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Abstract

We study auctions of a single asset among symmetric bidders with a¢ liated values. We
show that the second-price auction minimizes revenue among all e¢ cient auction mechanisms
in which only the winner pays, and the price only depends on the losers�bids. In particular,
we show that the k-th price auction generates higher revenue than the second-price auction,
for all k > 2. If rationing is allowed, with shares of the asset rationed among the t highest
bidders, then the (t + 1)-st price auction yields the lowest revenue among all auctions with
rationing in which only the winners pay and the unit price only depends on the losers�
bids. Finally, we compute bidding functions and revenue of the k-th price auction, with and
without rationing, for an illustrative example much used in the experimental literature to
study �rst-price, second-price and English auctions.

Journal of Economic Literature Classi�cation Numbers: D44, D82.

Keywords: Auctions, Second-Price Auction, English Auction, k-th Price Auction, A¢ liated
Values, Rationing, Robust Mechanism Design.

1 Introduction

We study auctions of a single asset among symmetric bidders with a¢ liated values, that

satisfy the following three properties: 1. The bidder with the highest signal wins. 2. Only

the winner pays. 3. The price only depends on the losers�signals. Auction mechanisms in

1We would like to thank the associate editor and referees for their useful comments. Ilia Tsetlin is grateful
to the Centre for Decision Making and Risk Analysis at INSEAD for supporting this project.
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this class are de�ned by a price function p1(�) which maps the signals of the losers into the

price paid by the winners. The second-price auction is an example of such a mechanism.

Other examples include the k-th price auction, with k > 2, in which the highest bidder wins

and pays a price equal to the k-th highest bid.

Property 1 says that the auction is e¢ cient. The properties of e¢ ciency and that losers do

not pay hold in all standard auctions. The third property, that the price paid by the winner

is determined by the losing bids, is a robustness property; it holds in any ex-post incentive

compatible mechanism (see Bergemann and Morris, 2005, for a recent discussion of robustness

in mechanism design and ex-post incentive compatibility). In an auction that satis�es our

third property, a bidder does not need to worry about manipulating the price, because the

price does not depend on his bid; his bid only determines whether he wins or loses. This

property captures an important feature of an ex-post incentive compatible auction, without

going as far as requiring no regret after all possible signal-pro�le realizations.1

We show that the second-price auction minimizes revenue among all p1-auctions. In

particular, for all k > 2, the k-th price auction generates higher revenue than the second-

price auction.

We also consider rationing. Auctions with rationing have been used to model initial public

o¤erings (IPO�s) by Parlour and Rajan (2005). As they point out, in a typical IPO there is

excess demand at the o¤er price, and shares are rationed to investors. Rationing schemes are

used more widely than just in IPO�s, for example to sell tickets to sport and entertainment

events. With risk neutral bidders, lottery quali�cation auctions (see Harstad and Bordley,

1996) are formally equivalent to rationing. In such auctions the highest bidders win lottery

tickets for the assignment of an asset.

Parlour and Rajan (2005) studied a sealed-bid, uniform price auction, in which the winners

are the t highest bidders and the price is the (t + 1)-st highest bid. Each of the t winners

receives a share whose value, like in uniform rationing, does not depend on the bids. They

showed that rationing may raise the issuer�s revenue. (See also Bulow and Klemperer, 2002,

1Ex-post incentive compatible mechanisms have the no-regret property that no buyer would want to revise
his decision after observing the rivals�behavior (signals).
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for a discussion of the potential bene�ts of rationing in common value auctions.)

We study pt auctions, a generalization of p1 auctions, and show that all pt-auctions yield

higher revenue than the auction studied by Parlour and Rajan (2005). For example, revenue

can be raised by leaving the number of winners and rationing rule unchanged, but stipulating

that the price is some bid lower than the highest losing bid.

Kagel and Levin (1993) were the �rst to study a special case of the 3-rd price auction with

independent private values. They found such an auction useful from an experimental point

of view, because its predictions di¤er in important ways from those of �rst- and second-price

auctions. Wolfstetter (2001) used revenue equivalence to derive the bidding function in the

k-th price auction, with k > 2, for the general model with independent private values.

Besides shedding theoretical light on the a¢ liated values model, our results could prove

quite useful in the experimental testing of (Bayesian) Nash equilibrium theory. We elaborate

on this point in the concluding section.

The paper is organized as follows. The next section introduces the model. Section 3

introduces pt auctions, with t � 1; and derives the main results of the paper. In Section 4 we

use an illustrative example to examine k-th price auctions with and without rationing and

the English auction. Section 5 concludes.

2 The Model

A single object is auctioned to N risk-neutral bidders. Bidder i, i = 1; 2; : : : ; N , observes the

realization xi of a signal Xi. Denote with s = (x1; :::; xN) the vector of signal realizations.

Let s_ s0 be the component-wise maximum and s^ s0 be the component-wise minimum of s

and s0. As in Milgrom and Weber (1982), signals are drawn from a distribution with a joint

pdf f(s), which is symmetric in x1; :::; xN and satis�es the a¢ liation property:

f(s _ s0)f(s ^ s0) � f(s)f(s0) for all s; s0: (1)
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If the inequality holds strictly, we say that the signals are strictly a¢ liated. The support of

f is [x; x]N , with �1 < x < x < +1. We also assume that f is di¤erentiable.

The value Vi of the object to bidder i is a function of all signals: Vi = u(Xi; fXjgj 6=i).

The function u(�) is non-negative, bounded, di¤erentiable, increasing in each variable, and

symmetric in the other bidders�signal realizations xj, j 6= i: The model with a¢ liated private

values corresponds to valuation function u(Xi; fXjgj 6=i) = Xi; that is, bidder i�s valuation

depends only on his own signal.

In studying the equilibrium of a given auction, it is useful to take the point of view of

one of the bidders, say bidder 1 with signal X1 = x, and to consider the order statistics

associated with the signals of all other bidders. We denote with Y n the n-th highest signal

of bidders 2; 3; :::; N (i.e., all bidders except bidder 1).

De�ne

vt(x; y) = E
�
V1jX1 = x; Y

t = y
�
:

A¢ liation implies that vt(x; y) is increasing in both arguments, and hence di¤erentiable

almost everywhere (see Milgrom and Weber, 1982, Theorem 5).

3 pt-Auctions

Parlour and Rajan (2005) model bookbuilding and rationing in initial public o¤erings as a

sealed-bid, uniform-price auction in which the winners are the t highest bidders and the unit

price is the (t + 1)-st highest bid. Each of the t winners receives a share of the asset whose

value does not depend on the bids (uniform sharing, where each winner receives a share 1=t,

is a special case), and pays his share of the unit price. The bidding function in such an

auction is

�t+1(x) = E
�
V1jX1 = x; Y

t = x
�
: (2)

This is the same as the bidding function in a uniform auction for t objects with bidders

having unit demand and the price being the (t + 1)-st bid (e.g., see Milgrom 1981). When
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t = 1, the Parlour-Rajan auction coincides with the second-price auction. More generally,

after rescaling payo¤ functions by 1=t; uniform rationing of a single object to the t highest

of N bidders is strategically equivalent to selling t objects to N bidders with unit demand.

By the revelation principle (see Myerson, 1981), given any auction, or mechanism, there is

an equivalent direct mechanism where bidders directly report their signals to a designer, and

it is an equilibrium for all bidders to report truthfully. A direct mechanism can be thought

of as a proxy auction in which each bidder reports a signal to a proxy bidder who then bids

on his behalf in the true auction.

Let r1; :::; rN be the bidders�reported signal values in decreasing order (r1 � r2 � ::: �

rN). We are interested in the class of (direct) auction mechanisms, called pt-auctions, which

satisfy the following three properties: 1. The bidders with the t highest signals win (t � 1);

and the share that each winner gets does not depend on the bids. 2. Only the winners

pay; they pay their share of the unit price pt. 3. The uniform unit price does not depend

on the winners� signals and it is a weakly increasing function of the losers� signals, pt =

pt(rt+1; rt+2; :::; rN).

Properties 1 and 2 are satis�ed by all standard auctions. If t = 1; so that there is no

rationing, Property 1 implies that the auction is e¢ cient. Property 3 captures an important

feature of an ex-post incentive compatible auction, without going as far as requiring no

regret after all possible signal-pro�le realizations. In an auction that satis�es it, bidders

cannot directly manipulate the price.

The k-th price auction with rationing, with k � t+ 1, in which the t highest bidders win

and pay a unit price equal to the k-th highest bid, corresponds to a pt-auction with a price

function pt(rk) that only depends on rk: The �rst-price auction, clearly, is not equivalent to

any pt-auction. The English auction, on the other hand, corresponds to a p1-auction (an

auction with no rationing) with a price function p1(r2; :::; rN) that depends on the reports of

all losers.

We now derive a (necessary) equilibrium condition that must be satis�ed by a pt-auction.
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Theorem 1 (The Indi¤erence Condition) A pt-auction must satisfy the following condition

E
�
V1jX1 = x; Y

t = x
�
= E

�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = x
�
; (3)

together with the boundary condition

pt(x; :::; x) = E
�
V1jX1 = x; Y

t = x
�
: (4)

Proof. Let ft:N�1 (yt; :::; yN�1jX1 = x) denote the marginal density of Y t; :::; Y N�1 condi-

tional on X1 = x, and ft(ytjX1 = x) denote the marginal density of Y t conditional on

X1 = x. If all bidders di¤erent from bidder 1 truthfully bid their signals, then the payo¤ of

bidder 1 when his type is x and he reports r is proportional to2

U(x; r) =

Z r

x

E
��
vt(x; Y

t)� pt
�
Y t; :::; Y N�1

��
jX1 = x; Y

t = yt
�
ft(ytjX1 = x)dyt: (5)

The �rst-order condition for maximization with respect to r can be written as:

vt(x; r) = E
�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�
:

In equilibrium, bidder 1 must bid r = x; hence (3) holds.

In a pt-auction a bidder�s payo¤ is only a¤ected by his own bid when he is tied for a win.

In such a case, the marginal bene�t of winning the object is E [V1jX1 = x; Y
t = x], while

the marginal cost is E [P jX1 = x; Y
t = x]. Optimality, condition (3), requires the two to be

equal.

The indi¤erence condition (3) and the boundary condition (4) are �rst order conditions.

Lemma 1, proven in the Appendix, shows that they are su¢ cient for a truthful equilibrium

of a pt-auction if either there are a¢ liated private values, or an additional assumption is

satis�ed.

2The constant of proportionality equals the expected share of the asset that bidder 1 would get, were he
to win.
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Assumption 1 One of the following two conditions holds.

(1) For all values of x and r, it is

@E
�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�

@x
� @vt(x; r)

@x
:

(2) Let ft+1:N�1(yt+1; :::; yN�1jX1 = x; Y
t = r) be the density of Y t+1; :::; Y N�1 conditional

on X1 = x and Y t = r. The function &(�) de�ned by

&(x; r) =
vt(x; r)

ft+1:N�1 (r; r; :::; rjX1 = x; Y t = r)

is increasing in x for all values of r.

Part (1) of Assumption 1 requires that an increase in bidder 1�s type x has a larger impact

on the expected value of bidder 1 than on the expected unit price at auction, conditional

on bidder 1 winning the auction and bidding as a type r; the highest losing type. This is

a natural assumption, which is always satis�ed if signals are independent, because in such

a case the expected value of pt does not depend on x. The appealing feature of part (2) of

Assumption 1 is that it imposes no restriction on the pt function. It is also always satis�ed if

signals are independent, because in such a case the denominator of &(x; r) does not depend

on x, while vt(x; r) increases with x.

Lemma 1 Suppose that either there are private values, or Assumption 1 holds. Then con-

ditions (3) and (4) are su¢ cient for a pt-auction to be well de�ned.

We are now ready to show that the auction with rationing studied by Parlour and Rajan

(2005) minimizes revenue among all pt-auctions.

Theorem 2 The pt-auction in which the unit price is the (t+1)-st bid, generates the lowest

expected revenue among all pt-auctions.

Proof: Let Rt be the revenue in a pt-auction with price function pt(�), and let Rtt+1 be

the revenue in the Parlour-Rajan auction. It follows from (3) and (2) that, conditional on
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X1 � x = Y t,

E
�
Rtt+1jX1 � x = Y t

�
= �tt+1(x)

= E
�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = x
�

� E
�
pt
�
Y t; :::; Y N�1

�
jX1 � x; Y t = x

�
= E

�
RtjX1 � x = Y t

�
;

where the inequality follows from a¢ liation. Taking expectations of both sides yieldsE
�
Rtt+1

�
�

E [Rt]. Under strict a¢ liation the inequality is strict if pt is strictly increasing in at least one

ri; i > t+ 1.

Theorem 2 does not contradict the main message of Parlour and Rajan (2005). They

showed that with common values rationing may raise the issuer�s revenue. Theorem 2 shows

that there are many auctions with rationing that yield even higher revenue than the auction

they proposed. For example, revenue would be raised by leaving the number of winners

and the rationing rule unchanged, but stipulating that the price is some bid lower than the

highest losing bid.

If values are private, then the Parlour and Rajan auction with rationing always yields less

revenue than the second-price auction. In such a case, revenue in the second-price auction

is the expected value of the second order statistic out of the N bidders�signals, while in the

Parlour and Rajan auction revenue is the expected value of the (t+1)-st order statistic, with

t > 1:

The main result for the important special case of no rationing, p1-auctions, follows as a

corollary of Theorem 2.

Corollary 1 The second-price auction generates the lowest expected revenue among all p1-

auctions.

Under strict a¢ liation, the second-price auction yields strictly less revenue than any p1-

auction in which the price strictly increases with at least one losing bid di¤erent from the
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second highest bid.

The bidder with the second highest signal, say bidder 2, is the price setter in a second-price

auction. It follows directly from the indi¤erence condition that bidder 2�s bid in a second-

price auction is equal to the expected price in a p1-auction, conditional on bidder 2�s signal

being tied with the winner�s signal. However, because signals are a¢ liated and bidder 2 has

the second highest signal, the expected price in a p1-auction conditional on bidder 2 being

tied with the highest bidder is an underestimate of the true expected price. It follows that in

the class of p1-auctions, expected revenue is minimized by the second-price auction. Thus, in

particular, a k-th price auction generates higher revenue than the second-price auction, for

all k > 2.

In the special case of a¢ liated private values, the English and the second-price auction

are equivalent and yield the same revenue. It follows that in such a case any p1-auction not

identical to the second-price auction (for example, the k-th price auction) yields higher rev-

enue than the English auction. In general, the English auction does not necessarily maximize

revenue in the class of p1-auctions.

4 An Illustrative Example

In this section, we discuss the best known analytically solvable example of auctions with

a¢ liated values. We will derive equilibrium bidding functions and revenue results for the

k-th price (k � 2) and the English auctions with rationing.

Example 1 There is a single object and N bidders. Conditional on V = v, each bidder�s

signal is drawn independently from a uniform distribution on [v � 1
2
; v + 1

2
], where the ran-

dom variable (or signal) V corresponds to the object�s common value component. Bidder i�s

payo¤ consists of a private-value and a common-value component, with weights � and (1��)

respectively, 0 � � � 1. It is u(�) = �Xi + (1 � �)V . The random variable V has a di¤use

prior; that is, it is uniformly distributed on [�M;M ] with M !1.
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This example has been extensively used in the experimental literature to study �rst-price,

second-price, and English auctions in the two polar cases of pure private (� = 1) and pure

common values (� = 0); see Kagel, Harstad and Levin (1987), Kagel and Levin (2002), and

Parlour et al. (2007). Klemperer (2004, pp. 55-57) presents the equilibria and revenue

comparisons of �rst-price, second-price and English auctions for the pure common-value case

in which � = 0: Parlour and Rajan (2005) study a few variations of this example with � = 0,

including some in which the signal distribution is not uniform and the random variable V

has �nite support, rather than being di¤use over the real line. These variations have the

advantage of making the model more realistic (e.g., V is bounded above and below), but

come at the cost of having to resort to numerical methods in order to calculate bidding

functions near the boundary of the signal support and expected revenue. In the interior of

the signal support, on the other hand, the bidding functions correspond to the analytically

solvable version of the example we study.3

Proposition 3 In Example 1, the bidding function in a k-th price auction with rationing is

given by

�tk(x) = x+
k � 1
N

� 1
2
+ �

�
1

2
� t

N

�
:

The expected revenue in a k-th price auction with rationing, conditional on V = v, is

E[RtkjV = v] = v + �
�
1

2
� t

N

�
� N + 1� k
N(N + 1)

:

The proof is in the appendix. The bidding function and revenue in a k-th price auc-

tion with rationing satisfy the following properties. (1) The bid and revenue are increasing

functions of k. (2) The bid decreases (and revenue need not increase) with the number of

bidders N . (3) The bid and revenue increase with the weight � attached to the private-value

component if and only if t < N=2. (4) For �xed k and � > 0, the bid and revenue decrease

with the rationing parameter t:

3We should stress that only for the case of � �su¢ ciently close� to 1, we have been able to establish
existence of equilibrium (i.e., that the second order conditions hold). For other values of � the bidding
functions we present in Proposition 3 are the only increasing symmetric equilibrium candidates.
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In the third-price auction with independent private values and uniform distribution of

types, Kagel and Levin (1993) showed that the bid function satisfy property (2). Wolfstetter

(2001) demonstrated that in the general model with independent private values, the bid

function satis�es properties (1) and (2). As is well known, with independent signals revenue

equivalence holds, and hence for �xed t revenue does not depend on k.

Property (4) shows that, at least in this example, rationing is not bene�cial in a k-th

price auction: any auction with rationing in which the price is the k-th highest bid yields

less revenue than the very same auction without rationing (t = 1). This does not contradict

Parlour and Rajan (2005), who claimed that rationing raises bids. They assumed k = t+ 1,

and if one makes such an assumption, then indeed the bid increases with rationing (i.e., with

t), provided � < 1; that is, provided values are not purely private.

In an English auction with rationing, bidding stops when there are only t bidders left.

Each of them is allocated a share of the asset and pays a share of the unit price, the bid of

the last bidder to drop out of the auction.

Proposition 4 In Example 1, suppose bidder 1 with signal x is left with t opponents in an

English auction with rationing, and hence all signals Y t+1; :::; Y N�1 have been revealed during

the bidding. Then bidder 1 bids

�tE(x) = x+ (1� �)
�
(yN�1 + 1� x)

t

t+ 1
� 1
2

�
:

The expected revenue in an English auction with rationing, conditional on V = v, is

E[RtEjV = v] = v +
1

2
� � t+ 1

N + 1
� (1� �)

�
1

(N + 1)(t+ 1)
+
1

2

�
:

The proof is in the appendix. The bidding function and revenue in an English auction

with rationing satisfy the following properties. (1) Revenue increases with the number of

bidders N . (2) The bid and revenue may increase or decrease with the weight � attached to

the private-value component. (3) For � < 1; the bid increases with the rationing parameter t:
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Revenue increases with the rationing parameter t if and only if t <
q

1��
�
� 1: In particular,

with common values (� = 0); an increase in the rationing parameter increases both bids and

revenue, while with private values an increase in rationing reduces revenue. Note here the

contrast with the k-th price auction, where rationing is never bene�cial.

According to the standard interpretation of the �linkage principle� (see Milgrom and

Weber, 1982, Milgrom, 1987, Krishna and Morgan, 1997, Krishna, 2002, and Klemperer,

2004), if the price the winner pays in an e¢ cient auction with a¢ liated signals and common

values is more statistically linked to the other bidders�signals, then expected revenue is higher.

Since in a k-th price auction the price only depends on �one other bidder�s information,�this

would seem to imply that the expected revenue is higher in an ascending than in any k-th

price auction. It is thus interesting to observe that in the case of common values (i.e., � = 0)

and without rationing (i.e., t = 1) the revenue in an English auction is higher than in a k-th

price auction if and only if k < N+2
2
. The English auction does not maximize revenue in the

class of p1-auctions.4

This result and the result that with private values the k-th price auction always generates

higher revenue than the English auction are related to Lopomo (2000). He showed, using

a two-bidder example, that there are auctions yielding greater revenue than the English

auction, in which losers do not pay. However, the mechanism in Lopomo�s example does not

satisfy the property that the price only depends on the losers�bids; it is substantially more

complex than p1-auctions (especially k-th price auctions), and it is not easy to generalize

beyond the two-bidder case.

5 Conclusions

We have shown that the second-price auction minimizes revenue in the class of e¢ cient

auctions in which the price paid by the winners depends only on the losing bids, and losers

4By Proposition 3, in the example studied in this section the N -th price auction maximizes revenue among
all k-th price auctions. We have been unable to establish that this is the case in the general model, or to �nd
a counterexample.
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do not pay (p1-auctions). When an asset is rationed to t bidders, setting the unit price to

be the (t + 1)-st bid minimizes revenue among the class of pt-auctions, a generalization of

p1-auctions.

We do not advocate for the use in practice of pt-auctions as a way to increase revenue.

The criticism raised about the practical use of the second-price auction (e.g., see Rothkopf,

2007) also applies to pt-auctions. In our view, a potentially important application of our

results is experimental testing of (Bayesian) Nash equilibrium theory. In studying auctions

with a¢ liated values, experimentalists have typically used a pure private-value and a pure

common-value version of a simple example of the general model. We have provided closed

form solutions of the bid function and revenue of the k-th price auction for a generalization of

this example, in which values have a private and a common value component and rationing

is allowed. We have derived several additional predictions that could prove useful in experi-

mental studies (e.g., in a k-th price auction with rationing, the bid and revenue increase with

k and decrease with the rationing parameter t, while in an English auction the bid always

increases with t unless values are purely private, and revenue increases with t if there are

common values and decreases with t if there are private values).

In auctions with common or a¢ liated values, experimental subjects (especially inexpe-

rienced ones) do not behave fully in accordance with the predictions of equilibrium theory.

Instead, they fall prey of the winner�s curse; they do not entirely take into account that

winning conveys the bad news that all other bidders have lower value estimates (e.g., see

Kagel and Levin, 2002, Kagel, Harstad and Levin, 1987, and Parlour et al., 2007). In the

equilibrium of a k-th price auction (with or without rationing) a bidder must bid above his

value estimate conditional on being tied with the winner. It seems then reasonable to conjec-

ture that in such auctions with a¢ liated values there might be less overbidding relative to the

equilibrium prediction; an underestimate of the strategic need to bid above one�s own value

estimate may counteract the winning curse. Testing experimentally this conjecture and the

other theoretical results concerning k-th price auctions could lead to interesting new insights

about the predictive power of Bayesian Nash equilibrium theory.
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Appendix

Proof of Lemma 1. We need to show that when all other bidders bid truthfully in the

pt-auction, it is optimal for bidder 1 also to bid truthfully. If all other bidders bid truthfully,

the payo¤ of type x of bidder 1 bidding as type r is U(x; r); de�ned in (5). Di¤erentiating

with respect to r gives that @U(x;r)
@r

is proportional to

�
vt(x; r)� E

�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�	
ft(rjX1 = x): (7)

@U(x;r)
@r

= 0 for r = x and it has the same sign as x�r if there are private values (because in that

case vt(x; r) = x and E
�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�
is increasing in r by a¢ liation),

or if part (1) of Assumption 1 holds. It follows that r = x is a global maximizer of U(x; r) if

there are private values, or part (1) of Assumption 1 holds.

We now prove that part (2) of Assumption 1 is also a su¢ cient condition. The expression

in (7) is proportional to

�
vt(x; r)� E

�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�	
ft(rjX1 = x);

which has the same sign as

�(x; r) =
vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)
�
E
�
pt
�
Y t; :::; Y N�1

�
jX1 = x; Y

t = r
�

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)

=
vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)

�
Z r

x

::

Z yN�2

x

pt(r; yt+1; ::; yN�1)
ft+1:N�1 (yt+1; ::jX1 = x; Y

t = r)

ft+1:N�1 (r; :::; rjX1 = x; Y t = r)
dyN�1::dyt+1:

By a¢ liation, for all yj < r; j = 2; :::; N � 1, the expression

ft+1:N�1 (yt+1; ::; yN�1jX1 = r; Y
t = r)

ft+1:N�1 (r; ::; rjX1 = r; Y t = r)
� ft+1:N�1 (yt+1; ::; yN�1jX1 = x; Y

t = r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)

14



has the same sign of x� r: Thus, for x > r

�(x; r) � vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)

�
Z r

x

::

Z yN�2

x

pt(r; yt+1; ::; yN�1)
ft+1:N�1 (yt+1; ::jX1 = r; Y

t = r)

ft+1:N�1 (r; :::; rjX1 = r; Y t = r)
dyN�1::dyt+1

=
vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)
� vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)
;

which is positive by part (2) of Assumption 1. It follows that when x > r, it is @U(x;r)
@r

� 0;

and hence it is pro�table for bidder 1 to increase his bid. Similarly, for x < r

�(x; r) � vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)

�
Z r

x

::

Z yN�2

x

pt(r; yt+1; ::; yN�1)
ft+1:N�1 (yt+1; ::jX1 = r; Y

t = r)

ft+1:N�1 (r; :::; rjX1 = r; Y t = r)
dyN�1::dyt+1

=
vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)
� vt(x; r)

ft+1:N�1 (r; ::; rjX1 = x; Y t = r)
;

which is negative by part (2) of Assumption 1. When x < r it is pro�table for bidder 1 to

decrease his bid. This completes the proof.

Proof of Proposition 3. One can show (e.g., see Klemperer, 2004) that:

E
�
V jX1 = x; Y

t = x
�
= x� 1

2
+
t

N
:

Furthermore, since E
�
Y k�1jV

�
is equal to the (k � 1)-st highest value out of N � 1 draws

from a uniform on
�
V � 1

2
; V + 1

2

�
; it is

E
�
Y k�1jV

�
= V +

1

2
� k � 1

N
;

15



and hence it follows that

E
�
Y k�1jX1 = x; Y

t = x
�
= E

�
E
�
Y k�1jV

�
jX1 = x; Y

t = x
�

= E

�
V +

1

2
� k � 1

N
jX1 = x; Y

t = x

�
= x� k � (1 + t)

N
:

Looking for a linear equilibrium �tk(x) = a+ bx of the k-th price auction with rationing, we

can write equation (3) as

�x+ (1� �)E
�
V jX1 = x; Y

t = x
�
= a+ bE

�
Y k�1jX1 = x; Y

t = x
�
;

or,

�x+ (1� �)
�
x� 1

2
+
t

N

�
= a+ b

�
x� k � (1 + t)

N

�
:

Hence it is b = 1 and a = k�1
N
� 1

2
+ �

�
1
2
� t

N

�
. This gives the bidding function.

Letting Y kN be the k-th highest value out of N draws from a uniform on
�
V � 1

2
; V + 1

2

�
;

the expected revenue in a k-th price auction with rationing, conditional on V = v, is

E[RtkjV = v] = E[�tk
�
Y kN
�
jV = v]

=

�
v +

1

2
� k

N + 1

�
+
k � 1
N

� 1
2
+ �

�
1

2
� t

N

�
= v + �

�
1

2
� t

N

�
� N + 1� k
N(N + 1)

:

This completes the proof.

Proof of Proposition 4. Let f(xjv) be the density of x conditional on v; it is equal to 1

for v 2
�
x� 1

2
; x+ 1

2

�
and zero otherwise. Its associated distribution in the interior of the

support is F (xjv) = x� v + 1
2
. Suppose bidder 1 with signal x is left with t opponents, and

hence all signals Y t+1; :::; Y N�1 have been revealed during the bidding. Then bidder 1 knows

16



that v 2
�
x� 1

2
; yN�1 +

1
2

�
: The bidding function is:

�E(x; yt; :::; yN�1) = �x+ (1� �)E[V jX1 = x; Y
t = x; Y t+1 = yt+1; :::; Y

N�1 = yN�1]

=

R yN�1+ 1
2

x� 1
2

[�x+ (1� �)v]f 2(xjv)[1� F (xjv)]t�1f(yt+1jv):::f(yN�1jv)dvR yN�1+ 1
2

x� 1
2

f 2(xjv)[1� F (xjv)]t�1f(yt+1jv):::f(yN�1jv)dv

= �x+ (1� �)

R yN�1+ 1
2

x� 1
2

v
�
1
2
� x+ v

�t�1
dvR yN�1+ 1

2

x� 1
2

�
1
2
� x+ v

�t�1
dv

= �x+ (1� �)
R yN�1�x+1
0

�
z + x� 1

2

�
zt�1dzR yN�1�x+1

0
zt�1dz

= �x+ (1� �)
 
x� 1

2
+

R yN�1�x+1
0

ztdzR yN�1�x+1
0

zt�1dz

!

= �x+ (1� �)
 
x� 1=2 + t

t+ 1

(yN�1 � x+ 1)t+1

(yN�1 � x+ 1)t

!

= �x+ (1� �)
�
x� 1=2 + (yN�1 � x+ 1)

t

t+ 1

�
:

If Y mN is the m-th highest value out of N draws from a uniform on
�
V � 1

2
; V + 1

2

�
, then

E[Y mN jV = v] = v + 1
2
� m

N+1
, and revenue in the English auction conditional on V = v is

E[RtEjV = v] = E
�
Y t+1N

�
1� (1� �)t

t+ 1

�
+
(1� �)t
t+ 1

Y NN + (1� �)
�

t

t+ 1
� 1
2

�
jV = v

�
=

�
v +

1

2
� t+ 1

N + 1

��
1� (1� �)t

t+ 1

�
+
(1� �)t
t+ 1

�
v +

1

2
� N

N + 1

�
+ (1� �)

�
t

t+ 1
� 1
2

�
= v +

1

2
� 1 + �t
N + 1

� N

N + 1

(1� �)t
t+ 1

+ (1� �)
�

t

t+ 1
� 1
2

�
= v +

1

2
� � t+ 1

N + 1
� (1� �)

�
1

(N + 1)(t+ 1)
+
1

2

�
:

This completes the proof.
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