The KPSS Test with Outliers

Jesus Otero

And

Jeremy Smith

No 690

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

The KPSS test with outliers ${ }^{*}$

Jesus Otero
Facultad de Economía
Universidad del Rosario, Colombia
and
Jeremy Smith
Department of Economics
University of Warwick, UK

November 2003

Abstract

We investigate the effects of outliers on the KPSS tests. We find that for nonstationary series outliers induce spurious stationarity by lowering the power of these tests. The empirical size of these tests is also found to be sensitive to the location of the outlier.

JEL classification: C15, C22
Keywords: KPSS test, Monte Carlo; outliers; power; size.

Contact Address:
Jeremy Smith
Department of Economics
University of Warwick
Coventry
CV4 7AL
E-mail: jeremy.smith@warwick.ac.uk
Tel: 00442476523336
Fax: 00442476523032
*This paper was started while the first author was a visiting research fellow in the Department of Economics at the University of Warwick. The first author would like to thank the Universidad del Rosario for its financial assistance.

1. Introduction

Kwiatkowski et. al. (1992) (KPSS) developed a test of the null hypothesis that a series is stationary around a deterministic trend. In Monte Carlo simulations they analysed the power of this test against the alternative of a unit root in finite samples. The KPSS test is complementary to the, for example, Augment Dickey Fuller (ADF) and Phillips and Perron unit root tests, that are used to analyse the time series properties of individual series.

Investigating the performance of the ADF test, Perron (1989) showed that the power of this test to reject the null hypothesis of a unit root, when the underlying series is stationary with a break in either its mean or trend, fell as the size of the break increased. By contrast, Franses and Haldrup (1994) showed that the size of the ADF test was sensitive to the presence of outliers. In particular, they showed that at a nominal 5% significance level, the empirical size of the ADF test increases with an increase in either (i) the frequency of outliers, or (ii) the size of the outlier, concluding that "the implications of this type of data irregularities will tend to produce spurious stationarity" (p. 476).

Developing the idea of Perron (1989), Chen (2002) investigated the behaviour of the KPSS test in the presence of permanent changes in the intercept and/or trend of a stationary series. The author found that the KPSS test had power to reject the null hypothesis of level and trend stationarity of a series in the presence of these breaks.

In this paper we investigate the performance of the KPSS tests in the presence of outliers. We find that the power of these tests to reject the null hypothesis of stationarity falls when the underlying series has a unit root with outliers and this effect is greater the more persistent are the outliers. We find that the location of the outlier within the sample can have markedly differing effects on the empirical size of the KPSS tests.

2. Outlier models and the KPSS test

Following KPSS we write out the model as:

$$
\begin{align*}
& y_{t}^{*}=\beta t+r_{t}+\phi y_{t-1}^{*}+\varepsilon_{t} \quad t=1, \ldots, T \tag{1}\\
& r_{t}=r_{t-1}+u_{t}
\end{align*}
$$

where ε_{t} are iid $\left(0, \sigma_{\varepsilon}^{2}\right)$ and $\sigma_{\varepsilon}^{2}=1, u_{t}$ are iid $\left(0, \sigma_{u}^{2}\right)$ and $|\phi|<1$. If $\sigma_{u}^{2}=0$ (assuming $|\phi|<1$) and the initial value of r_{0} is fixed, then y_{t}^{*} is a trend stationary process. If $\beta=0$, the process is stationary around its mean $\left(r_{0}\right)$ rather than around a trend. For $\sigma_{u}^{2}>0$ the process has a unit root.

To allow for breaks in the underlying process, y_{t}, and following the approach of Chen and Liu (1993), we introduce the following equation:

$$
\begin{equation*}
y_{t}=y_{t}^{*}+\theta\left[\frac{\delta_{t}}{(1-\rho L)}\right] \tag{2}
\end{equation*}
$$

where δ_{t} is an indicator function for the occurrence of an outlier (of size θ) and L is a lag operator. Of the four outlier models considered by Chen and Liu (1993), we look at two cases: (i) the additive outlier (AO) model, $\rho=0$, and (ii) the temporary change (TC) model, $0<|\rho|<1$.

The KPSS test for stationarity is constructed as:
$\eta_{j}=\frac{T^{-2} \sum_{t=1}^{T} S_{t}^{2}}{s_{T}^{2}(l)} j=1,2$
where S_{t} is the partial sum of residuals $\left(e_{t}\right)$ from a regression of y_{t} on an intercept, for $j=1$, or a regression of y_{t} on an intercept and trend for $j=2$, according to whether one is testing for level or trend stationarity, and $s_{T}^{2}(l)$ is an estimate of the error variance from the appropriate regression. KPSS use an estimator of the form:

$$
\begin{equation*}
s_{T}^{2}(l)=T^{-1} \sum_{t=1}^{T} e_{t}^{2}+2 T^{-1} \sum_{s=1}^{l} w(s, l) \sum_{t=s+1}^{T} e_{t} e_{t-s} \tag{4}
\end{equation*}
$$

where, $w(s, l)$ is the weighting function corresponding to the choice of the spectral window, and KPSS use the Bartlett window $w(s, l)=1-s /(l+1)$, as in Newey and West (1987), where l is the lag truncation parameter. In the experiments that follow we take $l=$ integer $\left[12(T / 100)^{1 / 4}\right]$.

3. Monte Carlo simulations

In the Monte Carlo simulations we consider a range of experiments from equations (1) and (2). To investigate the empirical size of the two KPSS tests (η_{1} and
η_{2}), we assume we have a level stationary process in equation (1), with $\beta=0, \sigma_{u}^{2}=0$ and $\phi=(0.0, \pm 0.2, \pm 0.5, \pm 0.8)$, whereas to investigate power we assume we have a nonstationary process in equation (1), with $\beta=0, \phi=0.0, \sigma_{u}^{2}>0$, and $\lambda=\frac{\sigma_{u}^{2}}{\sigma_{\varepsilon}^{2}}=(0.0001,0.001,0.1,1,10,100,1000)$, where $\lambda=\infty$ corresponds to a pure random walk in y_{t}^{*}. We consider a range of sample sizes, $T=(30,50,100,200,500)$. These parameter values are similar to those used by KPSS.

In both investigating the size and power of the KPSS tests, we consider two cases for the generation of δ_{t} in equation (2). Following Franses and Haldrup (1994), we take δ_{t} as a Bernoulli variable taking the value 1 or -1 with the specified probability, $\pi=(0.05,0.10)$, and zero otherwise. In this case the outliers are assumed to be uniformly distributed over the entire sample, therefore in order to investigate the effect of the location of the outlier on the performance of these tests, we define $\delta_{t}=\left\{\begin{array}{lc}1 & t=\tau T \\ 0 & \text { otherwise }\end{array}, 0<\tau<1\right.$ and we take $\tau=(0.1,0.2, \ldots, 0.9)$. For both types of outliers the persistence of the outliers is controlled by the value of the parameter ρ, in equation (2), and we take $\rho=(0.0,0.3,0.5,0.7,0.9)$. The magnitude of the outliers is determined by θ, which we take as $\theta=(0,3,4,5,10)$. All results are based on 10,000 replications.

4. Results of the Monte Carlo experiments

Table 1 reports the results from those experiments when the outliers, δ_{t}, are generated as a Bernoulli variable with $\pi=0.1$. We will refer to the results for $\pi=0.05$ only in passing.

For the test of level stationarity, η_{1}, our results for $\theta=0$, are very similar to those reported by KPSS (Table 3, p.171), with the empirical size of the test too large for $\phi>0$ and too small for $\phi<0$. Introducing outliers which are purely additive (having no persistence, $\rho=0$) we find that the empirical size of the test falls (rises) as the magnitude of the outliers, θ, increases for $\phi \geq 0(\phi<0)$, compared to those results reported for $\theta=0$; for example, for $T=100$ and $\phi=0.8$ size falls from 9.2% for $\theta=0$ to 6.14% for $\theta=10$, whereas it increases from 1.06% to 2.72% for $\phi=-0.8$.

An increase in the persistence of the outliers, ρ, has only a limited effect on empirical size of the test, for $\rho \leq 0.7$. However, for a relatively persistent outlier, $\rho=0.9$, but which is not a permanent shift in the intercept (results for $\rho=1$ are reported in Chen (2002)), the empirical size of the test increases markedly above the nominal 5% level, such that for $T=200$ and $\theta=4$ the empirical size is around 18% irrespective of ϕ. Suggesting that the KPSS can be quite sensitive to persistent outliers.

The results for the test of trend stationarity, η_{2}, are very similar in nature to those discussed above for the η_{1} test. The results for outliers which occur with probability, $\pi=0.05$, are similar to those reported in Table 1, although the influence of the outliers on the size of the tests are slightly reduced.

Table 2 reports the results of these Bernoulli outliers on the power of the η_{1} and η_{2} tests when there is a unit root in underlying process, y_{t}. The results for $\theta=0$ are very similar to those reported in KPSS (Table 4, p.172). The results in Table 2 show that the effect of the outliers on the power of the test is minimal for $\lambda \geq 100$, irrespective of the magnitude of the outliers, θ, or their persistence, ρ, due to the dominant nature of the nonstationary component. For $\lambda=0.0001$ the effect of outliers on the power of the test is again minimal, although this is because for $T<200$, the test has almost no power even when $\theta=0$. For $0.001 \leq \lambda \leq 1$, power falls markedly in the presence of an outlier and the fall in power increases as the magnitude of the outliers, θ, increases. We also note that the reduction in power is greater as the persistence of the outliers, ρ, increases up to 0.7 . The power results for $\rho=0.9$ over-estimate the true power of the test, due to the large empirical sizes observed in Table 1.

These findings are consistent with those observed in Franses and Haldrup (1994, p.476), as the presence of outliers leaves size only slightly affected (for $\rho<0.9$), but lowers the power of the tests when the underlying process is nonstationary and so tends "to produce spurious stationarity".

In Tables 1 and 2 the outliers are uniformly distributed throughout the sample. In Table 3 we report the results of the experiments when the outlier occurs at the point τT, in order to investigate the sensitivity of the tests to the location of the outlier. In Table 3 we only report results for $T=100$ and $T=200$ and $\phi=0.0$, additionally as the results of the η_{1} and η_{2} tests were approximately symmetric around $\tau=0.5$, we only
report the results for $\tau=(0.1,0.2,0.3,0.4,0.5)$. Strikingly the empirical size of the η_{1} test falls towards zero as τ increases. In the presence of persistence in the outlier, $\rho>0$, so the empirical size of the test falls even faster towards zero as τ increases, such that we are almost never rejecting the true null hypothesis of level stationarity. For $\rho=0.9$ there is evidence to suggest that the empirical size of the test, η_{1}, becomes too big implying that we reject stationarity too frequently.

The test for trend stationarity, η_{2}, exhibits similar problems to that of the η_{1} test, with the empirical size of the test approaching zero as τ increases. However, for this test there is greater evidence of the increase in the empirical size of the test for $\rho=0.9$.

The power results (not reported) show that for $0.001 \leq \lambda \leq 1$, power falls with an increase in the magnitude of the outlier and that this effect is greater as τ increases. However, these power results under estimate the true power of these tests, given the substantial under-size problems reported in Table 3.

References

Chen, C. and Liu, L.-M., 1993, Joint estimation of model parameters and outlier effects in time series, Journal of the American Statistical Association, 88, 284297.

Chen, M.-Y., 2002, Testing stationarity against unit roots and structural changes, Applied Economics Letters, 9, 459-464.

Franses, P. H. and Haldrup, N., 1994, The effects of additive outliers on tests for unit roots and cointegration, Journal of Business and Economic Statistics, 12, 471478.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y., 1992, Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics, 54, 159-178.

Newey, W. K. and West, K. D., 1987, A simple, positive semi-definite, heteroskedastic and autocorrelation consistent covariance matrix, Econometrica, 55, 703-708.

Perron, P., 1989, The great crash, the oil price shock, and the unit root hypothesis, Econometrica 57, 1361-1401.

Table 1: Sensitivity of the size of the KPSS tests to outliers, $\boldsymbol{\pi}=\mathbf{0 . 1 , 5 \%}$ level

		$T=50$									$T=100$				
ϕ	ρ		η_{1}			η_{2}			η_{1}			η_{2}			
		$\theta=0$	$\theta=4$	$\theta=10$											
0.8	0.0	5.12	4.54	3.32	7.37	6.90	5.69	9.22	8.39	6.14	9.66	9.14	6.97		
0.5		2.25	2.05	1.56	5.75	5.06	4.44	4.89	3.92	3.21	4.99	4.51	4.13		
0.2		1.55	1.58	1.27	5.17	4.63	4.07	4.01	3.13	2.94	3.78	3.93	3.77		
0.0		1.28	1.39	1.21	4.86	4.36	3.99	3.40	2.84	2.86	3.47	3.61	3.69		
-0.2		1.05	1.22	1.20	4.37	4.17	4.06	3.09	2.84	2.86	3.02	3.52	3.60		
-0.5		0.72	1.07	1.22	3.71	4.03	4.05	2.50	2.70	2.79	2.38	3.41	3.54		
-0.8		0.35	0.90	1.16	3.50	3.39	3.86	1.06	2.29	2.72	1.17	2.91	3.44		
0.8	0.7	5.12	4.48	3.96	7.37	6.21	5.54	9.22	7.45	5.93	9.66	8.26	7.72		
0.5		2.25	3.26	3.74	5.75	5.24	5.59	4.89	5.12	5.64	4.99	6.60	6.94		
0.2		1.55	3.38	3.75	5.17	5.29	5.66	4.01	5.30	5.67	3.78	6.76	6.94		
0.0		1.28	3.45	3.77	4.86	5.46	5.61	3.40	5.51	5.62	3.47	6.82	7.01		
-0.2		1.05	3.49	3.84	4.37	5.48	5.62	3.09	5.56	5.62	3.02	6.76	6.94		
-0.5		0.72	3.54	3.78	3.71	5.51	5.74	2.50	5.56	5.64	2.38	6.67	7.01		
-0.8		0.35	3.47	3.73	3.50	5.13	5.71	1.06	5.51	5.61	1.17	6.68	6.95		
0.8	0.9	5.12	9.55	10.85	7.37	9.29	10.32	9.22	15.31	16.93	9.66	16.50	18.29		
0.5		2.25	10.20	11.25	5.75	9.75	10.60	4.89	16.44	17.31	4.99	17.75	18.92		
0.2		1.55	10.72	11.42	5.17	10.16	10.88	4.01	16.98	17.57	3.78	18.54	18.95		
0.0		1.28	10.96	11.36	4.86	10.35	10.94	3.40	17.15	17.60	3.47	18.64	18.86		
-0.2		1.05	11.08	11.41	4.37	10.58	10.99	3.09	17.21	17.53	3.02	18.63	18.84		
-0.5		0.72	11.19	11.42	3.71	10.63	10.96	2.50	17.34	17.64	2.38	18.69	18.94		
-0.8		0.35	11.12	11.39	3.50	10.43	10.94	1.06	17.34	17.59	1.17	18.63	19.00		

ϕ	ρ	$T=200$						$T=500$					
		η_{1}			η_{2}			η_{1}			η_{2}		
		$\theta=0$	$\theta=4$	$\theta=10$									
0.8	0.0	9.55	8.40	6.73	10.73	10.10	7.99	9.09	8.83	7.62	11.28	10.93	8.98
0.5		5.01	4.42	4.13	5.53	4.92	4.36	5.70	5.43	4.75	6.21	6.10	5.38
0.2		4.22	3.99	3.90	4.43	4.04	4.08	4.93	4.76	4.49	5.36	5.29	4.86
0.0		3.92	3.81	3.87	4.01	3.84	4.05	4.61	4.59	4.59	4.92	5.09	4.81
-0.2		3.65	3.78	3.79	3.65	3.71	4.03	4.26	4.47	4.57	4.49	4.83	4.82
-0.5		3.05	3.57	3.78	2.99	3.64	3.95	3.66	4.27	4.51	3.78	4.65	4.74
-0.8		1.48	3.19	3.68	1.54	3.24	3.86	2.26	3.90	4.39	2.18	4.19	4.65
0.8	0.7	9.55	7.90	7.08	10.73	9.66	8.51	9.09	8.36	7.46	11.28	10.54	8.99
0.5		5.01	6.34	6.68	5.53	7.57	7.69	5.70	6.90	6.79	6.21	7.97	8.38
0.2		4.22	6.55	6.77	4.43	7.43	7.66	4.93	6.69	6.95	5.36	8.09	8.39
0.0		3.92	6.49	6.86	4.01	7.51	7.44	4.61	6.77	6.90	4.92	8.25	8.37
-0.2		3.65	6.53	6.88	3.65	7.65	7.48	4.26	6.80	6.80	4.49	8.26	8.40
-0.5		3.05	6.59	6.79	2.99	7.57	7.57	3.66	6.91	6.76	3.78	8.29	8.39
-0.8		1.48	6.51	6.71	1.54	7.43	7.53	2.26	6.85	6.77	2.18	8.28	8.33
0.8	0.9	9.55	16.19	17.69	10.73	20.42	22.50	9.09	15.00	16.24	11.28	20.93	22.78
0.5		5.01	17.13	17.85	5.53	21.88	22.72	5.70	16.05	16.46	6.21	22.33	22.87
0.2		4.22	17.63	17.90	4.43	22.31	22.79	4.93	16.31	16.57	5.36	22.67	22.80
0.0		3.92	17.70	17.85	4.01	22.60	22.77	4.61	16.35	16.57	4.92	22.79	22.77
-0.2		3.65	17.72	17.80	3.65	22.62	22.82	4.26	16.41	16.62	4.49	22.74	22.78
-0.5		3.05	17.82	17.78	2.99	22.73	22.82	3.66	16.54	16.60	3.78	22.71	22.81
-0.8		1.48	17.80	17.79	1.54	22.70	22.84	2.26	16.54	16.62	2.18	22.67	22.83

Table 2: Power of the KPSS tests to a unit root with outliers, $\pi=\mathbf{0 . 1}, 5 \%$ level

		$T=50$						$T=100$					
λ	ρ	η_{1}			η_{2}			η_{1}			η_{2}		
		$\theta=0$	$\theta=4$	$\theta=10$									
0.0001	0.0	1.41	1.34	1.23	5.00	4.39	4.03	4.09	3.21	2.94	3.69	3.68	3.77
0.001		1.97	1.45	1.32	5.13	4.39	4.07	10.61	5.55	3.55	5.11	4.21	3.83
0.01		8.72	4.43	1.94	6.53	4.93	4.33	38.09	25.23	9.70	17.09	9.87	5.20
0.1		26.58	19.95	8.53	13.15	9.65	6.00	55.51	50.94	37.49	36.03	29.31	15.99
1		33.63	31.82	26.54	17.22	16.25	12.74	58.39	57.74	54.87	40.67	39.25	35.08
100		34.52	34.51	34.51	17.73	17.64	17.65	58.84	58.82	58.82	41.19	41.22	41.15
10000		34.51	34.52	34.56	17.66	17.66	17.64	58.88	58.87	58.88	41.16	41.17	41.18
0.0001	0.7	1.41	3.49	3.80	5.00	5.39	5.60	4.09	5.56	5.68	3.69	6.80	7.02
0.001		1.97	3.59	3.81	5.13	5.42	5.57	10.61	6.03	5.78	5.11	6.84	6.90
0.01		8.72	4.49	4.00	6.53	5.67	5.62	38.09	11.49	6.80	17.09	8.29	7.23
0.1		26.58	10.97	5.41	13.15	7.36	6.06	55.51	36.08	15.69	36.03	17.50	9.45
1		33.63	26.87	14.95	17.22	13.01	8.58	58.39	54.44	42.35	40.67	34.63	21.94
100		34.52	34.44	33.79	17.73	17.77	17.70	58.84	58.83	58.40	41.19	41.12	40.44
10000		34.51	34.58	34.59	17.66	17.62	17.55	58.88	58.87	58.87	41.16	41.20	41.20
0.0001	0.9	1.41	7.06	7.29	5.00	8.58	9.04	4.09	14.72	14.88	3.69	16.81	17.32
0.001		1.97	7.11	7.29	5.13	8.70	9.07	10.61	15.05	15.07	5.11	16.86	17.28
0.01		8.72	7.35	7.37	6.53	8.81	9.11	38.09	16.46	15.38	17.09	17.19	17.38
0.1		26.58	10.46	8.16	13.15	9.35	9.35	55.51	26.89	17.63	36.03	20.32	17.98
1		33.63	22.87	12.81	17.22	12.78	9.87	58.39	48.73	31.51	40.67	31.36	22.13
100		34.52	34.13	32.99	17.73	17.82	17.23	58.84	58.39	57.70	41.19	40.84	40.22
10000		34.51	34.61	34.65	17.66	17.65	17.64	58.88	58.87	58.81	41.16	41.18	41.11
λ		$T=200$						$T=500$					
	ρ	η_{1}			η_{2}			η_{1}			η_{2}		
		$\theta=0$	$\theta=4$	$\theta=10$									
0.0001	0.0	7.57	5.15	4.00	5.05	4.53	4.15	27.38	14.94	6.78	11.78	7.71	5.53
0.001		31.27	17.71	7.04	13.46	8.00	5.14	67.53	52.98	27.09	50.99	30.00	11.84
0.01		62.71	52.67	29.95	44.79	30.74	12.61	86.57	81.60	66.93	84.37	75.24	48.96
0.1		70.98	69.41	61.42	63.44	58.72	43.83	89.43	88.92	85.87	90.39	89.17	83.39
1		72.38	72.01	71.09	66.40	65.78	62.90	89.68	89.51	89.32	90.99	90.79	90.05
100		72.36	72.38	72.46	66.83	66.89	66.90	89.75	89.74	89.76	90.95	90.93	90.90
10000		72.40	72.40	72.38	66.86	66.88	66.91	89.75	89.75	89.76	90.96	90.96	90.95
0.0001	0.7	7.57	6.61	6.61	5.05	7.70	7.67	27.38	8.42	7.25	11.78	8.79	8.38
0.001		31.27	8.89	6.81	13.46	8.41	7.95	67.53	23.25	9.94	50.99	13.06	9.28
0.01		62.71	27.50	10.78	44.79	14.25	9.18	86.57	62.33	31.24	84.37	43.64	16.76
0.1		70.98	59.65	35.65	63.44	41.82	18.49	89.43	84.60	69.76	90.39	81.02	54.62
1		72.38	70.57	63.55	66.40	62.21	49.11	89.68	89.13	86.47	90.99	89.84	84.56
100		72.36	72.41	72.27	66.83	66.88	66.48	89.75	89.75	89.73	90.95	90.89	90.83
10000		72.40	72.38	72.37	66.86	66.88	66.89	89.75	89.76	89.78	90.96	90.94	90.90
0.0001	0.9	7.57	16.39	16.64	5.05	21.58	21.93	27.38	16.31	16.35	11.78	22.42	22.39
0.001		31.27	16.91	16.61	13.46	21.71	21.85	67.53	19.27	16.66	50.99	23.52	22.74
0.01		62.71	21.75	17.22	44.79	23.50	22.20	86.57	38.82	21.35	84.37	31.18	24.34
0.1		70.98	44.32	24.93	63.44	33.35	25.16	89.43	72.76	46.33	90.39	63.30	36.35
1		72.38	66.05	50.50	66.40	56.05	37.89	89.68	87.07	77.49	90.99	86.41	70.84
100		72.36	72.26	72.01	66.83	66.64	65.60	89.75	89.68	89.50	90.95	90.86	90.62
10000		72.40	72.37	72.43	66.86	66.89	66.92	89.75	89.75	89.76	90.96	90.93	90.93

Table 3: Sensitivity of the size of the KPSS tests to outliers, $\phi=0.0,5 \%$ level

		$T=100$						$T=200$					
ρ	τ	η_{1}			η_{2}			η_{1}			η_{2}		
		$\theta=0$	$\theta=4$	$\theta=10$									
0.0	0.1	3.40	3.89	4.49	3.47	3.34	3.16	3.92	4.74	5.92	4.01	4.39	4.26
0.3		3.40	4.49	4.15	3.47	3.49	2.57	3.92	5.27	6.29	4.01	4.39	3.98
0.5		3.40	5.24	3.25	3.47	3.72	1.38	3.92	6.05	6.36	4.01	4.58	3.25
0.7		3.40	6.69	2.04	3.47	3.30	0.32	3.92	7.63	5.70	4.01	4.94	1.38
0.9		3.40	26.39	27.69	3.47	0.50	0.00	3.92	26.76	33.52	4.01	4.54	0.08
0.0	0.2	3.40	3.54	2.57	3.47	2.23	0.47	3.92	4.20	4.15	4.01	3.86	1.91
0.3		3.40	3.50	1.66	3.47	1.55	0.06	3.92	4.43	3.75	4.01	3.35	0.90
0.5		3.40	3.75	0.88	3.47	0.88	0.00	3.92	4.52	2.91	4.01	2.69	0.23
0.7		3.40	3.21	0.09	3.47	0.23	0.00	3.92	4.68	1.29	4.01	1.38	0.01
0.9		3.40	1.98	0.00	3.47	0.01	0.00	3.92	6.87	0.36	4.01	0.05	0.00
0.0	0.3	3.40	3.23	1.45	3.47	2.24	0.45	3.92	3.86	2.70	4.01	3.82	1.90
0.3		3.40	2.75	0.52	3.47	1.85	0.11	3.92	3.60	1.85	4.01	3.48	1.00
0.5		3.40	2.26	0.09	3.47	1.46	0.01	3.92	3.27	1.00	4.01	2.86	0.50
0.7		3.40	1.31	0.00	3.47	0.82	0.00	3.92	2.57	0.16	4.01	2.03	0.11
0.9		3.40	0.02	0.00	3.47	4.93	0.06	3.92	0.82	0.00	4.01	5.57	0.22
0.0	0.4	3.40	2.51	0.55	3.47	3.03	2.13	3.92	3.55	1.79	4.01	4.70	4.53
0.3		3.40	2.07	0.14	3.47	3.18	1.49	3.92	3.16	0.79	4.01	4.86	4.17
0.5		3.40	1.38	0.01	3.47	3.40	0.77	3.92	2.57	0.22	4.01	5.12	3.51
0.7		3.40	0.39	0.00	3.47	3.96	0.33	3.92	1.39	0.00	4.01	6.15	2.32
0.9		3.40	0.00	0.00	3.47	25.10	19.25	3.92	0.03	0.00	4.01	26.83	31.61
0.0	0.5	3.40	2.47	0.38	3.47	3.79	3.48	3.92	3.40	1.48	4.01	4.89	5.65
0.3		3.40	1.87	0.04	3.47	3.99	2.76	3.92	2.94	0.52	4.01	5.26	5.82
0.5		3.40	0.99	0.00	3.47	4.50	2.02	3.92	2.21	0.07	4.01	6.00	5.48
0.7		3.40	0.22	0.00	3.47	5.83	0.82	3.92	1.04	0.00	4.01	7.95	4.64
0.9		3.40	0.01	0.00	3.47	14.90	4.16	3.92	0.02	0.00	4.01	29.47	37.29

