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Abstract

We introduce the concept of inconsequential arbitrage and, in the context
of a model allowing short-sales and half-lines in indifference surfaces, we prove
that inconsequential arbitrage is sufficient for existence of equilibrium. With a
slightly stronger condition of local nonsatiation than required for existence of
equilibrium and with a mild uniformity condition on arbitrage opportunities, we
show that the existence of a Pareto-optimal allocation implies inconsequential
arbitrage, implying that inconsequential arbitrage is necessary and sufficient for
existence of an equilibrium. By further strengthening our nonsatiation condi-
tion, we obtain a second welfare theorem for exchange economies allowing short
sales. To further understand inconsequential arbitrage, we introduce the no-
tion of exhaustible arbitrage and we show that any inconsequential arbitrage is
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exhaustible. We also compare inconsequential arbitrage to the conditions lim-
iting arbitrage of Hart (1974) and Werner (1987), as well as to the conditions
recently introduced by Dana, Le Van, and Magnien (1999) and Allouch (1999).
For example, we show that the condition of Hart (translated to a general equi-
librium setting) and the condition of Werner are equivalent. We then show that
the Hart/Werner conditions imply inconsequential arbitrage. To highlight the
extent to which we extend Hart and Werner, we construct an example of an ex-
change economy in which inconsequential arbitrage holds (and is necessary and
sufficient for existence), while the Hart/Werner conditions do not hold. Finally,
under additional conditions on the model, we show that if agents’ indifference
surfaces contain no half lines, then inconsequential arbitrage, the Hart/Werner
conditions, the Dana, Le Van, and Magnien condition, and Allouch’s condition
are all equivalent - and in turn, equivalent to the existence of equilibrium.

1 Introduction

We introduce the condition of inconsequential arbitrage. This condition ensures
that, from the viewpoint of existence of equilibrium, arbitrarily large arbitrage
opportunities are inconsequential. We then show that in an exchange economy al-
lowing short sales and half-lines in indifference surfaces, inconsequential arbitrage
is sufficient for existence of equilibrium (Theorem 1). With a slightly stronger con-
dition of local nonsatiation than required for existence of equilibrium and with a
mild uniformity condition on arbitrage opportunities, we show that the existence
of a Pareto-optimal allocation implies inconsequential arbitrage. Thus, it follows
that inconsequential arbitrage is necessary and sufficient for existence of an equi-
librium - as well as necessary and sufficient for the existence of a Pareto optimal
allocation (Theorem 3). By further strengthening our nonsatiation condition, we
obtain a second welfare theorem, generalizing the second welfare theorem in Page
and Wooders (1996a).t

Prior papers in the literature on existence of equilibrium in models with con-
sumption sets unbounded from below - models with short sales - have focused first
on establishing sufficient conditions for existence of equilibrium and second, on nec-
essary conditions. Typically, to show that a condition limiting arbitrage is necessary
for existence of equilibrium, the prior literature has required that there be no half-
lines in indifference surfaces ((Werner (1987), Page and Wooders (1993), Dana, Le
Van and Magnien (1999)?) or that, at most, one agent have half lines in indifference

'Within the context of a model allowing local satiation, Hurwicz (1996) proves a second welfare
theorem assuming that consumption sets are bounded from below. Here, within the context of a
model not allowing local satiation, we carry out our proof of a second welfare theorem allowing short
sales, and hence allowing consumption sets to be unbounded from below.

2See Dana, Le Van and Magnien (1999) for an illuminating discussion of other related work, and
in particular, for an excellent discussion of the various conditions limiting arbitrage and compact-
ness of the utility possibility set. According to Werner, a relationship between his condition limiting



surfaces (Page and Wooders (1996a)). In addition, many papers in the literature
establishing sufficient conditions for existence of equilibrium have required that ar-
bitrage opportunities be invariant or uniform with respect to endowment (i.e., the
consumption at which an arbitrage transaction would begin). Such uniformity is
required, for example, by Hart (1974) and Werner (1987) even for their sufficiency
results. In the current paper, none of these restrictions are required.

Conditions limiting arbitrage found in the literature generally fall into three
broad categories:

(i) conditions on net trades, for example, Hart (1974), Page (1987), Nielsen (1989),
Page and Wooders (1993,1996a,b), Allouch (1999) - including the condition of in-
consequential arbitrage introduced here;

(i1) conditions on prices, for example, Green (1973), Grandmont (1977,1982), Ham-
mond (1983), and Werner (1987).

(iii) conditions on the set of utility possibilities (namely, compactness), for example,
Brown and Werner (1995), Dana, Le Van, and Magnien (1999).

We compare inconsequential arbitrage to the conditions limiting arbitrage intro-
duced by Hart (1974) and Werner (1987), as well as to the conditions recently
introduced by Dana, Le Van, and Magnien (1999) and Allouch (1999). For exam-
ple, we show that the condition of Hart (translated to a general equilibrium setting)
and the condition of Werner are equivalent (Theorem 6), and more importantly, we
show that the Hart/Werner conditions imply inconsequential arbitrage (Theorem
7). We also show that under the assumption of no half-lines in indifference sur-
faces, the Hart/Werner conditions and inconsequential arbitrage are equivalent. In
order to highlight the extent to which we extend Hart (1974) and Werner (1987),
we construct an example (example 3 below) of an exchange economy in which in-
consequential arbitrage holds (and is necessary and sufficient for existence), while
the Hart/Werner conditions do not hold. Inconsequential arbitrage, however, has
some limitations. In order to make these more clearly understood, we also construct
an example (example 4 below) of an exchange economy in which inconsequential
arbitrage does not hold, nor do the Hart/Werner conditions. But an equilibrium
does exist. Finally, under additional conditions on the model, we show that if
agents’ indifference surfaces contain no half lines, then inconsequential arbitrage,
the Hart/Werner conditions, the Dana, Le Van, and Magnien condition, and Al-
louch’s condition are all equivalent - and in turn, equivalent to the existence of
equilibrium.

In a recent paper, Allouch (1999) has shown that inconsequential arbitrage im-
plies compactness of the set of utility possibilities. Moreover, Dana, Le Van, and

arbitrage opportunities and compactness was first remarked by J-F. Mertens in private conversa-
tion. The equivalence of the closely related Page-Wooders condition of “no unbounded arbitrage”
opportunities, compactness of utility possibilities, and the existence of a Pareto-optimal point was
established in Page and Wooders (1996a,b).



Magnien (1999) have shown that if local satiation is ruled out (as we do here) then
compactness of utility possibilities implies existence. Allouch (1999) also introduces
a new condition, bounded arbitrage, and in a model more general than the one de-
veloped here, shows that bounded arbitrage implies existence. Allouch (1999) also
shows that if local satiation is ruled out then his condition of bounded arbitrage
is equivalent to compactness of utility possibilities. However, if local satiation is
allowed, this conclusion must be weakened: bounded arbitrage implies compactness
of utility possibilities - it is an open question whether the reverse implication still
holds.

Inconsequential arbitrage builds on the condition of no unbounded arbitrage in
Page and Wooders (1993, 1996a,b) (see also Page (1987)). That condition ensures
that no group of agents can make mutually compatible, unbounded and utility-
nondecreasing trades. The result of Page and Wooders (1993,1996a) that existence
of equilibrium implies no unbounded arbitrage requires that no group of agents can
make mutually compatible, unbounded and utility increasing trades. In general,
no unbounded arbitrage implies inconsequential arbitrage. While the condition of
no unbounded arbitrage focuses on expanding utility nondecreasing or increasing
trades, inconsequential arbitrage focuses on contracting net trades without decreas-
ing utility. This change, from the focus on expanding trades to the focus on de-
creasing trades, enables us to treat economies with half-lines in indifference surfaces.
It is the ability to contract net trades in directions determined by arbitrage with-
out decreasing utility that allows for existence of an equilibrium in the presence of
half-lines in indifference surfaces.

To further understand inconsequential arbitrage, we introduce the notion of
exhaustible arbitrage. Roughly, an arbitrage is exhaustible if, starting from any al-
location, expanding trades in the direction given by the arbitrage eventually ceases
to be utility increasing. Here we show that any inconsequential arbitrage is ex-
haustible (Theorem 2). It is an open question whether the reverse implication is
true.

The approach taken in this paper can also be viewed as an outgrowth of Hart
(1974), showing existence of equilibrium in an asset-market model with unbounded
short sales. Studying his paper suggested the “back up” argument used in our
proofs and the modification of no unbounded arbitrage leading to inconsequential
arbitrage. In essence, we are extending the Hart (1974) model of an asset market
and his condition limiting arbitrage opportunities to a general equilibrium model.
Hart’s condition is stated explicitly in terms of the structure of asset returns; this
is not required in our work. Our framework and results include Hart’s as a special
case.

For an excellent exposition of the different notions of arbitrage in the prior
literature, we refer the reader to Dana, Le Van, and Magnien (1999), including a
discussion of Chichilnisky (1997) and prior papers.> Another survey, including asset

3For further discussion see Monteiro, Page, and Wooders (1997, 1998, 1999).
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market models in addition to general equilibrium models, is provided in Page and
Wooders (1999). For excellent treatments of arbitrage and existence of equilibrium
in infinite dimensional settings see Brown and Werner (1995) and Dana, Le Van,
and Magnien (1997). Extending the concept of inconsequential arbitrage to infinite
dimensional settings is an open problem.
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2 An economy with short sales

Let (Xj,wj, Pj())j—; denote an exchange economy. Each agent j has consumption
set X; C RF and endowment w;. The j agent’s preferences P;(-) over X; are
specified via a utility function u;(-) : X; — R as follows

Fi(z;) = A{z € Xj 1 uj(x) > u;(z;)}.

The weak preferred set is given by

A~

Py(z;) i=A{zx € X : uj(z) 2 uj(zy)}.

The set of individually rational allocations at endowments w = (wi,...,wy) is
given by

Aw) ={(z1,....,xs) € Xi1 X ... X X, : ij = ij and z; € ﬁj(wj) for all j}.
j=1

=1

We shall maintain the following assumptions throughout: for each agent j =
17 ey Ty

[A-1] u;(-) is upper semicontinuous and quasi-concave.

[A-2] w; € X and X is closed and convex.

We shall also maintain the following nonsatiation assumption:

[A-3] Local nonsatiation at rational allocations.
For any rational allocation (z1,...,z,) € A(w),
Pj(z;) # 0 and clPj(z;) = Fj(z;).

In [A-3], “cl” denotes closure. Thus, at a rational allocation (zi,...,z,) € A(w),
Pj(x;) is nonempty and z; is in the boundary of the preferred set P;(z;) for each
agent j.
Given prices p € B := {p € RY : ||P|| < 1} the budget set for the jth agent is
given by
B(wj,p) = {z € X;: (z,p) < (w;,p)},

and the interior of the budget set relative to X is given by

F(wjvp) = {xj = Xj : <xj7p> < <wj7p>}'

An equilibrium for the economy (Xj,wj, Pj(-))j—; is an (n+ 1) -tuple of vectors
(71, ..., ZTn, p) such that:

(1) (T1,..., %) € Aw) ;



(it) p € B\{0}; and
(¢4) for each j, (z;,P) = (w;,p) and P;(z;) N B(w;,p) = 0.

If (z1,...,%,, p) is an equilibrium, then
for each j, z; € P;j(z;) implies that (x;,p,) > (Z;,p,) = (w;, D).

We say that (71, ..., %, p) is a quasi-equilibrium if
(@) @1,..,Tn) € A(w) ;
(1z) p € B\{0}; and
(i41) for each j, T; € B(w;,p) and Pj(Z;) N F(w;,p) = 0.
If (z1,...,%,, p) is a quasi-equilibrium, then

for each j, z; € Pj(z;) implies that (x;,p,) > (Z;,p,) = (w;, D).

Note that every equilibrium is a quasi-equilibrium.*

3 Inconsequential arbitrage

We define the j™ agent’s arbitrage cone at endowments w; € X; as the closed
convex cone containing the origin given by

R(Pj(w;)) = {y; € R" : for 2, € Pj(w;) and A >0, 2+ \y; € Pj(w;) } .

Thus, if y; € R(ﬁj(wj)), then for all A > 0 and all z; € ﬁj(wj), i+ Ay; € Xj
and uj(z; + Ay;) > uj(w;). The agent’s arbitrage cone at wj, then, is the recession
cone corresponding the weak preferred set Pj(w;) (see Rockafellar (1970), Section

8). Equivalently, y; € R(F;(wj)) if and only if y; is a cluster point of some sequence
{)\k’x?}k where the sequence of positive numbers {\*}, is such that A* | 0, and

where for all k, :ch" € ﬁj(wj) (see Rockafellar (1970), Theorem 8.2).

An arbitrage at w = (wi1,...,wy) is an n-tuple of net trades ¥y = (y1,...,yn)
such that y is the limit of some sequence {(Akx’f, e ,)\kxf’l)}k with A* | 0 and
zh = (zF,. .., 2F) € A(w) for all k. We shall denote by arb(w) the set of all arbitrages
at w. Also, we shall denote by arbseq”(y) the set of all sequences {)\kxk}k with
Mgk — y, A¥ 10, and ¥ € A(w) for all k.

We say that an arbitrage y = (y1,...,yn) € arb(w) is in the back-up set at w,
denoted by bus(w), if for each sequence {)\kx"’}k € arbseq”(y), there exists an ¢ > 0
such that for all k sufficiently large and all agents j,

:ch —ey; € X; and PJ(:ch —ey;) C PJ(:ch)

“Note that it is without loss of generality that we can restrict prices to the unit ball .



An economy (Xj,wj, Pj())j_; satisfies inconsequential arbitrage at w if
arb(w) C bus(w). (1)

In words, an arbitrage y € arb(w) is inconsequential (i.e., is contained in the back-
up set at endowments bus(w)) if for sufficiently large allocations z € A(w) in the
vy = (y1,...,yn) “directions” from the endowment w, each agent j can reduce his
consumption by a small amount in the —y; direction without reducing his utility.

4 Main sufficiency result

Our main result states that in an economy allowing short-sales and half-lines in
indifference surfaces, inconsequential arbitrage at endowments is sufficient for exis-
tence of a quasi-equilibrium.

Theorem 1 (Inconsequential arbitrage implies the existence of a quasi-equilibrium,).
Let (Xj,wj, P;(+))7-1be an economy satisfying [A-1]-[A-3]. If the economy satis-
fies inconsequential arbitrage at endowments w = (w1, ...,wn), then there exists a
quast-equilibrium (Zy, ..., ZTn, p). Moreover, if the quasi-equilibrium (Zi,...,Tn, D) 18
such that for each agent j,

(7’) infxer <!E,ﬁ> < <wj7p>7 and

(1) P;(Z;) is open relative to X,
then (%1, ..., ZTn, p) 15 an equilibrium.
Condition (i) in Theorem 1 will hold automatically if for each agent j, w; €

intX;.> Condition (ii) will hold automatically if for each agent j the utility function,
u;(+), is continuous.

5 Increasing cones, exhaustible arbitrages, and
inconsequential arbitrages

A set closely related to the jth agent’s arbitrage cone at z; is the increasing cone
at z; given by

I(z;) = {yj € R(P;(x;)) : YA > 0,3 N = X such that u;(x; + Ny;) > uj(z; + ij)} .

5Here int denotes interior.



We say that an arbitrage v = (y1,...,yn) € arb(w) is exhaustible at w, if for all
rational allocations z = (z1, ..., z,) € A(w) and all agents j,

~

yj € R(Pj(w;i)\ILj(z;).

Thus, an arbitrage y fails to be exhaustible at w if for some rational allocation
z € A(w) and some agent j, y; € I;(x;). We shall denote by ea(w) the set of all
arbitrages that are exhaustible at w. Note that if y; € R(ﬁj(wj))\lj(xj), then there
exists a A;; > 0 such that for A > A.,, u;(x; + Ay;) is nonincreasing in A. Thus,
there does not exist a A > A, such that u;(z; + Ay;) > u;(z; + Ap;95), and thus at
T; + Ag,;y; all arbitrages in the y; direction are exhausted.

Theorem 2 (Inconsequentiality implies exhaustibility). Let (Xj,wj, P;(+))}_,be an
economy satisfying [A-1]-[A-2]. If y is an inconsequential arbitrage at w (i.e.,
y € bus(w)), then y is exhaustible at w (i.e., y € ea(w)). Thus,

bus(w) C ea(w).
Remark 1 We have then,
bus(w) C ea(w) C arb(w).
Thus, if the economy satisfies inconsequential arbitrage, we have

bus(w) = ea(w) = arb(w).

6 Pareto optimality and inconsequential arbitrage

6.1 The equivalence of inconsequential arbitrage, existence
of a Pareto-optimal allocation, and existence of equi-
librium

When all equilibrium allocations are Pareto-optimal, then existence of equilibrium
implies inconsequential arbitrage. It is well known that when indifference sur-
faces are not “thick”, then all equilibria are Pareto optimal. By assumption [A-3],
thickness is ruled out at rational allocations and guarantees that all equilibria are
Pareto-optimal. Moreover, if we strengthen our assumption of nonsatiation and if
we assume that arbitrage cones are uniform across rational allocations, then the
existence of a Pareto-optimal allocation implies that the economy satisfies inconse-
quential arbitrage.® Thus, we add to our list of assumptions the following:

SA rational allocation (z1,...,7,) € A(w) is Pareto-optimal if there does not exist another
rational allocation (1, ..., ;) € A(w) such that u;(z) > u;(z;) for all agents j and for at least
one agent j', uy (x) > uy(x;).



[A-4] Nonsatiation off the bus.
It y € arb(w)\bus(w), then for each rational allocation z = (z1,...,x,) € A(w)
there is at least one agent j such that for some A; >0
T+ Ay; € By(x)).

[A-5] Uniformaty of arbitrage cones across rational allocations.
For all rational allocations z = (z1, ..., x,) € A(w)

R(ﬁj(xj)) = R(ﬁj(wj)) for all agents j.

Also, in order to guarantee that every quasi-equilibrium is an equilibrium, we add
the following assumptions to our list as well:

[A-6] w; € intX; for all agents j.
[A-T] For all rational allocations =z = (z1, ..., z,) € A(w),
Pj(z;) is open relative to X; for all agents j..

We have the following Theorem:

Theorem 3 (The equivalence of existence of a Pareto-optimal allocation, inconsequen-
tial arbitrage, and existence of equilibrium). Let (Xj,wj, Fj(-))7—; be an economy
satisfying [A-1]-[A-3], [A-4]-[A-5], and [A-6]-[A-7]. Then the following state-
ments are equivalent:

(1) (Xj,wj, Pj(-))j=1 has a rational, Pareto-optimal allocation.
(2) (Xj,wj, Pj(-))j-1 satisfies inconsequential arbitrage.
(3) (Xj,wj, Pj(-))j=1 has an equilibrium.

Remark 2 (a) It can also be shown that nonemptiness of the core implies inconse-
quential arbitrage, as shown in Page and Wooders (1993,1996a) for no unbounded
arbitrage. The notion of the core involved is that typically used in economics. Since
existence of a Pareto-optimal allocation is weaker than nonemptiness of the core, we
focus on Pareto-optimal allocations. To relate inconsequential arbitrage to the part-
nered core, stronger conditions on the economic model are required — specifically,
strictly convex preferences; see Page and Wooders (1996b) and, for the partnered
core of a game, Reny and Wooders (1996).

(b) Rather than assume [A-5], instead we could have made the following as-
sumptions:

[A-8] Uniformity of increasing cones across rational allocations.
For all rational allocations r = (x1,...,z,) € A(w)
Ii(z;) = Ij(wj) for all agents j.
[A-9] bus(w) = ea(w).

Together [A-8] and [A-9] imply [A-5].
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6.2 A second welfare theorem

By strengthening assumption [A-4] we can prove a second welfare theorem for
the exchange economy described above. This result generalizes the second welfare
theorem established in Page and Wooders (1996a). The strengthening of [A-4]
required is the following:

[A-4]* Uniform nonsatiation off the bus.
Given any rational allocation x = (z1,...,z,) € A(w),
if y € arb(z)\bus(z), then for each rational allocation ' = (z}, ..., z}) € A(z)
there is at least one agent j such that for some A; >0
z+ \y; € By(@).

Here,

Alr) = {(z}, ..., zy,) € X1 X ... X X Zx; = Z:ch and z; € P;i(x;) for all 5}.

J=1 J=1

Theorem 4 (A second welfare theorem). Let (Xj,wj, FPj(+))7-; be an economy sat-
isfying [A-1]-[A-3], [A-4]*-[A-5], and [A-7]. If the economy satisfies inconse-
quential arbitrage, then for each rational, Pareto-optimal allocation x = (x1,...,z,) €
Aw) with z; € ntX; for all j, there is a price vector p € B\{0} such that
(z1, ..., Tn, p) 18 an equilibrium relative to some endowment.

7 Examples

To better understand the examples presented below, we begin by introducing the
notion of proximal trading volume. Let

H(y):={z e R": (z,y) = 0},
and for (z,y) € lBj(wj) x R let

2(z,y) := the orthogonal projection of x onto H(y).

11



Figure 1 below summarizes the basic geometric relationships.

A
y
\_“’j\

H(y)

z(x,y)

y

Figure 1

Referring to Figure 1, first note that the vector y is orthogonal to the hyperplane
H(y). Second, note that z € Pj(w;) and that, in this case, 2(z,y) ¢ P;(w;).” Thus,
starting at the vector z(x,y) and moving in the y direction, after a finite distance
we arrive at the indifference surface containing endowment w;. Moving farther in
the y direction, we arrive at the point x , the vector projected onto H(y).

For the jth agent define the function

t;(.) = Fy(w;) X R — [0, 0]
as follows:
ti(zj,y;) :=1inf {t > 0: uj(2(z;,y;) + t'y;) is nonincreasing in ¢’ for ¢’ > t}®

Note that for all (z;,y;) € lBj(wj) X RE, 2(zj,y;) + ti(z;,v5)y; € ﬁj(wj). Note also
that for any € > 0 and (z;,y;) € lBj(wj) X RE A 2(zj,y;) + ti(z),95) - yj — € y; € X,
then
wi(2(zj, ;) + (x5, y5) - y5 — € - y5) < ui(2(@5,95) + 8(25,95) - y5).
We define proximal trading volume, ptv(z,y), at x = (x1,...,%n) € Alw) in
directions y = (y1,...,¥n) € arb(w) as follows:

ptu(z,y) = max{tj(xjvyj) ry=1... 7n}'

Tt is possible, of course, that z(z,y) € pj (wy).
81f y; = 0, then H(y;) = R%, 2(x;,y;) = ;, and t;(x;,y;) = 0.

12



We say that the economy (Xj,wj, P;(-))j-; has bounded prozimal trading volume

if along each arbitrage sequences {)\kx"’}k € arbseq”(y), proximal trading volume
ptv(z¥,y) is bounded.

Theorem 5 (Sufficiency of bounded proximal trading volume for inconsequential
arbitrage). Let (Xj,wj, Pi(+))7—; be an economy satisfying [A-1]-[A-2]. If the
economy has bounded proximal trading volume, then the economy satisfies inconse-

quential arbitrage.

Example 1: In this example bus(w) is a proper subset of ea(w), inconsequential
arbitrage does not hold, and proximal trading volume is unbounded. Consider
an economy (Xj,wj, Pj(-)ﬁ:1 in which two commodities are traded. Agent 1 has
consumption set X; = {(z11,212) : 11 > 1 and x;2 > 0} and Leontief preferences
which kink along the curve given by f(x) = Inx, for x > 1. Agent 2 has consumption
set

X2 = {(xgl,xgg) L T2t S O and I22 S O}

(i.e., the southwest quadrant) and preferences given by the utility function uqs(x21, 92) =

|z22|. Thus, agent 2 has straight line indifference curves as depicted in Figure 2.

H(yq) = H(yz) k
X1
Z(><1 Ky1)
|
Y2 ™1
< ¢ g
" |
=
—= 2(x2K, y2)
xzk
Figure 2
Agent 1 has endowment w; = (2,1n2) while agent 2 has endowment ws = —w;. Now

consider the sequence of rational allocations given by { (x¥, 25) } ., with (2 — wy) =
—(x% — w1) where the sequence of agent 1’s consumption vectors {:Jcl} moves along

the curve f(z) =Inz, for £ > 1 (see Figure 2). The sequence { )\k’xl, } ., with
A= T 1k|| converges to y = (y1,y2) = ((1,0),(—1,0)). Thus, y € arb(w ) and it is
1
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clear from Figure 2 that y € ea(w). Note, however, that y ¢ bus(w) . In particular,

because

xlf = Z(xlfvyl) +t1($lf,y1) "

for small &€ > 0, uy (zf — eyy) < ui(z¥) (i.e., P (z¥) C P (z} — eyy)) for all k. Thus,
inconsequential arbitrage is not satisfied. Moreover, note that proximal trading
volume along {(:Jc’f,xé’)}k in directions y = (y1,92) = ((1,0),(—1,0)) is given by

ptv(z*,y) = z¥,. Thus, proximal trading volume is unbounded. In this example

bus(w) = {((0,0), (0,0))}, while

ea(w) = {((0,0), (0,0))} U{((7,0),(=7,0)) : v > O} .

Example 2: In the following variation on example 1, the economy has bounded
proximal trading volume. Thus, inconsequential arbitrage is satisfied and bus(w) is
equal to ea(w). Consider an economy (Xj,w;, Pj(-)ﬁ:1 in which two commodities
are traded. Agent 1’s preferences and consumption set are as before. But now agent

2 has consumption set
X2 = {(x21,$22) X1 S 0 and o9 2 O}

(i.e., the northwest quadrant) and preferences again given by the utility function
ua(xa1, T22) = |xr22|. Thus, agent 2 has straight line indifference curves in the north-
west quadrant as depicted in Figure 3.

Hy;) = Hiyp) \A

el

/

- =
Xik_. ) l\ W] X1
< ¢ P >
¥2 Y1
z(x15 y1) = 2(xk y2)
Figure 3
Agent 1 has endowment w; = (2,In2) while agent 2 has endowment w, =

(—2,1n2).
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In this example,
Aw) ={(2+7,In2),(=2-7,In2)) : v = 0} .

Given the simple structure of the set of rational allocations, it follows that all
sequences of rational allocations {xk}k = {(:Jc’f,xé’)}k such that (\*zF, \zk) —
(y1,42), for some sequence A* | 0, are of the form

{ahah)}, = {(@+ 442, (-2 75 1n2) :1* > 0}

As aresult, for all {(Akxlfv )\kxlg)}k € arbseq”(y), with y = (y1,92) = ((7,0), (—7,0)),
~v > 0, the corresponding projection sequences

{(z(zh, v1), 2(x5,52)) },, € H(yr) x H(ys)

are of the form
(2(zf,91), 2(z5, y2)) = ((0,1n2), (0,1In2)) for all k.

From this it follows immediately that proximal trading volume along any such
sequence {(:Jc’f, :Jcé’)} . 18 given by ptv(z¥,y) = 2. Thus, the economy satisfies incon-
sequential arbitrage and bus(w) = ea(w). Given the simple structure of rational
allocations, it can be verified by inspection that

arb(w) = bus(w) = {((0,0),(0,0))} U {((7.0), (=7,0)) : v > 0}

8 Other Conditions Limiting Arbitrage: Some
Comparisons

In this section, we compare inconsequential arbitrage to the conditions limiting
arbitrage introduced by Hart (1974) and Werner (1987), as well as to the conditions
recently introduced by Dana, Le Van, and Magnien (1999) and Allouch (1999).
Conditions limiting arbitrage found in the literature generally fall into three broad
categories:

(i) conditions on net trades, for example, Hart (1974), Page (1987), Nielsen (1989),
Page and Wooders (1993,1996a,b), Allouch (1999) - including the condition of in-
consequential arbitrage introduced here;

(i1) conditions on prices, for example, Green (1973), Grandmont (1977,1982), Ham-
mond (1983), and Werner (1987).

(iii) conditions on the set of utility possibilities (namely, compactness), for example,
Brown and Werner (1995), Dana, Le Van, and Magnien (1999).
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8.1 A Comparison to Hart (1974) and Werner (1987)

We begin by showing that the condition of Hart (translated to a general equilibrium
setting) and the condition of Werner are equivalent, and more importantly, we show
that the Hart/Werner conditions imply inconsequential arbitrage. In order to high-
light the extent to which we extend Hart (1974) and Werner (1987), we construct an
example (example 3 below) of an exchange economy in which arbitrage cones are not
globally uniform. However, increasing cones are uniform across rational allocations
(i.e., [A-8] holds) and bus(w) = ea(w) (i.e., [A-9] holds). Thus, there is nonsatia-
tion off bus(w) (i.e., [A-4] holds). In addition, inconsequential arbitrage holds (and
is necessary and sufficient for existence), while the Hart/Werner conditions do not
hold. In order to more clearly understand the limitations of inconsequential arbi-
trage, we also construct an example (example 4 below) of an exchange economy in
which inconsequential arbitrage does not hold, nor do the Hart/Werner conditions.
But an equilibrium does exist.

8.1.1 The Equivalence of Hart’s Condition and Werner’s Condition

In order to show that Hart’s condition (translated to a general equilibrium setting)
and Werner’s condition are equivalent we must first introduce some new definitions
and assumptions.

A set closely related to the jth agent’s arbitrage cone at w; is the lineality space
at w; given by

L(Fj(wy)) == —R(P;(w;)) N R(Pj(w;)).

Note that if y; € L(ﬁj(wj)), then for all A € R and all z; € ﬁj(wj), zj+ Ay; € X
and uj(z; + Ay;) > u;(x;). Under assumption [A-1], if y; € L(ﬁj(wj)), then net
trades in the directions y; or —y; starting at the consumption vector w; are utility
constant.

Werner (1987) makes the following assumptions concerning lineality spaces and

arbitrage cones (i.e., recession cones) in his model:

[W-1] Global uniformity of arbitrage cones. For each agent 7,
R(Pj(z)) = R(Pj(w;)) := R; forall z € X;.

[W-2] FEuxistence of useful trades. For each agent j,
RA\L; #0.

Here L; denotes the lineality space corresponding to the recession cone R;. To-
gether, [W-1] and [W-2] play the same role in Werner’s (1987) proof of existence
as does our assumption of nonsatiation at rational allocations, [A-3] in our proof of
Theorem 1. Note that Werner’s assumption [W-1] implies our assumption [A-5].
Note also that if agents’ utility functions are concave then [W-1] holds automati-
cally. Finally, note that under [W-1], if y; € L; then for all A € R and all z; € Xj,
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zj + Ay; € X and wi(z; + Ayj) = wj(z;). In the terminology of Werner (1987),
under [W-1] a “commodity bundle” y; € L; is useless.

Werner (1987) also introduces the no half lines condition.” The jth agent’s
utility function satisfies the no half lines condition if for each z; € X, there does
not exist a nonzero vector of net trades y; such that u;(x; + Ay;) = u;(z;) for all
A>0.

[W-3] No half lines. Each agent’s utility function satisfies
the no half lines condition.

Note that [W-3] implies that the set of exhaustible arbitrages consists of an n-tuple
the zero vectors (i.e., ea(w) = {(0,...,0)}). Thus, [W-3] implies that bus(w) =
ea(w) = {(0, .., 0)}.
The dual cone corresponding to the arbitrage cone R;, denoted by A(ER;), is
given by
A(Ry):={p¢c RY: (y,p)>0forallyc R;}.

The positive dual cone corresponding to Rj, denoted by AT (R;), is given by
AT (Rj)={p€ RY: (y,p) >0forallyc RA\L;}.

If p € AT(R;), then the price vector p assigns a positive value to any vector of useful
net trades y; € R;j\Lj;.
Under assumption [W-2] it follows from Theorem 2.1 in Yu (1974) that

AT (Ry) = riA(Ry)
where “ri” denotes the relative interior.
Now consider an exchange economy (Xj,wj, P;(+))j-; satisfying assumptions [A-

1]-[A-2] and [W-1]-[W-2]. This economy satisfies Hart’s condition if

whenever Z?Zl y; = 0 and y; € R, for all j, then

. (2)
y; € Ly for all j.
Moreover, the economy satisfies Werner’s condition if
AT (R,) # 0. 3)

An economy satisfies Hart’s condition, if all n-tuples of mutually compatible net
trades representing potential unbounded arbitrages for the individual agents are
useless (i.e., are utility constant). The economy satisfies Werner’s condition, if the

"Werner (1987) states that if each agent’s utility function satisfies the no half lines condition,
then his condition is necessary as well as sufficient for existence. Page and Wooders (1996a) show
that if all but one agent’s utility function satisfies the no half lines condition, then Werner’s condition
is necessary and sufficent for existence.
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set of prices assigning a positive value to all n-tuples of useful net trades (i.e., net
trades representing potential unbounded arbitrages) is nonempty.

Our next result states that Hart’s condition (a condition on net trades) is equiv-
alent to Werner’s condition (a condition on prices). Theorem 6 below is obtained by
specializing Corollary 16.2.2 in Rockafellar (1970) to cover the exchange economy
developed here.

Theorem 6 (Hart’s condition is equivalent to Werner’s). Let (X;,wj, Pj(-))j-; be an
economy satisfying [A-1]-[A-2] and [W-1]-[W-2]. Then Hart’s condition (2) is
satisfied if and only if Werner’s condition (3) is satisfied.

We shall refer to the conditions (2) and (3) above as the Hart/Werner conditions.
Two interesting variations on the Hart/Werner conditions are the overlapping ex-
pectations condition of Hammond (1983) (also see Green (1973), Grandmont (1977,
1982)1% and the no unbounded arbitrage condition of Page (1987). In an asset
market setting, under a set of assumptions mildly stronger than those used in Hart
(1974) (including the assumption of no half lines), Hammond shows that his con-
dition is equivalent to Hart’s condition. Also in an asset market setting, under a
set of assumptions similar to Hammond’s (also including the assumption of no half
lines), Page shows that his condition given by

it 375, y;=0andy; € R; for all j, then n”
y; = 0 for all 7,

is also equivalent to Hart’s condition as well as Hammond’s. In general, without
the no half lines assumption, {0,...,0} is a proper subset of the lineality space
L;. Thus in general, Page’s condition (4) implies the Hart/Werner conditions.
Page’s condition has been used by Nielsen (1989) to prove existence in an exchange
economy model with short sales slightly more general than Werner’s, and more
recently, Page and Wooders (1993, 1996a,b) have refined Page’s condition and shown
it to be necessary and sufficient for compactness of the set of rational allocations,
as well as for existence and nonemptiness of the core. Dana, Le Van, and Magnien
(1999) and Allouch (1999) provide an excellent discussions of the different notions
of arbitrage found in the general equilibrium literature. Page and Wooders (1999)
also provide a discussion of notions of arbitrage, including a discussion of the various
notions of arbitrage found in the literature on asset markets.

8.1.2 Hart/Werner Conditions and Inconsequential Arbitrage

Let (Xj,wj, Pj(-))j—; be an exchange economy satisfying assumptions [A-1]-[A-2]
and [W-1]-[W-2]. Given the discussion above concerning lineality spaces, it is easy

0As far as we know, Hammond (1983) introduced the terminology “overlapping expectations.”

? “

The condition overlapping expectations is a much weakened form of Green’s “common expectations.”
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to see that
Ly X -+ x L, Cbus(w).

This fact together with Theorem 7 imply that if the economy satisfies the Hart/Werner
conditions, then any arbitrage v = (y1, ..., yn) € arb(w) is contained in Ly X - -+ X Ly,
Thus, Hart’s net trades condition or Werner’s price condition implies inconsequen-
tial arbitrage. If, in addition, the economy satisfies no half lines, [W-3], then
bus(w) = {0,...,0}, and therefore, L; X --- X L, = bus(w). Thus, assuming no
half lines, inconsequential arbitrage implies the Hart/Werner conditions. Stated
formally, we have,

Theorem 7 (Hart/Werner imply inconsequential arbitrage). Let (X, wj, Pi(+))7
be an exchange economy satisfying assumptions [A-1]-[A-2] and [W-1]-[W-2].

If 327 y; =0 and y; € R; for all j,
implies, y; € L; for all j,
or

if 0y AT(R;) # 0,

then arb(w) C bus(w).

If, in addition, the economy satisfies [W-3], no half lines, then
NAT(R;) # 0 if and only if arb(w) C bus(w).

8.1.3 A Summary of Results

In this subsection, we summarize our results and those of Werner.

A Summary of Sufficiency Results:

Let (Xj,u)j,Pj(-))?:1 be an economy satisfying [A-1]-[A-2] and [A-6]-[A-T]:

Werner (1987): Under [W-1]-[W-2],
N;AT(R;) # 0 = existence.
Page, Wooders, &Monteiro: Under[A-3],
arb(w) C bus(w) = existence.
Thus, inconsequential arbitrage is sufficient for existence without uniformity of ar-

bitrage cones (see example 3 below).!!

A Summary of Characterization Results:

U'Werner’s assumption A5 is weaker than our assumption [A-6] - see page 1410 in Werner (1987).
In fact, our assumption [A-6] implies Werner’s A5. On the other hand, Werner assumes utility
functions are continuous while we require only upper semicontinuity.
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Let (Xj,wj, Pj(+))j-; be an economy satistying [A-1]-[A-2] and [A-6]-[A-T7]:

Werner (1987): Under [W-1]-[W-3],
NjAT(R;) # 0 & existence.
Page, Wooders, & Monteiro: Under [A-3] and [A-4]-[A-5],
arb(w) C bus(w) & existence.

Thus, inconsequential arbitrage is necessary and sufficient for existence even in the
presence of half lines (see example 3 below).

8.1.4 Examples

Example 3: Here we construct an example of an exchange economy satisfying
assumptions [A-1]-[A-3] in which arbitrage cones are uniform across rational al-
locations (i.e., [A-5] holds) - but not globally uniform. Moreover, in our exam-
ple, increasing cones are uniform across rational allocations (i.e., [A-8] holds) and
bus(w) = ea(w) (i.e., [A-9] holds). Thus, there is nonsatiation off the bus(w) (i.e.,
[A-4] holds). In addition, inconsequential arbitrage holds (and is necessary and
sufficient for existence), while the Hart/Werner conditions fail.

Consider an economy (X, wj, Pj(-)ﬁ:l, where for each j, X; = R% Agent 1 has
endowment wy; = (2, —1) while agent 2 has endowment ws = —w;. Agent 1’s utility
function is given by

B 1 f[,f J;ISO or x22_1
u(T1,T2) = ¢ 2 if £1>0 and zp < —1,

x2
while agent 2 has utility function given by

UQ(xl, !EQ) =z + 2!E2.

Figure 4 summarizes the situation. Note that agents 1’s utility function has arbi-
trage cones (i.e., recession cones) that are not globally uniform. Thus, this example
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is not covered by Werner’s (1987) model.

agent 1's irjdifference
curve throfigh wq

agent 2's indiffexence
curve through >

é—’/

A
\
* (-2, 1)
-4 \

P
.
\

Kz-l)

v
Figure 4

In this example,
A(w) = {((27 _1) Ty (27 _1)7 (_27 1) Ty (_27 1)) Y > O} :

By inspection of Figure 4, it is easy to see that increasing cones are uniform across
rational allocations (i.e., [A-8] holds). In particular,

for all v >0
Il((27 _1) e (27 _1)) = Il((27 _1))7
and

L((=2,1) +7-(=2,1)) = L((=2,1)).

Moreover, it is easy to see that arbitrage cones are uniform across rational allo-
cations (i.e., [A-5] holds) and that local nonsatiation at rational allocations holds
(i.e., [A-3] holds).

Given the simple structure of the set of rational allocations, it follows that all
sequences of rational allocations {xk}k = {(:Jc’f,xé’)}k such that (A\*z#, \*zf) —
(y1,42), for some sequence A* | 0, are of the form

{ef, 25)}, = {(@. -+~ (2,-1),(=2.1) ++* - (=2,1)) : /" 2 0}, .

Thu57 for all {Akxk}k S arbseq“’(y), with Yy = (yl,y2) = (’7 (27_1)7’7' (_271))7
~v > 0, the corresponding projection sequences

{(z(zh, v1), 2(x5,52)) },, € H(yr) x H(ys)
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are of the form
(2(zf,y1), 2(x5, y2)) = ((0,0),(0,0)) for all k.

Proximal trading volume along any such sequence {(:Jc'f, zh )} . s given by ptu(zk,y) =
II(2,—1)||, and thus by Theorem 5 , inconsequential arbitrage is satisfied. In fact,
given the simple structure of rational allocations, it can be verified by inspection of
Figure 4 that

arb(w) = bus(w) = ea(w) = {((0,0),(0,0)} U{(v-(2,=1), =y~ (=2,1)) : v > 0} .

Finally, note that lineality space (the set of useless net trades) for agent 1 is

L(P((2,~1)) = {(0,0)},
while for agent 2, the lineality space is given by
L(Py((=2,1)) = {7 (~2,1) : 7 € R}.

Thus, in this example, the Hart/Werner conditions are not satisfied.

Example 4: In this our last example, we modify example 3 by changing the endow-
ment of agent 1. As a result, increasing cones are no longer uniform across rational
allocations (i.e., [A-8] fails), equality of bus(w) and ea(w) fails (i.e., [A-9] fails),
and nonsatiation oft the bus(w) fails (i.e., [A-4] fails). Moreover, inconsequential
arbitrage does not hold, nor do the Hart/Werner conditions. But an equilibrium
does exist. Figure 5, illustrates the problem.

v2 A

agent 1's indifference
curve thropigh wq

]

* (-2/ 1)
-

//]

agent 1's indifference curve through

Figure 5
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Agent 1’s endowment is now w) (rather than w; = (2, —1)). While agent 2’s endow-

ment is as before. Consider the sequence {( Nk, kxlg)}k € arbseq”’ ((y1,y2)) given
by

1 1
(Ot Naih = { (e =k s ko)) |
k
where w’ = (w},w2) and y; and y, are given in Figure 5.'2 It is easy to see that

Y= (y1,92) & bus(w').

Thus, inconsequential arbitrage does not hold.!* By inspection of Figure 5 it can
be verified that increasing cones are no longer uniform across rational allocations,
and that bus(w') is a proper subset of ea(w’). In fact, in this example

bus(w’) = {((0,0), (0,0))},
while
ea(w) = {((0,0), (0,0} U{(v-(2,—1),v-(=2,1)) : v > 0}.
Moreover, [A-4], nonsatiation off bus(w’) fails. For example, take
¥ = W 9) = ((2,-1),(=2,1)) € arb(w')\bus(w’).
It is clear from Figure 5, that for rational allocation ((w] + ¥), (w2 + v5))
u (W + Y + Ay = w (W )

uz(wa + Yy + AyYy) = uz(wa + y3)
for all A > 0.

Finally, note that this economy has an equilibrium (z1, 2, p), for example
P= o ] - (1,2),

J:1 —wl +y1,
= !
To = Wa + Ys.

8.2 A comparison to Dana, Le Van, and Magnien (1999)
and Allouch (1999)

We begin with some terminology. We say that the preference mapping z; — FPj(z;)
defined on Xj is strictly quasi-concave if given any z; € X; and z; € Pj(z;)

(1= Nz + Az; € Pj(xy) for all A € (0,1].
The set of utility possibilities at endowments w = (w1, ...,wy) is given by

Ulw)={(u1,....,un) € R" 1 uj(w;) <u; <uj(xy) for some z = (z1,...,2,) € A(w)}.

R20bserve that y = —1;.

BNote that if agent 1’s indifference curves had the same shape as his indifference curve through w,
then inconsequential arbitrage would be restored. However, if all of agent 1’s indifference curves had
the same shape as his indifference curve through w then inconsequential arbitrage would again fail
to hold (i.e., global uniformity is not enough to guarantee that the economy satisfies inconsequential
arbitrage).
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8.2.1 Dana, Le Van, and Magnien (1999)

Let (Xj,wj, Pi(+))j-; be an economy satistying [A-1]-[A-2]. Dana, Le Van, and
Magnien (1999) assume

Global nonsatiation at rational allocations:
For any rational allocation (z1,...,z,) € A(w), Pj(z;) # 0 for all agents j.

They then show (Theorem 1) that

if global nonsatiation at rational allocations is satisfied, and
if agents’ preference mappings z; — Pj(z;)
are strictly quasi-concave, then
compactness of utility possibilities = the existence of a quasi-equilibrium.

Note that global nonsatiation at rational allocations and strict quasi-concavity of
preference mappings together imply our assumption [A-3], local nonsatiation at
rational allocations. However, in an economy satisfying [A-1]-[A-2] and strict
quasi-concavity, Allouch (1999, Proposition 5.2) has shown that inconsequential ar-
bitrage implies compactness of utility possibilities. Thus, inconsequential arbitrage
is a stronger condition than compactness of utility possibilities.

8.2.2 Allouch (1999)

Allouch (1999) introduces a new condition, bounded arbitrage, defined as follows:

The economy satisfies bounded arbitrage if for all sequences of rational allocations
{z"}n C A(w) there exists

a subsequence {z™ },
a rational allocation z € A(w), and

a sequence {z"’}k C X1 X --- x X, converging to z such that

Thus, by bounded arbitrage, for every sequence of rational allocations there is a
subsequence that is preference-dominated by a sequence converging to a rational
allocation.

Allouch shows (Proposition 5.1) that if the economy (Xj;,w;, Pj(-))}_; satisfies
[A-1]-[A-2], global nonsatiation at rational allocations, and

if agents’ preference mappings z; — Pj(z;)

are strictly quasi-concave, then
bounded arbitrage < the set of utility possibilities is compact.
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Moreover, Allouch shows (Proposition 5.2) that if the economy (Xj,wj, P;(+))7
satisfies [A-1]-[A-2], and

if agents’ preference mappings z; — Pj(z;)
are strictly quasi-concave, then
inconsequential arbitrage = the set of utility possibilities is compact.

In fact, Allouch’s Proposition 5.2 continues to hold without strict quasi-concavity.
Thus, we have
if the economy (Xj,wj, Pj(-))j_; satisfies [A-1]-[A-2], then
inconsequential arbitrage = the set of utility possibilities is compact.

However, without strict quasi-concavity Allouch’s Proposition 5.1 must be weakened
as follows:

if the economy (X;,wj, Pj(-))7_, satisfies [A-1]-[A-2], then

j=1
the economy satisfies bounded arbitrage = the set of utility possibilities is compact.

Thus, without strict quasi-concavity bounded arbitrage implies compactness of util-
ity possibilities, but it is an open question whether the reverse implication still holds.
Allouch’s main existence result (Theorem 3.1), translated to the model here, is
the following:
if the economy (Xj,wj, Pj(+))}; satisfies
global nonsatiation at rational allocations and [A-2], where
Bj(zj) = {z € X : u;(z) > u;(x;)}, and
Fi(zy) =A{r € X u;(x) 2> u;(x))}
with u;(-) : X; — R quasi-concave,
and if
(i) ﬁj(wj) is closed, and
(ii) z; — Pj(z;) is open-valued on ﬁj(wj), then
bounded arbitrage = the existence of a quasi-equilibrium.

Comparing Allouch’s Theorem 3.1 to the following restatement of our Theorem 1,
we have shown that:

if the economy (Xj,w;, Pj(-))j-; satisfies
local nonsatiation at rational allocations and [A-2], where

Bj(zj) = {z € X : u;(z) > u;(x;)}, and

Bj(x;) = {z € X : uj(z) > u;(x;)}

with u;(-) : X; — R quasi-concave,

and if
xj — ﬁj(xj) is closed-valued on X, then
inconsequential arbitrage = the existence of a quasi-equilibrium.
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It should be noted that, in fact, Allouch (1999) proves the existence of a quasi-
equilibrium in a model more general than the model developed here. For example,
Allouch assumes that agents’ preferences are given via a partial preorder, <;, and
does not require that the induced preference mappings, r; — {z; € X : z; <; x}},
be everywhere convex-valued nor that the induced weak preference mappings, z; —
{z} € X; : z; 25 =)}, be everywhere closed-valued. Similar extensions of our results
are also possible.

8.3 A fundamental equivalence result

As before, let (Xj,wj, Pj(-))j—; denote an exchange economy where the 4t agent’s
preferences P;(-) over X are specified via a utility function u;(-) : X; — R as follows

Pj(z;) = {z € X : uj(z) > uy(z;)}.

But now suppose that the economy (X, w;, P;(-))}-; satisfies the following assump-
tions for each agent 7 =1, ..., n:

[A-1]* u,(-) is continuous and quasi-concave.
[A-2]* w; € intX; and X is closed and convex.

[A-3] Local nonsatiation at rational allocations.V (zi,...,z,) € A(w), Pj(z;) # 0
and clPj(z;) = Pj(z;).

all z € Xj.

[W-3] No half lines. Each agent’s utility function satisfies the no half lines con-
dition.

We have the following equivalence result:

Theorem 8 (A fundamental equivalence). Let (Xj,wj, Pj(-))}—; be an economy sat-
isfying [A-1]%*, [A-2]%* [A-3]. If the economy satisfies inconsequential arbitrage,
then the economy has an equilibrium. Moreover, if the economy satisfies the con-
ditions of uniformity and no half lines, [W-1], and [W-3], then the following
statements are equivalent:

(1) (Xj,wj, Pj(-))j-1 satisfies inconsequential arbitrage.

(2) (Xj,wj, Pj(-))j-, satisfies the Hart/Werner conditions.

(3) (Xj,wj, Pj(+))j—; satisfies Allouch’s bounded arbitrage condition.

(4) The set of utility possibilities, U(w), is compact.

(5) (Xj,wj, Pj(-))j=1 has an equilibrium.
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The equivalence of (1) and (2) follows from our Theorem 7. By Allouch’s Propo-
sition 4.3, (2) implies (3), and by Allouch’s proposition 5.1, (3) implies (4). More-
over, given assumptions [A-1]*, [A-2]*, and [A-3], it follows from Theorem 1 in
Dana, Le Van, and Magnien (1999) that (4), compactness of utility possibilities,
implies (5), the existence of an equilibrium. Finally, given assumptions [W-1] arbi-
trage cones are uniform, and by Theorem 1 in Monteiro, Page, and Wooders (1997),
the no half lines assumption [W-3] implies that

Rj\L; = R\{0} = I;.

Here L; denotes the j* agent’s lineality space corresponding to the arbitrage cone
R;, while I; denotes the j* agent’s increasing cone. Thus, given assumptions [A-
1]*, [A-2]*, and [W-1]-[W-3], it follows from our Theorem 3 that (1) and (5) are

equivalent.

9 Proofs

9.1 Bounded economies

Let (Xj,wj, Pj(-))j—1be an exchange economy satistying [A-1]-[A-3], and let C'(k)
be a closed ball in RY of radius ry, with r, > 1, centered at the origin such that
for each agent j, w; € intC'(k) where int denotes interior. We shall assume that
r, — 00 as k — 00. Now define

Pij(z;) := Py(z;) N C(k),
Pyj(z;) = By(z;) N C(k),
ij = XJ’ N C(k),
Bk(wjvp) = {xj S Xk:j . <xj7p> S <wj7p>}7

Fk(wjvp) = {xj S Xk:j . <xj7p> < <wj7p>}7

and consider the k-bounded economy
Ep i= (Xkj, wjs Pej ()i

The set of rational allocations for the k-bounded economy FEj is given by

Ap(w) ={(z1, ..., 2n) € X1 X ... X X : ij = ij and z; € ﬁkj(wj) for all j}.
=1

=1
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An equilibrium for the economy Ej is an (n + 1)-tuple of vectors (z1,..., Tn, D)
such that:

(©) @1, Tn) € Ap(w) ;
(1z) p € B\{0}; and
(i21) for each j, (z;,P,) = (w;,p) and Py;(T;) N By(w;,p) = 0.M
A quasi-equilibrium for the economy Fy is an (n+1) -tuple of vectors (z1, ..., Tn, D)
such that:
(4) (Z1,...,%n) € Ar(w) ;
(it) p € B\{0}; and
(731) for each j, T; € Bi(wjy, p) and P;(z;) N Fi(w;, p) = 0.
The following Lemma is crucial for the proof of Theorem 1.
Lemma 1 Let (Xj,w;, Pj(-))7_; be an exchange economy satistying [A-1]-[A-3].
Let {z"}r = {(zf,...,28)}x C Ag(w) be a sequence of individually rational alloca-
tions such that for each k, ||:Jc§7|| = r for some agent j (i.e., Z?Zl ||:Jc§7|| — 00 as

k — oo) and consider the sequence {A\*z*}; = {(\*zF, .., NzF)}, where \F =

-1
(Z?Zl ||:Jc§’||) . Then the following statements are true.

1. For any cluster point y = (y1,...,y») of the sequence {(Akx’f, ...,)\kxf’l)}k, it

holds that . .
d yy=0and) |yl =1.
j=1 j=1

2. For any cluster point ¥y = (y1,...,y») and subsequence {(Ak/x’f/, ...,)\k/xf;/)}k/
such that (\* 2%, ..., A¥2¥') — (y1, ..., ) it holds that

for k' sufficiently large, xf/ — ey € mtC (k) for all € € (0,1].

Proof of Lemma 1: First recall that any cluster point ¥y = (y1,....,yn) of the

sequence {(A\*z¥ ..., X¥zF)}, is such that for each agent j, y; € R(ﬁj(wj)). Part (a)
of Lemma 1 is a restatement of Lemma 3.3 in Page (1987). To prove part (b), first
note that if y; = 0, then ||:Jc§’ || < 7 infinitely often (i.e., :ch" € ntC'(k) for infinitely
many k). In particular, if ||z%|| = ¢ for all k then

Tk [E
nerk o i |l

Y“Recall that B:= {p' € R : ||p/|| < 1}.

1_
=

28



Thus, if y; = 0, we have a contradiction, since

k
Z;

. _) y..
PO o

Because there is a finite number of agents, we can extract a subsequence

!

kK
e N

{(\¥af
such that
()\k !Elf R ,>\k xf;) - (yl: "'7y7l)7

and such that
if y; = 0 then ||:ch/|| < 1 for all k' sufficiently large.

To show that for k' sufficiently large :ch‘?/ — ey € mtC (k") for all € € (0, 1], consider
the following

K K KoK KoK
||xj —cay|| < ||x] —EeA Z; I+ leA T; — ey;l|
= (A= Xl | + [N ¥ — ey
K K, K KK
A B (N BB
k! kK K K
= el +e (10 =yl = 132X
If y; = 0, then ||x§7' — ey|| < rw by the arguments above. Suppose now that y; # 0.
Since || AF :ch‘?/ —y;ll — 0 and I\ :ch"/|| — ||ly;]| > 0, we have for all k" sufficiently large
(||)\k/x§7/ —yjl| — ||)\k/x§’/||) < 0. Since already ||:Jc§7/|| < rp we can conclude that for

all k' sufficiently large ||:Jc§7/ —ey|| <rw for all e € (0,1.0

9.2 Proof of Theorem 1

Let (Xj,wy, Pj(+))j—; an economy satisfying [A-1]-[A-3] and inconsequential arbi-
trage.

Part I. Consider the k-bounded economy Ej. := (Xg;,wj, Pej(-))}—1, and note the
following:

1. Given assumption [A-3], local nonsatiation at rational allocations, the k-
bounded economy Ej also satisfies local nonsatiation at rational allocations.

2. The mapping z; — ﬁ]{;j(xj) has nonempty, closed, convex values and the weak
preference relation defined via the mapping z; — Fy;(x;) is transitive.

3. For each agent j, w; € X; and Xy  is convex and compact.
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Given these observations, it follows from Theorem 1 in Bergstrom (1976) that for
each k, Ey has a quasi-equilibrium, (z%, ..., z%, p*).1

We now want to show that if for each j, (i) infzex; <:Jc,p"7> < <wj,p"’>, and (ii)
PJ(:JCQC) is open relative to X, then (zf,...,zF p*) is an equilibrium for Ej. First,
note that since for all j, w; € ntC(k), the fact that inf.cx; <:Jc,p"’> < <wj,p"’> for
all j implies that infex, <:Jc,p"7> < <wj,p"’> for all £k and j. Second, if PJ(:JCQC) open
relative to X for all j, then ij(xf) is open relative to Xj; for all k and j. Thus,
we have the following for all k£ and j,

if for k and j (i) xlen)gj <:Jc,p > < <wj,p > and (ii) Pj(z;) open relative to Xj,

then

(i)’ iI)l(f (z,p") < (w;,p*), and (i)’ ij(xf) open relative to Xg;.
TEX;

Fix k. By (i) we have for all j some fg" € Xi; such that <fJE§’,p"’> < <wj,p"7>. Now
suppose that for some j, there exists f;" € ij(xf) N Be(wj, p¥). For A € [0,1],
define z5(X) := AZ§ 4 (1 — A)Z} and note that for all A > 0, <:Jc§7()\),p"’> < {wj, pP).
By (ii), we have for some A € (0, 1), :ch‘?()\) € ij(xf). This contradicts the fact
that (z%, ..., z%, p¥) is a quasi-equilibrium. Thus, we must conclude that ij(xf) N
By (w;,p¥) = 0 for all j, and therefore, we must conclude that (¥, ..., z¥, p*) is an
equilibrium for the k-bounded economy FEj.

Part II. We now want to show that if (z%, ..., 2%, p¥) is a quasi-equilibrium (resp.,
equilibrium) for the economy Ej = (Xij,wj, Pyj(+))j-; with :ch" € mtC(k) for
each j, then it is a quasi-equilibrium (resp., equilibrium) for the original economy
(X, w5 POy

Let (z%, ..., 2%, p*) be a quasi-equilibrium for the economy Ej := (X, w;, Pri ()=
with :ch" € intC (k) for each j. We have then p* € B\{0}, and since Ax(w) C A(w),

we also have (z%, ..., z%) € A(w). Finally, we have for all j

:ch € Bk(&)j,pk) and Pk;j(x?) N Fk:(wjvpk) = 0.
Thus, :ch" € B(wj, p*) for all j. We want to show that
ij(xf) N Fi(w;, p¥) = 0 implies that PJ(:ch) N F(wj, p*) = 0.
Suppose not. Then there exists 2’ € PJ(:JCQC) N F(w;, p¥). There is a § > 0 such that

62"+ (1 — 8)zf|| <k

BNote that because the weak preference mapping
l‘j — ij (l‘])

is defined via a utility function, preferences are complete (see Gay (1979) for a discussion of
Bergstrom’s results and the problems caused by the absense of completeness).
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Since
(62 + (1= 6)25, ") < (w;,p").

there is a 2" € ij(xf ) sufficiently near such that

<6Z/ + (1 - 6)levpk> < <wj7pk> )
and
162+ (1 — 6)2"|| < k.

Thus,
62+ (1 — 6)z" € Pyj(xf) N F(w;, p*),

a contradiction. We must conclude therefore that
Pi(zh) N F(w;, p*) = 0.

Thus, (zf, ..., 2%, p*) is a quasi-equilibrium for the original economy (X;,w;, P; Q) =y

If for each j, (i) infiex; <:Jc,p"’> < <wj,p"7>, and (ii) PJ(:JCQC) is open relative to
X, then we know from part I above that (zf, ..., z% p¥) is an equilibrium for E.
By following a line of argument similar to the one in part I above (with the obvi-
ous modifications), we can show that if (i) and (ii) hold, then (z¥,...,z*, p*) is an
equilibrium for the original economy (Xj,w;, Pi(-))7;.

Part ITI. Suppose that the sequence of quasi-equilibria {(:Jc'f oy T p"’)}k for the
for the k-bounded economies {E}, is such that for each k there is an agent j
with :ch" on the boundary of C'(k). Thus, we are assuming that the case treated
in part II above does not arise. We will show that this does not matter: incon-
sequential arbitrage allows us to construct a quasi-equilibrium (resp. equilibrium)
for the bounded economy that fits the case treated in part II. So suppose that
the sequence {(:Jc'f sy X PP )}k of quasi-equilibria is such that for each k, :ch" on the
boundary of C'(k) for some j. This implies that Z;’Z:I ||:Jc§7|| — o0 as k — oo.
Let y = (y1,...,yn) be a cluster point of the sequence {(Akx’f, ...,)\kxf’l)}k where

—1
N = (Z;;l ||:Jc§7||) . By Lemma 1, Z?Zl y; = 0 and Z?Zl llyjll = 1, and for any
subsequence {(Ak/x’f/, e )\k/xf’l/)}k/ with (Ak/x’f/, e )\k/xf’l/) — (Y1, ..., Yn), We have for
all k" sufficiently large, :ch‘?/ —ey; € mtC (k') for € € (0,1]. Moreover, by inconse-
quential arbitrage, y = (Y1, ..., yn) € bus(w). Thus, for all k' sufficiently large
xf/ —ey; € Xj and PJ(:ch/ —ey;) C Pj(xf/),
and thus,
xf/ —ey; € Xp,; and Pk/j(xf/ —ey;) C Pk/j(xf/). (5)

!

Our proof will be complete if we can show that (z¥ — ey, ..., 25 — eyn, p*) is a

quasi-equilibrium for the k-bounded economy Ej.
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Given that .
D u=0
j=1
the fact that (z¥,..., 2", p") is a quasi-equilibrium for Ejp implies that

() (@} —eyr, ., @ — eya) € Ap (W),
(ii) p* € B\{0}, and
(111) Pk/j(xf/) N Fy (wj,pk/) = 0.

Given (iii), Py (] o ey;) C Puj ( ") implies that Py j(; - ey;) N Fk(wj,p"’/) = 0.

To complete the proof, it remalns only to show that for agents j = 1,2,...,n ,
:ch‘?/ —€yj € By (wj,pk/). Given that y = (y1,...,yn) € bus(w) and that :ch‘?/ — ey €
Xy, this will be true provided <x§7/ — €Yjs p"’/> < <wj, pk/>. We will show that for
agents 5 = 1,2,...,n, <yj,p"’/> = 0. Since Z?Zl y; = 0 it suffices to show that for

7=12,...,n, <yj,p"’/> < 0. Suppose not. Let <yju,p"’/> > 0 for some agent 7”. For

this agent
<x 11 E:yjll,p > <(,Uj//,pk > .

By [A-3], there exists zj» € Py u( — ey, ) sufficiently near :Jc"’ — ey;n such that

<Zj” s pk/> < <wj” s pk/> .

This contradicts the fact that Pk/j(xf/ —cy;) N Fk(wj,pk/) =@ forall j=1,2,..n.
We must conclude therefore that for 7 = 1,2,...,n, <yj, /> = 0, and thus we
must conclude that for 5 = 1,2,...,n, <:Jc — €Y, P > < <wj,p > implying that
for 5 = 1,2,...,n, :Jc"’ ey; € Bk/(wj,pk/). Thus, (z¥ — eyi, ..., 2" — ey, p¥) is
a quasi-equilibrium for the k-bounded economy Ejy such that for 7 = 1,2,...,n,

:ch‘?/ —ey; € mtC(K). A

9.3 Proof of Theorem 2

Let (X, wj, Pj(-))j=; be an economy satistying [A-1]-[A-2]. To show that bus(w) C
ea(w), let y € arb(w) such that y ¢ ea(w) (i.e., y is not exhaustible). This implies
that for some rational allocation z € A(w) and some agent j, y; € I;j(z;). Thus,
there exists a strictly increasing sequence of positive numbers {t;" }i such that t;‘? T 0.
Moreover, we may suppose without loss of generality that

t;‘? = min{s > 0: u;(z; + sy;) = u;(x; + tfyj)}.
Thus, ife >0
wj(z; + thy; —ey;) < wy(z; + thy;) (%)
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for large k. Consider the sequence {t%(x1+tfy1), Ce, i_(xj—ﬁ—tfyj), e t%(xn+tfyn)}k.
2 2

tk
2
This sequence is contained in arbseq”(y). Given (x), this implies that y ¢ bus(w).

9.4 Proof of Theorem 3

Let (Xj,wj, P(+))7-; be an economy satisfying [A-1]-[A-7], and let (Z1,...,T,) €
A(w) be a rational, Pareto-optimal allocation. Suppose now that inconsequen-
tial arbitrage is not satisfied. Thus, for some y € arb(w), y € bus(w). By [A-4],
nonsatiation off the bus(w), there is at least one agent j° such that for some Ay,
uj (Ty + Ajyjr) > uy(Ty). By [A-5], uniformity of arbitrage cones across rational
allocations,

u;(T; + Ajy;) 2> (%) for all j.

But
((T1+ Apy)s o (T + Apyj)s oo (T + Apn)) € A(w)

contradicting the Pareto optimality of (z1,...,7,). B

9.5 Proof of Theorem 4

Let (Xj,wj, P5(+))j—; be an economy satistying [A-1]-[A-3], [A-4]*, [A-5], and
[A-T7]. Also, suppose the economy satisfies inconsequential arbitrage. Let T =
(Z1,...,Zn) € A(w) be a rational, Pareto-optimal allocation with z; € intX; for all
j. Consider the economy (X, Tj, P;(-))j_;. This economy satisfies [A-1]-[A-2] and
must also satisfy inconsequential arbitrage, otherwise, given [A-4]* and [A—5], we
could arrive at a contradiction of the Pareto optimality of Z via the arguments used
in the proof of Theorem 3. Given [A-1]-[A-3],and [A-7], Z; € intX; for all j implies
via Theorem 1 that (X;,Z;, F;(-))j-; has an equilibrium, say (z1, ..., 7,,, p'). For each
agent j, u;(x}) > u;(T;). In fact, we must have u;(z}) = u;(;) for all j, otherwise,
we would contradict the Pareto optimality of (Z1,...,%,). Since (z},...,z},p') is an
equilibrium, for any z7 such that u;(x}) > u;(z}) = u;(z;), <:Jc;’,p’> > (Zj,p'). Thus,
(Z1, ...y Tn, P') 1s an equilibrium. W

9.6 Proof of Theorem 5

Let (Xj,wj, P;(+))j-; be an economy satistying [A-1]-[A-2], and suppose the econ-
omy has bounded proximal trading volume. Let {)\k 7%}, be any sequence in arbseq” (y).
Now define 'y(xf, y;) to be the number such that

2(zh, ) + (k) g =2

Thus, 'y(xg‘?, y;) is a proximal measure of the distance from the projection z(xf, )
of :ch" onto the hyperplane H(y;) to the vector :ch" For y; # 0, 'y(xg‘?, y;) — 00. Thus,
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since ptv(z*,y) is bounded, for y; # 0, ptv(z*,y) < 'y(xg‘?, y;) for k sufficiently large.
Given the definition of ptv(z¥,y), this implies that y € bus(w). R

9.7 Proof of Theorem 6

Let (Xj,wj, Pj(-))j—; be an economy satistying [A-1]-[A-2] and [W-1]-[W-2]. As
noted in the text, the proof of Theorem 6 follows directly from Corollary 16.2.2 in
Rockafellar (1970). ®

9.8 Proof of Theorem 7

Let (Xj,wj, Pj(-))j—; be an economy satistying [A-1]-[A-2] and [W-1]-[W-2]. The
fact that the Hart/Werner conditions imply inconsequential arbitrage is an imme-
diate consequence of the fact that

Ly X -+ x L, Cbus(w).

Under the additional assumption of no half lines, [W-3], the fact that inconsequen-
tial arbitrage implies the Hart/Werner conditions is an immediate consequence of
the fact that with no half lines

Ly x---x L, =bus(w)={0,...,0}.
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