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Abstract

This paper shows that coordination failure and contractual incompleteness can

lead to socially excessive investment. Firms and workers choose investment levels,

then enter a stochastic matching process. If investment levels are discrete, and

match frictions are low, high-investing workers (firms) impose a negative pecuniary

externality on any worker (firm) who cuts investment. Specifically, an agent cutting

investment subsequently bargains with a partner with a binding outside option due

to the fact that it can easily match with another high investor. The deviant thus

bears the full loss in revenue from its action. However, given enough complemen-

tarity in investments, when one agent cuts investment it is efficient that its partner

also does so. So, only part of the cost saving accrues to the deviant, with the impli-

cation that the net private gain to cutting investment is less than the social gain. A

similar argument establishes that over-investment can occur when agents are het-

erogenous i.e. differ in their cost of investing, even if investments are continuous.

Then, over-investment occurs because low-cost investors have a private incentive to

invest to shift rent away from high-cost investors. Our model can also explain some

recent trends in graduate/non-graduate wage differentials.
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1. Introduction

A familiar policy concern is that coordination failure may strand an economy in a Pareto

dominated low-investment equilibrium. For example, beneficial innovations may never get

off the ground since there is no point in firms upgrading plant if workers lack the skills to

use it and workers have no reason to train if the plant to make use of the skills is not built.

The possibility of such equilibria arise when investment decisions are taken independently

and are only individually profitable when enough agents invest. Variations on this theme

of strategic complementarity and market failure are Scitovsky (1954), Murphy Shleifer and

Vishny (1989), Redding (1996), Acemoglu (1996), and Masters (1998) amongst others.

A further source of underinvestment is hold-up. First analysed by Williamson (1975,

1985)1, this arises when contractual incompleteness allows one party to bargain for a

share of the quasi-rents created by the complementary investments of another. If ex

ante contracts are insufficiently complete to prevent the threat of noncooperation being

subsequently exercised, the division of the returns must be bargained ex post and the

investor fails to capture all the social returns. Hold up can thus be viewed as a tax on

investment.

Taken together, coordination failure and hold-up suggest that market economies may

be vulnerable to under-investment. This paper shows to the contrary that the two prob-

lems may interact in such a way as to lead to over-investment. When enough agents

invest, non investors are put at so much of a bargaining disadvantage that they too invest

to redress the balance, a private but not a social gain.

In our model, firms and workers make complementary general investments before the

two types of agents are allocated to each other via a matching process. This sequence

reflects the inability of workers and firms to anticipate all their future partners and so

contract with them.2 Once matched, firms and workers bargain over the division of the

surplus using a standard alternating-offers bargaining protocol. In the bargaining, cru-

cially, agents have an outside option: at each stage, the responder can return to searching

for a new partner. For simplicity, suppose that investment is binary: agents can invest

or not. In this set-up, if enough agents invest, this undermines the bargaining power of

1Other notable references are Klein, Crawford and Alchian (1978), Grout (1984), Crawford (1988),

Grossman and Hart (1986), North and Weingast (1989), Hart and Moore (1990), and Shleifer and Vishny
(1997).

2In the formal modelling there is no exogenous match break up. Introducing this would add to the
plausibility of assuming that long-lived general investments are not governed by contracts, but is otherwise
innocuous.
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non investors. Specifically, when search frictions are low, an investor matched with a non

investor has a binding outside option and thus appropriates most of the surplus.

So, investment generates a negative pecuniary externality which works through the

outside option; the investments of other workers (firms) allows any particular firm (worker)

who invests to appropriate more of the surplus from a match with a non-investor than

would be the case with bilateral monopoly. Because of this negative externality, equi-

librium investment can be inefficiently high3: specifically, the private loss to one partner

(firm or worker) from not investing can exceed the cost saving, even when it is socially

efficient not to invest.4 In perfectly competitive economies these issues do not arise for an

agent’s payoff does not depend on the characteristics of the particular partner with whom

they produce. Yet in few markets can vacancies be filled instantaneously or job offers

found without delay, as an extensive theoretical and empirical literature attests. When

there are search frictions, even small ones, our conclusions follow.

For the case of homogeneous agents we identify two features that are generally required

for equilibrium investment to be excessive. First, investments must be complementary (the

cross partial of the production function is positive). Second, investments must be discrete

rather than infinitely divisible. However, the size of the physical unit of investment

(step-size) needed is bounded below only relative to the level of matching friction: as the

matching process becomes frictionless, the minimum step-size required goes to zero.

The second part of the paper shows that the same kind of pecuniary externality can

lead to overinvestment when agents are heterogenous, even if investments are continuous

and output is concave in investments. Suppose that a fraction of firms and workers have a

low cost of investment (low-cost agents) and the complementary fraction have a high cost

of investment (high-cost agents). Moreover, high-cost agents do not invest in equilibrium,

3The possibility of hold up leading to overinvestment has been noted by Grossman and Hart (1986)
and Hart (1995). They point out that, under Nash bargaining, if an increment in investment augments
disagreement payoffs by more than the relationship surplus, its private return exceeds the social return.
Yet it seems implausible that this condition would be met, and indeed Hart (1995) assumes it away. This
does appear very reasonable. If investment has a higher return within another easily accomplished match,
with the result that walking out presents a credible threat in bargaining with the current partner, then
the alternative relationship is an obvious candidate to be the equilibrium match. It is possible that the
marginal return to investment is high in another relationship though the total surplus is relatively low,

but it is not easy to tell a convincing story.
4Che and Sakovics (2003) and Pitchford and Snyder (2004) show that in a two-agent model in which

investment occurs post matching but can be postponed at little cost there is an efficient equilibrium in
addition to outcomes in which investment is inefficiently low. In our model, investment is chosen prior
to the relationship forming so their "punishment" mechanism does not apply.
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because the cost of investment is too high. With sufficient search frictions, a low-cost

agent will match with a high-cost agent (non-assortative matching). Assume that in this

event, the investments are complementary in the sense that the investment of the low-cost

agent is unproductive5. Nevertheless, an investment by the low-cost agent in such a match

enhances his bargaining power by creating - or increasing the value of - a binding outside

option through the opportunity to find a match with another low-cost agent who has also

invested. This rent-transfer opportunity is privately profitable but not socially beneficial.

Our results are applicable to a wide range of settings; workers and employers, lenders

and borrowers, and indeed buyers and sellers of all sorts may invest prior to meeting their

future trading partners. A particularly interesting case is general education and training.

Our results have two interesting implications here, one normative, and one positive.

The first point is that in our model, equilibrium wage differentials are not necessarily a

guide to the social desirability of further investment in education. In the simplest version

of our model, with binary investments, interpret investment by workers as the acquisition

of a college degree. For some parameter values, there will be two equilibria, one where

workers acquire degrees, and one where they do not. At the investment equilibrium, the

graduate/non-graduate wage differential will exceed the cost of a degree and thus exceed

the same differential at the non-investment equilibrium. But again for some parameter

values, the investment equilibrium is inefficient. In this case, it is efficient to cut education

levels even though the private return to education appears high.

Second, the model developed here can also help explain the puzzling phenomenon,

documented by Acemoglu (1999), that in the US and elsewhere an upsurge in the number

of graduates has been accompanied by an increase in their wages and a decrease in those of

non-graduates. A possible explanation is that exogenous technical progress has increased

the relative productivity of graduates (Katz and Murphy (1992) and Card and Lemieux

(2001) develop this line of argument), but the fall in the absolute wage of non graduates

is not so easily accounted for.6

Acemoglu(1999) provides an explanation based on search costs7. According to this

firms must commit to investment prior to matching. When there are relatively few grad-

uates in the population there is a pooling equilibrium. Firms hire both types of worker

5This will occur, for example, if technology is Cobb-Douglas: then zero investment by one party
implies zero marginal product of investment by any other party.

6Substitutability between the two forms of labor could result in biased technical progress yielding the

a decrease in both the wage and number of non graduates but the conditions are stringent.
7Machin and Manning (1997) offer a model with related features though it is based on preference

rather than productivity differences between groups of workers.
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having committed to an investment level intermediate between that appropriate for non

graduates and the higher level that is optimal for a graduate. When there are more grad-

uates in the working population, the expected search cost of finding a graduate declines.

Now a separating equilibrium emerges; there are high-investment graduate-only jobs and

low investment non-graduate jobs. The increased number of graduates causes the wage

of non-graduates to fall because they have less capital to work with. Our analysis sup-

plements this account by showing that even if firms do not decrease investment in non

graduate jobs, the outside-option principle implies that having more graduates depresses

the wages of non graduates.

Suppose initially that firms have no choice over investment levels so there is no issue

of pooling or separation. Also, simplify our model by taking the number of graduates

as exogenous. When the proportion of graduates is low and a firm bargains with a non-

graduate, the firm’s outside option does not bind as the probability of finding a graduate

is low. When the proportion of graduates is sufficiently high, though, the firm’s outside

option starts to bind: from this point on, any increase in the number of graduates depresses

the wage of the non-graduate. Contrary to Acemoglu, this is not due to any change in

investment by firms.

Endogenising investment by firms however, augments the effect. When there are

many graduates our analysis implies that firms may also invest more. At first sight

this is good news for the non-graduates who have more capital to work with. Assuming

complementarity, the extra investment raises the output of a graduate by more than a non

graduate so the firm’s outside option may increase by more than the revenue generated

by a match with a non graduate. Hence the extra investment further depresses the wage

of non graduates whilst increasing that of graduates.

The remainder of the paper is organized as follows. In Section 2, which follows,

we illustrate the main results in a simple numerical example with binary investments

which are perfect complements. The generality of the over-investment result is then

investigated. Section 3 analyses a full dynamic matching and bargaining model where

investors have outside options, and studies equilibrium investment levels in this setting,

allowing investments to be discrete or infinitely divisible, and permitting any degree of

complementarity. Stability issues are addressed and wage patterns in different equilibria

are compared. Section 4 extends the model to allow for heterogenous agents and shows

that this introduces a new source of overinvestment that arises even when investment is

a continuous variable. Section 5 discusses related literature, and Section 6 concludes.
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2. An Example

This simple example illustrates the working of the pecuniary externality discussed in

the Introduction. At t = 0, there are equal numbers of new workers and firms who

simultaneously make binary investment decisions. A worker (resp. firm) can choose

training (resp. investment) at a cost of 1.5. A firm and worker produce a present value of

8 if both invest but output is 6 otherwise (investments are perfect complements).

Each subsequent period t = 1, 2... a random process pairs unmatched firms and work-

ers. Matching frictions are "small". Paired firms and workers bargain over the division of

revenue from production. Once they reach agreement, they start producing. In this event,

they permanently exit the matching process. The bargaining protocol between a matched

firm and worker is alternating offers, with the proviso that in each round of bargaining

the responder can also choose to re-enter the matching process. So, as the length of the

period tends to zero the two parties split the surplus equally unless if one agent has an

outside option in excess of the equal division (a binding outside option). In this event,

that agent has his outside option payoff and the other agent gets the remainder i.e. is the

residual claimant.

In this model, investment is inefficient: investment by both boosts revenue by 8−6 = 2
but costs 3. Nevertheless, there is an equilibrium where all agents invest. In equilibrium,

the payoff to each investor is 1
2
8 − 1.5 = 2.5. Consider a deviant choosing not to invest.

If subsequently matched with an investor, the two bargain over the division of 6 units

of revenue. As the investor can to break off the bargaining and almost instantly match

with another investor, the investing agent’s outside option is approximately 4 and thus

binds. So, a deviant non-investor obtains approximately 6− 4 = 1.5. This confirms that
it is an equilibrium for all to invest. Note that there is also an equilibrium where no-one

invests. So, the investment equilibrium is inefficient - and also Pareto-dominated by the

no-investment equilibrium.

Note that this example, while it clearly establishes the intuition for our general results,

is limited in several ways. First, there are some special assumptions: binary investments

which are perfect complements. Second, the key claim that the outside option of the

investor is binding in the match with the non-investor, thus penalising non-investment,

is - while plausible - not rigorously established. We now turn to a general model that

relaxes the special assumptions, and also carefully defines the set of agents, the timing of

events, strategies and the equilibrium concept.
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3. The Model

3.1. Preliminaries

There are two types of agents: firms and workers. Time is discrete, with a period length

of ∆, so t = 0,∆, 2∆, .. and all agents have a discount factor δ = e−r∆. At period 0, a
unit measure of each of workers and firms make investments e, i respectively. Investments

may be discrete or continuous. If investments are continuous, e, i ∈ <+. If investments
are discrete, e, i ∈ {0, 1

n
, 2
n
..} = Sn where 1

n
is the investment step size. Whether con-

tinuous or discrete, investments have a cost of c(e), c(i), where c(.) is strictly increasing,

differentiable, and convex with 0 < c0(0) <∞.

In periods t = ∆, 2∆, ..., the following events occur in each period t. First, a fraction

∆a of the measure of as yet unmatched8 firms and workers, µt, are randomly matched

with each other. That is9, every worker is matched with a firm (and vice versa) with

probability ∆a. If both firm and worker are matched, they decide simultaneously and

independently whether to accept or reject the match. If they both accept, one of them

is then randomly selected to be proposer in bargaining over revenue. A firm and worker

can produce present value of revenue of y(e, i) : the properties of this revenue function

are discussed below.

Then, all such proposers, plus all proposers in matches formed in previous periods

that have not yet reached agreement over the division of revenue, can propose a division

of revenue. The responder can accept, reject, or terminate the match. If the proposal

is accepted, the matched firm and worker start producing in the following period. If the

responder rejects, then he is proposer at t + ∆. If the responder terminates the match,

both parties return to the unmatched state at the beginning of the next period, t+∆.

Note that in contrast to the bilateral monopoly case (with just one firm and one

worker), agents have two outside options in this model. First, an agent can reject a

match, and continue searching. Second, a responder can exit back to the searching state.

It is these outside options that drive our results.

8As any firm must exit matched with a worker, in any period, the measures of firms and workers in
the unmatched state are the same. Also, µ∆ = 1.

9For concreteness, think of a two-stage matching process where measure ∆a agents on either side of
the market are randomly selected from the pool of the unmatched, and then these ∆a workers and firms
are randomly matched with each other. The existence of such procedure even with a continuum on each
side of the market is guaranteed by the arguments of Alos-Ferrer(2002).
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3.2. The Revenue Function

Our assumptions on the revenue function are more easily stated assuming that investments

are continuous: the same properties are assumed to hold, appropriately restated, when

there is a fixed investment step-size. We assume that y(e, i) is non-negative, symmetric,

and strictly increasing and strictly concave in its arguments for all (e, i) in <2+. In addition
to these baseline assumptions, we will additionally make one of two assumptions. First:

A1. y(e, i) is twice continuously differentiable in e, i ∈ <+, and y12 ≥ 0.
Here, subscripts on y denote partial derivatives. Given differentiability, y12 ≥ 0 indi-

cates that investments are complements. If y12 > 0, we say that the investments are strict

complements: otherwise, they are weak complements.

Clearly, A1 limits the degree of complementarity, as then by concavity, y12 <
√
y11.y22.

In particular, A1 rules out the case of perfect complements (as in the Example above).

So it is also desirable to consider the case of perfect complements, which is most generally

expressed as A2:

A2. y(e, i) = f(min{e, i}) where f is strictly increasing, differentiable, and concave on

<+.

Finally, we assume the following limit conditions. If A1 holds, we assume that

lime→0 yk(e, e) = ∞, lime→∞ yk(e, e) = 0 where k = 1, 2 is the kth derivative of y, and if

A2 holds, we assume that lime→0 f 0(e, e) =∞, lime→∞ f 0(e, e) = 0.

3.3. Strategies and Equilibrium

Section 3.1 above describes a stochastic game played at periods t = 0,∆... by a continuum

of players. In this game, we restrict attention to equilibria where all agents invest e∗ at
t = 0. So, in any continuation game, we can assume that all but a measure zero of

agents have invested e∗, as any potential deviant is insignificant i.e. measure zero. So,
whatever the match acceptance and bargaining strategies of the agents, we note that at

t ≥ 1, almost all unmatched agents have invested e∗. So, if a firm f and a worker w are

matched at the beginning of period t, the only payoff-relevant aspects of the history of play

for this pair are (i) their two investment levels10 ew, ef : (ii) the equilibrium investment

e∗ made by almost all agents.
Wewill say that the match acceptance strategy of an agent isMarkov if it only depends

on ew, ef , e∗. Also, we will say that if bargaining, a strategy for the proposer or responder

10By definition, one of ew, ef = e∗.
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is Markov if at any date, the amount of revenue offered to the responder, or if the choice

to accept, reject, or opt out only depends on ew, ef , e
∗. Note that if (almost) all agents

follow Markov strategies, the expected payoff to being unmatched in at the beginning of

any period t = ∆, 2∆, ... will only depend on that agent’s own investment e0 = ew, ef and

e∗, and not on any other aspect of the history of the game: let this payoff be v(e0, e∗).
Within this class of strategies, we will focus on perfect match acceptance and bargain-

ing strategies of the agents. Such a match acceptance strategy is one where an agent ac-

cepts a match at any date iff doing so gives a higher payoff than continued search. Bargain-

ing strategies are perfect if they are subgame-perfect in the alternating-offers bargaining

game between the two partners f andw, with outside options11 v(ef , e∗), v(ew, e∗) generated
when these same Markov-perfect strategies are played by almost all agents. It is well-

known that such a game has a unique subgame-perfect equilibrium12, where agreement is

immediate (Muthoo(1999)).

Note that as ∆ → 0, v(e0, e∗) is also the equilibrium continuation payoff in period

∆ onwards, (discounted back to t = 0) to a deviant agent if he invests some level e0 at
t = 0, and all other agents invest at the equilibrium level e∗. This function is key, as it
will determine equilibrium investments. To characterise v(e0, e∗) further, we have:

Lemma 1. Conditional on (almost) all agents investing e∗, there is a unique continuation
equilibrium in subgame-perfect Markov strategies and thus v(e0, e∗) is uniquely defined.
Moreover, in the limit as ∆→ 0,

v(e0, e∗) =


0.5φy(e0, e∗), if e0 ≥ b(e∗)

φ(y(e0, e∗)− 0.5φy(e∗, e∗)) if b(e∗) > e0 ≥ b(e∗)
0 if b(e∗) > e0

(3.1)

where φ = a
a+r

, and b(e∗), b(e∗) solve

y(b(e∗), e∗) = φy(e∗, e∗), y(b(e∗), e∗) = 0.5φy(e∗, e∗)

and thus satisfy e∗ > b(e∗) > b(e∗) > 0.

From (3.1), it is clear that the continuation payoff to deviation from equilibrium

investment embodies the two outside options discussed above, at the match acceptance

stage, and the bargaining stage. The formula for v(e0, e∗) says that if the deviation e0 is

11Given that strategies are Markov, these outside options are stationary i.e. time independent.
12In the limit as ∆→ 0, the "outside option principle" applies: the two agents split the revenue equally,

unless one of them has an outside option greater than half the revenue, in which case that agent gets his
outside option, and the other agent gets what remains i.e. is the residual claimant.
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not too low (e0 ≥ b(e∗)), the deviant will find a match with a non-deviant, and will get
half the revenue from a subsequent match - the equal division case. If e0 is intermediate
(b(e∗) > e0 ≥ b(e∗)), the deviant again finds a match but will face a binding outside
option because the revenue y(e0, e∗) to be shared is small relative to the outside option of
the non-deviant, which is v(e∗, e∗) = 0.5φy(e∗, e∗) from the above formula - the residual

claimant case. If e0 is very small (b(e∗) > e0), the deviant cannot even find a match
because total revenue to be divided is y(e0, e∗) is smaller than the outside option of the
non-deviant, 0.5φy(e∗, e∗).− the no-match case. Note that all revenues are "discounted"
by the parameter φ, which measures match friction: with match friction, there is an

expected delay before a match and thus before revenue can be generated.

We are now in a position to define an equilibrium investment. An equilibrium invest-

ment is an e∗ ∈ F such that

v(e∗, e∗)− c(e∗) ≥ v(e0, e∗)− c(e0), all e0 ∈ F ,

where v(e0, e∗) is defined in (3.1), F =< if investments are continuous, and F =Sn if
investments are discrete. The net payoff to deviation from equilibrium investment e∗, is
illustrated in Figure 1 below.

Figure 1 in here

Note that our definition of equilibrium investment is "supported" by the assumption of

a particular continuation equilibrium in the sub-game once investments have been chosen.

We have three defenses of this. First, our main objective in this paper is to demonstrate

the possibility of overinvestment equilibria, not to characterise all the equilibria in the

model. Second, the restrictions on strategies seem reasonable, and are widely used in

the matching and bargaining literature (e.g. Osborne and Rubinstein(1990), Coles and

Muthoo(1998)). Thirdly, this particular equilibrium is "focal": it is stationary, and the

relationship between the outside options (at the match and bargaining stages) and the

incentive to invest is particularly clear.

4. Efficient and Equilibrium Investments

4.1. Efficient Investments

In this model, the ability of firms and workers to start production is constrained by search

frictions, and this should be taken into account when defining efficient investments. As

payoffs are linear in consumption (i.e. quasi-linear), the natural efficiency criterion is the
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sum of the payoffs to search net of investment costs at some common13 level of investment

e, given that all matches are accepted. Following the proof of Lemma 1, it can be shown

that the payoff to search net of investment costs for either firm or worker in this scenario

is 0.5φy(e, e)− c(e). So, this criterion is

W (e) = 2[0.5φy(e, e)− c(e)] = φy(e, e)− 2c(e)

The efficient level of investment ê or ên maximizes W (e) subject to e ∈ <+ or Sn, de-
pending on whether investments are continuous or discrete. The limit conditions on the

derivatives of the production and cost functions, ensure that this problem has an interior

solution14. Then, given the strict concavity of y - and therefore W - we can be sure that

this solution ê is characterised by the relevant first-order condition in the continuous case,

and in the discrete case, with step-size 1
n
, the solution ên is the closest one - in terms of

payoff W - to ê. So, we have:

Proposition 1. Assume that investments are continuous. If A1 holds, the efficient level
of investment 0 < ê <∞ is characterised by y1(ê, ê) = c0(ê). If A2 holds, the efficient level
of investment 0 < ê < ∞ is characterised by f 0(ê) = 2c0(ê). If investments are discrete,
then ên ∈ (ê− 1

n
, ê+ 1

n
).

4.2. Equilibria with Continuous Investments

Consider the artificial static game where a single firm and worker have "equal division"

payoffs φ0.5y(e, i)− c(i), φy0.5(e, i)− c(e), and choose i, e ∈ <+. In the continuous case,
let e = i = eH denote any symmetric equilibrium of this game: we will call such an

equilibrium a hold-up equilibrium. Then, we have the following result:

Proposition 2. Assume that investments are continuous.
(i) If A1 holds, exactly one hold-up equilibrium eH > 0 exists15, and at this equilibrium,

investment is inefficiently low i.e. eH < ê.

(ii) If A2 holds, there is a continuum of hold-up equilibria eH ∈ [0, ê].
13It is easy to show that it cannot be efficeint for workers and firms to invest asyummetrically. Suppose

that ê 6= ı̂ : then, by symmetry ofW (e, i) = φy(e, i)−c(e)−c(i), both (ê, ı̂) and (̂ı, ê) maximiseW (e, i) on
<2+. But then by strict concavity, W (0.5ê+ 0.5ı̂, 0.5ê+ 0.5ı̂) > 0.5W (ê, ı̂) + 0.5W (ê, ı̂), a contradiction.
14For example, if A1 holds, we have lime→0[0.5φy1(e, e)−c0(e)] =∞, lime→∞[φy1(e, e)−c0(e)] ≤ −c0(0),

and a similar condition applies if A2 holds.
15This Proposition does not fully answer the question of whether a hold-up equilibrium eH = 0 also

exists. This is clearly possible: if for example, y = 1
α(ei)

α, c(e) = e, 0 < α < 0.5, then clearly a hold-up

equilibrium eH = 0 exists, and this example satisfies all the assumptions on y, plus A1.
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(iii) If either A1 or A2 holds, e∗ is a equilibrium investment iff e∗ = eH .

So, this result says that an investment level is an equilibrium level in the dynamic

matching game iff it is also an equilibrium of the associated static game, with "equal

division" payoffs: i.e. a hold-up level of investment. The result also characterises hold-up

investments. Note first the striking difference between cases of imperfect complements

(Assumption A1) and perfect complements (Assumption A2). In particular, only in the

latter case, there is a hold-up investment that is efficient in the dynamic matching game.

The intuition for part (iii) of this result is as follows. First, (as argued above - see

Figure 1), the net payoff to deviation from eH is bounded above by the discounted

payoff to half the revenue in a subsequent match minus the cost of investment i.e.

φ0.5y(e0, eH) − c(eH). By definition of eH , this expression is maximized at eH , so there

cannot be any incentive to deviate from eH . Second, if a deviant (say) worker changes his

initial investment slightly from some e0, he does not subsequently cause an outside option

to bind in any match with a non-deviant firm. So, he obtains half the revenue even after

this deviation, and so if e0 6= eH , some deviation (either up or down) from e0 must be

profitable.

4.3. Equilibria with Discrete Investments

We now turn to the case of discrete investments. Our main finding is that if the search

friction is "small" relative to the investment step size, then we have multiple equilibria

above the efficient level. To obtain easily stated results, we assume here that the cost of

investment is linear i.e. c(e) = ce, c > 0 : all results generalize easily to the more general

cost function assumed so far.

Assume first that A1 holds. From strict concavity of y(e, i), it is true that the revenue

gain to a unilateral one-unit increase in investment, y(e + 1
n
, e) − y(e, e) is continuous

and strictly decreasing in e for any step-size 1
n
. So, fixing the step-size, there is a unique

critical en defined by

0.5y(en, en −
1

n
)− y(en −

1

n
, en −

1

n
) >

c

n
≥ 0.5y(en +

1

n
, en)− 0.5y(en, en) (4.1)

So, en is the smallest e such that an agent does not (weakly) wish to unilaterally increase

investment by one unit when (i) revenue is shared equally, and (ii) the matching process is

approximately frictionless i.e. when φ ' 1. It is easily verified that as n→∞, en → eH ,

where eH > 0 is the unique positive hold-up equilibrium in the continuous game. If A2

holds, y(e+ 1
n
, e)− y(e, e) = 0, so no agent ever wants to unilaterally increase investment,

so we define en = 0.

12



Again from concavity of y(e, i), it is true that the revenue loss to a unilateral one-unit

cut in investment y(e, e)− y(e− 1
n
, e), is decreasing in e for any step-size 1

n
. So, fixing the

step-size, there is a unique critical en defined by16

y(en, en)− y(en − 1
n
, en) >

c

n
≥ y(en +

1

n
, en +

1

n
)− y(en, en +

1

n
) (4.2)

So, en is the largest e such that the residual claimant does not (strictly) wish to cut

investment by one unit when the matching process is approximately frictionless i.e. when

φ ' 1. Then, our main result is:
Proposition 3. (i) For a fixed investment step-size 1

n
, there is a match friction parameter

φn < 1 such that for all φ > φn, any feasible level of investment e
∗ is an equilibrium level

of investment iff en ≤ e∗ ≤ en

(ii) If investments are weakly complementary, en ≥ ên i.e. any feasible level of invest-

ment between en and the efficient level can be an equilibrium level.

(iii) If investments are strictly complementary, there exists a range of investment costs

such that en ≥ ên +
1
n
. i.e. it is always possible to choose costs so that there is an

equilibrium with overinvestment.

This is a major result of the paper and deserves some comment. First, part (ii)

is reminiscent of folk theorems in repeated games, particularly as one way of taking φ

to the limit of 1 is to let r go to zero. One interpretation is that it provides a partial

solution to the hold-up problem. As long as there is any degree of discreteness (e.g.

smallest physical unit) in investment, if the matching process is sufficiently frictionless,

an equilibrium investment level can be found that is "close" (i.e. one physical unit) away

from the efficient level.

Second, part (iii) is really the key result. It says that the possibility of overinvestment

identified in the example above is quite general. An overinvestment equilibrium can exist

whenever investment levels are discrete and investments are strictly complementary.

The intuition for this result is illustrated in Figure 2 below, which builds on Figure 1.

Consider some investment level e0 between en and en. An agent deviating "upwards" i.e.

to e0 > e0, does not subsequently face a binding outside option, and so only gets half the

return on his additional investment. As e0 ≥ en, this deviation will ensure him a strictly

lower payoff than at e0, so he does not want to deviate upwards.

16Let e0 be the largest e for which the equilibrium payoff with neglible frictions is non-negative
i.e. 0.5y(e, e) ≥ ce (again, from concavity, any e ≤ e0 satisfies this). For convenience, let en ≤ e0.
Our results are modified in an obvious way if the surplus is exhausted first: in this case, min{en, e0}
replaces en.
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Figure 2 in here

Now suppose that an agent deviates "downwards" i.e. to e0 < e0. For fixed n, we can

always find a small enough level of friction such that any downward deviation will face

the deviant with a binding outside option in any subsequent match, as shown in Figure

2 - what is required is that output at the smallest possible deviation, y(e0 − 1
n
, e0) is less

than the non-deviator’s outside option, φy(e0, e0). But then any downward deviation will

make the deviating agent residual claimant in any subsequent match (or worse, give him

no match at all). In this case, , as e0 ≤ en, downward deviation does not pay, either.

Note now that the claim in Proposition 3 is that c can be chosen so that overinvest-

ment by one increment is always possible in equilibrium. This raises the question: is

overinvestment by more than one unit possible? The following example shows that it is.

This example also shows how Proposition 3 can be applied to an example.

Example 1. Investments cost 10 per increment i.e. c = 10 and are perfect complements.
The revenue function is strictly concave, with revenue from the first three increments as

follows.

e, i 0 1
n

2
n

3
n

y 32 48 60 68

Note here, efficient investment is zero (ên = 0), but equilibrium investments can be 0, 1
n

or 2
n
with small enough search frictions. This can be seen in two ways. One is to apply

Proposition 3. First, as investments are perfect complements - in fact, A2 holds - en = 0.

Second, for φ ' 1, en = 2
n
, as if an agent is residual claimant, he loses approximately 12

units of revenue by cutting his investment to 1
n
while saving only 10 in costs. So, applying

Proposition 3, equilibrium investments can be 0, 1
n
or 2

n
with small enough search frictions.

Given the simplicity of the example, the same conclusion can be established using a

more direct argument. Note that if equilibrium investment is 2
n
, equilibrium payoffs are

approximately 60/2-20=10. A deviant who deviates to investment of 1
n
will therefore face

a binding outside option in any subsequent match can therefore anticipates a payoff of

approximately 48-30-10=8. A deviant who deviates to 0 will get, by the same argument,

approximately 32-30=2. If equilibrium investment is 1
n
, the equilibrium payoff is approx-

imately 48/2-10=14. A deviant who deviates to investment of 0 will get 32-24=8. In no

case will any agent with to invest more than the equilibrium level, as investments are

perfect complements. //
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In general, we cannot say how much above ên is en i.e. how much over-investment is

possible in equilibrium. However, in the case of perfect complements, it is possible to get

a general result of this kind. This result generalizes the example just shown.

Proposition 4. Assume that A2 holds. Then, defining f 0(e) = c, en ∈ [e− 1
n
, e).

An example applying this result is as follows. Let f(e) = 2
√
e, c = 1. Then from

Proposition 4, e = 1. Moreover, from Proposition 1, efficient investment in the continuous

case, ê, solves f 0(e) = 2c, implying ê = 1
4
. So, for small enough investment step-size, ên '

1
4
, en ' 1 i.e. equilibrium investment can be far above the efficient level.

The final question is whether this characterization of en in Proposition 4 relies on

perfect complementarity. Our last result indicates that it does. With less than perfect

complementarity, in the limit, as investment increments become small, the maximum

equilibrium investment converges to the efficient investment.

Proposition 5. Assume that y is twice continuously differentiable in its arguments i.e.
A1 holds. Then, as n→∞, en → ê.

Proposition 5 indicates that even with A1, there is still a discontinuity in the limit

as investment indivisibility goes to zero. That is, with continuous investments, only the

hold-up level of investment eH is an equilibrium. However, as investment step-size 1
n
→ 0,

any level of investment between eH and the efficient level ê can be approximated by an

equilibrium level of investment.

4.4. Stability of Overinvestment Equilibrium

A possible objection to the overinvestment equilibrium characterised in Proposition 3 is

that it is unstable in the game-theoretic sense that it does not survive arbitrarily small

perturbations in the behavior of investing firms or workers. Consider the example of

Section 2 with binary investments which are perfect complements. Suppose that a small

exogenous fraction ε of firms and workers do not invest (this may be due to mistakes or

because the costs of doing so are prohibitive) in any equilibrium. Does this eliminate the

overinvestment equilibrium? If not, we will say that the overinvestment equilibrium is

stable: otherwise, unstable.17

As search frictions go to zero for ε fixed, the equilibrium will always be unstable in

17Acemoglu (1997) applies a similar analysis to show that in the frictionless case with Bertrand-style
competition the (low investment) coordination failure equilibrium is unstable. When search frictions are

present coordination failure equilibria are stable with respect to "trembles". Our findings are the same
except that coordination failure involves overinvestment.
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this sense. Take for example, the numbers of Section 2, where two investors can produce

8 and output otherwise is 6. Then, any agent who can invest would prefer not to, as by

waiting for a match with a non-investor she can expect at least half of 6, compared to

approximately 4− 1.5 if she invests and waits for a match with an investor.
However, holding ε fixed and taking the frictionless limit is a very strong stability

requirement. It is more in the spirit of game-theoretic stability (e.g. trembling-hand

perfection) to take all parameters, including the search friction parameter, φ, as fixed,

and perturb the model so that a small exogenous fraction ε of firms and workers do not

invest. In this case, it is generally true18 that given other parameter values, there is a

ε > 0 such that for all ε < ε, there is an equilibrium where all agents who can invest, do

invest, if there is such an equilibrium when ε = 0. So, any overinvestment equilibrium is

stable, given this weaker notion of stability.

Interestingly, overinvestment equilibrium can persist even if quite a large fraction of

the population of agents can be constrained from investing: such an example is given in

Appendix 2, where, for the numerical example presented in Section 2, it is shown that

overinvestment can persist when up to 1/4 of the agents cannot invest. This shows that

the mechanism leading to over-investment is relatively robust.

4.5. Equilibrium Wages

So far, we have focussed only on the efficiency properties of equilibrium. Here, we in-

vestigate a more positive consequence of the basic pecuniary externality that gives rise

to the inefficiency. Suppose for simplicity that there are just two possible investment

levels, 0 and 1. Then, in equilibrium, workers who invest (graduates) lower the wages of

those who do not (non-graduates). As a result, the graduate/non-graduate wage differ-

ential19 is higher in an equilibrium where all invest (an investment equilibrium) than in a

non-investment equilibrium.

This is consistent with some of the stylized facts about the US job market summarised

18The proof of this is simple. Let y1 be revenue of both invest, and y0 otherwise. If ε is very small,
the return to search in investment equilibrium is approaximately φy1/2, and the return to a deviant
is approaximately φ(y0− φy1/2) if the deviant faces a binding outside option i.e. if φ > y1/y0. So,
if φy1/2 − φ(y0− φy1/2) = φ

h
(1+φ)
2 y1 − y0

i
> c, where c is the cost of investment, then there is an

equilibrium with over-investment for ε small enough. If also φ(y1−y0) < 2c, the equilibrium is inefficient
for ε small enough..
19Of course, in investment (non-investment) equilibrium, the wage of a non-graduate (graduate) is a

hypothetical wage. However, by introducing a few agents who cannot invest, or must invest, this wage
differential will be observed in both equilibria.
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in Acemoglu (1999). As Katz and Murphy (1992) document, between 1979 and 1987 the

real wage of college graduates increased some 30% whilst the wage of young US high

school graduates fell 20% . Further evidence along these lines is provided by Machin and

Manning (1997) who find that a large increase in the relative supply of more educated

workers in the late eighties did not result in falling wage differentials of the more educated.

Our results on wages can be established as follows. Consider two identical economies

A and B of the type analysed above. Suppose that parameters are such that both a

non-investment equilibrium and a investment equilibrium are possible20 and suppose that

economy A (B) is in the investment (non-investment) equilibrium. Denote by wA
1 , w

B
0 the

wages (i.e. share of revenue) in the two equilibria in the two economies. By definition,

wA
1 = 0.5y(1, 1), w

B
0 = 0.5y(0, 0). Now let w̃

A
0 , w̃

B
1 be the (hypothetical) wages to a deviant

worker in each of these two economies i.e. a worker who decides not to invest in A, or

invest in B. If c is the cost of investing (in a college degree), then by the fact that A (B)

is in the investment (non-investment) equilibrium, in must pay a worker in economy A to

invest, but not one in economy B i.e. wA
1 − w̃A

0 ≥ c ≥ w̃B
1 − wB

0 . So the graduate/non-

graduate wage differential is higher in the economy A where all workers are graduates,

than it is in economy B where none are21.

Finally, note that when search frictions are small (φ ∼= 1), the non-graduate wage in
economy B is higher than it is in A:

wB
0 = 0.5y(0, 0) > y(0, 1)− 0.5y(1, 1)
' y(0, 1)− φ0.5y(1, 1) = w̃A

0

where the first inequality follows directly from the definition of strict complementarity.

So, we have the very counter-intuitive result that non-graduate wages fall absolutely as

the economy moves to an equilibrium with (a) more graduates, and (b) more investment

by firms.

Each of these changes contributes to the fall. With the supply of graduates plentiful,

a firm bargaining with a non-graduate has a binding outside option and so the non-

graduate is residual claimant. The easier it is for a firm to locate graduates, the higher

its outside option so the lower the non-graduate wage. Moreover, under complementarity,

20Let y1 be revenue if both invest, and y0 otherwise. This requires φ
h
(1+φ)
2 y1 − y0

i
≥ c for the

investment equilibrium, and φ
2 [y1 − y0] ≤ c for the non-investment equilibrium.

21One might object that w̃A
0 , w̃

B
1 are not observed in equilibrium. This objection can easily be dealt

with by introducing measures ε of workers who always invest or who never invest. For ε small, we will
have an investment equilibrium in A and a non-investment equilibrium in B, where all four wages are
observed in equilibrium.
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the more graduates there are the greater is the firm’s incentive to invest. At first sight,

this would seem good news for the non-graduates whose productivity generally rises with

investment. However, as the productivity of the graduate match increases even more,

the firm’s outside option rises relative to the surplus available from a match with a non-

graduate whose residual income consequently falls.

Finally, note two other applications of these results. First, our model indicates that a

widening gap between the wages of graduates and non graduates need not indicate a high

social return to education, as some governments apparently do (the UK government is an

example). In the example developed here, in economy A, discouraging higher education

is the correct policy response.

Another phenomenon that this model sheds light on is over-qualification where many

people are employed in jobs for which their educational qualifications are unnecessary

(see, for example Sicherman (1991), Goos and Manning (2003)). Suppose that in the

model here, there are a few firms that have no investment opportunities (these firms can

only offer non graduate jobs). This will not preclude an equilibrium in economy A in

which all agents that can invest do so (see the stability analysis above). Graduates take

non graduate jobs and are paid their binding outside option based on the split the surplus

division in graduate jobs.

5. Heterogenous Firms and Workers

5.1. Preliminaries

Our model is that of Section 3, with the modification that agents on either side of the

market may have different costs of investment, following Cole, Malaith and Postlethwaite

(2002). A measure λi of both workers and firms have investment cost ci(e), i = h, l with

λh + λl = 1 and ch(e) > cl(e), c0h(e) > c0l(e), all e. So, h−types have a higher cost of
investment than l−types. We will assume that A1 holds and moreover that investments
are strict complements (y12 > 0), and that the other conditions on revenue and cost

functions assumed above continue to hold. The order of events is as in the homogenous

model. Again, we focus on symmetric equilibrium investments, in the sense that all agents

of type i = h, l invest at level ei.We again assume that match acceptance and bargaining

strategies are Markov-perfect in the sense defined above.

In this setting, there is one complication relative to the homogenous case. With the

restriction to Markov-perfect strategies, and assuming all agents of type i invest the same,

it is easy to see that there are two kinds of match acceptance strategies that could occur
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in equilibrium. Assortative matching occurs when agents of some type i = h, l only agree

to match with agents of the same type. Non-assortative matching occurs when agents of

both types h, l agree to match with agents of either type22.

With non-assortative matching (i.e. all agents accept all matches) the proportion of

type i in the pool of unmatched at time t, λit is clearly time-invariant (λit = λi), as both

types are exiting at the same rate - every agent exists with probability ∆a over a time

period. However, if matching is assortative, there is the potential problem that the search

environment could be non-stationary, in that λit, could change over time. However, it

turns out that λit = λi also the case if matching is assortative, as explained in Appendix

B.

The general conditions defining a symmetric investment equilibrium are exactly as

in the homogenous case (section 3.2 above). An equilibrium investment is a pair e∗ =
(e∗h, e

∗
l ), e

∗ ∈ <2+ such that

vi(e
∗
i , e

∗)− ci(e
∗
i ) ≥ vi(e

0, e∗)− ci(e
0), all e0 ∈ <+, i = h, l

where vi(e0, e∗) is is the expected discounted payoff to search of an agent of type i who
deviates to e0, given that almost all (i.e. all but a measure zero) of agents of type i choose
e∗i , and that match acceptance and bargaining strategies are Markov-perfect in the con-
tinuation game.

In the homogenous case, we could obtain quite an explicit characterization of vi(e0, e∗)
i.e. (3.1) which could be used to prove general results. Here due to the number of different

cases generated by heterogeneity, it is very tedious to do this. Rather, we prove general

results only for the liming cases as match frictions go to zero (a→∞) or as match frictions
become large (a → 0). In these limiting cases, a general characterization of vi(e0, e∗) is
not required. As before, we begin with a characterization of efficient investments.

5.2. Efficient Investments

Again, as payoffs are linear in consumption (i.e. quasi-linear), the natural efficiency

criterion is the sum of the payoffs to search net of investment costs at some levels of

investment for each type el, eh. But now, we have to distinguish between assortative and

22The last possibility (given Markov acceptance strategies and symmetric investments) is that agents
of type h will only match with agents of type l, and vice versa. However, these cannot be equilibrium
strategies, as (assuming for example that l−types invest more) an l−type can expect a higher payoff to
a match with another l−type than with an h−type and so if he is willing to match with an h−type, he
must be willing also to match with an l−type.
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non-assortative matching i.e. efficient investments are conditional on the type of matching.

If matching is assortative, outside options can never be binding at the bargaining stage23,

so by the arguments already used, an agent of type i has expected discounted payoff24 of

vi = 0.5φiy(ei, ei), i = l, h (5.1)

where φi =
aλi
r+λi

is a type-specific friction parameter. So, the efficiency criterion is

W (eh, el) =
X
i=h,l

λi[0.5φiy(ei, ei)− ci(ei)] (5.2)

Efficient investments maximise (5.2). The existence of an interior solution to this problem

is guaranteed by the conditions on revenue and cost functions. So, êh, êl are characterised

by

φiy1(êi, êi) = c0i(êi), i = l, h (5.3)

Now with non-assortative matching, in a match between a type h and l, the outside options

of agents who have invested more (presumably the l−types) may or may not be binding
in subsequent bargaining. However, because the efficiency criterion sums the payoff of

the two agents in the match, this is irrelevant for the calculation of W. So, assuming no

binding outside options, an agent of type i has expected discounted payoff25 of

vi = φ[λi0.5y(ei, ei) + (1− λi)0.5y(ei, ej)], i = l, h (5.4)

where φ = a/(a+ r), so

W (eh, el) =
X
i=h,l

φ[0.5λiy(ei, ei) + (1− λi)0.5y(ei, ej)− ci(ei)] (5.5)

Efficient investments maximise this expression, and so are characterised by

φ[λiy1(êi, êi) + (1− λi)y1(êi, êj)] = c0i(êi), i = l, h (5.6)

5.3. General Results

Our first general result is for the limiting case where match frictions go to zero. An

argument similar to that used to prove part (i) of Proposition 2 above establishes that

23This is because no agent is ever in a match with another with an investment level lower than his own.
24This is because as ∆→ 0, vi solves the dynamic programming equation rvi = aλi(0.5y(ei, ei)− vi).
25This is because as ∆ → 0, vi solves the dynamic programming equation rvi = a[λi0.5y(ei, ei) +

λj0.5y(ei, ej)− vi].
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there exactly one pair (e∗h, e
∗
l ) of investments

26 e∗i > 0 which that solve

φi
y1(e

∗
i , e

∗
i )

2
= c

0
i(e

∗
i ), i = h, l (5.7)

Then, we have:

Proposition 6. Assume that

y(e∗h, e
∗
h)

2
− ch(e

∗
h) ≥

y(e∗l , e
∗
l )

2
− cl(e

∗
l ) (5.8)

Then, for a large enough, there is an equilibrium in Markov-perfect strategies with where

all agents of type i invest e∗i , where e
∗
i solves (5.7). In this equilibrium there is assortative

matching. There is no other equilibrium in Markov-perfect strategies with strictly positive

investments. In equilibrium, investments are inefficiently low i.e. e∗i < êi.

So, we have a general limit result: for low enough market friction, there is always

underinvestment in equilibrium27. The intuition is straightforward, and is indeed the same

as in the two-agent case without outside options: each agent underinvests, anticipating

he will only obtain half the additional surplus i.e. the hold-up problem applies.

Finally, we should remark on equilibrium condition (5.8). This is a kind of self-

selection constraint: it requires that at hold-up investment levels, it should not pay for a

high-cost type to imitate a low-cost type. This condition is not implied by the concavity

of individual payoffs in investment, as the high-cost type agent can effectively "free-ride"

on the higher level of investment by low-cost agents on the other side of the market by

imitating a low-cost agent on his own side of the market.

Now we turn to the other limit case where a is very small, and so frictions are large.

For convenience, we will assume that there is a unique pair (e∗∗h , e
∗∗
l ) of investments with

e∗∗i > 0 which that solve

φ [λhy(e
∗∗
i , e

∗∗
h ) + λly(e

∗∗
i , e

∗∗
l )] = c0i(e

∗∗
i ), i = h, l (5.9)

Then, we have:

26For example, y(e, e0) = 1
α(e.e

0)α, ci(e) = cie, with α < 0.5, it is easy to see that (e∗h, e
∗
l ) =

((2chφh
)1/(2α−1), (2clφl )

1/(2α−1)).
27It is also worth noting that Proposition 6 sidesteps the question of equilibria with zero investments.

In fact, under certain conditions on y, such equilibria always exist - for example, when y = 1
α(ei.ej)

α,

as then i0s marginal product is zero if j invests zero. In this case, there are all agents are identical ex
post and so the question of whether matching is assortative does not arise. However, zero investment
equilibria are of limited interest - the crucial question is whether equilibria with positive investment levels
have suboptimally low - or high - investment.
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Proposition 7. For a small enough, there is an equilibrium in Markov-perfect strategies
with where all agents of type i invest e∗∗i , where e

∗∗
i solves (5.9). In this equilibrium there

is non-assortative matching. There is no other equilibrium in Markov-perfect strategies

with strictly positive investments. In equilibrium, investments are inefficiently low i.e.

e∗∗i < êi.

So, we again have a general limit result: for high enough market friction, there is

always underinvestment in equilibrium. The intuition is straightforward, and is indeed

the same as in the case with low market frictions: each agent underinvests, anticipating

he will only obtain half the additional surplus.

So, Propositions 6 and 7 taken together strongly indicate that a necessary condition

for overinvestment in equilibrium to be possible is that outside options must bind in

equilibrium. The example of the next section shows in fact that when outside options are

binding in equilibrium, we can always choose functional forms and parameter values so

that there will be overinvestment.

5.4. An Example with Overinvestment

We will suppose that the cost of investment for l−types is prohibitive (c(e) =∞) so that
el = 0 is both efficient and part of any equilibrium outcome. We will construct an example

where matching is non-assortative and where, when an h−type matches with an l−type,
the outside option of the l−type binds. The outside option of the l−type is of course
the present value expected payoff to continued search which increases with el. This is the

key to the example: the l−type has an additional incentive to invest in order to increase
the value of this outside option and thus shift rent away from the h−type partner. This
rent-shifting incentive may lead to overinvestment relative to the efficient level.

The details are as follows. We suppose that if a match between an i and j−type
occurs, revenue is y = y0+

1
α
(eiej)

α, α < 0.5 : so, all the assumptions made above on the

revenue function are satisfied. The cost of investment by the l−type is cl.
Recall that vh, vl are the present value expected payoffs to continued search for the two

types. Then, as the outside option of the l−type is assumed to bind in a non-assortative
match, and the latter kind of match generates a present value of output of y0 (as eh = 0),

we require

vl >
y0
2

(5.10)

The payoffs vh, vl satisfy the following dynamic programming equations in the limit as
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∆→ 0 :

rvl = aλh(vl − vl) + aλl(
y(el, el)

2
− vl) (5.11)

rvh = aλh(
y0
2
− vh) + aλl(y0 − vl − vh) (5.12)

The first equation follows because when matched with an h−type (which occurs with
probability ∆aλ) the l−type gets no surplus from the match. The second follows because
when matched with an l−type (which occurs with probability∆aλl) the h−type is residual
claimant.

Solving (5.11), (5.12), we get

vl(el, el) = φl
y(el, el)

2
(5.13)

vh(el, el) = φ[λh
y0
2
+ λl(y0 − φl

y(el, el)

2
)] (5.14)

Now, in equilibrium, el must be an optimal investment for a firm (or worker) of type l,

given that the partner is investing el. This requires vl(e, el) − c(e) to be maximized at

e = el. Given the assumptions on y, f for this it is sufficient that the first-order condition

holds i.e.

φl
(el)

2α−1

2
− cl = 0 =⇒ e∗l =

·
φl
2cl

¸ 1
1−2α

(5.15)

The description of the equilibrium is completed by giving the condition under which

matching is non-assortative, which is

y0 ≥ vh + vl (5.16)

So, the equilibrium is fully characterized by (5.10)-(5.16).

Now, consider the efficient investment, given that matching is non-assortative. At any

date t ≥ 0, conditional on identical but otherwise arbitrary investments e by all l−agents,
aggregate surplus is the sum of individual surpluses minus investment costs

W (e, e) = λhvh(e, e) + λlvl(e, e)− λlc(e)

= λhφ
h
λh

y0
2
+ λly0

i
+ λl(1− λhφ)φl

y(el, el)

2
− λlc(e)

So, efficient investment maximises this expression28. Given that α < 0.5, y(e, e) and thus

W is concave in e, so a necessary condition for the efficient êl, is the first-order condition

[1− λhφ]φl(êl)
2α−1 − cl = 0 =⇒ êl =

·
[1− λhφ]φl

cl

¸ 1
1−2α

(5.17)

28Bear in mind that in the efficient case, v is differentiated twice with respect to e, as the social planner
internalizes the positive external effect of firms’ investments on workers and vice-versa.
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So, comparing (5.15) and (5.17), we see that êl < e∗l if 1− λhφ < 0.5, or

λhφ > 0.5 (5.18)

In this case, equilibrium investment is inefficiently high. This condition (5.18) has an

intuitive explanation. The social return to an increment in el is composed of two parts.

The first is the gain due to the additional payoffs to l−agents in assortative matches.
This is double the gain to the private gain to investors in those matches, and explains

the "0.5" in the formula. But the second effect is to reduce the payoffs of h−agents in
non-assortative matches: this is captured by the term λhφ, which as expected, is higher

the more such agents there are, and the more efficient the matching process as then the

loss occurs sooner.

It remains to show that we can choose parameter values such that (5.18) can be

satisfied simultaneously with the equilibrium conditions (5.10)-(5.16). Note first using

(5.13), (5.14), the condition for non-assortative matching (5.16) can be written

y0 ≥
µ
1− φ+ φλh
1− φ+ 0.5φλh

¶
vl (5.19)

So, from (5.16),(5.19), the condition for the binding outside option and non-assortative

matching conditions to be satisfied together become

2vl > y0 ≥
µ
1− φ+ φλh
1− φ+ 0.5φλh

¶
vl (5.20)

Now note by substitution that at equilibrium with e∗l =
h
φl
2cl

i 1
1−2α

that

vl =
φl
2

"
y0 +

µ
φl
2cl

¶ 2α
1−2α

#
(5.21)

There certainly exist parameter values for which (5.18), (5.20),(5.21) are simultaneously

satisfied. For example, take a = 0.8, r = 0.2, λh = 0.7. Then φ = 0.8, so φλh = 0.56 so

(5.18) is satisfied. Moreover, take cl = φl, α = 0.25, so
³

φl
2cl

´ 2α
1−2α

= 0.5. Then, noting

φl =
6
11
, vl =

3
11
[y0 +

1
2
]. So, (5.20) becomes

6

11
y0 +

3

11
> y0 >

76

48

µ
3

11
y0 +

1.5

11

¶
Taking y0 = 0.5, for example, these last two inequalities are satisfied.
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6. Related Literature

Our work is related to a number of recent papers. First, in a sequence of papers, Acemoglu

studies ex ante investments by workers and/or firms in a market where workers and firms

are subsequently matched. In Acemoglu (1996), search frictions are responsible for an

imperfectly competitive labour market. Both firms and workers can make complementary

investments. Once paired, the parties have no effective opportunity to rematch and wages

are decided by bilateral bargaining. The model is rich in externalities. As more firms

invest, the greater the chance a worker is in match where their investment really pays

off. So investment by any one firm stimulates training and thus the chance that non

investing firms encounter trained workers. Such cumulative causation yields multiple

equilibria and provides the basis for increasing social returns. A version of this model

is utilized in Acemoglu (1997) to consider investment distortions. As the bargaining

created by search frictions means investment returns are split with partners, there is

a positive externality associated with the ex ante acquisition of education, leading to

the unambiguous conclusion of under provision.29 In contrast to our model, in these

treatments rematching is not relevant, the outside-option principle does not apply and so

overinvestment results are precluded.30 Re-matches are possible in Acemoglu and Shimer

(1999) but as investment is one sided (and continuous) so with random search there is

still underinvestment.

The reason our model comes to a different conclusion is twofold. First, both sides

of the market have investment opportunities. Second there are some (possibly small)

investment indivisibilities. If graduate degrees raise productivity and firms can invest to

take further advantage of these skills, the laissez faire equilibrium of the economy may

involve too much education. When investment complementarities are not so great but

there is some indivisibility in investment, the equilibrium may be arbitrarily close to the

efficient level. If not everyone has the ability to benefit from graduate education then,

even if education is a continuous variable, it may be excessive for other than signalling

reasons.

Our work is also related to a number of other papers. First, Burdett and Coles (2001)

have a matching model of the marriage market where both men and women can make

investments in their ”pzazz” (sex appeal) prior to matching. Utility is non transferable,

29Stevens (2001) uses a version of the model to analyse efficiency enhancing educational and training
subsidies
30An unpublished version of Acemoglu (1996) has an analysis in the spirit of this paper though the

framework and results are not identical.
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so relationship surplus is not bargained over. More pzazz means it is possible to match

with a higher pzazz partner and an overinvestment equilibrium may emerge. This result

does though depend on the impossibility of bargaining. Investments are additive, so our

results (Proposition 3) show that were bargaining possible, so that (say) a low pzazz man

could "buy" a high pzazz woman by a cash transfer, overinvestment could not occur.

Felli and Roberts (2000) analyse a model with heterogeneous types in which there

are no post-investment search frictions. With workers sufficiently close substitutes, the

Bertrand-style game with firms posting wages involves agents receiving close to com-

petitive returns. Efficient equilibria always exist but when workers have ex ante invest-

ment decisions there may be (bounded) coordination failures with attendant inefficiencies.

What is shown is that the ranking of workers by equilibrium investment levels may differ

from the ranking by optimum investment levels. A worker with lower intrinsic quality may

nevertheless invest sufficiently more than an able worker that in the Bertrand equilibrium

they are hired by a more productive firm. The distribution of investment is then subop-

timal but it is unclear what happens to the total; indeed with heterogeneous types this

may not be such an interesting question. At all events, our mechanism for inefficiency

is different. The issue is not so much bargained versus Bertrand price determination,

but complementarity and discreteness. This can be established by noting that the ap-

pendix of Acemoglu (1997) shows that for the Bertrand game with homogeneous types

and continuous single sided investment overinvestment is precluded.31 Translating our

double-sided discrete investment game into a static Bertrand framework still yields over-

investment equilibria. The key point is that a non investing deviant may leave the wage

of investors unchanged (similarly to the binding outside option in the dynamic matching

and bargaining model) allowing equilibria with excessive investment.

Cole, Mailath and Postlewaite (2001a,b) consider a matching model in which buyers

and sellers make investment decisions non cooperatively prior to entering a frictionless

matching process. The rule sharing the surplus from trade is exogenously fixed, rather

than emerging from a bargaining protocol, as in our paper : it is only constrained by the

requirement that the matching be stable i.e. no worker and firm can leave their current

matches, match together, and both be better off. There are multiple sharing rules that

satisfy this requirement. As the sharing rule is not unique, there are several possible

31Notice that with continuous investment our model that the unique investment equilibrium is indepen-
dent of the level of search frictions with the exception of a singularity at zero. The standard assumption
that it is impossible to bargain with more than one partner may be responsible for this odd feature which
does not however matter for our main result.

26



equilibrium investment profiles (at least one for each stable sharing rule).

It is possible to choose a sharing rule so that investments are efficient ("solving" the

hold-up problem), but one can also choose rules that generate underinvestment and over-

investment equilibria. When investments are continuous, their overinvestment examples

require that less investment by one agent increases the payoff to the other agents. This

is inherently implausible and cannot occur, for example, in our model. With discrete

investments, they have an example32 where overinvestment arises without this feature,

but there is no general analysis of conditions under which this can occur.

7. Conclusions

As typically represented, incomplete contracting creates hold-up problems causing in-

vestors to anticipate expropriation of their returns. The result is underinvestment. This

paper shows that with endogenous outside options, it is non investors that are held up and

their best defence is to invest. When investment indivisibilities and search frictions are

low there is always an equilibrium close to the first-best level. When complementarities

are high, cumulative causation may result in a quasi-competitive overinvestment equilib-

rium that is locally but not globally efficient. At heart this is a coordination problem

which economic policy should discourage.

There is a second mechanism leading to overinvestment. For example, education, by

widening employment opportunities, may enhance bargaining power even in occupations

in which it has little or no effect on productivity. This constitutes a private but not a

social gain. The outcome may be that education spreads like a contagion. Nevertheless,

from a social perspective the costs do not justify the returns and education should be

limited. If firms do not lower investment in response the wage of non graduates is higher

if there are fewer graduates and if firms invest less as a result this effect is all the greater.

For investment to be excessive complementarities must be involved. Such synergies

are often thought to be the basis of a ”new economy” virtuous circle of investment. On

this view the policy problem is to ensure that coordination problems do not prevent the

good equilibrium from emerging with government intervention is justified to kick start the

economy into a better, high-investment equilibrium. Our paper is a warning that misery

may result; the low investment outcome may be the good equilibrium.

32Figure 6 in Cole, Mailath and Postlewaite (2001a,b)
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A. Proofs of Propositions

Proof of Lemma 1. Consider a match between a firm and a worker, and assume

w.l.o.g. that the deviant agent is a worker i.e. ef = e∗, ew = e0. Let v∗ ≡ v(e∗, e∗)
and v0 = v(e0, e∗) respectively. If the match is accepted, the firm and worker play an

alternating-offers bargaining game with time-invariant outside options v∗, v0. There is a
unique subgame-perfect equilibrium in this game, with immediate agreement and the

payoff u0 for the deviant worker in this game, in the limit as ∆→ 0, is33 :

u0 =

(
0.5y(e∗, e0) v, v0 ≤ 0.5y(e∗, e0)
y(e∗, e0)− v∗ v∗ > 0.5y(e∗, e0) ≥ v0

(A.1)

The payoff to the firm matched with a deviant worker is thus y(e0, e∗) − u0. So, the two
parties will only accept the match if u0 ≥ v0, y(e0, e∗)− u0 ≥ v∗ which reduces to

y(e0, e∗) ≥ v∗ + v0 (A.2)

Next, in the limit as ∆→ 0, a standard dynamic programming argument implies that

the payoff to search for the deviant worker solves

rv0 = a(u0 − v0) (A.3)

i.e. the return to search, rv0, is equal to the expected capital gain due to making a
transition to the matched state, a(u0 − v∗), where u0 is defined in (A.1) if the match is
accepted i.e. (A.2) holds, and u0 = 0 otherwise. So, solving (A.3) for v0, and using this
definition of u0, we get:

v(e0, e∗) =


φ0.5y(e0, e∗) if v∗ ≤ 0.5y(e0, e∗)

φ(y(e0, e∗)− v∗) if y(e0, e∗) > v∗ ≥ 0.5y(e0, e∗)
0 if v∗ > y(e0, e∗)

(A.4)

where φ = a
a+r

. The special case where e0 = e∗ therefore solves to give v∗ = φ0.5y(e∗, e∗).
Uniqueness follows from the fact that conditional on e∗, e0, there is a unique solution

v0, u0 to (A.1), (A.2), (A.3).
To get formula (3.1) from (A.4), note that given definitions of b(e∗), b(e∗), and the

definition of v∗, then the three conditions on the RHS of (A.4) are each equivalent to the
corresponding conditions on the RHS of (3.1). ¤
33There is, logically, another possibility , namely that v0 > 0.5y(e∗, e0) ≥ v∗. However, this cannot

occur in equilibrium, as all the firms with which the deviant worker might potentially be matched have
invested at the same level e∗.
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Proof of Proposition 2. (i) Assume A1 holds. Note that in the static game, the

condition defining a hold-up equilibrium eH is

g(eH) = φ0.5y1(eH , eH)− c0(eH) = 0

which is the first-order condition for the optimal choice of investment at equilibrium

(the second-order condition is satisfied by assumptions on y, c). So, it suffices to show

that g(e) = 0 has at exactly one root on [0,∞). First, note that g(.) is continuous by
assumption. Second, note that

g0(eH) = φ0.5[y11(eH , eH) + y12(eH , eH)]− c00(eH)

which is strictly negative as y is assumed strictly concave. Finally, by the limit assump-

tions on y and c, lime→0 g(e) > 0, lime→∞ g(e) < 0. So, g(e) has exactly one root as

required.

(ii) Assume A2 holds. Let eH be a candidate for symmetric equilibrium in the static

game. Then if any agent increases his investment by a small amount ∆, his additional

payoff is simply −∆c0(eH) < 0. On the other hand, if he cuts his investment by a small

amount ∆, his change in payoff is −∆[0.5f 0(eH)−c0(eH)], which is non-positive as long as
f 0(eH) ≥ 2c0(eH), which of course requires eH ∈ [0, ê]. This establishes that any eH ∈ [0, ê]
is a hold-up equilibrium.

(iii) Consider now the dynamic matching game. Assume that A1 holds and that all

agents except for a deviant set e = eH . By (3.1), the deviant’s payoff is bounded above

by σ(e0, eH) = φ0.5y(e0, eH)− c(eH). But, by part (i) above, σ(e0, eH) is maximised on <+
at e = eH . So, deviation from eH does not pay, establishing that eH is an equilibrium.

Now suppose that all agents except for a deviant set e0 6= eH . Then, for fixed φ < 1,

noting that b(e) < e, for any e0 ∈ <+ there is a neighborhood N(e0) = (e0 − δ, e0 + δ)

around e0 such that for e0 ∈ N(e0), a deviant’s outside option is not binding, so that his

payoff is σ(e0, e0) = φ0.5y(e0, e0)− c(e0). Then,

∂σ(e, e0)

∂e

¯̄̄̄
e=e0

6= 0 (A.5)

So, from (A.5), and the preceding discussion, a deviation e0 ∈ N(e0) exists such that

σ(e0, e0) > σ(e0, e0). So, e0 6= eH cannot be an equilibrium in the dynamic matching

game. A similar argument applies if A2 holds. ¤
Proof of Proposition 3. Let e∗ be a candidate equilibrium level of investment, with

en ≤ e∗ ≤ en.
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(i) Consider a deviation to e0 > e∗, e0 ∈ Sn. Then, from (3.1), the deviant’s outside

option cannot bind at e0. Also, e0 = e∗ + k
n
by definition, so for some k ≥ 1, his gain to

deviation is

∆ = φy(e∗ +
k

n
, e∗)− φy(e∗, e∗)− c

k

n

≤ φy(e∗ +
1

n
, e∗)− φy(e∗, e∗)− c

n

< y(e∗ +
1

n
, e∗)− y(e∗, e∗)− c

n
≤ 0

where the first inequality follows from strict concavity of y, the second as φ < 1, and the

third from (4.1) and the fact that en ≤ e∗.
(ii) Now consider a deviation to e0 > e∗, e0 ∈ Sn. Assume e∗ − 1

n
< b(e∗), i.e. y(e∗ −

1
n
, e∗) < φy(e∗, e∗) which is equivalent to assuming φ > φ0n(e

∗), for some φ0n(e
∗) < 1. Now

consider a deviation e0 < e∗. By assumption, e0 ≤ e∗ − 1
n
< b(e∗). So, There are then two

possibilities.

(a) First, e0 < b(e∗) in which case from (3.1) the net payoff to deviation is −c(e0) ≤
0. As A1 holds, the payoff at equilibrium is bounded below by y(0, e∗) ≥ 0. So, deviation
does not pay.

(b) The other possibility is that b(e∗) ≤ e0 < b(e∗).Then, from (3.1), the deviant is

residual claimant at e0, so the gain to deviation to e0 = e∗ − k
n
is

∆(e0, e∗) = v(e0, e∗)− c(e0)− [v(e∗, e∗)− c(e∗)] (A.6)

φ(y(e0, e∗)− φ0.5y(e∗, e∗))− ce0 − [φ0.5y(e∗, e∗)− ce∗]

=

½
c
k

n
− φ

µ
y(e∗, e∗)− y(e∗ − k

n
, e∗)

¶¾
+ φy(e∗, e∗)(1− 0.5(1 + φ))

< k

½
c

n
− φ

µ
y(e∗, e∗)− y(e∗ − 1

n
, e∗)

¶¾
+ φy(e∗, e∗)(1− 0.5(1 + φ))

where the second line follows from (3.1), the third by rearrangement, and the fourth by

strict concavity of y in its first argument. So, taking the limit as φ → 1 in (??), we see
that

lim
φ→1

∆(e0, e∗) < k

½
c

n
−
µ
y(e∗, e∗)− y(e∗ − 1

n
, e∗)

¶¾
(A.7)

Now, directly from the definition of en, it follows that

y(en, en)− y(en − 1
n
, en) >

c

n
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But then as e∗ ≤ en,

y(e∗, e∗)− y(e∗ − 1
n
, en) >

c

n
(A.8)

So, from inspection of (A.7), and (A.8), we see that limφ→1∆(e0, e∗) < 0. We conclude

that there exists a φ1n(e
∗) < 1 such that ∆(e∗ − 1

n
, e∗) ≤ 0 for all φ > φ1n(e

∗)
Finally, take φn(e

∗) = max{φ0n(e∗), φ1n(e∗)}and set φn = maxe∗∈Sn φn(e
∗). We have

thus shown that any en ≤ e∗ ≤ en is an equilibrium, as required.

(iii) To show that no e∗ /∈ [en, en] can be an equilibrium, suppose first that e∗ > en,

and consider a downward deviation to e0 = e∗− 1
n
. If φ > φn, then e

∗− 1
n
< b(e∗) i.e. this

deviation induces a binding outside option. As e∗ > en,

φy(e∗ − 1
n
, e∗)− c(e∗ − 1

n
) > φy(e∗, e∗)− c(e∗)

so a downward deviation makes any agent strictly better off, contradicting the assumption

that e∗ is an equilibrium. A similar argument shows that if e∗ < en for φ close enough to

1, an upward deviation can make the deviant strictly better off.

(iv) To prove en ≥ ên, suppose the contrary i.e.en = ên − 1
n
. Note that as ên is the

most efficient feasible investment level, and y is strictly concave, ên satisfies

y(ên +
1

n
, ên +

1

n
)− y(ên, ên) ≤ 2c

n
< y(ên, ên)− y(ên − 1

n
, ên − 1

n
) (A.9)

Then from(A.9), and from (4.2), using en = ên − 1
n
, we get:

2y(ên, ên)− 2y(ên − 1
n
, ên) ≤ 2c

n
< y(ên, ên)− y(ên − 1

n
, ên − 1

n
) (A.10)

Or, rearranging (A.10),

y(ên, ên)− y(ên − 1
n
, ên) < y(ên − 1

n
, ên)− y(ên − 1

n
, ên − 1

n
)

which violates (weak) complementarity.

(v) Finally, to prove en ≥ ên+
1
n
if investments are strictly complementary, there exists

a c̃ such that

2y(ên +
1

n
, ên +

1

n
)− 2y(ên, ên + 1

n
) >

2c̃

n
> y(ên +

1

n
, ên +

1

n
)− y(ên, ên)

So,

y(ên +
1

n
, ên +

1

n
)− y(ên, ên +

1

n
) >

c̃

n

implying that for cost c̃, ên + 1
n
≤ en. ¤.
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Proof of Proposition 4. From the properties of the production function, y(e, e)−y(e−
1
n
, e) = f(e)− f(e− 1

n
) so en is the largest feasible e such that f(e)− f(e− 1

n
) > c

n
. So,

if e is feasible, en = e− 1
n
. Otherwise, there is a feasible investment level in (e− 1

n
, e) in

which case en is equal to that investment level. ¤
Proof of Proposition 5. First, from (4.2), and denoting the limit of en by e, we have

y(en, en)− y(en − 1
n
, en)

1/n
> c =⇒ y1(e, e) ≥ c

where we obtain the derivative by taking the limit as n → ∞. Next, from the fact that

ên is the efficient level of investment, we have:

y(ên +
1
n
, ên +

1
n
)− y(ên, ên)

1/n
≤ 2c =⇒ y1(ê, ê) ≤ c

where again we obtain the derivative by taking the limit as n→∞. But then, as y1(e, e)
is strictly decreasing in e (by concavity), we see that e ≤ ê.Finally, as en ≥ ên from

Proposition 5, e ≥ ê also. So, e = ê. ¤
Proof of Proposition 6. (i) first we show that given that matching is assortative,

e∗l > e∗h. With assortative matching, from (5.1), an agent of type i = h, l gets expected

present value payoff of search of φi0.5y(e
∗
i , e

∗
i ). So, a necessary condition for equilibrium

is that φi0.5y(e, e
∗
i )− ci(e) is maximized at e = e∗i . By the convexity of c, and concavity

of y, the first-order necessary condition for this is

φi0.5y1(e
∗
i , e

∗
i ) = c0i(e

∗
i ), i = h, l

Moreover, from the concavity of y in both variables, and convexity of ci, e∗l > e∗h if
c0h(e)/φh > c0l(e)/φl. For a large enough, φi ' 1, and so this last condition will hold.
(ii) Now we show that given e∗l > e∗h, matching is assortative for φ close enough to

1. For suppose not. Then for non-assortative matches to occur, there are two possible

cases. The first is where the l−type0s outside option is not binding in a match with an
h−type. In this case, the l−type can expect 0.5y(e∗l , e∗h) from the match, and (from (5.4))
φ [λ0.5y(e∗l , e

∗
h) + (1− λ)0.5y(e∗l , e

∗
l )] from continued search. As e∗l > e∗h λy(e∗l , e

∗
h) + (1−

λ)y(e∗l , e
∗
l ) > y(e∗l , e

∗
h), for φ close enough to 1, the l−type’s outside option will bind in

a match with an h−type.. Then, the h−type can expect y(e∗l , e∗h)− vl from accepting a

match with an h−type, and 0.5φy(e∗h, e∗h) from rejecting it. As φ→ 1, vl → 0.5y(e∗l , e
∗
l ), so

the gain to accepting for the h−type is approximately y(e∗l , e∗h)−0.5y(e∗l , e∗l )−0.5y(e∗h, e∗h).
But by y12 > 0, and e∗l > e∗h, this is strictly negative. So, for φ close enough to 1,
equilibrium matching cannot be non-assortative.
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(iii) Finally, in equilibrium, it must be the case that

φi
y(e∗i , e

∗
i )

2
− ci(e

∗
i ) ≥ φj

y(e∗j , e
∗
j)

2
− ci(e

∗
j), j 6= i (A.11)

holds. For if it did not, an i−type could profitably change his investment to e∗j and thus
match with j−types only. We can split the gain to not deviating as follows i.e.

φi
y(e∗i , e

∗
i )

2
− ci(e

∗
i )− φj

y(e∗j , e
∗
j)

2
− ci(e

∗
j) =

·
φi
y(e∗i , e

∗
i )

2
− ci(e

∗
i )−

µ
φi
y(e∗j , e

∗
i )

2
− ci(e

∗
j)

¶¸
+·

φi
y(e∗j , e

∗
i )

2
− φj

y(e∗j , e
∗
j)

2

¸
The term in the first square brackets on the RHS is always positive as from (5.7), e∗i is
a global maximizer of φi

y(e,e∗i )
2
− ci(e). Moreover, for a large enough, φi, φj ' 1, so the

second square bracket is positive as long as e∗i > e∗j . So, (A.11) holds for i = l, but must

be imposed for i = h.

(iv) Parts (i)-(iii) establish that an equilibrium with assortative matching always ex-

ists, subject to (5.8) holding, and that at this equilibrium, investments are given by the

solutions to (5.7). It remains to show that no other equilibrium can exist for φ close

enough to 1. Such an equilibrium must have non-assortative matching. Part (ii) of the

proof has shown that non-assortative matching is not possible when e∗l > e∗h. So, we must
have have e∗l ≤ e∗h. But in equilibrium, using (5.4), it is straightforward to establish that
e∗l > e∗h if matching is non-assortative, a contradiction.
(v) To prove e∗i < êi, compare (5.7) and (5.3), and use the concavity of y and convexity

of c. ¤
Proof of Proposition 7. (i) Assume that investments are at their hold-up levels with
non-assortative matching. We show that if a is small enough, matching is non-assortative.

Suppose the contrary. Then, from (5.1), vi = φi0.5y(ei, ei), as outside options can never

bind with non-assortative matching. So, a type i will always accept a match with a type j if

0.5y(ei, ej) > vi,which surely holds if a is small enough, as φi → 0 as a→ 0. Contradiction.

(ii) Assume non-assortative matching. Then, we show that for a small enough, the only

equilibrium investment levels are those for which (5.9) hold. But these are the equilibrium

investment levels given that no outside options bind in equilibrium. So, it suffices to show

that for a small enough, outside options do not bind in equilibrium. Clearly, only the

outside option of the agents who have the higher investment can bind in equilibrium.

W.l.o.g., let equilibrium investment levels be el > eh. Then, for a binding outside option,

we require that vl > 0.5y(el, eh); but as vi → 0 as a → 0, this cannot hold for a small

enough.
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(iii) To show that no other equilibrium can exist, we argue as follows. An equilibrium

with non-assortative matching and binding outside options has already been ruled out by

(ii). An equilibrium with assortative matching cannot exist either. For suppose that there

is such an equilibrium: then an argument as in (ii) establishes that for a low enough, type

i agents will accept a match with a j−type as the option of continued search is too low.
(iv) To prove e∗∗i < êi, compare (5.9) and (5.6), and use the concavity of y and

convexity of c.¤

B. Example of Overinvestment with a Non-Negligible Fraction of
Non-Investors

Let a = 1 (this is w.l.o.g. as all formulae only depend on ratio r/a), and let ε be the

fraction of agents in the population who for some exogenous reason do not invest in

equilibrium. Also, revenues and costs are as in the example in Section 2. We will first

characterise an equilibrium where (i) all the agents who can invest do so; (ii) there is non-

assortative matching (NAM) i.e. investors will accept matches with non-investors and

(iii) in a match with an investor and a non-investor, the outside option of the investor is

binding. The question of interest is how high ε can be for such an equilibrium to exist.

Let v, w be the equilibrium payoffs to search for investors and non-investors respec-

tively. A simple dynamic programming argument34 implies that

v =
1− ε

1 + r − ε
4, w =

1

1 + r
[6− 3ε− (1− ε)v] (B.1)

These formulae are intuitive. In particular, when there are no exogenous non-investors,

v = 4
1+r

i.e. half the discounted revenue from a match between two investors, and when

ε ' 1, v ' 0, as by hypothesis, an investor gets no surplus from a match with a non-

investor.

34The dynamic programming equations defining v, w are

rv = (1− ε)(4− v) + ε(v − v)

rw = (1− ε)(6− v − w) + ε(3− w)

Each states that the return to search (rv or rw) is equal to the expected capital gain from accepting a

match. The gain to an investor from accepting a match with another investor is 4−v i.e. half the revenue
generated minus the payoff to search. The gain to a non-investor from accepting a match with another
non-investor is 3−w i.e. half the revenue generated minus the payoff to search. The gains to non-investor
and investor respectively from a non-assortative match are 3− v − w and v − v = 0 respectively, as the
outside option of the investor is assumed binding. Solving these two equations gives (B.1).
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Now NAM requires that v+w ≤ 6, the condition for the outside option of the investor
to be binding is v > 3, and finally the condition that investment occurs in equilibrium is

v − w ≥ 2. The NAM condition requires

6r + 3ε

r + ε
≥ v =

1− ε

1 + r − ε
4 (B.2)

which always holds as long as r ≥ ε. If r = ε, v > 3 if ε ≤ 1
4
. Finally, the investment

condition is

v =
1− ε

1 + r − ε
4 ≥ 7.5 + 1.5(r − ε)

2 + r + ε
(B.3)

This is easiest to evaluate if r = ε, in which case it reduces to ε ≤ 1
4
. So, if r = ε, we have

an overinvestment equilibrium even when up to 1
4
of the agents cannot invest.

C. Proof that λt = λ with Assortative Matching

Let νit be the number of those unmatched at time t of type i. Then, νit follows the

following dynamics

v1t = v1t−1(1− a
v1t−1

v1t−1 + v2t−1
)

v2t = v2t−1(1− a
v2t−1

v1t−1 + v2t−1
)

Explanation: in the first equation, at time t, the probability of exiting the process at

t − 1 is a times the probability of finding a type 1 to match with, which is v1t−1
v1t−1+v2t−1

.

Rearranging, we see that the percentage change in the number of each type in the pool is

the same i.e.
v1t − v1t−1

v1t−1
=

v2t − v2t−1
v1t−1

=
a

v1t−1 + v2t−1
So, the ratio v1t

v2t
must remain unchanged. Thus, λt is constant. So, the search environment

is stationary whether matching is assortative or not.
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Figure 1 – Graph of Net Payoff to Deviant Investor 
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Figure 2 – Equilibrium with Discrete Investments 
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