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1. Introduction 

Kwiatkowski et. al. (1992) (KPSS) developed a test of the null hypothesis that 

a series is stationary around a deterministic trend. In Monte Carlo simulations they 

analysed the power of this test against the alternative of a unit root in finite samples. 

The KPSS test is complementary to the, for example, Augment Dickey Fuller (ADF) 

and Phillips and Perron unit root tests, that are used to analyse the time series 

properties of individual series. 

Investigating the performance of the ADF test, Perron (1989) showed that the 

power of this test to reject the null hypothesis of a unit root, when the underlying 

series is stationary with a break in either its mean or trend, fell as the size of the break 

increased. By contrast, Franses and Haldrup (1994) showed that the size of the ADF 

test was sensitive to the presence of outliers. In particular, they showed that at a 

nominal 5% significance level, the empirical size of the ADF test increases with an 

increase in either (i) the frequency of outliers, or (ii) the size of the outlier, concluding 

that “the implications of this type of data irregularities will tend to produce spurious 

stationarity” (p. 476). 

Developing the idea of Perron (1989), Chen (2002) investigated the behaviour 

of the KPSS test in the presence of permanent changes in the intercept and/or trend of 

a stationary series. The author found that the KPSS test had power to reject the null 

hypothesis of level and trend stationarity of a series in the presence of these breaks. 

In this paper we investigate the performance of the KPSS tests in the presence 

of outliers. We find that the power of these tests to reject the null hypothesis of 

stationarity falls when the underlying series has a unit root with outliers and this effect 

is greater the more persistent are the outliers. We find that the location of the outlier 

within the sample can have markedly differing effects on the empirical size of the 

KPSS tests. 

 

2. Outlier models and the KPSS test 

Following KPSS we write out the model as: 
* *
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where t�  are iid 2(0, )
�

�  and 2 1
�

� � , tu  are iid 2(0, )u�  and 1� � . If 2 0u� �  

(assuming 1� � ) and the initial value of r0 is fixed, then *
ty  is a trend stationary 

process. If 0� � , the process is stationary around its mean (r0) rather than around a 

trend. For 2 0u� �  the process has a unit root. 

To allow for breaks in the underlying process, yt, and following the approach 

of Chen and Liu (1993), we introduce the following equation: 

*
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        (2) 

where t�  is an indicator function for the occurrence of an outlier (of size �) and L is a 

lag operator. Of the four outlier models considered by Chen and Liu (1993), we look 

at two cases: (i) the additive outlier (AO) model, 0� � , and (ii) the temporary change 

(TC) model, 0 1�� � . 

 The KPSS test for stationarity is constructed as: 

2 2

1
2 1, 2
( )

T

t
t

j
T

T S
j

s l
�

�

�

� �

�
        (3) 

where tS  is the partial sum of residuals ( te ) from a regression of ty  on an intercept, 

for j=1, or a regression of ty  on an intercept and trend for j=2, according to whether 

one is testing for level or trend stationarity, and 2 ( )Ts l  is an estimate of the error 

variance from the appropriate regression. KPSS use an estimator of the form: 
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where, ( , )w s l  is the weighting function corresponding to the choice of the spectral 

window, and  KPSS use the Bartlett window ( , ) 1 /( 1)w s l s l� � � , as in Newey and 

West (1987), where l  is the lag truncation parameter. In the experiments that follow 

we take 1/ 4integer 12( /100)l T� �� � � . 

 

3. Monte Carlo simulations 

In the Monte Carlo simulations we consider a range of experiments from 

equations (1) and (2). To investigate the empirical size of the two KPSS tests (�1 and 
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�2), we assume we have a level stationary process in equation (1), with 0� � , 2 0u� �  

and (0.0, 0.2, 0.5, 0.8)� � � � � , whereas to investigate power we assume we have a 

nonstationary process in equation (1), with 0� � , 0.0� � , 2 0u� � , and 

2

2 (0.0001, 0.001, 0.1,1,10,100,1000)u

�

�
�

�
� � , where � � �  corresponds to a pure 

random walk in *
ty . We consider a range of sample sizes, (30,50,100,200,500)T � . 

These parameter values are similar to those used by KPSS. 

In both investigating the size and power of the KPSS tests, we consider two 

cases for the generation of t�  in equation (2). Following Franses and Haldrup (1994), 

we take t�  as a Bernoulli variable taking the value 1 or –1 with the specified 

probability, (0.05,0.10)� � , and zero otherwise. In this case the outliers are assumed 

to be uniformly distributed over the entire sample, therefore in order to investigate the 

effect of the location of the outlier on the performance of these tests, we define 

1
0 otherwiset

t T�
�

��
� �
�

, 0 1�� �  and we take (0.1,0.2, ,0.9)� � � . For both types of 

outliers the persistence of the outliers is controlled by the value of the parameter � , 

in equation (2), and we take (0.0,0.3,0.5,0.7,0.9)� � . The magnitude of the outliers 

is determined by � , which we take as (0,3,4,5,10)� � . All results are based on 

10,000 replications. 

 

4. Results of the Monte Carlo experiments 

 Table 1 reports the results from those experiments when the outliers, t� , are 

generated as a Bernoulli variable with 0.1� � . We will refer to the results for 

0.05� �  only in passing.  

For the test of level stationarity, �1, our results for 0� � , are very similar to 

those reported by KPSS (Table 3, p.171), with the empirical size of the test too large 

for 0� �  and too small for 0� � .  Introducing outliers which are purely additive 

(having no persistence, �=0) we find that the empirical size of the test falls (rises) as 

the magnitude of the outliers, �, increases for 0� �  ( 0� � ), compared to those results 

reported for 0� � ; for example, for T=100 and 0.8� �  size falls from 9.2% for 0� �  

to 6.14% for 10� � , whereas it increases from 1.06% to 2.72% for 0.8� � � .  
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An increase in the persistence of the outliers, �, has only a limited effect on 

empirical size of the test, for 0.7� � . However, for a relatively persistent outlier, 

0.9� � , but which is not a permanent shift in the intercept (results for 1� �  are 

reported in Chen (2002)), the empirical size of the test increases markedly above the 

nominal 5% level, such that for T=200 and 4� �  the empirical size is around 18% 

irrespective of � . Suggesting that the KPSS can be quite sensitive to persistent 

outliers. 

 The results for the test of trend stationarity, �2, are very similar in nature to 

those discussed above for the �1 test. The results for outliers which occur with 

probability, 0.05� � , are similar to those reported in Table 1, although the influence 

of the outliers on the size of the tests are slightly reduced. 

 Table 2 reports the results of these Bernoulli outliers on the power of the �1 

and �2 tests when there is a unit root in underlying process, ty . The results for 0� �  

are very similar to those reported in KPSS (Table 4, p.172). The results in Table 2 

show that the effect of the outliers on the power of the test is minimal for 100� � , 

irrespective of the magnitude of the outliers, �, or their persistence, �, due to the 

dominant nature of the nonstationary component. For 0.0001� �  the effect of outliers 

on the power of the test is again minimal, although this is because for T<200, the test 

has almost no power even when 0� � . For 0.001 1�� � , power falls markedly in the 

presence of an outlier and the fall in power increases as the magnitude of the outliers, 

�, increases. We also note that the reduction in power is greater as the persistence of 

the outliers, �, increases up to 0.7. The power results for 0.9� � over-estimate the 

true power of the test, due to the large empirical sizes observed in Table 1. 

These findings are consistent with those observed in Franses and Haldrup 

(1994, p.476), as the presence of outliers leaves size only slightly affected (for 

0.9� � ), but lowers the power of the tests when the underlying process is 

nonstationary and so tends “to produce spurious stationarity”. 

 In Tables 1 and 2 the outliers are uniformly distributed throughout the sample. 

In Table 3 we report the results of the experiments when the outlier occurs at the point 

�T, in order to investigate the sensitivity of the tests to the location of the outlier. In 

Table 3 we only report results for T=100 and T=200 and 0.0� � , additionally as the 

results of the �1 and �2 tests were approximately symmetric around 0.5� � , we only 
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report the results for (0.1,0.2,0.3,0.4,0.5)� � . Strikingly the empirical size of the �1 

test falls towards zero as � increases. In the presence of persistence in the outlier, 

0� � , so the empirical size of the test falls even faster towards zero as � increases, 

such that we are almost never rejecting the true null hypothesis of level stationarity. 

For 0.9� �  there is evidence to suggest that the empirical size of the test, �1, 

becomes too big implying that we reject stationarity too frequently. 

The test for trend stationarity, �2, exhibits similar problems to that of the �1 

test, with the empirical size of the test approaching zero as � increases. However, for 

this test there is greater evidence of the increase in the empirical size of the test for 

0.9� � .  

The power results (not reported) show that for 0.001 1�� � , power falls with 

an increase in the magnitude of the outlier and that this effect is greater as � increases. 

However, these power results under estimate the true power of these tests, given the 

substantial under-size problems reported in Table 3. 
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Table 1: Sensitivity of the size of the KPSS tests to outliers, � = 0.1, 5% level 
� � ���� ����� 
� �   �1   �2    �1    �2  
  �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 

0.8 0.0 5.12 4.54 3.32 7.37 6.90 5.69 9.22 8.39 6.14 9.66 9.14 6.97 
0.5  2.25 2.05 1.56 5.75 5.06 4.44 4.89 3.92 3.21 4.99 4.51 4.13 
0.2  1.55 1.58 1.27 5.17 4.63 4.07 4.01 3.13 2.94 3.78 3.93 3.77 
0.0  1.28 1.39 1.21 4.86 4.36 3.99 3.40 2.84 2.86 3.47 3.61 3.69 
-0.2  1.05 1.22 1.20 4.37 4.17 4.06 3.09 2.84 2.86 3.02 3.52 3.60 
-0.5  0.72 1.07 1.22 3.71 4.03 4.05 2.50 2.70 2.79 2.38 3.41 3.54 
-0.8  0.35 0.90 1.16 3.50 3.39 3.86 1.06 2.29 2.72 1.17 2.91 3.44 
0.8 0.7 5.12 4.48 3.96 7.37 6.21 5.54 9.22 7.45 5.93 9.66 8.26 7.72 
0.5  2.25 3.26 3.74 5.75 5.24 5.59 4.89 5.12 5.64 4.99 6.60 6.94 
0.2  1.55 3.38 3.75 5.17 5.29 5.66 4.01 5.30 5.67 3.78 6.76 6.94 
0.0  1.28 3.45 3.77 4.86 5.46 5.61 3.40 5.51 5.62 3.47 6.82 7.01 
-0.2  1.05 3.49 3.84 4.37 5.48 5.62 3.09 5.56 5.62 3.02 6.76 6.94 
-0.5  0.72 3.54 3.78 3.71 5.51 5.74 2.50 5.56 5.64 2.38 6.67 7.01 
-0.8  0.35 3.47 3.73 3.50 5.13 5.71 1.06 5.51 5.61 1.17 6.68 6.95 
0.8 0.9 5.12 9.55 10.85 7.37 9.29 10.32 9.22 15.31 16.93 9.66 16.50 18.29 
0.5  2.25 10.20 11.25 5.75 9.75 10.60 4.89 16.44 17.31 4.99 17.75 18.92 
0.2  1.55 10.72 11.42 5.17 10.16 10.88 4.01 16.98 17.57 3.78 18.54 18.95 
0.0  1.28 10.96 11.36 4.86 10.35 10.94 3.40 17.15 17.60 3.47 18.64 18.86 
-0.2  1.05 11.08 11.41 4.37 10.58 10.99 3.09 17.21 17.53 3.02 18.63 18.84 
-0.5  0.72 11.19 11.42 3.71 10.63 10.96 2.50 17.34 17.64 2.38 18.69 18.94 
-0.8  0.35 11.12 11.39 3.50 10.43 10.94 1.06 17.34 17.59 1.17 18.63 19.00 

� � ����� ����� 
� �   �1   �2    �1    �2  
  �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 

0.8 0.0 9.55 8.40 6.73 10.73 10.10 7.99 9.09 8.83 7.62 11.28 10.93 8.98 
0.5  5.01 4.42 4.13 5.53 4.92 4.36 5.70 5.43 4.75 6.21 6.10 5.38 
0.2  4.22 3.99 3.90 4.43 4.04 4.08 4.93 4.76 4.49 5.36 5.29 4.86 
0.0  3.92 3.81 3.87 4.01 3.84 4.05 4.61 4.59 4.59 4.92 5.09 4.81 
-0.2  3.65 3.78 3.79 3.65 3.71 4.03 4.26 4.47 4.57 4.49 4.83 4.82 
-0.5  3.05 3.57 3.78 2.99 3.64 3.95 3.66 4.27 4.51 3.78 4.65 4.74 
-0.8  1.48 3.19 3.68 1.54 3.24 3.86 2.26 3.90 4.39 2.18 4.19 4.65 
0.8 0.7 9.55 7.90 7.08 10.73 9.66 8.51 9.09 8.36 7.46 11.28 10.54 8.99 
0.5  5.01 6.34 6.68 5.53 7.57 7.69 5.70 6.90 6.79 6.21 7.97 8.38 
0.2  4.22 6.55 6.77 4.43 7.43 7.66 4.93 6.69 6.95 5.36 8.09 8.39 
0.0  3.92 6.49 6.86 4.01 7.51 7.44 4.61 6.77 6.90 4.92 8.25 8.37 
-0.2  3.65 6.53 6.88 3.65 7.65 7.48 4.26 6.80 6.80 4.49 8.26 8.40 
-0.5  3.05 6.59 6.79 2.99 7.57 7.57 3.66 6.91 6.76 3.78 8.29 8.39 
-0.8  1.48 6.51 6.71 1.54 7.43 7.53 2.26 6.85 6.77 2.18 8.28 8.33 
0.8 0.9 9.55 16.19 17.69 10.73 20.42 22.50 9.09 15.00 16.24 11.28 20.93 22.78 
0.5  5.01 17.13 17.85 5.53 21.88 22.72 5.70 16.05 16.46 6.21 22.33 22.87 
0.2  4.22 17.63 17.90 4.43 22.31 22.79 4.93 16.31 16.57 5.36 22.67 22.80 
0.0  3.92 17.70 17.85 4.01 22.60 22.77 4.61 16.35 16.57 4.92 22.79 22.77 
-0.2  3.65 17.72 17.80 3.65 22.62 22.82 4.26 16.41 16.62 4.49 22.74 22.78 
-0.5  3.05 17.82 17.78 2.99 22.73 22.82 3.66 16.54 16.60 3.78 22.71 22.81 
-0.8  1.48 17.80 17.79 1.54 22.70 22.84 2.26 16.54 16.62 2.18 22.67 22.83 
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Table 2: Power of the KPSS tests to a unit root with outliers, � = 0.1, 5% level 
� � ���� ����� 
� �   �1   �2    �1    �2  
  �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 

0.0001 0.0 1.41 1.34 1.23 5.00 4.39 4.03 4.09 3.21 2.94 3.69 3.68 3.77 
0.001  1.97 1.45 1.32 5.13 4.39 4.07 10.61 5.55 3.55 5.11 4.21 3.83 
0.01  8.72 4.43 1.94 6.53 4.93 4.33 38.09 25.23 9.70 17.09 9.87 5.20 
0.1  26.58 19.95 8.53 13.15 9.65 6.00 55.51 50.94 37.49 36.03 29.31 15.99 
1  33.63 31.82 26.54 17.22 16.25 12.74 58.39 57.74 54.87 40.67 39.25 35.08 
100  34.52 34.51 34.51 17.73 17.64 17.65 58.84 58.82 58.82 41.19 41.22 41.15 
10000  34.51 34.52 34.56 17.66 17.66 17.64 58.88 58.87 58.88 41.16 41.17 41.18 
0.0001 0.7 1.41 3.49 3.80 5.00 5.39 5.60 4.09 5.56 5.68 3.69 6.80 7.02 
0.001  1.97 3.59 3.81 5.13 5.42 5.57 10.61 6.03 5.78 5.11 6.84 6.90 
0.01  8.72 4.49 4.00 6.53 5.67 5.62 38.09 11.49 6.80 17.09 8.29 7.23 
0.1  26.58 10.97 5.41 13.15 7.36 6.06 55.51 36.08 15.69 36.03 17.50 9.45 
1  33.63 26.87 14.95 17.22 13.01 8.58 58.39 54.44 42.35 40.67 34.63 21.94 
100  34.52 34.44 33.79 17.73 17.77 17.70 58.84 58.83 58.40 41.19 41.12 40.44 
10000  34.51 34.58 34.59 17.66 17.62 17.55 58.88 58.87 58.87 41.16 41.20 41.20 
0.0001 0.9 1.41 7.06 7.29 5.00 8.58 9.04 4.09 14.72 14.88 3.69 16.81 17.32 
0.001  1.97 7.11 7.29 5.13 8.70 9.07 10.61 15.05 15.07 5.11 16.86 17.28 
0.01  8.72 7.35 7.37 6.53 8.81 9.11 38.09 16.46 15.38 17.09 17.19 17.38 
0.1  26.58 10.46 8.16 13.15 9.35 9.35 55.51 26.89 17.63 36.03 20.32 17.98 
1  33.63 22.87 12.81 17.22 12.78 9.87 58.39 48.73 31.51 40.67 31.36 22.13 
100  34.52 34.13 32.99 17.73 17.82 17.23 58.84 58.39 57.70 41.19 40.84 40.22 
10000  34.51 34.61 34.65 17.66 17.65 17.64 58.88 58.87 58.81 41.16 41.18 41.11 

� � ����� ����� 
� �   �1   �2    �1    �2  

  �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 
0.0001 0.0 7.57 5.15 4.00 5.05 4.53 4.15 27.38 14.94 6.78 11.78 7.71 5.53 
0.001  31.27 17.71 7.04 13.46 8.00 5.14 67.53 52.98 27.09 50.99 30.00 11.84 
0.01  62.71 52.67 29.95 44.79 30.74 12.61 86.57 81.60 66.93 84.37 75.24 48.96 
0.1  70.98 69.41 61.42 63.44 58.72 43.83 89.43 88.92 85.87 90.39 89.17 83.39 
1  72.38 72.01 71.09 66.40 65.78 62.90 89.68 89.51 89.32 90.99 90.79 90.05 
100  72.36 72.38 72.46 66.83 66.89 66.90 89.75 89.74 89.76 90.95 90.93 90.90 
10000  72.40 72.40 72.38 66.86 66.88 66.91 89.75 89.75 89.76 90.96 90.96 90.95 
0.0001 0.7 7.57 6.61 6.61 5.05 7.70 7.67 27.38 8.42 7.25 11.78 8.79 8.38 
0.001  31.27 8.89 6.81 13.46 8.41 7.95 67.53 23.25 9.94 50.99 13.06 9.28 
0.01  62.71 27.50 10.78 44.79 14.25 9.18 86.57 62.33 31.24 84.37 43.64 16.76 
0.1  70.98 59.65 35.65 63.44 41.82 18.49 89.43 84.60 69.76 90.39 81.02 54.62 
1  72.38 70.57 63.55 66.40 62.21 49.11 89.68 89.13 86.47 90.99 89.84 84.56 
100  72.36 72.41 72.27 66.83 66.88 66.48 89.75 89.75 89.73 90.95 90.89 90.83 
10000  72.40 72.38 72.37 66.86 66.88 66.89 89.75 89.76 89.78 90.96 90.94 90.90 
0.0001 0.9 7.57 16.39 16.64 5.05 21.58 21.93 27.38 16.31 16.35 11.78 22.42 22.39 
0.001  31.27 16.91 16.61 13.46 21.71 21.85 67.53 19.27 16.66 50.99 23.52 22.74 
0.01  62.71 21.75 17.22 44.79 23.50 22.20 86.57 38.82 21.35 84.37 31.18 24.34 
0.1  70.98 44.32 24.93 63.44 33.35 25.16 89.43 72.76 46.33 90.39 63.30 36.35 
1  72.38 66.05 50.50 66.40 56.05 37.89 89.68 87.07 77.49 90.99 86.41 70.84 
100  72.36 72.26 72.01 66.83 66.64 65.60 89.75 89.68 89.50 90.95 90.86 90.62 
10000  72.40 72.37 72.43 66.86 66.89 66.92 89.75 89.75 89.76 90.96 90.93 90.93 
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Table 3: Sensitivity of the size of the KPSS tests to outliers, �=0.0, 5% level 
� � T=100 T=200 
�� ��   �1   �2    �1    �2  

    �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 �=0 �=4 �=10 
0.0 0.1 3.40 3.89 4.49 3.47 3.34 3.16 3.92 4.74 5.92 4.01 4.39 4.26 
0.3  3.40 4.49 4.15 3.47 3.49 2.57 3.92 5.27 6.29 4.01 4.39 3.98 
0.5  3.40 5.24 3.25 3.47 3.72 1.38 3.92 6.05 6.36 4.01 4.58 3.25 
0.7  3.40 6.69 2.04 3.47 3.30 0.32 3.92 7.63 5.70 4.01 4.94 1.38 
0.9  3.40 26.39 27.69 3.47 0.50 0.00 3.92 26.76 33.52 4.01 4.54 0.08 
0.0 0.2 3.40 3.54 2.57 3.47 2.23 0.47 3.92 4.20 4.15 4.01 3.86 1.91 
0.3  3.40 3.50 1.66 3.47 1.55 0.06 3.92 4.43 3.75 4.01 3.35 0.90 
0.5  3.40 3.75 0.88 3.47 0.88 0.00 3.92 4.52 2.91 4.01 2.69 0.23 
0.7  3.40 3.21 0.09 3.47 0.23 0.00 3.92 4.68 1.29 4.01 1.38 0.01 
0.9  3.40 1.98 0.00 3.47 0.01 0.00 3.92 6.87 0.36 4.01 0.05 0.00 
0.0 0.3 3.40 3.23 1.45 3.47 2.24 0.45 3.92 3.86 2.70 4.01 3.82 1.90 
0.3  3.40 2.75 0.52 3.47 1.85 0.11 3.92 3.60 1.85 4.01 3.48 1.00 
0.5  3.40 2.26 0.09 3.47 1.46 0.01 3.92 3.27 1.00 4.01 2.86 0.50 
0.7  3.40 1.31 0.00 3.47 0.82 0.00 3.92 2.57 0.16 4.01 2.03 0.11 
0.9  3.40 0.02 0.00 3.47 4.93 0.06 3.92 0.82 0.00 4.01 5.57 0.22 
0.0 0.4 3.40 2.51 0.55 3.47 3.03 2.13 3.92 3.55 1.79 4.01 4.70 4.53 
0.3  3.40 2.07 0.14 3.47 3.18 1.49 3.92 3.16 0.79 4.01 4.86 4.17 
0.5  3.40 1.38 0.01 3.47 3.40 0.77 3.92 2.57 0.22 4.01 5.12 3.51 
0.7  3.40 0.39 0.00 3.47 3.96 0.33 3.92 1.39 0.00 4.01 6.15 2.32 
0.9  3.40 0.00 0.00 3.47 25.10 19.25 3.92 0.03 0.00 4.01 26.83 31.61 
0.0 0.5 3.40 2.47 0.38 3.47 3.79 3.48 3.92 3.40 1.48 4.01 4.89 5.65 
0.3  3.40 1.87 0.04 3.47 3.99 2.76 3.92 2.94 0.52 4.01 5.26 5.82 
0.5  3.40 0.99 0.00 3.47 4.50 2.02 3.92 2.21 0.07 4.01 6.00 5.48 
0.7  3.40 0.22 0.00 3.47 5.83 0.82 3.92 1.04 0.00 4.01 7.95 4.64 
0.9  3.40 0.01 0.00 3.47 14.90 4.16 3.92 0.02 0.00 4.01 29.47 37.29 

 
 

 


