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1 Laws of scarcity, parameterized collections of
games and equal treatment cores

The importance of the scarcity of a commodity in determining its value in exchange
was already recognized by Adam Smith in the paradox that diamonds, although
used only for adornment, were expensive, while water, essential to human life, was
cheap. This apparent paradox has been much explained in the context of general
equilibrium models of economies with private goods. The current paper! treats the
problem from the perspective of cooperative game theory and demonstrates that if
gains to population size are nearly exhausted, then numbers of players who are similar
to each other and core payoffs respond in opposite directions. The players could be
units of commodities, or people who are endowed with bundles of commodities, or
people who just like to get together in groups for the pleasure of each other’s company.

More precisely, within the context of parameterized collections of games, we obtain
analogues of the celebrated Laws of Demand and of Supply of general equilibrium
theory. Roughly, the Law of Demand states that prices and quantities demanded
change in the opposite directions while, with inputs signed negatively, the Law of
Supply states that quantities demanded as inputs and produced as outputs change
in the same direction as price changes.? In the framework of a cooperative game,
supply and demand are not distinct concepts. Thus, following [36] we refer to our
results for games as Laws of Scarcity. If player types are thought of as commodity
types while payoffs to players are thought of as prices for commodities, our Laws
of Scarcity are closely related to comparative statics results for general equilibrium
models with quasi-linear utilities. As we discuss in a section relating our paper to
the literature, our results extend the literature in several directions.

Games in a parameterized collection are described by certain parameters: (a)
the number of approximate types of players and the goodness of the approximation
and (b) the size of nearly effective groups of players and their distance from exact
effectiveness.® An equal treatment payoff vector is defined to be a payoff vector that
assigns the same payoft to all players of the same approximate type. Our laws of
scarcity demonstrate that equal treatment e-cores satisfy the property that numbers
of players who are similar to each other and equal treatment e-core payoffs respond
in nearly opposite directions; specifically, we establish an ezact upper bound on the
extent to which equal treatment e-core payoffs may respond in the same direction and
this bound will, under some conditions, be small. We actually demonstrate a stronger
result — equal treatment e-core vectors and vectors of numbers of players of each

LA shorter version of the current paper, with fewer results, is [13].

2The Law of Demand therefore rules out “Giffen goods” or treats compensated demands; see
Mas-Colell, Whinston and Green [16], Sections 2.F and 4.C. This volume also provides a very clear
exposition and further references.

3Parameterized collections of games were introduced in [38], [11], [10] and [9].



approximate type satisfy cyclic monotonicity.* In addition to cyclic monotonicity, we
demonstrate a closely related comparative statics result: When the relative size of a
group of players who are all similar to each other increases, then equal treatment e-
core payoffs to members of that group will not significantly increase and may decrease.

The conditions required on a game to obtain our results are that (i) each player has
many close substitutes (a thickness condition) and (ii) almost all gains to collective
activities can be realized by groups of players bounded in size (a form of small group
effectiveness - SGE). The first condition is frequently employed in economic theory.
The second condition may appear to be restrictive, but in fact, if there are sufficiently
many players of each type, then per capita boundedness (PCB) — finiteness of the
supremum of average payoff — and SGE are equivalent.” Our results yield explicit
bounds, in terms of the parameters describing the games, on the maximal deviation
of equal treatment e-core payoffs from satisfying exact monotonicity. Moreover, our
framework allows some latitude in the exact specification of approximate types. These
two considerations suggest that in principle our results can be well applied to estimate
the effects on equal treatment e-core payoffs of changes in the composition of the
total player set. Note that all the bounds we obtain are exact, and depend on the
parameters describing the games and on the ¢ of the e-core.

Our results also contribute to a literature relating games, markets and clubs. An
advantage of the framework of cooperative games over detailed models of economies
is that models of games can accommodate the entire spectrum from games derived
from economies with only private goods to games derived from economies with pure
public goods. Thus, it is of interest to determine conditions on games ensuring
that they are ‘market-like’ — that they satisfy analogues of well known properties of
competitive economies. Important papers in this direction include Shubik [30], which
introduced the study of large games as models of large private-goods economies,
Shapley and Shubik [29], which demonstrated an equivalence between markets and
totally balanced games, and Wooders [36],[37] demonstrating that games with many
players are market games. Further motivation for the framework of cooperative games
comes from Buchanan [1], who stressed the need for a general theory, including as
extreme cases both purely private and purely public goods economies and the need
for “a theory of clubs, a theory of cooperative membership.”

For our results characterizing e-cores of games to be interesting, it is important
that under some reasonably broad set of conditions, e-cores of large games are non-
empty. Since Shapley and Shubik [28] showing nonemptiness of approximate cores of

4Cyclic monotonicity relates to monotonicity in the same way as the Strong Axiom of Revealed
Preference relates to the Weak Axiom of Revealed Preference (see, for example, Richter [20], [21]).

SThis is shown for “pregames” in [37], Theorem 4. Per capita boundedness and small group effec-
tiveness were introduced as conditions limiting returns to coalition size in the study of large games
in Wooders [33],[34], [35] where both nonemptiness of approximate cores and the equal treatment
property of cores and other properties of large games were investigated.



exchange economies with many players and quasi-linear utilities and Wooders [32],
[34], showing nonemptiness of approximate cores of game with many players with and
without side payments, there has been a number of further results. For parameterized
collections of games, such results are demonstrated in [9], [10], [11] and [38]. Impor-
tantly, in [10] equal treatment e-cores of games with side payments are also shown to
be nonempty. The interest of our monotonicity results is further enhanced by results
showing that approximate cores have the equal treatment property; in this regard,
note that [36] shows that approximate cores of large games treat most similar players
nearly equally.® In this paper we present an equal treatment result for the “base
case” of games with strictly effective small groups. In research in progress, further
equal treatment results are demonstrated for parameterized collections of games.

In the next section we define parameterized collections of games. In Section 3,
the results are presented. Section 4 consists of an example, applying our results to
a matching model with hospitals and interns. Section 5 further relates the current
paper to the literature and concludes the paper. In Appendix A we prove that the
bounds cannot be tightened. In Appendix B, for the convenience of the reader we
describe the pregame framework of the prior literature and make some connections
to the framework of parameterized collections of games.

2 Cooperative games

Let (N, v) be a pair consisting of a finite set N, called the player set, and a function v,
called the characteristic function, from subsets of N to the non-negative real numbers
with v(0) = 0. The pair (N,v) is a game (with side payments or a TU game). Non-
empty subsets of N are called coalitions or groups. A game (N, v) is superadditive if
v(S) = >, v(S*) for all groups S C N and for all partitions {S*} of S.

In games and economies where the realization of maximum total payoff may re-
quire that a group of players sub-divide into smaller coalitions, superadditivity does
not necessarily hold. If, however, a game is essentially superadditive, that is, a pos-
sibility open to a group S is to divide into subgroups and achieve the total payoft
realizable by the subgroups, it is natural to apply solution concepts such as the core
and approximate cores to the superadditive cover. (See Lemma 0 below.) Thus, we
define the superadditive cover (N, v*) of the game (NN, v) where:

v*(S) ' max v(SF)
k

and the maximum is taken over all partitions {S*} of S. Our results apply to both
superadditive games and to superadditive cover games.

6These results extend prior results for sequences of games with a fixed distribution of player types
in [32], [33], [34] and [31].



Given a nonnegative real number 6 > 0, two players ¢ and j are d-substitutes if
for all groups S C N with i,5 ¢ S, it holds that

[o(SU{i}) —o(SU{7}] <6

When 6 = 0, players ¢ and j are exact substitutes.

2.1 Parameterized collections of games

O—substitute partitions In our approach we approximate games with many players,
all of whom may be distinct, by games with player types. This extends the prior
model for pregames since the assumption of a compact metric space of player types
is not required.

Let (N,v) be a game and let § > 0 be a non-negative real number. Informally, a
O-substitute partition is a partition of the player set N into subsets with the property
that any two players in the same subset are “within 6” of being substitutes for each
other. That is, if all players in a coalition are replaced by é-substitutes, the payoff to
that coalition changes by no more than § per capita. Formally, a partition { N [¢t]} of N
into subsets is a d-substitute partition if all players in each subset are d-substitutes for
each other.” The set N [t] is interpreted as an approzimate type. Note that in general
a O-substitute partition of N is not uniquely determined. Moreover, two games, say
(N,v) and (N, v’), may have the same partitions into é-substitutes but have no other
relationship to each other (in contrast to games derived from a pregame). Examples
are provided at the end of this subsection.

(6,T)- type games. The notion of a (§,T)-type game is an extension of the notion of
a game with a finite number of types to a game with approximate types.

Let 6 be a non-negative real number and let T" be a positive integer. A game (N, v)
is a (6, T")-type game if there exists a T-member d-substitute partition {N [¢t] : t =1,..,T}
of N.

profiles. Profiles of player sets are defined relative to partitions of player sets into
approximate types.

Let 6 > 0 be a non-negative real number, let (N,v) be a game and let
{Nt]:t =1,..,T} be a partition of N into é-substitutes. A profile relative to { N [t]}
is a vector of non-negative integers f € Z1. Given S C N the profile of S is a profile,
say s € Z1, where s, = |[S N N [t]| . A profile describes a group of players in terms of

"The definition of §-substitutes in our prior papers, including [13], is slightly less restrictive but
more complicated.



the numbers of players of each approximate type in the group. Let || f|| denote the
number of players in a group described by f, that is, || f|| = >_ fi.

B-effective B-bounded groups. The following notion formulates the idea of small group
effectiveness, SGE, precisely defined in Appendix B, in the context of parameterized
collections of games. Informally, groups of players containing no more than B mem-
bers are (-effective if, by restricting coalitions to having fewer than B members, the
per capita loss is no more than [3.

Let 8 be a given non-negative real number, and let B be a given integer. A game
(N,v) has -effective B-bounded groups if for every group S C N there is a partition
{S*} of S into subgroups with |S¥| < B for each k and

v(S) — ZU(Sk) < B|S].

k

When ( = 0, O-effective B-bounded groups are called strictly effective B-bounded
groups.

parametrized collections of games I'((6,T'), (3, B)). Let T" and B be positive integers,
let 6 and 3 be non-negative real numbers. Define

I'((6,T),(8,B))
to be the collection of all (6, T")-type games that have f-effective B-bounded groups.

Example 1. The following games illustrate the ideas of a §-substitute partition and
(-effective B-bounded groups. Let N be a finite set of players. Suppose that players
can be ranked in the [0,1] interval so that if 7,7 € N and ¢ > j then ¢ has a higher
rank. We consider three different games, all with the same player set and the same
ranking.

Let (N,v) be a game where the total payoff to any two players is the sum of their
ranks. Suppose also that the payoff v(.S) to any other group S is zero. Then for any
B > 0 and any B > 2, the game has (3-effective B-bounded groups. Given 6 > 0,
if the distance between the ranks of players ¢ and j is less than ¢, then ¢ and j are
8-substitutes, both for the game (N, v) and for the superadditive cover game (N, v®).

To see that there may be other games with the same partitions of the total player
set into é-substitutes, consider another game (N, v') but where the payoff v'({i}) to
player i is equal to his rank and the payoff to any other coalition is the given by the
superadditive cover of v’. Here for any # > 0 and any B > 1, B-bounded groups are
effective and if the distance between the ranks of 7 and j less than ¢, then ¢ and j are
O-substitutes.

Alternatively, let the payoff to any group consisting of two players be the square of
the sum of the ranks of the members of the group (and again take the superadditive

6



cover to create a superadditive game). Then if the distance between the ranks of
players i and j is less than § then i and j are 6% + 46 substitutes.

Example 2. This example serves to illustrate how the framework of parameterized
collections of games allows new insights that may be hidden within the pregame
framework. (Recall that pregames are formally defined in Appendix B.)

Let (N,v) be a game with buyers and sellers, where all sellers sell an identical
product, each seller owns one unit of this product and has a reservation price for the
unit he owns. Suppose that each buyer only wants to purchase at most one unit of
the product and has a reservation price for the unit of product. Suppose that the
reservation prices of the buyers are higher than the reservation prices of the sellers,
so that always there exist some gains from trade, but the maximal gain from trade
is bounded by some constant a. Then for any 6 > 0 the game (N, v) belongs to the
collection I'((8, T5), (0,2)) where T is the smallest integer greater than a/d.

Now consider instead a production game (N, v’) where only two person coalitions
are effective and where the worth of any two person coalition is the sum of the fixed
productivities assigned to these two players and is less than or equal to a. In spite of
the fact that the two games are quite different, the game (IV,v’) also belongs to the
collection I'((8, T5), (0,2)).

To put both these sorts of games within one pregame framework would require a
topology on the space of player types and would require that the pregame is really
just the union of two distinct pregames, one with buyers and sellers and another with
production. Also, although it may be intuitive, the pregame framework does not
make precise the similarities between the games that drive results, stated in terms of
the parameters, applying to both games.

2.2 Equal treatment s-core

the core and e-cores. Let (N, v) be a game and let € be a non-negative real number. A
payoff vector x is in the e-core of (IV,v) if and only if it is feasible, that is, >y Ta <

v(N) and ), o xq > v(S) —|S] for all S C N. When e = 0, the e-core is the core.

Lemma 0. Let (N,v) be a not-necessarily superadditive game and let (N, v*) be its
superadditive cover. Let € > 0 be given. Then if x is a payoff vector in the e-core of
(N,v), then z is in the e-core of (N, v®).

We leave the easy proof of Lemma 0 to the reader.

the equal treatment e-core. Given non-negative real numbers ¢ and 6, we will de-
fine the equal treatment e-core of a game (N, v) relative to a d-substitute partition
{N [t]} of the player set as the set of payoff vectors = in the e-core with the property
that for each ¢ and all ¢ and j in N [¢], it holds that z; = x;.




Our notion of the equal treatment core is motivated by standard economic theory.
All units of a commodity may differ; no two workers have exactly the same fingerprints
or DNA for example. But yet, nonidentical commodities, if sufficiently similar, are
treated as one commodity. The equal-treatment core may be viewed as a stand-in
for the competitive equilibrium where similar items are grouped together as the same
commodity..

For our comparative statics and monotonicity results, we restrict to payoffs in
equal treatment e-cores. As is well known, even with strictly effective small groups
e-cores do not necessarily treat identical players identically. For example, suppose
that (IV,v) is an inessential game where v(S) = |S| for all groups S C N. Then, for
any player i € N, the payoff x € RY where z; = 1+ ¢(|N|—1) and 2; = 1 — ¢ for
all j # 7 is in the e-core.® A number of results, however, have shown that under
the assumption of per capita boundedness and thickness, bounding the percentages
of players of each type strictly away from zero, approximate cores treat most similar
players nearly identically.® The central result is that with strictly effective groups and
sufficiently many players of each type, the core treats identical players identically.'?
We provide a version of this result below for parameterized collections of games with
strictly effective small groups.

Proposition 0. Let (N,v) € I'((6,T), (0, B)). Let z € RY be in the core of (N,v).
Suppose that there are more than B 6-substitutes for each player in the game. Then
if i,j € N and 7 and j are 6-substitutes, it holds that

|Zz' — Zj| S 26.

Proof: The proof of this proposition is essentially the same as the proof of Theorem
3 of Wooders (1983), for NTU games. If 6 = 0 then, for the special case of TU games,
the proof is exactly the same as in the prior paper.

For any S C N let z(S) denote ) o2, From the assumption that groups
bounded in size by B are strictly effective, it holds that for some partition {S*}
of N into groups with |S*| < B for each k,

v(N) — ZU(Sk) = 0.

Therefore, since z is in the core,

D w(SF) =)z =0

8Such examples go back to earliest versions of [32].

9See [32], [31], [36] and [38]. Another related result appears in Kovalenkov and Wooders [9],
where conditions are demonstrated under which all payoffs in approximate cores treat similar players
equally. These conditions hold for NTU games but not for TU games with unlimited side payments.

10Proofs of the more general results in the cited papers follow from “approximating” e-cores by
exact cores of games with admissible sizes of coalitions truncated.




and

2(S*) > v(S*) for each k.

It follows that
2(S*) = v(S*) for each k.

For any i € N let S*(i) denote the member of {S*} containing player i. Now suppose,
for some players ig,jo € N, that iy and jy are 6-substitutes and

Ziy = Zjy > 20.

Let us first show that then there exist two players i1, j; € N, such that ¢; and j; are
S-substitutes, i; ¢ S*(j;) and
Ziy — Zj > 6.

If ig ¢ S*(jo) then 4o, jo are such two players i1, ji. Otherwise, since |S*(jo)| < B
and since there are more than B é-substitutes for each player it holds that there is
some player [ who is a d-substitute for iq and jo, and I ¢ S*¥(jo). Then it follows from
the triangle inequality that either z;, — 2 > 6 or z; — 2, > 6. Thus either g, [ or [,
Jo are such two players iy, j;.

Now let us consider S* = S*(i1) U {j1}\{41}. Since i; and j; are §-substitutes, it
holds that

v(S*) > v(SF(iy)) — 6.

But z(S*) < z(S*(i1)) — § < v(S*) and we have a contradiction to the assumption
that z is in the core. W

With the definition of the equal treatment e-core in hand, we can next address
monotonicity properties and comparative statics for this concept. In the following we
will simply assume the nonemptiness of equal treatment e-cores. With SGE along
with PCB, for € > 0 this assumption is satisfied for all sufficiently large games in
parameterized collections. Such a result appears in [10], [12].

3 Laws of scarcity

A technical lemma is required. For z,y € R”, let z -y denote the scalar product of
xand y, ie. x-y:= Z;le Tl

Lemma 1. Let (N,v) be in T'((6,T), (8, B)) and let (S*,v), (S? v) be subgames of
(N,v). Let {N[t]} denote a partition of N into types and, for k = 1,2, let f* denote
the profile of S* relative to {N[t]}. Assume that ff > B for each k and each t. For
each k, let ¥ € RT represent a payoff vector in the equal treatment e-core of (S, v).
Then

(' —a2?) - fL < (e+6+0) |-

9



Proof: Since (N, v) has [-effective B-bounded groups, there exists a partition {Gw}
of S, such that |G| < B for any £ and }_,v(G"Y) > v(S') — B]|f!]|. Let us denote
the profiles of G by g*. Observe that 3, " = fL.

Since fZ2 > B for each t, it holds that g < f?for each ¢. Therefore for each /
there exists a subset G2 C S? with profile g*. Observe that since both G'* and G2
have profile ¢*, it holds that }1)(Gw) — 1)(G2£)} <é H géH. Since z? represents a payoff
vector in the equal treatment e-core of (S?,v) and G* C S? has profile g, the total
payoff z? - g* cannot be improved on by the coalition G* by more than ¢ ||g*||. Thus,
for each set G2 C S? with profile ¢*, it holds that 22 g* > v(G*) —¢||¢*|| > v(G*) -
(e+0) ||g°||- Adding these inequalities we have 2 f1 > >, v(G*) — (e + 6) || /|| It
then follows that z2 - f! > v(S*) — (e + 6+ 8) || /|-

Since z! represents a payoff vector in the equal treatment e-core of (S',v), z! - f!
is feasible for (S, v), that is, z' - f! < v(S"'). Combining these inequalities we have
(' —2?) - fr<(e+o+B)(f. =

Now we can state and prove our main results.

3.1 Approximate cyclic monotonicity

We derive an exact bound on the amount by which an approximate core payoff vector
for a given game can deviate from satisfying exact cyclic monotonicity. The bound
depends on:

0, the extent to which players within each of T types may differ from being exact
substitutes for each other;

[, the maximal loss of per capita payoff from restricting effective coalitions to contain
no more than B players; and

e, a measure of the extent to which the e-core differs from the core.

Our result is stated both for absolute numbers and for proportions of players of each
type. If exact cyclic monotonicity were satisfied, then the right hand sides of the
equations (1) and (2) below could both be set equal to zero.

Proposition 1. Let (N,v) be in T'((6,7), (3, B)) and let (S*,v), .., (S¥,v) be sub-
games of (N,v). Let {N[t]} denote a partition of N into types and for each k let f*
denote the profile of S* relative to {N[t]}. Assume that fF > B for each k and each

t. For each k, let ¥ € RT represent a payoff vector in the equal treatment e-core of
(S*,v). Then

(z' —a2?) fr 4 (@@ =2 P+ @ =) < (c+6+8) | + 2+ +
1

10



and

1'1—1'2' fl 1,2_1,3. f2 Z’K—Z'l'ﬁ K 5
A T R R 127 IR S

That is, the equal treatment e-core correspondence approximately satisfies cyclic
monotonicity both in terms of numbers of players of each type and percentages of
players of each type.

Proof: From Lemma 1 we have (2% —2F1). f* < (e + 6+ 3) || f*|| for k=1,.., K — 1
and (z% —z') - fX < (e +6+08) || 5] Summmg these inequalities we get (1)

Alternatlvely we have (zF — 2Ff1) . || k|| <(e+é6+p)fork=1,..,K—1 and

(e ~ ")

H fK|| < (e + 6 + ). Summing these inequalities we obtain (2). W
Remark. When K = 2, Proposition 1 implies that

(@' =) (' =) < E+6+8) |+ 7.

This form of monotonicity is typically called simply monotonicity or weak monotonic-
ity.

Note that weak monotonicity does not imply cyclic monotonicity.

Corollary. When K = 2, Proposition 1 implies that

A
TR

That is, the equal treatment e-core correspondence is approximately monotonic.

(z'=2%)-(f'=f*) < (e+6+P8) || /1 + 7] and (&' —27)-( ) < 2(e+6+0).

Note that the bound of Proposition 1 and its Corollary holds for any partition of
the player set into 6-substitutes.

3.2 Comparative statics

For j = 1,..,T let us define ¢/ € R' such that e{ = 1 for | = j and 0 otherwise.
Our comparative statics results relate to changes in the abundances of players of a
particular type.

Proposition 2. Let (N,v) be in T'((6,T), (8, B)) and let (S*,v), (S?,v) be subgames
of (N,v). Let {N[t]} denote a partition of N into types and for each k let f* denote
the profile of S* relative to {N[t]}. Assume that ff > B for each k and each t. For

each k, let z¥ € RT represent a payoff vector in the equal treatment e-core of (S, v).
Then the following holds:

11



(A) If f?2 = f! + me’ for some positive integer m (i.e., the second game has more
players of approximate type j but the same numbers of players of other types)

e I+ 7] 207
+ -—m
22— < (e+6+8)1 L cqs4p) i T
S L AV T
(B) If ﬁ = (1- ,u,)”}c—iH + pel for some p € (0,1) (i.e., the second game has

proportionally more players of approximate type j but the same proportions
between the numbers of players of other types) then

(@ - < c+o+ L

That is, approximately the equal treatment e-core correspondence provides lower
payoffs for players of a type that is more abundant.

Proof: (A): Applying Corollary we get (z* —z')-me? < (e+6+ ) ||f* + f?||. Since

/2 = [|/*]| + m, this inequality implies our first result.
(B): From Lemma 1 we have (1—pu)(z! —2?)- Hﬁll < (1—p)(e+6+3) and similarly

(z? —2t)- ”}C—EH < (e+6+/3). Summing these inequalities we obtain (z? — z!) (Hﬁ—zll —

(1 —pJ)H;—i”) < (2—p)(e+6+3). Thus we get that (22 —z')-pel < (2—p)(e+6+0).
This inequality implies our second result. W

Obviously, again the bounds provided by Proposition 2 are independent of the
specific partition of the player set into d-substitutes.

3.3 Further Remarks.

1. (B) of Proposition 2 is a strict generalization of (A). ((A) follows from (B) for

po= W) We choose to present (A) in addition to (B) since (A) may be more

intuitive. Notice also that although (A) is an immediate consequence of Proposition
1, (B) formally does not follow from Proposition 1.

2. Note that the bounds on the closeness of all our results are computable for a given
game and depend only on the parameters describing the game. In the Appendix we
demonstrate that all the bounds obtained are ezact, that is, they cannot be made
smaller.

3. For ¢ = 8 = 6 = 0 the bounds on the closeness of all our approximation results
equals zero. Thus for games with finite number of player types and strictly effective
small groups (e.g. for matching games with types) we demonstrate that the equal
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treatment core satisfies cyclic monotonicity and when a type becomes more abundant,
players of that type receive (weakly) lower payoffs.

4. The results stated all require that there be at least B players of each type in each
game under consideration. With other notions of approximate cores, specifically, the
e-remainder core and the ei-remainder eo-core, which allow a small percentage of
players to be ignored, it may only be required that there are many substitutes for
most players in the game; we leave the details to the interested reader. See [11] for
definitions and further references.

5. We also leave it to the interested reader to show that results similar to those
herein could be obtained for the strong e-core. This approximate core notion requires
that no group of agents can improve on a given payoff by ¢ in total, that is, given a
game (N,v) and € > 0, a payoff vector z is in the strong e-core of (N, v) if and only
if > en®a < (N) and Y cxq > v(S) — € for all S C N. For strong e-cores, the
goodness of the approximation improves.

6. In the context of a pregame, as noted earlier, when there are sufficiently many
players of each type in the games, then small group effectiveness, SGE, and per
capita boundedness, PCB, are equivalent but, in the context of parameterized collec-
tions of games, this equivalence no longer holds. SGE, introduced in Wooders ([35],
36], [37]),'! is a relaxation of “minimum efficient scale,” MES (Wooders [34]). MES
dictates that all gains rather than almost all gains to improvement can be realized
by groups of players bounded in size.'> As indicated already by the techniques of
Wooders ([33],[34]), when there are sufficiently many players of each type present in
the games, sequences of games derived from a pregame satisfying PCB can be ap-
proximated by games satisfying MES. (In fact, Shubik and Wooders [31] suggestively
call PCB near minimum efficient scale.) This is very useful in proving various re-
sults since games satisfying MES are especially tractable. It is noteworthy that the
results of the current paper do not depend on PCB — a parameterized collection of
games does not necessarily have bounded average payoffs. Consider, for example, the
collection of games where all players are identical, two-player coalitions are effective,
and the per-capita payoff to a two-person coalition in any game in the collection
equals the number of players in the game. Clearly, without any loss, coalitions can
be restricted to have no more than two players and, even though per capita payoffs

1A condition closely related to SGE appears in Wooders and Zame [41]. There, to obtain one of
their results, the authors assume that almost all gains to improvement can be realized by groups of
players bounded in absolute size. An equivalence between this condition and SGE is demonstrated
in [36].

I2MES has also been called strict small group effectiveness. For pregames with side payments
it is equivalent to the “exhaustion of gains to scale” in Scotchmer and Wooders [26] and to the
“0-exhaustion of blocking opportunities” in Engl and Scotchmer [4],[5].
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are unbounded, our results apply to all the games in the collection. Thus, the crucial
property is SGE.

7. Cyclic monotonicity has appeared in several papers in economics; see, for example,
Kusomoto [14], Epstein [6] and Jorgenson and Lau [7]. All these papers address
duality theory in models of private goods economies. Kusomoto’s also provides some
more general treatment.

4 Matching hospitals and interns; An example

Given the great importance of matching models (see, for example, Roth and So-
tomayor [25] for an excellent study and numerous references to related papers), we
present an application of our results to a model of matching interns and hospitals.
Our example is highly stylized. For a more complete discussion of the matching
interns and hospitals problem, we refer the reader to Roth [24].

The problem consists of the assignment of a set of interns Z = {1,..,4,..,1} to
hospitals. The set of hospitals is H = {1,..,h,..,H}. The total player set N is
given by N = Z|JH. Each hospital h has a preference ordering over the interns
and a maximum number of interns I(h) that it wishes to employ. Interns also have
preferences over hospitals. We’ll assume I(h) < 9 for all h € H. This gives us a bound
of 10 on the size of strictly effective groups (5 = 0). For simplicity, we’ll assume that
both hospitals and interns can be ordered by the real numbers so that players with
higher numbers in the ordering are more desirable. The rank held by a player will
be referred to as the player’s quality. More than one player may share the same rank
in the ordering. In fact, we assume that the total payoff to a group consisting of a
hospital and no more than nine interns is given by the sum of the rankings attached
to the hospital and to the interns. Let us also assume that the rank assigned to any
intern is between 0 and 1 and the rank assigned to any hospital is between 1 and 2.
Thus, if the hospital is ranked 1.3 for example and is assigned 5 interns of quality .2
each, then the total payoff to that group is 2.3.

Since all interns have qualities in the interval [0, 1) and similarly, all hospitals have
qualities in the interval [1,2], given any positive real number ¢ = % for some positive

integer n we can partition the interval [0, 2] into 2n intervals, [0, %), . [%, %), . [2”7:1 ,2],
each of measure % Assume that if there is a player with rank in the jth interval,
then there are at least 10 players with ranks in the same interval.

Given € > 0, let z! represent a payoff vector in the e-core that treats all interns
with ranks in the same interval equally and all hospitals with ranks in the same
interval equally (that is, ! is equal treatment relative to the given partition of the
total player set into types). Let us now increase the abundance of some type of
intern that appears in N with rank in the jth interval for some j. We could imagine,

for example, that some university training medical students increases the number of
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type j interns by admitting more students from another country. Let z? represent
an equal treatment payoff vector in the e-core after the increase in type j interns. It
then holds, from result (A) of Proposition 2 that

2 1 L+ 2
mm) =)
Of course this is not the most general application of our results — we could increase
the proportions of players of one type by reducing the numbers of players of other
types. Then part (B) of our Proposition could be applied.

It is remarkable that our results apply so easily. For this simple sort of example, it
is probably the case that a sharper result can be obtained. This is beyond the scope
of our current paper, however. Research in progress considers whether sharper results
are obtainable with assortative matching of the kind illustrated by this example — that
is, where players can be ordered so that players with higher ranks in the orderings
are superior in terms of their marginal contributions to coalitions.

Finally, the parameter values that we have used in this example were chosen
for convenience and simplicity. In principle, these could be estimated and various
questions addressed. For example, are payoffs to interns approximately competitive?
Do non-market characteristics such as ethnic background or gender make significant
differences to payofts?

5 Relationships to the literature and conclusions

5.1 Relationship to the literature on matching markets

Our results may be viewed as a contribution to the literature on comparative statics
properties of solutions of games. As noted by Crawford [2], the first suggestion of the
sort of results obtained in this paper may be in Shapley [27], who showed that in a
linear optimal-assignment problem the marginal product of a player on one side of
a market weakly decreases when another player is added to that side of the market
and weakly increases when a player is added to the other side of the market. Kelso
and Crawford [8], building on the model of Crawford and Knoer [3], show that, for a
many-to-one matching market with firms and workers, adding one or more firms to
the market makes the firm-optimal stable outcome weakly better for all workers and
adding one or more workers makes the firm-optimal stable outcome weakly better for
all firms. Crawford [2] extends these results to both sides of the market and to many-
to-many matchings.'®> In contrast to this literature, our results are not restricted to
matching markets and treat all outcomes in equal treatment e-cores. Moreover, we
demonstrate cyclic monotonicity. Instead of the assumptions of “substitutability” of

13 And also to pair-wise stable outcomes but this is apparently not so directly related to our paper.
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Kelso and Crawford [8], however, we require our thickness condition and SGE. Unlike
[8] and [2], our current results are limited to games with side payments — we plan to
consider this limitation in future research.

Note that our results imply a certain continuity of comparative statics results
with respect to changes in the descriptors of the total player set. In particular,
the results are independent of the exact partition of players into approximate types.
Specifically, given a number 1" of approximate types and a measure of the required
closeness of the approximation, subject to the condition that players of each type are
approximate substitutes for each other, our results apply independently of exactly
where the boundary lines between types are drawn. Suppose, for example, that we
wished to partition candidates for positions as hospital interns into three categories
— say “good,” “better” and “best.” It may be that there is more than one way to
partition the set of players into these categories while retaining the property that all
players in each member of the partition are approximate substitutes for each other;
the exact partition does not affect the results. Relating this feature of our work to
general equilibrium theory, a finite set of commodities is typically considered to be
an approximation to the real-world situation that all units of each commodity may
differ. Descriptions of commodities are incomplete and a “commodity” is a group of
objects that satisfy the description. For example, models of labor markets may have
two types of workers, “skilled” and “unskilled” but no two workers (or two loaves of
bread, or two oranges) may be exactly identical. In the differentiated commodities
literature, results addressing this problem show that prices are continuous functions
of attributes of commodities (cf., Mas-Colell [15]). Since our framework does not
require a topology on the space of player types, continuity takes a different but valid
form and is more directly apparent.

5.2 Relationship to the literature on pregames

Besides the matching literature, our results are related to prior results obtained within
the context of a pregame, cf. [32], [36]. A pregame specifies a set of compact metric
space of player types and a single worth function, assigning a worth to each finite
list of attributes (repetitions allowed). (Recall that precise definitions appear in Ap-
pendix B.) Since there is only one worth function, all games derived from a pregame
are related and, given the attributes of the members of a coalition, the payoff to that
coalition is independent of the total player set in which the coalition is embedded;
widespread externalities are not allowed. In contrast, our results apply to given games
and, as in the earlier results for matching models, there is no requisite topological
structure on the space of players types. While our results for a given game hold for
all games in a collection described by the same parameters, there are no necessary
relationships between games. For example, consider the collection of games where
two-player coalitions are effective and there are only two types of players. This collec-
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tion includes two-sided assignment games, such as marriage games and buyer-seller
games, and also games where any two-player coalition is effective. There appears
to be no way in which one pregame can accommodate all the games in the collec-
tion. These considerations indicate that the framework of parameterized collections
of games is significantly broader than that of a pregame.'*

In the context of pregames under conditions roughly equivalent to those of Wood-
ers [32] — that all gains to coalition formation can be exhausted by coalitions bounded
in size — a proof of the comparative statics result and weak monotonicity of core pay-
offs was provided in Scotchmer and Wooders [26]. Wooders [35],[36] extended the
monotonicity analysis of Scotchmer and Wooders to hold for arbitrary changes in
abundances of players of each type in games satisfying SGE and made the connection
to the Law of Demand of economic theory (cf., Hildenbrand 1994). Engl and Scotch-
mer [4],[5] extended the comparative statics analysis of Scotchmer and Wooders to
hold for proportions of players of each type and further addressed the relationships
between weak monotonicity and the Law of Demand. All of these results, unlike
the matching literature, require a fixed set of player types (or a fixed finite set of
attributes of players and a single worth function defined over these attributes). The
major difference between the results of these papers and those of the current paper
are that our assumptions and results (a) treat more general collections of games, (b)
apply to individual games, and (c) apply uniformly to all games described by the
same parameters.

A major advantage of our approach over the prior approach using pregames is that,
except for the special case of pregames satisfying strict small group effectiveness (or, in
other words, ‘exhaustion of gains to scale by coalitions bounded in size’) with a finite
number of exact types, the conditions used in the prior literature cannot be verified for
any finite game.'® That is, since the conditions are stated on the worth function of the
entire pregame, which includes specification of the worths of arbitrarily large groups,
or on the closeness of the worth function to the limiting per capita utility function, it
is not possible to determine whether the conditions are satisfied. In contrast, given
any game, values of parameters describing that game can be computed.!©

Another major advantage of our approach is that we provide exact bounds, in

14 A short survey discussing parameterized collections of games and their relationships to pregames
appears in [39].

15 Strict small group efectiveness dictates that all gains to coalition formation can be realized by
partitioning the total player set, no matter how large, into coalitions bounded in size. This condition
was introduced in Wooders [32] (condition *) and, for NTU games, in Wooders [34], where it was
called “minimum efficient scale.”

16Since there may be many but a finite number of coalitions, in fact determining the required
sizes of 6 and T, # and B may be time-consuming but it is possible. In contrast, to verify that a
pregame satisfies SGE or PCB requires consideration of an infinite number of payoff sets or, even
more demanding, a limiting set of equal treatment payoffs. (In Engl and Scotchmer [4], per capita
boundedness is stated in terms of finiteness of limiting equal treatment payoffs.)
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terms of the parameters describing a game, on the amounts by which equal treatment
e-core payoff vectors can differ from satisfying cyclic monotonicity. We are unaware
of any comparable results in the literature. The prior literature does not indicate
the sensitivity of the results to specifications of bounds on group sizes and of types
of players. Such an analysis is important for empirical testing since, in fact, few
commodities are completely standardized. (This may be especially true in estimating
hedonic prices as in Rosen 1978,1986 and more recent literature.) Nor does the prior
literature provide empirically testable conclusions on approximate monotonicity or
comparative statics.

5.3 Relationship to the literature on attribute games

One interpretation of a game with side payments, common in the literature, is to re-
gard the players in the game as commodities or inputs. We call this an attribute game
and the equal treatment core is called the attribute core.!” Our results immediately
apply to attribute games.

For a simple example, consider a glove game where each player is a RH glove
or a LH glove and the payoft to a coalition consisting of n; RH glove players and
ny LH glove players is ¥(nq,n9) := min{ny,ns}. Suppose that in total, there are
fi RH gloves and f, left hand gloves. Our laws of scarcity apply equally well to
this interpretation of a game. Note that this game is a member of the collection
£((0.2), 0.2)).

If ownership of bundles of commodities is assigned to individual units (teams or
divisions within a firm in the literature on subsidy-free pricing or endowments of
individual consumers of commodities in the exchange economy interpretation), then
another cooperative game is generated. In this game, essentially some players in the
original game are “syndicated,” glued together to become one player.

From the data given above, we can construct games where players may be endowed
with bundles of gloves. By endowing players in this game with various numbers of RH
gloves and LH gloves, we create another game with possibly several types of players.
For specificity, suppose:

1. my players of type 1 are endowed with two right hand gloves each;
2. my players of type 2 are endowed with a RH glove and;

3. mg players of type 3 are endowed with a LH glove.

For consistency, it must hold that 2m; + my = f; and m3 = fo. (Of course
this is only one of many possible games that could be constructed.) Now it is not

170f course this simply gives a name to familiar concepts. The equal-treatment core of a game
goes back to some of the first papers introducing the core, cf. Shubik [30].
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so immediate that our main results can be applied. However, from the data given,
with the three possible endowments of gloves given by 1-3 above, we can determine
a number of types T" and a bound B so that the game constructed, say (M, w), is
a member of the collection I'((0,7), (0, B)). It is immediate that 7" = 3. It is fairly
obvious and we leave for the reader to verify that B = 3 suffices; the largest coalitions
that need form in realizing all gains to collective activities consist of one player of
type 1 and two players of type 3. Thus, we have that (M, w) € I'((0, 3), (0, 3)) and our
comparative statics and monotonicity results apply to the games in I'((0, 3), (0, 3)).

5.4 Relationship to the literature on general equilibrium

The class of economies treated in the current paper could be considered as a gener-
alization of the standard competitive model by Arrow-Debreu-McKenzie. Moreover
we treat the equal treatment e-core as a “stand-in” for the competitive equilibrium
in the general context of the cooperative game theory. Hence, if player types are
thought of as commodity types while payoffs to players are thought of as prices for
commodities, as in the above subsection, our Laws of Scarcity are closely related to
comparative statics results for general equilibrium models.

Indeed, Nachbar [17] has established conditions under which in a general equi-
librium model the inner product of endowment changes and normalized competitive
equilibrium price changes is negative.!® The conditions are that (a) the general equi-
librium version of Law of Demand holds and (b) goods are normal. The further
limitation of Nachbar’s result is that the normalization have to be a very specific and
unusual. However in case of quasi-linear utility which corresponds to the case of games
with side payments treated in the current paper both conditions (a) and (b) are satis-
fied and normalization became a natural one with a price of numeraire commodity set
to one. Thus for quasi-linear utilities Nachbar’s result implies a negative monotonic-
ity relation between endowment changes and equilibrium price changes. The results
of the current paper show the robustness of this monotonicity conclusion. More
precisely our paper considers economies more general than Arrow-Debreu-McKenzie
model and identifies conditions that ensure approximate negative monotonicity of
payofts in the equal treatment e-core with respect to endowment changes.

5.5 An intuition behind the results

Numerous examples of games derived from pregames may lead one to expect our
comparative statics result. Consider a glove game, for example where the payoft
function can be written as u(z,y) = min{z,y}. Suppose initially that the number
of RH gloves, say z, is equal to the number of LH gloves, y, and both x and y

18This result was generalized independently by Nachbar [18] and Quah [19] to allow discrete
changes.
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are greater than one. Then the equal-treatment core can be described by the set
{(ps:py) € R : p, + p, = 1}; each RH glove is assigned p, and each LH glove is
assigned p, and a pair of gloves is assigned 1. Now increase the number of players
with RH gloves. The equal treatment core is now described by {(0,1)}; each RH
glove is assigned 0 and each LH glove is assigned 1.

In games with a finite set of player types, defining the core via linear programming
also leads to a law of scarcity, quite immediately. Let (IV,v) be a game with a finite
number 7' of player types and with m; players of type ¢, t = 1,...,T. We take v as
a mapping from subprofiles s of m (s € Z¥, s < m). Then, following Wooders [32],
consider the following LP problem?!’:

minimize,>g p-m
subject to p-s > v(s) for all s <m

If the game has a nonempty core, then the solution p* satisfies v(m) = p* - m. Now
consider the same problem but with an increased number of players of type t in the
objective function for some t € {1,...,T}. Assume that the same inequalities are the
only constraints; this imposes a form of strict small group effectiveness on the game
— only groups with profiles s < m are effective. It is clear that the payoft to players
of type t will not increase with the increase in the number of players of that type in
the objective function since the constraint set has not changed — the payoft to type t
can only decrease. This suggests some of the initial intuition underlying comparative
statics results for games.

6 Appendix A: Exact bounds

We construct some sequences of games to demonstrates that all the bounds we ob-
tained in our results are ezxact, that is, the bound cannot be decreased.

I). Let us concentrate first on the central case 6 = § = 0. Consider a game (N, v)
where any player can get only 1 unit or less in any coalition and there are no gains to
forming coalitions. This game has strictly effective 1-bounded groups and all agents
are identical. Formally, however, we may partition the set of players into many types.
Thus (N,v) € I'((0,7),(0,1)) for any integer 7, 1 < 7 < |N|. Notice also that for
any € > 0 the e-core of the game is nonempty and very simple: it includes all payoft
vectors that are feasible and provide at least 1 — ¢ for each of the players. All the
games that we are going to construct will be subgames of a game (N, v).

a). For the bound in Lemma 1 we can present even a single game with two payoffs
vectors that realize this bound. Namely, let 7 = 1 (all players are of one type) and

9The core has been described as an outcome of a linear programming problem since the seminal
works of Gilles and Shapley. Wooders [32] introduces the linear programming formulation with

player types.
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let us consider any two Subgames S1,8% with the same number of players and the
equal treatment payoffs ! =1 and 22 =1 — . Then (2! — z?) - f! =¢||f!]|.

b). For the bound in Proposition 1, for K < |N| and some nonnegative integer
| < |N| — K, let us consider 7 = K and the subgroups S!,.., S with the profiles
f L., f¥ where ff =1+1 for t = k and 1 otherwise. Let also consider payoff vectors
z® Where xf =1 for t = k and 1 — ¢ otherwise. Then (z° — 7). f* = &l for any i # j.
Hence

(z'=2®) [l (@ =) P+ + (@ =) ff=elK=¢|f'+ P+ .+ || —=
1 2 K

1 $2) f ( 2 ZL‘3) f f = Ke—m !
[Tl 1721 [T I+K
It is straightforward to verify that for any fixed K both our bounds in Proposition
2 can not be improved for sequences of games (N,v), with |N| going to infinity, for
subgames constructed as above with [ going to infinity.

c¢). For the bound in Proposition 2 it is enough to concentrate on (A) since it is
a special case of the result (B). For |N| > 2 let us consider 7 = 2 and [ < |N| — 2.
Then consider the subgroups S*, S? with the profiles f! = (1,1) and f2 = (I +1,1)
and payoff vectors 2! = (1 —¢,1) and 22 = (1,1). Then

_
BNTEE Ay

It follows that both our bounds in Proposition 2 can not be improved for sequences
of games (N, v), with |N| going to infinity, for subgames constructed as above with [
going to infinity.

IT). It is easy to modify our example to allow for non-zero § and 3 in a such a way
that we will have the same profiles as in Part I, but will use the payofts of 1 + 6 4
and 1 —¢ instead of 1 and 1—¢. This will lead us to the appearance of €46+ (3 on the
places of ¢ in all bound in Part I. We leave it as a simple exercise for the interested
reader.

Z+K

and (x + .+ (E =Y.

(a2 = ah) =

7 Appendix B: Pregames

In this appendix, for the convenience of the reader in comparing the concepts and in
evaluating the contribution of this paper, we review the concept of a pregame.

Let 2 be a compact metric space, interpreted as a set of player “types” or at-
tributes. A profile on §2, interpreted as a description of a group of players in terms
of numbers of players of each type in the group, is a function f from € to the set 7,
of nonnegative integers for which the support o(f) of f, given by

o(f) ={we Q: fw) # 0},
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is finite. A profile is simply a function f from €2 to the nonnegative integers with the
property that f(w) # 0 for only a finite number of elements w in 2. For each w € €2, we
interpret f(w) as the number of players of type w or, in other words, with attributes
w, in the group of players described by f. The set of profiles on () is denoted by
P(Q). We write f < g if f(w) < g(w) for each w in Q.

By the norm of a profile, we mean

IFl=">" fl),

wea(f)

which is simply the number of players in a group represented by f. This is a finite
sum since f has finite support.

A pregame is a pair (2, ¥) where (2 is a compact metric space, called the space of
attributes and ¥ : P(Q2) — R, called the characteristic function (of the pregame), is
a function with the following properties:

(a) W(0)=0;

(b) given any € > 0 there is a § > 0 such that
for each pair of player types w; and wy with dist(wy,ws) < 6
it holds that |U(f + w1) — Y(f + we)| < € (continuity);

() W(f)+¥(g) < YU(f + g) for all profiles f and g, and;

The first condition means that zero players can realize nothing. The second is that
players with similar attributes are nearly substitutes. The third expresses the idea
that an option open to a group is to split into several smaller groups.

We frequently refer to the elements of €2 as “types”. Players of the same type are
substitutes.

7.1 Games induced by pregames

To derive a game from a pregame (2, V), we specify a finite set N and a function
a: N — Q, called an attribute function. With any subset S of N we can then
associate a profile, prof(al|S), given by

prof(e]S)(w) = la (w) N S|.

The profile prof(a|S)(w) simply lists the numbers of players of each type in the subset
S. We have now determined a game (N, v,) where

va(S) = ¥(prof(alS))
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for each S C N. Let n = prof(a|N). An equal treatment payoff is a function x : Q —
R, . An equal treatment payoft assigns the same value to all players of the same type.
The payoft x is feasible for n if

> n(w) z(w) < U(n).

weo(n)

For ease in notation, given a profile f and an equal-treatment payoff « define z(f) by

2(f)= Y flw)zw)
)

weo(f

Let f be a profile. When Y f* = f for some collection of profiles f, ..., fX, not
necessary distinct, we say that the collection is a partition of f and each member
of the collection is called a subprofile of f. Obviously, a partition of a profile is
related to a partition of a set of players. If (N,v,) is a game derived from (€2, ¥), and
{S1, ..., Sk} is a partition of N, then

{f*:prof(alSy) = fF k=1,...,K}

is a partition of prof(a|N).

7.2 Small Group Effectiveness

A pregame (2, V) satisfies small group effectiveness, (SGE), if for each positive real
number 3 > 0 there is an integer 7;(3) such that for each profile f, for some partition

{ff}of f:
(a) |If*]l < n1(B) for each profile f* in the partition,
(b) U(f) =22 ¥ (f*) < BISI-

Small group effectiveness means that given a measure of per capita approximation (a
B > 0) there is an absolute bound on group sizes with the property that almost all
gains to collective activities can be realized by groups of players smaller in size than
that bound, that is, bounded group sizes nearly exhaust all gains to scale of collective
activities.

Let (€2, U) satisfy small group effectiveness and let 3 and 7, (/) satisfy the condi-
tion of the definition of SGE. Then it is immediate that any game generated by the
pregame has (-effective 7;(f)-bounded groups. Since €2 is a compact metric space it
holds that given 6 > 0 we can partition €2 into a finite number 7" of subsets so that
all players with attributes in each subset are 6-substitutes. Thus, all games derived

from (2, W) are in the collection I'((6,T"), (3, B)).
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When games are required to have many substitutes for each player, small group
effectiveness is equivalent to per capita boundedness. A pregame (2, V) satisfies per
capita boundedness if there is a constant A such that

M < A for all profiles f € P(2).

1/l
The following result holds more generally but is proven for the case where €2 is a finite
set.

Wooders 1994b, Econometrica, Theorem 4. With “thickness,” SGE=PCB.
(1) Let (T, ¥) be a pregame satisfying SGE. Then the pregame satisfies PCB.
(2) Let (T, ¥) be a pregame satisfying PCB. Then given any positive real number
p, construct a new pregame (7', ¥,) where the domain of ¥, is restricted to profiles
f where, for each t = 1,-- -, T, either ﬁ > por f; = 0 (thickness). Then (T',¥,)
satisfies SGE on its domain.

The equivalence, with thickness, of small group effectiveness with per capita
boundedness indicates that SGE is an apparently mild yet powerful condition. But,
as we see above, if a pregame satisfies SGE then, given 3 > 0, for appropriate choice
of 6 and T it holds that all games generated by the pregame belong to a parame-
terized collection of games I'((6,T), (3, B)). Thus, our conditions on parameterized
collections of games are less restrictive than those on pregames (as in Wooders and
Zame [40], who use a stronger condition than SGE or in Wooders [37],[35]) and, with
thickness, less restrictive than the earlier condition of PCB.

The concept of small group effectiveness requires that almost all feasible gains
to collective activities can be achieved by groups bounded in absolute size. A re-
lated concept requires that almost all improvement be feasible for groups bounded in
absolute size. A pregame (2, V) satisfies small group effectiveness for improvement
if for each positive real number ¢ > 0 there is an integer 72(¢) with the following

property:
For any profile f and any payoff function z : o(f) — Ry
if (f) + €|/ f]] < ¥(f) then there is a subprofile g of f such that

lgll < ma(e) and z(g) + 5 [lg]] < ¥(g).

The pregame framework may also hide what makes the results work — the facts
that there are many close substitutes for most players and that groups bounded is
size can nearly exhaust gains to collective activities. In addition, since the pregame
framework specifies payoffs for all groups, no matter how large, in general it is diffi-
cult, if not impossible to estimate the pregame function W. In contrast, within the
framework of parameterized collections, there are only four parameters to be esti-
mated — 6,7, 3, and B. The notion of (-effective B-bounded groups makes explicit
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how close coalitions bounded in size by B are to being able to realize all gains to
collective activities for a given game.
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