possible to Lu and Burke
(2005):

ΛG(t) =

t∫
−∞

1

1−G(s−)
dG(s)

Nj(t) =I[Uj ≤ t,∆j = 0]

Mj(t) =Nj(t)−
∫ t

0

I[Uj ≥ s]dΛj(s), Λj(s) = ΛG(s)

Yn(t) =

n∑
j=1

I[Uj ≥ t], Y n(t) =
1

n
Yn(t)

Moreover, FY (·−) will in the following refer to the left-continuous distribution function of Yj . Noting that Uj
only has support on the positive real line and that:

Ĝ(Uj−)−G(Uj−)

1−G(Uj−)
=

∫
s<Uj

1− Ĝ(s−)

1−G(s−)

∑n
j=1 dMj(s)

Yn(s)
=

1

n

∫
s<Uj

1− Ĝ(s−)

1−G(s−)

∑n
j=1 dMj(s)

Y n(s)

U11n(θ) can be rewritten as:

U11n(θ) =
1

n

n∑
j=1

(
UjĜ − UjG

)
E
[ 1

hd
Dijkl(θ)

]
=

1

n

n∑
j=1

UjĜ
Ĝ(Uj−)−G(Uj−)

1−G(Uj−)
E
[ 1

hd
Dijkl(θ)

]

=E
[ 1

hd
Dijkl(θ)

]{ 1

n2

n∑
m=1

∞∫
0

n∑
j=1

Uj∆j

1−G(Uj−)
I[s < Uj ]

1

Y n(s)

1− Ĝ(s−)

1−G(s−)
dMm(s)

+
1

n2

n∑
m=1

∞∫
0

n∑
j=1

Uj∆j

(
1

1− Ĝ(Uj−)
− 1

1−G(Uj−)

)
I[s < Uj ]

1

Y n(s)

1− Ĝ(s−)

1−G(s−)
dMm(s)

}
=U111n(θ) + U112n(θ)

Using Lemma A.2 (ii) in Lopez (2009) and B1, U112n(θ) is of smaller order than U111n(θ) and can hence be

neglected in the following. Letting Hnt(s) = 1
n

n∑
j=1

UjGI[s < Uj ]
1

Y n(s)

1−Ĝ(s−)
1−G(s−) , we have for the first term:

U111n(θ) = E
[ 1

hd
Dijkl(θ)

] 1

n

n∑
m=1

∫ ∞
0

Hnt(s)dMm(s)
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Now for 0 < ν < φY , let:

Uν111n(θ) = E
[ 1

hd
Dijkl(θ)

] 1

n

n∑
m=1

∫ ν

0

Hnt(s)dMm(s)

Then, uniformly for s ∈ [0, ν], we have:

Hnt(s) =
1

n

n∑
m=1

UjGI[s < Uj ]
1

Y n(s)

1− Ĝ(s−)

1−G(s−)

=
1

n

n∑
m=1

UjGI[s < Uj ]
1

(1− FY (s−))(1−G(s−))
+ op(1)

=E
[
U1GI[s < U1]

] 1

(1− FY (s−))(1−G(s−))
+ op(1)

=H1t(s) + op(1)

where the second and third equality follow by adding and subtracting 1
(1−FY (s−))(1−G(s−)) and E

[
U1GI[s < U1]

]
,

respectively (see Lemma A.8 in Lu and Burke (2005) for details). Moreover, using the same lines of arguments
as in the proof of statement (2.29) in Lai, Ying, and Zheng (1995, p.274) and B1, we have:

√
n

1

n

n∑
m=1

∞∫
ν

Hnt(s)dMm(s)
p−→ 0

as ν −→ φY and n −→∞. Therefore: √
nU11n = Mn2t + op(1)

For 0 < ν < φY , {Mn2t} is a local martingale with predictable variation process (Lu and Burke, 2005,
p.198).

〈M2nt(ν)〉 =
1

n

n∑
m=1

ν∫
0

H2
t1(s)I[Um ≥ s](1−∆ΛG(s))dΛG(s)

p−→
ν∫

0

H2
t1(s)P[U1 ≥ s](1−∆ΛG(s))dΛG(s)

=

ν∫
0

H2
t1(s)(1−G(s−))(1− FY (s−))

(1−G(s−)dG(s)

(1−G(s−))(1−G(s−))

=

ν∫
0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))

where the second equality follows because of P[U1 ≥ s] = (1 − H(s−)) = (1 − G(s−))(1 − FY (s−)) and the
definition of ΛG(s) before. In addition, we have:

1√
n

n∑
m=1

φY∫
ν

Ht1(s)dMm(s)
p−→ 0

as ν −→ φY . By Rebelledo’s martingale central limit theorem (CLT), we obtain:

M2nt
p−→ N

(
0,Φ3

)
with

Φ3 =

∫ φY

0

E
[
U1GI[s < U1]

]
Ht1(s)

dG(s)

(1−G(s−))
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Thus:
√
n

1

n

n∑
m=1

(
UmĜ − UmG

)(∫
Ii∇θψ2(Xk, θ0)dFX,V (Xk, Vi)

)
d−→ N

(
0,Ω3

)
where Ω3 was defined in the statement of the lemma.

It remains to show that U12n(θ) is of smaller order. Notice that by a similar argument to before and B1, one
can show that uniformly for 0 < ν < φY :

E
[((

UjĜ − UjG
)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

]))2]
= O

(
‖θ − θ0‖
hd

)
+O

(
‖θ − θ0‖2

)
+ o(1)

which is O(‖θ − θ0‖h−d) by B8. A similar line of argument and B1 can used to show that the leading term
of

E
[∣∣∣(UjĜ − UjG)( 1

hd
Dijkl(θ)− E

[ 1

hd
Dijkl(θ)

])∣∣∣κ]
is O(‖θ − θ0‖h−d(κ−1)) given B8. Thus, applying Rosenthal’s inequality we obtain:

E
[(
U12n(θ)

)2κ]
≤n−8κΞκ(‖θ − θ0‖)

(
n4κh−dκ + n4h−d(2κ−1)

))
=O
(
‖θ − θ0‖n−4κh−dκ

)
+O

(
‖θ − θ0‖n−8κ+4h−d(2κ−1)

)
By Markov’s inequality, we have that U12n(θ) = op(n

−1) for κ = 1. �

Proof of Theorem 4

We denote by E∗ and var∗ the mean and variance operators of the bootstrapping sampling. In addition, let
O∗p(1) and o∗p(1) be the orders of magnitude according to the bootstrapping distribution.

Using a similar argument to Goncalves and White (2005), the theorem follows once we show that:

E∗
[√

m(θ∗ − θ̂)
]

= op(1) (A-16)

var∗

(√
m(θ∗ − θ̂)

)
= var

(√
n(θ̂ − θ0)

)
+Op

(
1√
n

)
(A-17)

and for ε > 0:

E∗
[(√

m‖θ∗ − θ0‖
)2+ε]

= Op(1) (A-18)

Equations (A-16) and (A-17) follow automatically once we have verified that
√
m(θ∗− θ̂) has the same limiting

distribution as
√
n(θ̂ − θ0) up to an error of smaller order. Thus, we show that Lemma B1 and B2 are also

applicable to the bootstrap estimator in (13) (with n being replaced by m in both lemmata). Since the proof
is rather lengthy and in large parts identical to before, we will only sketch the one of asymptotic normality and√
m-consistency paralleling the proof of Theorem 3. Consistency follows in fact by similar arguments to the

proof of Theorem 2 and the ones presented in the following.

The equation in (13) can be decomposed as in the proof of Theorem 3. That is, we examine:

1

m(m− 1)

∑
k 6=l

µ(X∗k)×A∗lk(θ) +
1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ(X∗k)

)
×A∗lk(θ)

with A∗lk(θ) = I[X∗k ∈ X ]
{
I[X∗k

′β(θ) > X∗l
′β(θ)]− I[X∗k

′β(θ̂) > X∗l
′β(θ̂)]

}
. In a first step we show that:

1

m(m− 1)

∑
k 6=l

µ(X∗k)A∗lk(θ) (A-19)

34



behaves as

S1n =
1

n(n− 1)

∑
k 6=l

µ(Xk)Alk(θ)

from the proof of Theorem 3. Since (A-19) is again a second order U-statistic for every θ ∈ Θ, the same
Hoeffding decomposition argument as in Lemma A.3 of Khan (2001) used in the proof of Theorem 3 can be
applied: first notice that the conditional expectation over bootstrap samples given Xk and Xl, respectively,
is:

τ∗lk(θ) =
1

2

{
E∗
[
µ(X∗k)A∗lk(θ)

∣∣∣Xk

]
+ E∗

[
µ(X∗k)A∗lk(θ)

∣∣∣Xl

]}
=

1

2

{ 1

n

n∑
k=1

µ(Xk)Al∗k(θ) +
1

n

n∑
l=1

µ(X∗k)Alk∗(θ)
} (A-20)

where the subscript without star in the second line indicates the summable variable. Hence:

E∗
[
τ∗lk(θ)

]
=

1

n2

n∑
k=1

n∑
l=1

µ(Xk)Alk(θ)

This term can be expanded further to give:

E
[
µ(Xk)Alk(θ)

]
+
( 1

n2

n∑
k=1

n∑
l=1

µ(Xk)Alk(θ)− E
[
µ(Xk)Alk(θ)

])
= T ∗1n + T ∗2n (A-21)

T ∗1n can be expanded as in Lemma A.3 of Khan (2001). For T ∗2n on the other hand, let φlk(θ) = µ(Xk)Alk(θ).

Notice that by B2, B5, and B6 we have E
[∣∣∣φlk(θ)

∣∣∣κ] = ‖θ−θ0‖ and E
[
φlk(θ)2

]
= ‖θ−θ0‖. Thus, by Rosenthal’s

inequality:

E
[
T ∗2n

2κ
]
≤ n−4κΞκ

(
‖θ − θ0‖n2κ + ‖θ − θ0‖n2

)
For κ = 1, E

[
T ∗2n

2κ
]

= O(‖θ − θ0‖n−2) and thus by Markov’s inequality T2n(θ) = op

(
‖θ−θ0‖√

n

)
. Next, we show

that ‘m out of n’ bootstrap is also able to mimic the random elements of the ‘projection’ of the U-statistic
used in Lemma A.3 of Khan (2001). That is, recalling the definition of τ∗lk(θ) from (A-20) and denoting

τlk(θ) its population counterpart, let with a slight abuse of notation τ∗i (θ) = 1
2

(
E∗
[
µ(X∗k)A∗lk(θ)

∣∣∣Xk = Xi

]
+

E∗
[
µ(X∗l )A∗lk(θ)

∣∣∣Xl = Xi

])
:

1

m

m∑
i=1

τ∗i (θ)− E∗
[
τ∗i (θ)

]
=

1

m

m∑
i=1

τi(θ)− E
[
τi(θ)

]
+

1

m

m∑
i=1

{
τ∗i (θ)− E∗

[
τ∗i (θ)

]
− τi(θ) + E

[
τi(θ)

]}
=U∗1n(θ) + U∗2n(θ)

U∗1n(θ) can again be dealt with by the same arguments of Lemma A.3 in Khan (2001) since m −→∞ as n −→∞.

Considering U∗2n(θ), we only examine 1
m

m∑
i=1

τ∗i (θ)− τi(θ), the term involving the unconditional expectations will

follow by an identical argument. By B2, B5, m
n −→ 0, and using again Rosenthal’s and Markov’s inequalities

we have that:

1

2

1

m

m∑
i=1

{
1

n

n∑
k=1

µ(Xk)Ai∗k(θ) +
1

n

n∑
l=1

µ(Xi∗)Ali∗(θ)

− E
[
µ(Xk)Al∗k(θ)

∣∣∣X∗l = X∗i

]
− E

[
µ(Xk)Al∗k(θ)

∣∣∣X∗k = X∗i

]}
= op

( 1

m

)
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The same line of argument can also be used to show that the remaining term of the projection is op

(
1
m

)
.

Next, we give a rough sketch of the steps to show that:

1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ(X∗k)

)
A∗lk(θ) (A-22)

behaves as

S2n =
1

n(n− 1)

∑
k 6=l

(
µ̂(Xk)− µ(Xk)

)
Alk(θ)

A similar decomposition as in the proof of Theorem 3 yields:

1

m(m− 1)

∑
k 6=l

(
µ̃∗(X∗k)− µ(X∗k)

)
A∗lk(θ) +

1

m(m− 1)

∑
k 6=l

(
µ̂∗(X∗k)− µ̃∗(X∗k)

)
A∗lk(θ)

=S∗21n + S∗22n

where µ̃∗(·) is defined analogously to the proof of Theorem 3. We start with S∗21n, which can again be rewritten
as:

S∗21n =
1

m(m− 1)

∑
k 6=l

{
1

m

m∑
i=1

1
mh∗d

m∑
j=1

I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j(X

∗
k , V

∗
i )

1
mh∗d

m∑
j=1

I∗i Kh∗,j(X∗k , V
∗
i )

}
×A∗lk(θ)

Using B2, B3, B8, and the same argument as in the proof of Lemma B3, we can replace f̂∗X,V (X∗k , V
∗
i ) by

fX,V (X∗k , V
∗
i ). After omitting terms with k = l = j = i, which, parallel to Theorem 3, results in an error of

order o∗p(‖θ − θ0‖/mh∗d)), the numerator is given by:

1

m(m− 1)(m− 2)(m− 3)

∑
k 6=l 6=i 6=j

1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ) (A-23)

Using a similar decomposition as in (A-21), it is straightforward to show that this fourth order U-statistic is
degenerate in ξ∗k, ξ

∗
l , ξ
∗
i for each θ ∈ Θ, where ξ∗k, ξ

∗
l , ξ
∗
i are defined as in the proof of Lemma B3. As before, this

also implies that:

E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

]
=E

[ 1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ)

]
+

{
1

n4h∗d

n∑
k=1

n∑
l=1

n∑
j=1

n∑
i=1

1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh∗,j(Xk, Vi)Alk(θ)

− E
[ 1

hd
1

fX,V (Xk, Vi)
Ii
(
UjG − µ(Xk)

)
Kh,j(Xk, Vi)Alk(θ)

]}

=op

( 1

n

)
where the last equality follows by B8, the Rosenthal’s and Markov’s inequalities, and the fact that E

[
1
hd

1
fX,V (Xk,Vi)

Ii
(
UjG−

µ(Xk)
)
Kh,j(Xk, Vi)Alk(θ)

]
= 0. The second term of the Hoeffding projection of (A-23) yields:

1

m

m∑
p=1

E∗
[ 1

h∗d
1

fX,V (X∗k , V
∗
i )
I∗i
(
U∗jG − µ(X∗k)

)
Kh∗,j∗(X

∗
k , V

∗
i )A∗lk(θ)

∣∣∣ξ∗j = ξ∗p

]
=

1

m

m∑
p=1

∫
1

h∗d
1

fX,V (Xk, Vi)
Ii
(
U∗pG − µ(Xk)

)
Kh∗,p∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi) + op

( 1

m

)
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where op

(
1
m

)
follows by another application of Rosenthal’s inequality. The term

∫
1
h∗d

1
fX,V (Xk,Vi)

Ii
(
U∗pG −

µ(Xk)
)
Kh∗,p∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi) can now be treated as in the proof of Theorem 3 using a second

order Taylor expansion:
(θ − θ̂)

′
Ii
(
U∗iG − µ(Xk)

)
∇θψ2(Xk, θ̂) +O(‖θ − θ̂‖2)

In view that:

var∗

( 1√
m

m∑
j=1

∫
1

h∗d
1

fX,V (Xk, Vi)
Ii
(
U∗jG − µ(Xk)

)
Kh∗,j∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi)

)
= var∗

(∫ 1

h∗d
1

fX,V (Xk, Vi)
Ii
(
U∗jG − µ(Xk)

)
Kh∗,j∗(Xk, Vi)Alk(θ)dFX,V (Xk, Xl, Vi)

)
=Ω0 + op(1)

and since all higher order degenerate U-statistics from the decomposition are of smaller order, the term in
(A-23) weakly converges to N(0,Ω0) as both m and n go to infinity thus mimicking the limiting distribution of
(A-13). S∗22n and the three leading terms arising in analogy to S22n can be treated as in the proof of Lemmata
B4 to B6 using similar arguments to above. That is, the same decomposition as in the proof of those lemmata
yields the remaining variance pieces Ω1, Ω2, and Ω3 as m and n go to infinity. It follows that

√
m(θ∗ − θ̂) has

the same limiting distribution as
√
n(θ̂ − θ0).

To verify equation (A-18), notice that from Lemma B1 and B2, (θ∗ − θ̂) can be restated as:

(θ∗ − θ̂) = −J−1 1√
m
Wm + op

(
1

m

)

where the op(m
−1) follows from

√
m-consistency. Thus,

√
m(θ∗ − θ̂) = −J−1Wm + op

(
1√
m

)
. Recalling that

J = 1
2 E
[
∇θθ′ψ1(Xk, θ̂)

]
is bounded and negative definite by B6, we can bound equation (A-18) as follows:

E∗
[(√

m‖θ∗ − θ0‖
)2+ε]

=E∗
[(
‖−J−1Wm‖

)2+ε)]
+ op(1)

≤ΞJ‖Wn‖2+ε = Op(1)

where ΞJ is a generic constant and the last equality follows since Wn converges in distribution.

�
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Appendix C

Table 1: Monte Carlo Simulation - No Censoring

Design I
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
RankCF 0.1595 0.1400 0.2853 0.2246

MRE 0.6382 0.6000 0.6823 0.6382
MRC −0.5691 −0.6000 1.6359 1.4424

n = 200
RankCF 0.1173 0.1100 0.2279 0.1828

MRE 0.6155 0.6000 0.6346 0.6155
MRC −0.5591 −0.6300 1.6651 1.4857

n = 400
RankCF 0.0969 0.0800 0.1974 0.1576

MRC 0.6078 0.6000 0.6167 0.6078
MRE −0.5617 −0.6100 1.7220 1.5406

n = 600
RankCF 0.0831 0.0800 0.1865 0.1487

MRC 0.6024 0.6000 0.6083 0.6024
MRE −0.5378 −0.5400 1.7330 1.5538

Design II

n = 100
RankCF 0.2501 0.1300 0.5965 0.4332

MRE 0.6482 0.5800 0.8200 0.6709
MRC 0.6324 0.5400 0.8181 0.6684

n = 200
RankCF 0.1438 0.1000 0.3852 0.2743

MRE 0.6402 0.5900 0.7431 0.6423
MRC 0.6434 0.6100 0.7505 0.6480

n = 400
RankCF 0.1053 0.0800 0.3040 0.2219

MRE 0.6326 0.5900 0.6995 0.6326
MRC 0.6335 0.5700 0.7042 0.6338

n = 600
RankCF 0.1254 0.1000 0.2833 0.2128

MRE 0.6205 0.5900 0.6644 0.6205
MRC 0.6244 0.5900 0.6710 0.6244

1 The figures in the table represent the average of the corresponding bias measure (401 replications).
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Table 2: Monte Carlo Simulation - Censoring

Design III
No. of obs. Estimator Mean Bias1 Median Bias1 RMSE1 MAD1

n = 100
(Avg. Censoring Ratio: .16)

RankCF 0.2260 0.1000 0.8289 0.6105
MRE 0.6185 0.5900 0.8825 0.7236
MRC 0.6759 0.6300 0.7776 0.6801

n = 200
(Avg. Censoring Ratio: .16)

RankCF 0.2343 0.1000 0.6207 0.4461
MRE 0.6452 0.5600 0.8329 0.6830
MRC 0.6519 0.5900 0.7205 0.6519

n = 400
(Avg. Censoring Ratio: .16)

RankCF 0.1608 0.1100 0.4568 0.3364
MRC 0.6326 0.5700 0.7591 0.6377
MRE 0.6040 0.5800 0.6322 0.6040

n = 600
(Avg. Censoring Ratio: .16)

RankCF 0.1475 0.0900 0.4133 0.2948
MRC 0.6611 0.6100 0.7555 0.6614
MRE 0.6090 0.6000 0.6272 0.6090

Design IV

n = 100
(Avg. Censoring Ratio: .32)

RankCF 0.2118 0.1300 1.1672 0.9582
MRE 0.4892 0.5900 1.0374 0.8670
MRC 0.5029 0.5800 1.0283 0.8475

n = 200
(Avg. Censoring Ratio: .32)

RankCF 0.1995 0.1000 0.8903 0.6741
MRE 0.5129 0.5200 0.8907 0.7181
MRC 0.5757 0.5600 0.8495 0.6997

n = 400
(Avg. Censoring Ratio: .33)

RankCF 0.2318 0.1200 0.7608 0.5674
MRE 0.6845 0.6200 0.8909 0.7345
MRC 0.6779 0.6300 0.7923 0.6870

n = 600
(Avg. Censoring Ratio: .32)

RankCF 0.2168 0.1000 0.6140 0.4479
MRE 0.6326 0.5800 0.8109 0.6566
MRC 0.6206 0.5900 0.7059 0.6217

1 The figures in the table represent the average of the corresponding bias measure (401 replications).
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Table 3: Empirical Illustration - Earnings Study

Estimator Coefficient1 Value 95% Bootstrap-CI

RankCF
Constant −
Education 0.1121 [0.0197;0.3399]

Age −0.0218 [−0.0990;−0.0080]

MRE
Constant −
Education 0.1949 [0.0885;0.3110]

Age −0.0953 [−0.1540;−0.0579]

MRC
Constant −
Education 0.2162 [0.1391;0.3122]

Age −0.0802 [−0.1229;−0.0480]

OLS
Constant 19.8393 [14.5055;28.9085]
Education 0.1987 [0.1046;0.3256]

Age −0.1003 [−0.1555;−0.0552]

LAD
Constant 19.8728 [15.1346;28.4499]
Education 0.2229 [0.1456;0.3657]

Age −0.0805 [−0.1359;−0.0480]

TSLS
Constant 17.3046 [12.4894;24.9949]
Education 0.1879 [−0.0052;0.3811]

Age −0.0890 [−0.1461;−0.0522]
1 The gender coefficient has been normalized to one.
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