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1 Introduction

The classic results of Gibbard [6] and Satterthwaite [13] have shown that unless preferences

are restricted, the only decentralized mechanism which induces truth-telling behaviour by in-

dividual agents is the dictatorial one. This impossibility result has induced a huge literature

which analyzes the possibility of constructing strategy-proof mechanisms under various alter-

native frameworks. One variant, due to Gibbard [7,8], which is the main focus of this paper

is the extension of the original impossibility result to mechanisms which assign a probability

distribution over the set of feasible outcomes for each profile of preferences. Gibbard [7]

characterized the class of such strategy-proof probabilistic mechanisms or decision schemes.

He showed that a strategy-proof decision scheme must be a convex combination of duples

and unilaterals. A duple is a mechanism which assigns positive probability to at most two

alternatives, the pair of alternatives being independent of the profile of preferences, while

a unilateral is one where the preference ordering of a single individual dictates the social

lottery over feasible alternatives. 1

Such mechanisms need not satisfy even a weak form of efficiency. That is, even if all

individuals unanimously prefer an alternative a to all other alternatives, the mechanism need

not assign a probability of one to a. The only strategy-proof mechanisms satisfying even this

weak form of efficiency are random dictatorships, in which each individual is assigned a fixed

probability of being a dictator - fixed in the sense that these probabilities are independent

of the preference profile. Duggan [3] and Nandeibam [10] provide alternative proofs of the

random dictatorship result, while Dutta et al. [4] show that the random dictatorship result

holds even if the feasible set of alternatives is some convex set in <k (with k > 1), and

preferences are strictly convex and continuous with a unique peak.2

In the original Gibbard [7,8] framework, the decision scheme used only ordinal information

about individual preferences. However, Gibbard assumed that individual preferences were

represented by von Neumann-Morgenstern utility functions since these functions were used

to rank alternative probability distributions. Thus, the assumption that the decision scheme

can use only ordinal information about preferences imposed a strong invariance requirement

on the aggregation rule. In order to appreciate the strength of the invariance requirement, we

point out that strategy-proof ordinal decision schemes must satisfy a “local” property. That

is, suppose that a voter changes her preference by “switching” two contiguous alternatives. In
1See Barbera [1,2] for related characterizations of strategy-proof probabilistic mechanisms.
2See also Ehlers et al. [5].
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the ordinal context, strategy-proofness will immediately imply that only the probabilities of

the two alternatives being switched are affected. This is a property with strong implications

and considerably simplifies the task of characterizing strategy-proof ordinal decision schemes.

In contrast, if a strategy-proof decision scheme utilizes cardinal information, then a change

in the utility of a single alternative for a voter could in principle, have a “global” impact,

that is, the probability of all alternatives could be affected. This makes the analysis in the

cardinal model far more difficult.

Despite this difficulty, Hylland [9], in an important and regrettably unpublished paper,

showed that the random dictatorship result holds even if the decision scheme is allowed to

use cardinal information. In this paper, we have two main objectives. First, we provide

an alternative and considerably simpler proof of Hylland’s theorem.3 Second, we consider

a framework where essentially individuals cannot discern infinitesimally small differences in

utility. In particular, we assume that if an alternative a is strictly preferred to another

alternative b, then the utility difference between a and b is at least some fixed number which

we refer to as the grid size. We construct an example to show that the random dictatorship

result no longer holds when individual utility functions satisfy this additional restriction. We

then analyze the consequences of gradually reducing the grid size. That is, we consider an

arbitrary sequence of strategy-proof and unanimous decision schemes defined on a sequence

of decreasing grid sizes approaching zero. We obtain a ‘limit’ random dictatorship result in

the sense that the sequence of such decision schemes must converge to a random dictatorship

for all profiles for which the limit exists.

2 The Model

Let A = {a1, a2, . . . , aM} be a finite set of alternatives, with M ≥ 3. A lottery λ is a

probability distribution over the set A, and can be identified with an M -vector whose jth

component λj denotes the probability that λ assigns to aj ∈ A. Clearly every component of

λ is non-negative and the sum of the components is 1. The set of lotteries is denoted by L.

The set of voters will be denoted by I = {1, 2, . . . , N}. Each voter i has a preference

ordering Ri over the elements of the set A. The ordering Ri is represented by an admissible

utility function ui, which is unique up to affine transformations. We normalize utility func-

tions by assuming that the utility of the maximal element, which is assumed to be unique,
3Nandeibam[11] has recently provided another proof of the Hylland result.
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is one, while the utility of the worst element is zero. We do not require distinct alternatives

to have distinct utility levels (i.e. it is not required that Ri is a strict ordering).

Let U denote the set of admissible utility functions. We will use τ(ui) to refer to the

maximal element of utility function ui.

In section 4, we will impose an additional restriction on admissible utility functions - we

will assume that the minimal difference in utility levels of alternatives which have different

utilities is at least some η > 0. We refer to η as the grid size.

A utility profile is an N -tuple (u1, u2, . . . , uN ) ∈ UN . Let u denote the utility profile

(u1, . . . , uN ), and (u′i, u−i) denote the profile (u1, . . . , ui−1, u
′
i, ui+1, . . . , uN ).

Definition 1 A Cardinal Decision Scheme (CDS) is a mapping φ : UN → L.

A CDS utilizes cardinal information in individuals’ utility functions and specifies a prob-

ability distribution over the set of alternatives for each profile of utility functions. We let

φj(u), j = 1, 2, . . . ,M denote the probability on alternative aj in the lottery φ(u).

A CDS which only utilizes ordinal information about individual utility functions will be

called an Ordinal Decision Scheme.

Two admissible utility functions ui, u
′
i are ordinally equivalent if for all ak, aj ∈ A,

ui(aj) ≥ ui(ak) iff u′i(aj) ≥ u′i(ak). Similarly, two utility profiles u and u′ are ordinally

equivalent if each pair ui, u
′
i is ordinally equivalent.

Definition 2 An Ordinal Decision Scheme (ODS) is a CDS φ with the property that φ(u) =

φ(u′) whenever u and u′ are ordinally equivalent.

Different concepts of efficiency can be associated with decision schemes. One concept

which has been used is that of ex post efficiency.4

Definition 3 A CDS φ is ex post efficient if for all aj , ak ∈ A and for all admissible utility

profiles u, φk(u) = 0 if ui(aj) > ui(ak) for all i ∈ I.

An ex post efficient CDS ensures that a Pareto non-optimal alternative is never assigned

positive probability. A considerably weaker condition is that of Unanimity.

Definition 4 A CDS φ satisfies Unanimity if for all aj ∈ A and for all admissible utility

profiles u, φj(u) = 1 if τ(ui) = aj for all i ∈ I.

4See for instance Gibbard[7]), Duggan [3], Nandeibam [10].
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Unanimity simply requires that if an alternative is best for all individuals, then it should be

assigned probability one.

Random dictatorships are an important class of ordinal decision schemes. These are rules

in which each individual has a fixed probability (that is, independent of the utility profile)

of being a dictator. More formally,

Definition 5 The CDS is a random dictatorship if there exist non-negative real numbers

β1, β2, · · · , βN with
∑

i βi = 1 such that for all u ∈ UN and aj ∈ A,

φj(u) =
∑

{i|τ(ui)=aj}

βi

We assume that individuals rank alternative lotteries in terms of expected utility.

Definition 6 A CDS is manipulable by an individual i ∈ I at u ∈ UN via u′i ∈ U if
M∑

j=1

u(aj)φj(u′i, u−i) >
M∑

j=1

u(aj)φj(u).

Definition 7 A CDS is strategy-proof (SP) if it is not manipulable by any voter at any

profile.

Thus, a CDS is strategy-proof if no voter can strictly gain in terms of expected utility

by misrepresenting her true preferences.

3 The Hylland Theorem

An example of a strategy-proof decision scheme is the random dictatorship. If i is the

dictator, then the alternative which is first in i’s preference ordering is chosen with probability

one. Since the probability of any voter i being a dictator is independent of the profile of

preferences, it is easy to see that no individual has an incentive to misreveal preferences.

The random dictatorship in which each individual has an equal chance of being the dic-

tator is obviously anonymous and efficient - the voting scheme only puts positive weight on

alternatives which are Pareto optimal. This might seem to suggest that this random dic-

tatorship provides a positive resolution of the dilemma posed by the Gibbard-Satterthwaite

result- an equal distribution of power is consistent with efficiency and truthful revelation of

preferences. Unfortunately, random dictatorships possess an undesirable property, as shown

in the following example.
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Example 1 Let |I| = 1000, and A = {a1, . . . , a1001}. Consider a profile P such that for

each individual i, aiPia1001Pia for all a ∈ A\{ai, a1001}. Although every individual considers

a1001 as the second most preferred alternative, and no two individuals agree on what is the

best alternative in A, a random dictatorship must assign zero probability to a1001.

This example provides a motivation to search for other strategy-proof decision schemes.

Unfortunately, Hylland [9] proved that random dictatorships constitute the only class of

unanimous and strategy-proof cardinal decision schemes. In this section, we provide a rela-

tively simple proof of Hylland’s theorem, which is stated below.

Theorem 1 A CDS satisfies strategy-proofness and unanimity if and only if it is a random

dictatorship.

Proof: It is clear that a random dictatorship satisfies unanimity and is also strategy-proof.

We prove the converse.

Step 1: We first show that for |N | = 2, a unanimous and strategy-proof CDS φ is a random

dictatorship.

In the proof of this step, for k, j ∈ {1, . . . ,M} with k 6= j and a positive number η, we

frequently use the notation uη
jk for an admissible utility function that assigns 1 to aj , 1− η

to ak, and strictly lower utilities to all other alternatives.

Pick aj ∈ A, and let u1 be an admissible utility function such that τ(u1) = aj . Also

pick ak ∈ A and η > 0, and consider uη
kj ∈ U . We now consider the consequences of letting

η → 0.

Claim 1: limη→0(φj(u1, u
η
kj) + φk(u1, u

η
kj)) = 1.

Proof: If voter 2 announces u′2 such that τ(u′2) = aj , then φj(u1, u
′
2) = 1 from unanimity.

So, in order to prevent voter 2 from manipulating at (u1, u
η
kj) by announcing u′2, we must

have

φk(u1, u
η
kj) + (1− η)φj(u1, u

η
kj) + (1− φk(u1, u

η
kj)− φj(u1, u

η
kj))α ≥ 1− η,

where α := max{uη
kj(as) | s 6= k, j} < 1− η < 1. Taking limits5 as η tends to 0, we obtain

lim
η→0

φk(u1, u
η
kj) + φj(u1, u

η
kj) + (1− φk(u1, u

η
kj)− φj(u1, u

η
kj))α ≥ 1,

which implies limη→0 φk(u1, u
η
kj) + φj(u1, u

η
kj) ≥ 1. The reverse inequality is obviously true.

5Note that we can assume that these limits exist because all the probabilities lie in the unit simplex.
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Claim 2: Let v1 be an admissible utility function such that τ(v1) = aj . Then lim
η→0

φk(u1, u
η
kj) =

lim
η→0

φk(v1, u
η
kj).

Proof: Suppose that the claim is false. Assume w.l.o.g. that lim
η→0

φk(u1, u
η
kj) = λk > λ′k =

lim
η→0

φk(v1, u
η
kj). Observe that Claim 1 implies that

lim
η→0

∑
t u1(at)φt(u1, u

η
kj) = 1 − λk + u1(ak)λk and lim

η→0

∑
t u1(at)φt(v1, u

η
kj) = 1 − λ′k +

u1(ak)λ′k. Therefore lim
η→0

∑
t u1(at)(φt(v1, u

η
kj) − φt(u1, u

η
kj)) = (1 − u1(ak))(λk − λ′k). But

the RHS of this expression is strictly positive by assumption. Therefore there exists η small

enough such that
∑

t u1(at)φt(v1, u
η
kj) >

∑
t u1(at)φt(u1, u

η
kj). This implies that voter 1 can

manipulate φ at (u1, u
η
kj) via v1 which contradicts strategy-proofness of φ.

Let uη
jk ∈ U and let u2 ∈ U with τ(u2) = ak.

Claim 3: lim
η→0

φj(u
η
jk, u2) = 1− lim

η→0
φk(u1, u

η
kj).

Proof: Let lim
η1→0

φj(u
η1
jk, u2) = λj and let lim

η2→0
φk(u1, u

η2
kj) = λ′k. According to Claims 1 and

2, lim
η2→0

φj(u
η1
jk, uη2

kj) = 1− λ′k for all η1. Therefore

lim
η1,η2→0

φj(u
η1
jk, uη2

kj) = lim
η1→0

(1− λ′k) = 1− λ′k.

But Claim 2 also implies that lim
η1→0

φj(u
η1
jk, uη2

kj) = λj for all η2. Therefore

1− λ′k = lim
η1,η2→0

φj(u
η1
jk, uη2

kj) = lim
η2→0

λj = λj

which is what we have to prove.

Let aj , ak, as, at ∈ A with aj 6= ak and as 6= at. Let u1 and v1 be admissible utility

functions such that τ(u1) = aj and τ(v1) = as.

Claim 4: lim
η→0

φj(u1, u
η
kj) = lim

η→0
φs(v1, u

η
ts).

Proof: We know from Claim 2 that lim
η→0

φ(u1, u
η
kj) does not depend on u1 as long as the

first-ranked alternative in u1 is aj . We can therefore denote this limit w.l.o.g. as λj(j, k). So

we have to prove that λj(j, k) = λs(s, t). We will first prove that λj(j, k) = λs(s, k).

Let δ, ε and γ be positive numbers and let vε
1 be an admissible utility function with

τ(vε
1) = as, vε

1(aj) = 1− ε and vε
1(al) ≤ ε for all al 6= as, aj .

Now consider voter 1 in the profile (vε
1, u

γ
ks). Her maximal expected utility from truth-

telling is φs(vε
1, u

γ
ks) + (1− ε)φj(vε

1, u
γ
ks) + ε(1− φs(vε

1, u
γ
ks)− φj(vε

1, u
γ
ks)). If she announces

uδ
jk instead her minimal expected utility is φs(uδ

jk, uγ
ks) + (1 − ε)φj(uδ

jk, uγ
ks)). Since φ is

strategy-proof, we have

φs(vε
1, u

γ
ks) + (1− ε)φj(vε

1, u
γ
ks) + ε(1− φs(vε

1, u
γ
ks)− φj(vε

1, u
γ
ks))
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≥ φs(uδ
jk, uγ

ks) + (1− ε)φj(uδ
jk, uγ

ks).

Since the inequality above is true for all δ, ε and γ, we can take limits to obtain

lim
ε,γ,δ→0

(φs(vε
1, u

γ
ks) + (1− ε)φj(vε

1, u
γ
ks) + ε(1− φs(vε

1, u
γ
ks)− φj(vε

1, u
γ
ks)) ≥

lim
ε,γ,δ→0

(φs(uδ
jk, uγ

ks) + (1− ε)φj(uδ
jk, uγ

ks)).

Observe that Claims 2 and 3 imply that lim
δ→0

φj(uδ
jk, uγ

ks) = λj(j, k) and

lim
γ→0

φs(vε
1, u

γ
ks) = λs(s, k). Also, Claim 1 implies that lim

δ→0
φs(uδ

jk, uγ
ks) = 0 and lim

γ→0
φj(vε

1, u
γ
ks) =

0. Therefore the inequality above reduces to

lim
ε→0

(λs(s, k) + ε(1− λs(s, k)) ≥ lim
ε→0

(1− ε)λj(j, k)

So λs(s, k) ≥ λj(j, k). By reversing the roles of as and aj we also have the reverse inequality,

and thus λs(s, k) = λj(j, k).

Define λk(s, k) := lim
η→0

φk(v1, u
η
ks), then by Claim 3 we have

λk(s, k) := lim
η→0

φk(uη
ks, v2), where v2 ∈ U has τ(v2) = ak. By an argument symmetric to the

one in the first part of the proof Claim 4, we obtain λk(s, k) = λt(s, t). So altogether we

have

λj(j, k) = λs(s, k) = 1− λk(s, k) = 1− λt(s, t) = λs(s, t),

where the second and last equalities follow from Claim 1.

We now summarize the implication of Claims 1 through 4. There exists a real number

λ lying between 0 and 1 with the following properties. Let aj and ak be two arbitrary

but distinct alternatives. Consider a utility profile where aj and ak are first-ranked for

voters 1 and 2 respectively. Now consider a sequence of utility profiles where the utility

function of voter 1 is fixed but the utility function of voter 2 is changed in a way such

that ak remains first-ranked and the utility of aj is increased to 1. Then the sequence of

probabilities associated with alternative aj converges to λ while that of ak converges to 1−λ.

Similarly, if we fix voter 2’s utility function and consider a sequence of utility functions for

voter 1 where ak increases to 1, then the sequence of probabilities associated with aj and ak

converges once again to λ and 1− λ respectively.

Claim 5: For all admissible utility profiles u and all j ∈ {1, . . . ,M}, if φj(u) > 0, then

aj ∈ {τ(u1), τ(u2)}.

Proof: Suppose that the Claim is false. Assume w.l.o.g. that there exist distinct alternatives

aj , ak and as and an admissible utility profile u where aj and ak are first-ranked by voters
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1 and 2 respectively and φs(u) > 0. Let η and δ be positive numbers and let uη
js and uδ

ks

be admissible utility functions, and denote lim
η,δ→0

φl(u
η
js, u

δ
ks) by λ′l for all al ∈ A. We first

prove that λ′s > 0.

In order to establish this, we start with a general observation. Let w be a profile and at

be an alternative which is not first-ranked in w1. Let v1 be an admissible utility function

with v1(at) > w1(at) and v1(al) = w1(al) for all al 6= at. Then φt(v1, w2) ≥ φt(w). In

order to see this, observe that since φ is strategy-proof, we must have
∑

r w1(ar)φr(w) ≥∑
r w1(ar)φr(v1, w2) and

∑
r v1(ar)φr(v1, w2) ≥

∑
r v1(ar)φr(w). Combining these two in-

equalities we have
∑

r(v1(ar)−w1(ar))(φr(v1, w2)− φr(w)) ≥ 0, which implies φt(v1, w2) ≥

φt(w). Thus if we increase the utility of an alternative for a voter in a profile, the proba-

bility associated with that alternative cannot decline. Notice that this observation together

with our assumption that φs(u) > 0 implies that for η, δ small enough, φs(u
η
js, u

δ
ks) > 0.

Moreover, this probability is non-increasing in η and δ. Therefore λ′s > 0.

We now complete the proof of Claim 5.

For ε > 0 define admissible utility functions ū1 and ū2 such that

• τ(ū1) = as, ū1(aj) = 1− ε, ū1(ak) = 0, ū1(al) = 1− (l + 1)ε for all al 6= as, aj , ak.

• τ(ū2) = as, ū2(ak) = 1− ε, ū2(aj) = 0, ū2(al) = 1− (l + 1)ε for all al 6= as, aj , ak.

Then, by the summary of Claims 1–4 above,

lim
δ→0

φs(ū1, u
δ
ks) = λ, lim

δ→0
φk(ū1, u

δ
ks) = 1− λ.

Suppose

λ < λ′s + λ′j +
∑

l 6=s,j,k

λ′l.

Then, for ε small enough, 1 can manipulate φ at (ū1, u
δ
ks) via uη

js as δ → 0. Hence,

λ ≥ λ′j +
∑
l 6=j,k

λ′l. (1)

We similarly have

lim
η→0

φj(u
η
js, ū2) = λ, lim

η→0
φs(u

η
js, ū2) = 1− λ.

In order to prevent 2 from manipulating φ at (uη
js, ū2) for small values of ε as η → 0, we

need

1− λ ≥ λ′k +
∑
l 6=j,k

λ′l. (2)
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Combining inequalities (1) and (2) we obtain

1 ≥ 1 +
∑
l 6=j,k

λ′l.

This implies that λ′l = 0 for each l 6= j, k. This contradicts λ′s > 0, and hence completes the

proof of Claim 5.

Combining Claims 1–5, we see that for any profile with unequal top alternatives all prob-

ability is assigned to the top alternatives (Claim 5), and that agents 1 and 2 can guarantee

probabilities as close to λ and 1 − λ as desired on their respective top alternatives (Claims

1–4). Hence, φ is a random dictatorship with weights λ and 1−λ. This completes the proof

of Step 1.

Step 2: We now show that a unanimous and strategy-proof CDS is a random dictatorship

for arbitrary N . We assume that the statement is true for all I with N − 1 or fewer agents,

and we now establish it for N . So let φ be an N -agent CDS satisfying unanimity and

strategy-proofness.

Define a CDS g : UN−1 → L for an N − 1 agent society, as follows:

for all u1, u3, . . . , uN ∈ UN−1, g(u1, u3, . . . , uN ) = φ(u1, u1, u3, . . . , uN )

Then g inherits unanimity from φ. We first show that g is strategy-proof. Clearly, if i ∈

{3, . . . , N} manipulates g at (u1, u3, . . . , uN ), then i manipulates φ at (u1, u1, u3, . . . , uN ).

This contradicts the assumption that φ is strategy-proof.

Since 1 cannot manipulate φ at u = (u1, u1, . . . , uN ) via u2,

M∑
k=1

u1(ak)φk(u) ≥
M∑

k=1

u1(ak)φk(u2, u1, . . . , uN ).

Similarly, since 2 cannot manipulate (u2, u1, . . . , uN ) via u2, we have

M∑
k=1

u1(ak)φk(u2, u1, . . . , uN ) ≥
M∑

k=1

u1(ak)φk(u2, u2, . . . , uN ).

Putting these inequalities together,

M∑
k=1

u1(ak)φk(u) ≥
M∑

k=1

u1(ak)φk(u2, u2, . . . , uN ).

Hence, 1 cannot manipulate g at u via u2. This shows that g is strategy-proof.

The induction hypothesis establishes that g must be a random dictatorship. Let β be the

weight of the “coalesced” individual 1 in the random dictatorship g, while βi is the weight

for i = 3, . . . , N .
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Fix an arbitrary (N − 2)-tuple of utilities (u3, . . . , uN ), and with some abuse of notation,

write φ(u1, u2) ≡ φ(u1, u2, u3, . . . , uN ) for any pair u1, u2.

Step 2.1: Suppose β = 0.

We want to show that for all (u1, u2), φ(u1, u2) = φ(u1, u1).

Suppose not. Then, there are u1, u2 and ak such that

φk(u1, u2) > φk(u1, u1). (3)

Now, for ε > 0, choose uε such that

τ(uε) = ak, uε(aj) = ε for all aj 6= ak.

Note that

φ(uε, uε) = φ(u1, u1) (4)

since the coalesced individual has zero weight in the random dictatorship g. From equations

(3) and (4) and the specification of uε, it follows that

lim
ε→0

M∑
j=1

uε(aj)φj(u1, u2) > lim
ε→0

M∑
j=1

uε(aj)φj(uε, uε). (5)

In order to prevent individual 1 from manipulating φ at (uε, uε, u3, . . . , uN ), we need

M∑
j=1

uε(aj)φj(uε, uε) ≥
M∑

j=1

uε(aj)φj(u1, u
ε).

In order to prevent individual 2 from manipulating φ at (u1, u
ε, u3, . . . , uN ), we need

M∑
j=1

uε(aj)φj(u1, u
ε) ≥

M∑
j=1

uε(aj)φj(u1, u2).

Putting these inequalities together, we need

M∑
j=1

uε(aj)φj(uε, uε) ≥
M∑

j=1

uε(aj)φj(u1, u2). (6)

But, equation (5) shows that this cannot be satisfied for all values of ε, a contradiction.

Hence, in this case, φ is a random dictatorship with weights (0, 0, β3, . . . , βN ).

Step 2.2: Suppose β > 0.

Let I ′ = {3, . . . , N}. Define a function h : U{1,2} → L as follows:

for all u1, u2, aj : hj(u1, u2) =
1
β

[φj(u1, u2)−
∑

{i∈I′|τ(ui)=aj}

βi].
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We want to show that h is a 2-person CDS satisfying strategy-proofness and unanimity.

First, we show that h is a CDS. That is, hj(u1, u2) ≥ 0 for all aj ∈ A, and
∑

j hj(u1, u2) =

1.

Note that
∑

j hj(u1, u2) = 1 follows from the definition of h itself. So, we only need to

show that each hj(u1, u2) is non-negative.

Consider u1, u2 such that τ(u1) = aj 6= ak = τ(u2).

Claim 1: φl(u1, u2) ≥ φl(u1, u1) for all al 6= aj .

Proof: Suppose there is al 6= aj such that φl(u1, u2) < φl(u1, u1). Choose uε such that

τ(uε) = aj , uε(ai) ≥ 1−ε for all ai 6= aj , al, and uε(al) = 0. Then, since φ(u1, u1) = φ(uε, uε),

lim
ε→0

M∑
i=1

uε(ai)φi(u1, u2) > lim
ε→0

M∑
i=1

uε(ai)φi(uε, uε). (7)

But, this shows that equation (6) is not satisfied for some value of ε, and hence contradicts

the assumption that φ is strategy-proof.

Claim 1 establishes that for all l 6= j, hl(u1, u2) ≥ 0. We still need to show that

hj(u1, u2) ≥ 0. But, notice that we could have “started” from u2, and proved that φl(u1, u2) ≥

φl(u2, u2) for all l 6= k. This shows that hj(u1, u2) ≥ 0.

We now want to show that h satisfies unanimity. Choose any u1, u2 such that τ(u1) =

τ(u2) = aj for some aj ∈ A. Take any ak ∈ A, and let the upper contour set of u1 for ak be

B(k, u1) = {l ∈ {1, . . . ,M} | u1(al) > u1(ak)}.

Claim 2: φ(u1, u2) = φ(u1, u1).

Proof: Suppose there is some ak such that∑
l∈B(k,u1)

[φl(u1, u1)− φl(u1, u2)] < 0. (8)

For small ε > 0 choose uε such that

(i) u1 and uε are ordinally equivalent.

(ii) uε(al) ≥ 1− ε for all l ∈ B(k, u1).

(iii) uε(al) ≤ ε for all l 6∈ B(k, u1).

Now, strategy-proofness of φ implies that equation (6) also holds for the new specification

of uε.

Noting that φ(uε, uε) = φ(u1, u1), equations (8) and (6) cannot hold simultaneously as ε → 0.
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Hence, either the claim is true or φ(u1, u1) stochastically dominates φ(u1, u2), i.e., all sums in

the LHS of (8) are non-negative and at least one sum is positive. But, note that if φ(u1, u1)

stochastically dominates φ(u1, u2), then it is well known6 that∑
al∈A

u1(al)φl(u1, u1) >
∑
al∈A

u1(al)φl(u1, u2). (9)

Noting that φ(u1, u1) = φ(u2, u2), equation (9) shows that 1 manipulates φ at (u1, u2) via

u2. Hence, Claim 2 is true.

Claim 2 immediately establishes that h satisfies unanimity.

We now show that h is strategy-proof. Pick any utility functions u1, u2, u
′
1. Then

M∑
j=1

u1(aj)hj(u1, u2) =
M∑

j=1

u1(aj)
1
β

φj(u1, u2, u3, . . . , uN )−
∑

{i∈I′|τ(ui)=aj}

βi


≥

∑
j

u1(aj)
1
β

φj(u′1, u2, u3, . . . , uN )−
∑

{i∈I′|τ(ui)=aj}

βi


=

M∑
j=1

u1(aj)hj(u′1, u2).

Therefore voter 1 cannot manipulate in h. An identical argument establishes that 2 cannot

manipulate h either.

Hence, h must be a random dictatorship with weights α1 and α2.

Let β1 = α1β and β2 = α2β. We want to show that φ is a random dictatorship with

weights β1, . . . , βN . Notice that we would have proved this if we can show that the weights

of the 2-agent h constructed earlier do not depend on the choice of (u3, . . . , uN ) used in the

construction of h. In fact, it is sufficient to show that the weights do not change when (say)

u3 changes to u′3, because we can change the profile from (u3, . . . , uN ) to (u′3, . . . , u
′
N ) by

changing utility functions one at a time.

Suppose that the weights change to α′1 and α′2 with α′1 > α1 when u3 changes to u′3. We

show that this violates strategy-proofness of φ.

First, suppose τ(u3) = τ(u′3) = aj . Consider u1, u2 such that τ(u1) = aj and τ(u2) = al

where u3(al) = 0, that is, al is the worst element in terms of u3. Then, it is easy to check that

1 manipulates φ at (u1, u2, u3, . . . , uN ) since there is a probability transfer of (βα′1 − βα1)

from al to aj (with probabilities on all other elements remaining the same) when 3 states u′3

rather than u3. Hence, the weights cannot change if the top elements of u3 and u′3 are the

same.
6See, for instance Quirk and Saposnik [12].
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Now, suppose τ(u3) = aj and τ(u′3) = ak 6= aj . Using arguments of the previous

paragraph, we can assume that u3(ak) = 1−ε and u3(al) = 0. Again, assume that τ(u1) = aj

and τ(u2) = al. Then,

M∑
i=1

u3(ai) [φi(u1, u2, u3, . . . , uN )− φi(u1, u2, u
′
3, . . . , uN )] = β(α′1 − α1)− εβ3.

This difference can be made positive by choosing ε small enough. So, φ violates SP.

This concludes the proof of the induction step, and thus of Theorem 1.

4 Strategy-proofness with utility grids

Our proof technique suggests an interesting extension of the basic framework. In particular,

our proof relies heavily on the fact that we can specify utility profiles where the utility of

some alternative is arbitrarily close to 1 although it is not maximal. How essential is this in

generating the random dictatorship result? In order to answer this question, we now assume

that an admissible utility function has the property that the minimal difference in utility

levels of alternatives which have different utilities is at least some η > 0.

More formally, let η = ηk = (M − 1)−k where k is a positive integer. For every such η,

an admissible utility function is a mapping ui : A → {0, η, 2η, . . . , 1 − η, 1}, satisfying the

restrictions that there exists a unique element aj ∈ A such that ui(aj) = 1 and that there

exists some ak ∈ A such that ui(ak) = 0.

For every grid size η, we shall let Uη denote the set of admissible utility functions. A utility

profile is an N -tuple (u1, u2, . . . , uN ) ∈ [Uη]N . Note that if η > η′, then [Uη]N ⊂ [Uη′
]N .

We shall let u ∈ [Uη]N and (u′i, u−i) ∈ [Uη]N denote the utility profiles (u1, . . . , uN ), and

(u1, . . . , ui−1, u
′
i, ui+1, . . . , uN ) respectively.

4.1 An Example

The random dictatorship result no longer holds in this framework. The following counter-

example demonstrates that non-maximal elements can get positive probability for some

utility profiles.

Example 2 Let I = {1, 2}, |A| = 3. As before, the best alternative has utility 1, the worst

has utility 0, while the maximum utility that the middle alternative can get is 1− η.

Consider the following rule φ∗.
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(i) If τ(u1) = τ(u2), then φ∗ assigns probability 1 to the unanimous top alternative.

(ii) If there are only two Pareto optimal alternatives at a profile, then φ∗ assigns 0.5 to

each of these.

(iii) If there are three Pareto optimal alternatives at the profile u, but ui(ak) < 0.5 for

some i where ak is the middle alternative, then φ∗ assigns probability 0.5 to each top

alternative.

(iv) Otherwise, φ∗ assigns 0.5− d to each top alternative and 2d to the middle alternative,

where d is independent of the profile and d ≤ η
2(1+η) .

Clearly, φ∗ is unanimous. To see that φ∗ is strategy-proof, suppose the true profile u is

such that either cases (ii) or (iii) apply. Without loss of generality, let u1(a1) > u1(a2) ≥

u1(a3). Clearly, 1 cannot increase the probability weight on a1. If u1(a2) < 0.5, then 1 does

not gain by increasing the probability weight on a2 since at least half of any such increase

comes from a reduction in the probability weight on a1, 1’s most-preferred alternative. If

u1(a2) ≥ 0.5, then either u2(a2) < 0.5 in which case 1 cannot increase the probability weight

on a2, or u2(a2) = 1 in which case 1 can only increase the weight on a2 to 1.

In case (iv), both individuals have (say) ui(a2) ≥ 0.5. Neither wants to decrease the

weight on a2 to 0 since this will mean an increase of 1
2d in the probability weight on the worst

alternative. Neither individual gains by declaring a2 to be the most-preferred alternative.

Finally, note that the weight on the middle alternative cannot be greater than η
2(1+η) . For

suppose, u2(a2) > u2(a3) ≥ 0.5 > a1, and u1(a3) > u1(a1) = 1−η > u1(a2). If 1 declares his

true utility function, then his expected utility (when 2 also declares his true utility function)

is 0.5. If instead 1 declares u′1(a1) > u′1(a3) > 0.5 > u′1(a2), then the probability weights

will be

φ∗1(u
′
1, u2) = 0.5− d, φ∗3(u

′
1, u2) = 2d, φ∗2(u

′
1, u2) = 0.5− d

In order to prevent this lottery from giving 1 an expected utility greater than 0.5, we need

the upper bound on d.

The example suggests the following related lines of inquiry. First, notice that there

is an upper bound on the probability on the middle alternative. Moreover, this upper

bound is an increasing function of the grid size. So, is it generally true that if a CDS is

strategy-proof and unanimous, then the maximum probability on non-maximal elements

is an increasing function of grid size? The question is interesting because the maximum
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possible probability on non-maximal alternatives is a “crude” measure of the distance from

some random dictatorship since the latter assigns zero probability to such alternatives.

Second, the CDS constructed in the example approaches a random dictatorship in the

limit as the grid size approaches zero. Again, it is of considerable interest to see whether such

a ‘limit’ random dictatorship result is true. We turn to these questions in the subsequent

sections.

4.2 A Limit Result

In this section, we first prove a ‘limit’ random dictatorship result, thus answering the second

question at the end of the preceding subsection. We then turn briefly to the first question

concerning the maximal probability on non-maximal elements.

Consider the following situation. For k = 1, 2, . . . let {φηk} be a sequence of strategy-

proof and unanimous CDS’s, each one defined on Uk := (Uηk

)N . Note that for any u ∈ UN

there is a minimal number ku such that u ∈ Uk for all k ≥ ku. With some abuse of notation

we can therefore define

lim
k→∞

φηk

(u) = lim
k→∞, k≥ku

φηk

(u).

Obviously, this limit does not have to exist for every u. For instance, take different recurring

random dictatorships in the sequence of CDS’s. We will show, however, that there exists a

random dictatorship φ̄ such that

φ̄(u) = lim
k→∞

φηk

(u)

for all u ∈ UN for which the limit exists.

We first establish a ‘local’ version of this result in the following theorem. We use the

same notation as in the preceding paragraph.

Theorem 2 Let û ∈ U1 such that lim
k→∞

φηk(û) exists.7 Then, lim
k→∞

φηk

j (û) > 0 implies that

τ(ûi) = aj for some i ∈ I.

Proof: Throughout the proof, we will use the fact that Uk ⊂ Uk+1 for all k ≥ 1.

Since all subsequences of {φηk} converge on û and U1 is finite, we can construct a

subsequence of the given sequence of CDSs which converges on every u ∈ U1. So we have a

subsequence φ1,k such that φ1(u) ≡ lim
k→∞

φ1,k(u) exists for every u ∈ U1.

7If the limit does not exist, then the theorem holds for any convergent subsequence. Note that since each

φk(û) lies in the unit simplex, every such sequence must have a convergent subsequence.
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We want to show that φ1 is a strategy-proof and unanimous CDS on U1. To check

unanimity, pick any u ∈ U1 such that for some aj ∈ A, τ(ui) = aj for all i ∈ I. Then, for

all ηk, φ1,k
j (u) = 1. Hence, φ1

j (u) = limk→∞ φ1,k
j (u) = 1.

We now check that φ1 is strategy-proof. Suppose to the contrary that φ1 is not strategy-

proof. Then, there are u ∈ U1, i ∈ I and u′i ∈ Uη1 such that

M∑
j=1

ui(aj)φ1
j (u

′
i, u−i) >

M∑
j=1

ui(aj)φ1
j (u).

But, this contradicts the fact that for each k,

M∑
j=1

ui(aj)φ
1,k
j (u′i, u−i) ≤

M∑
j=1

ui(aj)φ
1,k
j (u).

Next, since U2 is finite, we may construct a subsequence of the sequence φ1,k which

converges on every u ∈ U2. So we have a subsequence φ2,k such that φ2(u) ≡ limk φ2,k(u)

exists for every u ∈ U2. Then, it follows from previous arguments that φ2 is a strategy-proof

and unanimous CDS on U2. Also, by construction, φ1 and φ2 coincide on U1.

Continuing in this way, we construct an infinite sequence φ1, φ2, . . . of CDS’s such that

each φk is a strategy-proof and unanimous CDS on Uk, and coincides with φ` on U ` for each

` < k .

Let u ∈
⋃

k Uk. Then u ∈
⋂

k≥ku
Uk, and therefore limk≥ku φk(u) exists, and is in fact

equal to φku(u). Denote this limit by φ̄(u). Then it follows that φ̄ is a strategy-proof and

unanimous CDS on
⋃

k Uk, and therefore from Theorem 1 is a random dictatorship. It follows

in particular that limk→∞ φηk(û) = φ1(û) = φ̄(û) has zero probability on the non-maximal

elements.

Now let u ∈ UN be an arbitrary profile such that limk→∞ φηk

(u) exists. Since u ∈⋂
k≥ku

Uk, it follows from the last paragraph of the proof of Theorem 2 that this limit is

equal to φ̄(u) where φ̄ is the random dictatorship constructed there. Hence, we have the

following consequence of (the proof of) Theorem 2.

Corollary 1 For k = 1, 2, . . . let {φηk} be a sequence of strategy-proof and unanimous

CDS’s, each one defined on (Uηk

)N . Then there exists a random dictatorship φ̄ on UN

such that

φ̄(u) = lim
k→∞

φηk

(u)

for all u ∈ UN for which this limit exists.
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Finally, the corollary implies that, when applied to a fixed utility profile, the probabilities

put on non-maximal elements by a converging sequence of unanimous and strategy-proof

CDS’s must converge to zero as the grid size converges to zero. So this provides a partial

answer to the first question raised at the end of the preceding subsection.

5 Conclusion

We have investigated the structure of strategy-proof, cardinal-valued decision schemes sat-

isfying unanimity. One of our contributions is to provide a new and independent proof of

Hylland’s Random Dictatorship Theorem. The other is to establish a limit random dicta-

torship result as the size of the utility grid tends to zero. We believe that it is important to

analyze strategy-proof cardinal schemes in the finite utility grid model because it sheds light

on the role of cardinalization in generating various possibility results. For instance, we would

like to be able to determine the maximum probability that can be placed (by a strategy-proof

cardinal decision scheme) on non-maximal alternatives for any profile, as a function of the

size of the utility grid. It is easy to obtain upper bounds for these probabilities (which vanish

in the limit) by extending the arguments that we have used in the proof of Theorem 1 if we

make the additional assumption that the decison schemes satisfy ex-post efficiency; however

we are unable to show that these bounds are attained. In fact, the class of such cardinal

decision schemes appears to fairly “thin” if there are at least four alternatives. We hope to

able to address these issues in future research.
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