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Abstract

A principal who knows her type can face public testing to help attract endorsements

from agents. Tests are pass/fail and have an innate toughness (bias) corresponding to

a trade-off between the higher probability of passing a softer test and the greater

impact on agents’ beliefs from passing a tougher test. Conditional on the test result,

the principal also selects the price of endorsement. The principal always wants to be

tested, and chooses the toughest or softest test available depending upon the precision

of the agents’ and tests’ information. Applications abound in industrial organization,

political economy and labor economics.
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1 Introduction

This paper investigates the use of public tests to transmit information about type. A principal

wishes to attract endorsements from a group of agents. The principal knows her own type (high

or low), but is unable to verifiably disclose her type to the agents, each of whom receives some

private information about the principal’s type. If she so chooses, the principal can subject herself

to a public test in an attempt to convince agents that she is a high type. Tests return a binary

"pass" or "fail" decision and are characterized by a publicly known level of toughness (or bias) that

corresponds to the probability of passing. By choosing to be tested, the principal can influence

the learning process of the agents. In particular, in selecting the toughness of the test to be faced,

the principal trades off the higher probability of passing a softer test against the greater impact

on agents’ beliefs from passing a tougher test. Conditional on the chosen test toughness and test

decision, the principal also selects the price that agents must pay to endorse her. We want to

discover both what sort of test a principal might choose and how the test interacts with pricing.

In short, we want to analyze the best way for any principal to use public tests and prices to

maximize the proceeds from endorsements.1

By keeping the context abstract we hope to capture a host of relevant problems. Applications

abound, for example: a firm launching a new product can choose who to send it to from a range

of pre-launch reviewers with known biases;2 an issuer of stocks or bonds can attempt to receive

certification from investment banks and rating agencies which differ in their reputation and in-

dependence; a technology sponsor can choose between standard setting organizations of varying

1 Note that we are not analyzing the problem of optimal test expertise : the principal has to choose between different
tests which all base their decisions on signals of the same quality. Also note that we do not analyze what test agents
would prefer: in all the applications outlined in the next paragraph, it is the principal who chooses the test type.

2 A computer software or game producer might consider approaching a magazine or online site with different standards
for a "preview". Sites and magazines typically have a known toughness. For example, general video games websites
will often list not only the results of reviews and previews, but also give some indication of the reviewer’s toughness,
while “official” games magazines owned by the same company that produces a game might be considered soft.
Early success for software in a preview can have huge implications for the sales of the product, especially in the
pre-order market. When Microsoft launched Windows Vista in November 2006, initially all information about the
new operating system came through official Microsoft sources, followed by an exclusive preview by Paul Thurrot, the
well-know pro-Microsoft blogger and editor of Windows IT Pro Magazine. To give an opposing example, Microsoft
in collaboration with Gearbox Software developed a PC version of their hit Xbox game “Halo” in 2003. Gamespy
was one of the few review sites that did not award the original Xbox version of Halo near perfect marks, and went
on record saying they believed the original game “wasn’t quite as perfect as other critics made it out to be”. Despite
their tough reputation, Gearbox Software invited Gamespy to preview the PC version of the game in advance of its
public release.
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toughness ranging from fully independent to largely captive;3 a University research spin-off looking

for funds can select from a pool of referees with different academic and professional reputations to

review the project; a film-maker can choose to premiere his movie at a prestigious film festival such

as Cannes, where competition for prizes is fierce, or at a smaller festival with less competition; a

recent Ph.D. on the job market has to decide whether to risk selecting a well-respected but tough

professor as a referee or going for a softer option; a prospective student has to choose how tough a

degree programme to attempt; and a politician with a policy to "sell" to potential supporters can

seek support from a variety of think-tanks or policy institutes with known policy biases.

In each case, the principal selects from a range of tests, reviewers or accreditors of varying

toughness. The interpretation of the "price" of endorsement varies across the applications. Linking

to the examples above, "price" can take the form of a standard market price, the size of an

ownership stake, contractual terms offered to exhibitors of movies, a salary, or the degree of

compromise required for a policy to be approved.

In the context of our model, a low type principal can costlessly duplicate the actions of a

high type principal. As a result, all of our equilibria will be pooling so the principal cannot use

her choice of test to signal type directly. Nevertheless, tests play a crucial role in information

transmission. We find that the principal always chooses to be tested, so tests complement the

choice of price, and that the ability to condition price on the test result convexifies the principal’s

payoffs: the principal always chooses an extreme test, selecting either the toughest or softest test

available.

Where the private signals received by the agents are of low precision and the agents’ prior

belief about the principal’s type is not too high, which might correspond to a new type of product

or innovative idea, the principal will choose the toughest test available, maximizing the impact of

passing the test. In that case, the principal accepts a higher risk of failing the test in order to

launch her product, idea or policy with a bang if she passes. If on the other hand agents’ signals

are of high enough precision, perhaps because the product or idea is well-known, the softest test is

chosen (except where, in the good state, the information received by the tests is heavily negatively

biased), maximizing the probability of passing but dampening the impact of a pass on beliefs and

3 The descriptions of bias in technology standard setters and raters of stock or bond issues are from Lerner and Tirole
(2006), p. 1091. To give an example of varying toughness in product certification, in Europe Red Book’s BRE
certification claims to be a more rigorous alternative to the much milder assessment provided by CE marking.
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hence on prices.

Remarkably, the literature has paid almost no attention to the use of public tests to transmit

information, especially when used in combination with price; however there are various related

literatures. A number of articles analyze the use of initial prices to manipulate sales in a learning

environment. For example, Taylor (1999) and Bose et al. (2007, 2008) find that high initial prices,

whose effects are similar to the choice of a tough test, can be optimal. In Bose et al., the firm

(which unlike the principal in our model does not know its own quality) wishes to set a high initial

price relative to perceived quality to encourage the transmission of information. If price is too low,

everybody buys, so consumers do not learn from each other’s decisions, while if an expensive good

becomes successful (the analogue of passing a tough test), this conveys strong positive information

to later buyers. Taylor, concentrating on the housing market, finds a high price to be optimal

as a failure to sell a house early (the analogue of failing a tough test) can then be attributed to

overpricing rather than low quality. By contrast, in Caminal and Vives (1996, 1999), in which

early prices are unobservable to later consumers, and in Welch (1992), in which prices cannot be

conditioned on the history of purchases, low introductory prices are optimal.

Lerner and Tirole’s (2006) paper focuses on the role of technology standard setting authorities

as certifiers.4 Similarly to our tests, the certifiers have an arbitrary bias towards the technology

sponsor which determines their decision rule. Lerner and Tirole’s model has significant differences

to ours: the sponsor is not perfectly informed about the quality of its technology; the chosen

certifier discovers with certainty the quality of the technology it is asked to review; consumers

do not receive any private information; and there is no incentive to set price in response to the

certification (as the certifier’s endorsement rule is sensitive to any anticipated price response to its

decision). Therefore, as certifiers cannot counter bad private information or enable a rise in price,

Lerner and Tirole do not find any role for certifiers biased against the technology. Instead they find

that the sponsor prefers the certifier most biased in favor of the new technology on offer, subject

to users adopting following an endorsement. This is in stark contrast to our findings, which allow

a role for tests that are soft (biased towards) or tough (biased against) depending upon model

parameters.

In a setting where both the buyer and seller are uninformed about quality, Ottaviani and Prat

4 Chiao, Lerner and Tirole (2007) empirically test Lerner and Tirole’s model, while Farhi, Lerner and Tirole (2005)
extend the model to a dynamic setting.
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(2001) find that a monopolist may wish to use a public signal of quality such as an (unbiased)

outside certifier. In their model, a public signal affiliated with the buyer’s private information

reduces the buyer’s informational rents in a second-degree price discrimination setting.

Our paper should also be contrasted with the literature on experts, in which self-interested

experts filter information about the true state of the world (see chapter 10 of Chamley (2004) for

a survey). Their self-interest gives rise to incentives to manipulate the messages they send. We,

on the other hand, assume that our testers have no self-interested motives, apart from taking on

differential toughness levels. Our work is also distinct from the literature on payment structures

to certification intermediaries. For example in Lizzeri (1999) and Albano and Lizzeri (2001) the

question is how intermediaries affect the quality chosen by the firm, while in our model type is

fixed. They show that disclosure may turn out to be incomplete, but do not allow any bias.

We assume flexible prices, but in some settings prices cannot be varied conditional on the

test result. Gill and Sgroi (2008) considers a sequential endorsement model with public tests, but

without prices and for a very specific signal structure. As the length of the sequence of agents tends

to one, that model can be re-interpreted as a simplified analogue of the simultaneous endorsement

model in this paper, but with fixed prices. A key result in the paper is that a tough test is always

preferred. When prices cannot be adjusted in light of the test, passing a tough test swamps bad

private information, while a failure to pass a tough test is not enough to damage good private

information, so tough tests are valuable. Where available, the principal will choose a tough test

that is very close to unbiased to maximize the chance of passing. In Sgroi (2002) multiple public

decisions made by consumers at the start of a product’s life-cycle act in a similar way to a public

test, and one of the key results is that a firm (or social planner) should optimally select to use such

early decision makers to boost profits (or welfare). While this provides some support for the result

that a public test should always be used, the paper has neither prices nor a notion of toughness,

so can offer no guide as to the optimal toughness of a public test.

1.1 Overview

Section 2 describes the model. Section 3 examines the principal’s problem, ruling out separating

equilibria and then deriving the principal’s payoff function. Section 4 proves that the principal

will always prefer to be tested. Section 5 shows that the principal always selects the toughest or
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softest test available. Section 6 performs a pairwise comparison between the two candidates for

the optimal test type. Section 7 concludes. Omitted proofs are provided in the appendix.

2 The Model

Nature draws the type V ∈ {0, 1} of a principal with q ≡ Pr [V = 1] ∈ (0, 1). The principal discovers

whether she is a "good" type (V = 1) or "bad" type (V = 0), but cannot verifiably disclose this

information. N ∈ N++ agents simultaneously decide whether or not to endorse the principal after

each receiving a private signal about V. Endorsement is a general concept which could, for example,

encompass adopting some new technology, funding a research project, subscribing to an I.P.O.,

purchasing a product, making a job offer etc. The principal chooses the price of endorsement

λ ∈ R+, which gives each agent a value to endorsing of V − λ while not endorsing returns zero.

Before choosing the price, if she wishes the principal can subject herself to a public test, which

she either passes or fails. If the principal chooses to be tested, she can choose the type of test,

which becomes public knowledge, and she can condition the price on the result, while the agents

observe the test result and price before making their endorsement decision. The principal’s aim is

to maximize revenue, which equals the price of endorsement multiplied by the number of agents

who choose to endorse. We outline the test technology, followed by a formal description of the

agents’ and principal’s decisions, below.

2.1 The Test

The test draws one private signal Z from the set Z ≡ {H,U,L} with representative member z. H

is a positive ("high") signal about V, L is a negative ("low") signal, and U is uninformative. Let

pzV ≡ Pr [Z = z|V ]. Clearly,
P
Z p

z
V = 1. To make U uninformative we restrict pU1 = pU0 . To make

H positive, we restrict pH1 > pH0 and to make L negative, we restrict p
L
1 < pL0 . This implies that:

pH1 − pH0 = pL0 − pL1 > 0 (1)

We assume that pzV > 0, which implies that no signal is fully informative. It is plausible that

the test receives better quality information than any individual agent, but we do not need to

impose this as a formal assumption.
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The test publicly returns a binary decision d ∈ D ≡ {d1, d2}, with φzd ≡ Pr [d|Z = z] andP
D φ

z
d = 1, so Pr [d|V ] =

P
Z p

z
V φ

z
d and

P
D Pr [d|V ] = 1. Modelling a test (or an evaluator) as

condensing more complex information into a simple binary decision is a common assumption in

the literature.5 Notice also that, conditional on Z, the test decision is independent of the publicly

known prior q.

Suppose that an agent, who understands the test technology, conditions his belief on the test

result together with generic private information I, which is independent of Z (conditionally on V )

with Pr [V = 1|I] ∈ (0, 1). When
P
Z φ

z
d > 0, so Pr[d|V ] > 0, decision d is good news about V if

φHd > φLd , bad news if φ
H
d < φLd and provides no news if φ

H
d = φLd , in the sense that:

6

Pr [V = 1|I, d] T Pr [V = 1|I]⇔ φHd T φLd

When
P
Z φ

z
d = 0, so Pr[d|V ] = 0, decision d is never observed and so cannot provide any news

about the principal’s type.

Thus, w.l.o.g. we label the decisions P ("pass") and F ("fail") such that φHP ≥ φLP , which of

course implies that φHF ≤ φLF as
P
D φ

z
d = 1, and formally we model the choice not to be tested by

a choice of φHP = φLP . Note that in the language of Milgrom (1981), P is "more favorable" news

than F about V as the Monotone Likelihood Ratio Property is satisfied.

The test type φ ≡
©
φHP , φ

U
P , φ

L
P

ª
∈ [0, 1]3 chosen by the principal is common knowledge, perhaps

generated through a known history of pass or fail decisions. Depending on the application, the

choice of test type might consist of a choice between different reviewers, referees, accreditation

bodies and so on.
5 For example see Calvert (1985), Sah and Stiglitz (1986), Farhi et al. (2005), Lerner and Tirole (2006), Chiao et
al. (2007), Gill and Sgroi (2008) and Demange (2008). As Calvert (1985, p. 534) puts it: “This feature represents
the basic nature of advice, a distillation of complex reality into a simple recommendation.” The coarseness of the
binary report relative to the information received by the test is a key driver of our results: see footnote 9 for further
discussion.

6 Pr[V=1|I,d]
Pr[V=1|I] T 1 ⇔ Pr[d|V=1]

Pr[d|V=1] Pr[V=1|I]+Pr[d|V=0](1−Pr[V=1|I]) T 1 ⇔ Z p
z
1φ

z
d T Z p

z
0φ

z
d ⇔ pH1 − pH0 φHd T

pL0 − pL1 φLd ⇔ φHd T φLd . The first part follows using Bayes’ Rule together with Pr [I, d|V ] = Pr[d|V ] Pr[I|V ]
and dividing top and bottom by Pr[I], the second last part follows from pU1 = pU0 and the last part from (1).
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2.2 Agents

A typical agent i chooses an action Ai ∈ {Y,N}, where Y denotes "endorsement" and N "no

endorsement", and is a risk neutral expected utility maximizer with utility u (Ai, V ) ∈ R of the

form u (Y, V ) = V − λ and u (N,V ) = 0. Each agent draws one private signal Xi from the finite

set X ≡ {0, 1, ...,M} with representative member m and M ≥ 0. The draws are i.i.d. conditional

on V and are conditionally independent of Z. Let pmV ≡ Pr [Xi = m|V ] where pmV ∈ (0, 1] andP
X p

m
V = 1. The assumption that p

m
V > 0 implies that no signal is fully informative and also rules

out signals which are never drawn.

Let the posterior belief having observed a private signal Xi = m, a choice of test φ, a test

result d and a price λ be

μ ≡ Pr [V = 1|Xi = m,φ, d, λ]

Each agent endorses iff his μ ≥ λ. The endorse at indifference rule is w.l.o.g. as if at a given

λ indifferent agents endorsed with probability less than one, the principal could shave price by a

small > 0 and get all the indifferent agents to endorse. Throughout, w.l.o.g., we normalize the

number of agents to 1.

We let μm be an agent’s belief that the principal is of a good type having observed onlyXi = m,

so

μm ≡ Pr [V = 1|Xi = m] =
pm1 q

pm1 q + pm0 (1− q)
∈ (0, 1) (2)

Notice that μm T q ⇔ pm1 T pm0 , so when pm0 = pm1 ∀m, the model includes the situation

where all signals are uninformative (which holds trivially when M = 0).

2.3 The Principal

Having discovered her type V, the principal selects the test type φ, with φzP ∈ [0, 1]. As outlined

above, choosing not to be tested is modelled as choosing an uninformative test with φHP = φLP .

After the test result, the principal selects a price λ (which can be conditioned on V, d and the

chosen test type) to maximize expected revenue R. Initially, the principal selects the test type φ

to maximize expected revenue given the post-test pricing rule. We restrict the principal to pure

strategies.
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3 The Principal’s Problem

This section details the principal’s problem. Before deriving the revenue function, we first point

out that separation by choice of test type is not possible and then justify restricting attention to

the good type of principal.

3.1 Restriction to the Choice of Good Type of Principal

Nature’s draw of the principal’s type results in a game of imperfect information, so we apply

perfect Bayesian equilibrium (PBE) as the equilibrium concept. Our first result is that all PBEs

must be pooling. Suppose an equilibrium existed in which the bad type of principal had a different

strategy from the good type. Given the restriction to pure strategies, by following her strategy

the bad type would immediately reveal herself to be bad at any node where the two strategies

indicated different actions. She would then receive no endorsements, and so would want to deviate

by duplicating the good type’s action at every such node, thereby costlessly making the agents

believe her to be good.

This establishes that in equilibrium the principal’s choice of φ and λ does not signal type, so

agents will be unable to infer anything from the choice of test or price per se. Instead the agents

will have to rely on the outcome of the test for information.

Lemma 1 All PBEs are pooling, so in equilibrium the principal’s choice of test and price is

uninformative.

By ruling out signalling via the choice of test and price, we focus attention on the role of the

test itself in transmitting information to the agents.7 Furthermore, because we have assumed that

the principal’s type is non-verifiable, our model is not a game of persuasion à la Milgrom (1981)

so the principal is unable to reveal information directly to try to separate from other types.

The lemma implies that in equilibrium an agent’s posterior belief μ that the principal is of a

good type is given by

μmd ≡
Pr [d|V = 1,φ]μm

Pr [d|V = 1,φ]μm +Pr [d|V = 0,φ] (1− μm)
(3)

7 More generally, price choices can play a signalling role. See, e.g., Judd and Riordan (1994) and Mahenc (2004).
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as when an agent uses Bayes’ Rule to calculate his posterior belief conditional on d and Xi = m

he can first calculate his belief conditional on his private signal, yielding μm, and then use Bayes’

Rule to adjust for the impact of the test result, using μm as the prior.

We have an equilibrium selection issue because any pooled strategies can form a pooling equi-

librium supported by the belief that a deviator is of a bad type. Conditional on playing a pooling

equilibrium, let Ω represent the good type of principal’s set of optimal φ and conditional λ pairs.

We assume that only pooling PBEs with strategies in Ω are played. This can be justified by

assuming that starting from pooled strategies outside of Ω, observing deviations consistent with a

strategy in Ω weakly increases the agents’ beliefs that the principal is of a good type. Then a good

type will have a strict incentive to deviate at the first node she reaches where the pooled strategy

differs from one of the strategies in Ω (a bad type might also want to do so).

Under this assumption, in equilibrium a bad principal is forced to follow a good principal’s

choice of test type and conditional pricing rule. Thus, throughout we restrict attention to the good

type of principal’s choice of test and price conditional on pooling, which always form a PBE (i.e.,

we characterize Ω).

3.2 Deriving the Revenue Function

After the test’s decision d, the principal chooses an optimal price λ from the set
©
μ0d, μ

1
d, ..., μ

M
d

ª
.

By setting λ = μmd , the principal receives endorsements from all those agents who received private

signals at least as strong as Xi = m, i.e., from those agents who receivedXi ∈
©
k : μk ≥ μm

ª
,8 and

so faces a standard price-quantity trade-off. The principal will never choose a price outside this

set, as if λ /∈
©
μ0d, μ

1
d, ..., μ

M
d

ª
the principal could raise price to min

m∈X
{μmd : μmd ≥ λ} without losing

any endorsements (unless λ > max
m∈X

μmd in which case the principal receives no endorsements).

Let rd represent expected revenue after a decision d, given a choice of price μmd . We have

normalized the number of agents to 1, and, as explained in the previous subsection, we focus

on the good type of principal’s choice, conditional on pooling. Thus rd = μmd
P

k:μk≥μm
pk1, so the

8 If Z φ
z
d > 0, Pr [d|V,φ] > 0 so from (3) and letting mi represent a particular m, μmi

d T μ
mj

d ⇔ μmi T μmj . The
paragraph after (4) discusses the case where Z φ

z
d = 0.
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maximal revenue achievable r∗d, which is a function of φ, is given by:

r∗d = max
m∈X

μmd
P

k:μk≥μm
pk1

The principal’s optimal choice of test therefore reduces to:

max
φ∈[0,1]3

R =
P
D Pr [d|V = 1,φ] r∗d (4)

We next deal with a technical issue, which is that when
P
Z φ

z
d = 0, Pr [d|V = 1,φ] =

Pr [d|V = 0,φ] = 0 so from (3) μmd is not defined and therefore neither is r∗d. However, in such a

case the belief is irrelevant as Pr [d|V = 1,φ] = 0. Hence we can define μmd ≡ 0, so r∗d = 0 and the

expression for R remains valid.

We can re-write expected revenue as follows:

R =
P
Dmax
m∈X

Pr [d|V = 1,φ]μmd
P

k:μk≥μm
pk1 (5)

Note that R is continuous in φzP for all z ∈ Z. As the maximum of continuous functions is

continuous, we simply need to show the continuity of Pr [d|V = 1,φ]μmd in φzd, noting that when

d = F, using φzP = 1− φzF , continuity in φzF implies continuity in φzP . Now Pr [d|V,φ] =
P
Z p

z
V φ

z
d

is continuous in φzd for all z ∈ Z. Thus at any φ such that
P
Z φ

z
d > 0, so Pr [d|V,φ] > 0, we

can establish the required continuity using (3). At φ such that
P
Z φ

z
d = 0, so Pr [d|V,φ] = 0,

continuity can be shown applying L’Hôpital’s Rule: letting z represent a specific member of Z,

when
P
Z\z φ

z
d = 0, limφzd↓0

Pr [d|V = 1,φ]μmd = limφzd↓0
2Pr[d|V=1,φ]pz1μm
pz1μ

m+pz0(1−μm)
= 0 as required.

4 Choosing to be Tested

In this section, we show that the principal will always choose to be tested, as any test is better

than no test. From Section 2.1 not being tested is equivalent to choosing φHP = φLP . If the principal

chooses φHP = φLP , Pr [d|V = 1,φ] = Pr [d|V = 0,φ] given pU1 = pU0 . Thus, when Pr [d|V = 1,φ] >

0, from (3) μmd = μm, i.e., the test result does not change the agents’ beliefs. Therefore, using (4)
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and
P
D Pr [d|V,φ] = 1, expected revenue from choosing φHP = φLP is given by:

R
¡
φHP = φLP

¢
= max

m∈X
μm

P
k:μk≥μm

pk1

Let bm be an m which maximizes μm
P

k:μk≥μm
pk1, so R

¡
φHP = φLP

¢
= μm

P
k:μk≥μm

pk1. Suppose

that the principal is restricted to choosing a particular test type φ with φHP 6= φLP , and, conditional

on the test decision d, a price λ ≡ μmd to target agents with signals at least as strong as Xi = bm
for endorsement. Letting R represent the resulting expected revenue, and remembering that from

Section 3.1 we are considering the choice of the good type of principal:

R =
P
DPr

£
d|V = 1,φ

¤
μmd

P
k:μk≥μm

pk1

The following lemma implies that
P
D Pr

£
d|V = 1,φ

¤
μmd > μm, so R > R

¡
φHP = φLP

¢
=

μm
P

k:μk≥μm
pk1.

Lemma 2 ∀m,
P
DPr

£
d|V = 1,φ

¤
μmd > μm

Proof. See appendix.

Clearly, if the principal chooses φ but is unrestricted in her conditional pricing rule, her ex-

pected revenue will be at least R. As R > R
¡
φHP = φLP

¢
, this implies that any test with φHP 6= φLP

gives strictly higher expected revenue than choosing φHP = φLP , i.e., than choosing not to be tested,

giving the following result.

Theorem 1 The principal strictly prefers any test with φHP 6= φLP to choosing φ
H
P = φLP . Thus the

principal always wants to be tested.

The proof works by restricting the principal to choosing a conditional price to target the same

set of agents as would be targeted in the absence of a test and showing that even under this

restriction on pricing the principal prefers any given test to not being tested. A fortiori she

prefers to be tested in the absence of this restriction.

To get some intuition for this result, suppose that the principal did not know her type with

certainty, but instead shared belief μm with the lowest belief agents in the set she is forced to
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target under the pricing restriction. Then

P
D Pr

£
d|φ
¤
μmd =

P
D
(Pr[d|V=1,φ]μm+Pr[d|V=0,φ](1−μm))Pr[d|V=1,φ]μm

Pr[d|V=1,φ]μm+Pr[d|V=0,φ](1−μm)
= μm

which means that

Pr
£
P |φ

¤ ³
μmP − μm

´
= Pr

£
F |φ

¤ ³
μm − μmF

´
(6)

Thus under the conditional pricing restriction, testing would not affect expected revenues at

all as the price rise following a pass would be exactly compensated by the price reduction following

a fail. This occurs because the shift in beliefs following a decision exactly reflects the shared

perceived probability of that decision.

However, we are considering the choice of a principal who knows her type to be good, and so

knows that a pass is more likely than is believed to be the case by the agents. Thus, the left-hand

side of (6) is now strictly greater than the right-hand side, so even when the restriction on the

conditional pricing rule is imposed the principal strictly prefers any test to not being tested. Of

course, unrestricted pricing will increase revenues further.

In conclusion, the ability to change price in response to the test decision, together with the

principal’s knowledge about her own type, ensures that the principal strictly prefers any given test

to not being tested at all.

5 Optimal Choice of Test Type

Having established that the principal wishes to be tested, we next consider the principal’s optimal

choice of test type, remembering from Section 3.1 that we are considering the good type’s choice.

First we define toughness. In the previous section we saw that when φHP = φLP , μ
m
P = μmF = μm

so the test does not change the agents’ beliefs. When φHP 6= φLP , the test becomes informative:

μmP > μm > μmF , i.e., a pass raises agents’ beliefs while a fail lowers them. Furthermore, it is

straightforward to show that ∂μmP
∂φUP

< 0 and ∂μmF
∂φUP

< 0, i.e., as the test becomes more likely to return

a pass on receiving an uninformative signal, the positive impact on agents’ beliefs of passing the

test becomes weaker while the negative impact of failing the test becomes stronger. On the other

hand, ∂ Pr[P |V,φ]
∂φUP

> 0 so the test is more likely to return a pass when the probability of passing on

an uninformative signal is higher.
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Thus, for fixed φHP 6= φLP , the principal faces a crucial trade-off: the higher φ
U
P the more likely

the test is to be passed, but the weaker the positive impact of passing on beliefs (and hence on

prices) and the stronger the negative impact of failing. Therefore we can think of tests with lower

φUP as being tougher while we think of those with higher φ
U
P as being softer. The polar cases of

φUP = 0 and φUP = 1 provide the extremes.

Definition 1 For fixed φHP 6= φLP , we define test "toughness" to be decreasing in the test’s prob-

ability of returning a pass on receiving an uninformative signal
¡
φUP
¢
and test "softness" to be

increasing in this probability.

One way of thinking about toughness is as representing the chosen test’s innate bias towards

or against the principal. A high value of φUP indicates that the test is happy to pass the principal

with high probability without good cause, a low value of φUP similarly indicates a bias against the

principal, and φUP =
1
2 represents an unbiased test.

There is no corresponding notion of toughness in the case of φHP or φLP . A higher φHP raises

beliefs more after a pass but lowers them more after a fail, as does a lower φLP . We will show later

in this section that the principal, who knows her type to be good, always chooses to set φHP = 1

and φLP = 0, thus maximizing μmP and minimizing μmF for any given φUP and hence ensuring that

information is transmitted to the agents as clearly as possible.

Next we turn to a lemma outlining the convexity of Pr [d|V = 1,φ]μmd , which will be useful

throughout the rest of this section.

Lemma 3 For φHP 6= φLP , and for all m ∈ X:

(i) Pr [d|V = 1,φ]μmd is weakly convex in φzP for all z ∈ Z;

(ii) Pr [d|V = 1,φ]μmd is strictly convex in φUP ;

(iii) When φUP < 1, Pr [F |V = 1,φ]μmF is strictly convex in (a) φHP and (b) φLP ;

(iv) When φUP > 0, Pr [P |V = 1,φ]μmP is strictly convex in (a) φHP and (b) φLP .

Proof. See appendix.

Lemma 3 allows us to establish that when φHP 6= φLP expected revenue R is strictly convex in φ
z
P

for all z ∈ Z. The maximum of a set of convex functions is itself convex, while the maximum of a set

of strictly convex functions is strictly convex (see Rockafellar, 1970). Either part (iii) or part (iv)
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must apply (or both), so using
P

k:μk≥μm
pk1 > 0 it follows that max

m∈X
Pr [d|V = 1,φ]μmd

P
k:μk≥μm

pk1 is

always strictly convex in φHP and φ
L
P for at least one element of D, while from part (i) the expression

is always weakly convex. From part (ii) it is always strictly convex in φUP . Thus, using the fact

that summing a weakly convex and strictly convex function returns a strictly convex function, (5)

itself must always be strictly convex.

This strict convexity implies that for fixed φHP 6= φLP , the good type of principal maximizes

revenue at an extreme choice of test, selecting either the toughest
¡
φUP = 0

¢
or softest

¡
φUP = 1

¢
test available. Together with Theorem 1, the strict convexity implies that for fixed φUP , the principal

maximizes revenue by selecting
©
φHP = 1, φ

L
P = 0

ª
, so the test always passes on receiving a high

signal and fails on receiving a low signal. The following lemma summarizes.

Lemma 4 (i) When φHP 6= φLP , expected revenue R is strictly convex in φzP for all z ∈ Z;

(ii) For fixed φHP 6= φLP , R is maximized at, and only at, an extreme choice of φUP = 0 and/or

φUP = 1, i.e., either the toughest or softest test possible is optimal;

(iii) For a fixed φUP , R is maximized at, and only at, a choice of
©
φHP = 1, φ

L
P = 0

ª
, i.e., the

optimal test always returns a pass on receiving a high signal and a fail on receiving a low signal.

Proof. See appendix.

At first sight, the result in part (ii) might appear counter-intuitive: it is not immediately clear

why the trade-off between beliefs (and hence prices) and the probability of passing should always

be resolved at an extreme. To provide an intuition note first that all beliefs and hence prices μmd

are decreasing in φUP : a pass raises beliefs more the tougher the test, while a fail is not so damaging

to beliefs if the test is tougher. Furthermore, μmP can be shown to be strictly convex in φUP , so

conditional on passing an increase in toughness (decrease in φUP ) is more powerful where the test

is tougher. This convexity can be seen by using (3), (1) and pU1 = pU0 to re-write

μmP = Pr[P |V=1,φ]μm
Pr[P |V=1,φ]−(Pr[P |V=1,φ]−Pr[P |V=0,φ])(1−μm)

= Pr[P |V=1,φ]μm
Pr[P |V=1,φ]−(pH1 −pH0 )(φHP −φLP )(1−μm)

and noting that Pr [P |V = 1,φ] is linear in φUP . The convexity of μ
m
P implies thatmax

m∈X
μmP

P
k:μk≥μm

pk1

is also strictly convex. Overall, Pr [P |V = 1,φ]max
m∈X

μmP
P

k:μk≥μm
pk1 is strictly convex in φUP . To
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maximize this, the good type of principal would choose an extreme φUP , either setting φUP = 0

to benefit from a steep increase in prices (given μmP is decreasing and convex in φUP ) while the

probability of passing falls linearly as φUP goes towards zero, or setting φ
U
P = 1 to benefit from a

linear increase in the probability of passing while prices do not fall much as φUP goes towards one.

To maximize Pr [F |V = 1,φ]max
m∈X

μmF
P

k:μk≥μm
pk1, the principal would want to set φ

U
P = 0, as

both Pr [F |V = 1,φ] and the prices μmF are decreasing in φUP . As in the pass case, this expression

is strictly convex in φUP . Summing over the pass and fail cases, (4) is then strictly convex, so the

good type of principal will choose either the extreme tough test, to maximizes prices at the cost

of a lower probability of passing, or the extreme soft test, to maximize the probability of passing

at the cost of lower prices.

Regarding part (iii), a good type of principal wants information to be transmitted to the agents

as clearly as possible, as she is certain of her type, whereas agents always think that there is some

chance that the principal is a bad type, whatever private signals they receive. Thus, she wants the

test to return a pass on a high signal and a fail on a low signal, i.e., she wants to set φHP = 1 and

φLP = 0 to maximize μ
m
P and minimize μmF , thus making the pass and fail decisions as informative

as possible. If not, the agents will always think there is some chance that a pass followed a low

signal and vice-versa, adding noise to the information transmission process. At the opposite limit,

when φHP and φLP tend towards one another we saw in Section 4 that the test becomes completely

uninformative, whatever the choice of φUP .
9

From Lemma 4, expected revenue R can be raised if we do not have φHP = 1, φLP = 0 and

φUP ∈ {0, 1}, and by the continuity of R in φzP for all z ∈ Z established in Section 3.2 a φ which

maximizes R must exist. Thus we have fully characterized the optimal choice of test for the good

type of principal.

9 This discussion clarifies why a simpler model in which the test receives a binary signal (i.e., pU1 = pU0 = 0) is of little
interest. The principal would simply select φHP = 1 and φLP = 0, thus choosing a test which perfectly reveals its
signal. The key trade-off faced by the principal, namely the choice of test toughness on receiving an uninformative
signal, would be lost. Thus the coarse nature of the test’s report is crucial to the analysis. A formal proof that
φHP = 1 and φLP = 0 remains optimal when pU1 = pU0 = 0 would proceed as in the main text, but noting that from
the proof of Lemma 3(iii) & (iv), Pr [d|V = 1,φ]μmP is strictly convex in φHP for at least one element of D as φLP > 0
or φLF > 0 (or both), and similarly for convexity in φLP , and also noting that Theorem 1 continues to apply when
pU1 = pU0 = 0.
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Theorem 2 The principal always selects φHP = 1, φLP = 0 and φUP ∈ {0, 1}, i.e., the principal

chooses a test which is as tough or as soft as possible on receiving an uninformative signal, and

which always returns a pass on receiving a high signal and a fail on receiving a low signal.

In conclusion, we have discovered that the principal will always select the toughest or softest test

available. Moreover, applying the strict convexity of R from Lemma 4(i) allows us to show that for

any finite set of φUP values of size S > 2 such that φUP1 > φUP2 > ... > φUPS, and for φ
H
P 6= φLP , φ

U
P1 or

φUPS would be strictly preferred by the principal to any intermediate test with φUPs /∈
©
φUP1, φ

U
PS

ª
.

(Given the choice of φUPs, Lemma 4(iii) continues to show that
©
φHP = 1, φ

L
P = 0

ª
is optimal.)

Hence, restricting the choice range from a continuum of test types to a finite set leaves extreme

tests preferred.

The next section examines the trade-off faced by the principal in more detail, determining

when each of the two candidates for the optimum is best. We will see that the prior and the

probabilities of receiving different signals for both the test and agents have a profound impact on

the optimal choice of test toughness.

6 Pairwise Comparison

We have just seen that the principal always chooses φHP = 1 and φLP = 0 together with either the

toughest (φUP = 0) or softest (φUP = 1) test possible. In this section we analyze the principal’s

choice between the toughest and softest tests, maintaining φHP = 1 and φLP = 0 throughout.

We first derive analytical results when agents’ private information is sufficiently informative or

sufficiently uninformative. We then provide some numerical examples to illustrate the complexity

of the principal’s choice more generally and to provide some feel for the importance of choosing

the optimal test.

6.1 Analytical Results

As we are going to vary the pmV ’s, we select an arbitrary but constant numbering of the M agent

signals. Let R
¡
φUP
¢
denote the good type of principal’s revenue when she chooses φ =

©
1, φUP , 0

ª
.

Suppose that we restrict the principal to targeting agents with signals at least as strong as Xi = m
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for endorsement whatever the decision d by setting price λ = μmd . Referring back to (3), this price

nonetheless varies in the decision and chosen test type. Let

R
¡
φUP ,m

¢
≡
P
D Pr

£
d|V = 1,φ =

©
1, φUP , 0

ª¤
μmd

P
k:μk≥μm

pk1

denote revenue under this restriction. The following lemma tells us whether the toughest or softest

test is optimal under such a restriction.

Lemma 5 R (1,m) T R (0,m)⇔ 2 (μm − 1)
¡
pH1 − pH0

¢
+ pH1 T pL1

Proof. See appendix.

Let γ represent the vector
¡
p01, p

1
1, ..., p

M
1 , p00, p

1
0, ..., p

M
0

¢
, which outlines the probabilities of

the agents receiving the different private signals. Let pmV (γ) and μm(γ) denote the values of pmV

and μm at a particular γ. Let Γ be the set of allowable γ, i.e., those for which all pmV ∈ (0, 1] .

Suppose that at a given γ, denoted by γ, the agents’ signals are all fully informative. This

implies that a subset of the signals X+ 6= ∅ are "positive" with pm1 (γ) > 0 and pm0 (γ) = 0 so

μm(γ) = 1 and a subset X− 6= ∅ are "negative" with pm1 (γ) = 0 and pm0 (γ) > 0 so μm(γ) = 0, with

X+ ∪ X− = X. Let Γ be the set of fully informative γ’s. Our model does not permit γ ∈ Γ, i.e.,

Γ ∩ Γ = ∅, but we can look at what happens as γ ∈ Γ approaches γ ∈ Γ.10

Suppose instead that at a given γ, denoted by γ, the agents’ signals are all fully uninformative

(so the agents receive no private information). This would imply that ∀m, pm1 (γ) = pm0 (γ) > 0 so

μm(γ) = q. Let Γ be the set of fully uninformative γ. Our model permits γ ∈ Γ as a special case,

i.e., Γ ⊂ Γ.

Remember that from Section 3.1 we are considering the choice of the good type of principal.

The next theorem outlines the good type’s preference between the toughest and softest tests when

agent signals are sufficiently informative or sufficiently uninformative.

10 Permitting fully informative agent signals would make the choice of test irrelevant: a good type of principal would
know that Xi ∈ X+ must be received. As μm(γ) = 1 ∀m ∈ X+, R = 1 whatever the test type. A bad type of
principal could do nothing about agents receiving Xi ∈ X−, so it would receive no revenue.
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Theorem 3

(i) For γ ∈ Γ sufficiently close to (but distinct from) any arbitrary γ, so agent signals are

sufficiently informative, the principal strictly prefers the softest test when pH1 > pL1 and strictly

prefers the toughest test when pH1 ≤ pL1 .

(ii) For γ ∈ Γ\Γ sufficiently close to (but distinct from) any arbitrary γ, so agent signals are

sufficiently uninformative, the principal strictly prefers the softest test when the prior q > q =

1
2 +

pL1−pH0
2(pH1 −pH0 )

and strictly prefers the toughest test when q ≤ q.

(iii) For γ ∈ Γ, so agent signals are fully uninformative, the preference is the same as in (ii),

except that the principal is indifferent between the softest and toughest tests when q = q.

Proof. See appendix.

If we impose a weak symmetry assumption on the structure of the signals received by the test,

these results can be considerably simplified. Setting pH1 = pL0 means assuming that the probability

of the test receiving the positive signal H when V = 1 is the same as the probability of receiving

the negative signal L when V = 0. Since pU1 = pU0 , this immediately implies p
L
1 = pH0 , so the

probability of the test receiving the negative signal when V = 1 is the same as the probability

of receiving the positive signal when V = 0. Under such symmetry, pH1 > pL1 as p
H
1 > pH0 always

given H is a high signal, and clearly q = 1
2 , giving the following:

Corollary 1 (to Theorem 3)

Assuming symmetry of the test’s signals, in the sense that pH1 = pL0 :

(i) For sufficiently informative agent signals, the principal strictly prefers the softest test.

(ii) For sufficiently uninformative agent signals, the principal strictly prefers the softest test

when the prior q > q = 1
2 and strictly prefers the toughest test when q ≤ q = 1

2 .

(iii) For fully uninformative agent signals, the preference is the same as in (ii), except that the

principal is indifferent between the softest and toughest tests when q = q = 1
2 .

When agent signals are sufficiently informative, the proof of Theorem 3 shows that the principal

targets all agents with positive signals for endorsement. Part (i) of Corollary 1 reveals that the

principal then prefers the softest test when the signals received by the test are symmetric. The

good type of principal expects agents to start with strong positive beliefs about her type, so there
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is little upside from risking the toughest test. Part (i) of the Theorem states that this preference

for the softest test generalizes to asymmetric test signals, unless these signals are so asymmetric

that pL1 rises above p
H
1 , in which case the toughest test is preferred. Remember that L is a low

signal so pL1 < pL0 . Under symmetry pH1 = pL0 , so p
L
1 < pH1 . For this inequality to be reversed, the

signals need to become so asymmetric that in the good state the low signal is more likely to be

received by the test than the high signal. In this peculiar scenario, the good type of principal is

quite likely to fail the test, so avoiding the worst case outcome of failing the softest test becomes

paramount, despite the fact that the high pL1 and low pH1 mean the agents place less weight on the

test’s decision.

When agent signals are sufficiently or fully uninformative, the proof of Theorem 3 shows that

the principal targets every agent for endorsement. Furthermore, because the agents place little or

no weight on their private information, agents start with beliefs close to the prior q. Parts (ii)

and (iii) of Theorem 3 tell us that the principal prefers the toughest test when the prior is below

a threshold q and the softest test when the prior is above this threshold. The advantage of the

toughest test is the strong impact of a pass on beliefs, which is more valuable when these beliefs

start low and so have more scope to rise. When beliefs start higher, the principal plumps for the

softest test which is likely to be passed by the principal who knows her type to be good. The

astute reader might wonder about the negative impact of failing such a test: the second numerical

example below illustrates that this risk shrinks the softest test’s relative advantage when compared

to the toughest test’s advantage for low q.

When the signals received by the test are symmetric, parts (ii) and (iii) of Corollary 1 inform

us that the threshold q = 1
2 . When signals become asymmetric, this threshold shifts around.

Starting from a position of symmetry with pL1 = pH0 , we can introduce asymmetry by raising or

lowering pL0 while shifting pH0 by an equal magnitude but in the opposite direction and keeping

other parameters constant. Alternatively, we can move pL1 and pH1 in opposite directions. Let us

first consider what happens when we change pL0 by 40 and pH0 by −40. The threshold then shifts

to become q = 1
2 +

40

2(pH1 −(pH0 −40))
(using the initial value of pH0 ). Remembering that p

H
1 −pH0 > 0,

∂q
∂40

=
pH1 −pH0

2(pH1 −(pH0 −40))
2 > 0. As a result, any 40 > 0, which corresponds to any size of increase

in pL0 and decrease in pH0 , causes q to rise. For the good type of principal the probability of

passing either test stays the same, while after the change the agents put more weight on the test
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result (as the signal received by the test has become more accurate in the bad state). The boost

from passing the toughest test thus becomes stronger, while failing the softest test becomes more

damaging, leaving the principal to prefer the toughest test over a greater range of q, i.e., q rises.

When 40 < 0, so pL0 falls and pH0 rises, the effects are reversed and q falls.

Again starting from symmetry, when we change pL1 by 41 and pH1 by −41 the threshold

becomes q = 1
2 +

41

2((pH1 −41)−pH0 )
(using the initial value of pH1 ), so

∂q
∂41

=
pH1 −pH0

2((pH1 −41)−pH0 )
2 > 0. As

a result, any 41 > 0, which corresponds to any size of increase in pL1 and decrease in p
H
1 , causes q

to rise. After the change, the agents put less weight on the test result (as the signal received by the

test has become less accurate in the good state). Analogously to the case where 40 < 0, we might

expect this to make the softest test more attractive. However, there is a now a countervailing

effect which happens to dominate: the good type of principal understands that her probability of

failing either test has risen, making the softer test less attractive due to the damage from failing

such a test.11 Overall, the principal prefers the toughest test over a greater range, i.e., q rises.

When 41 < 0, so pL1 falls and pH1 rises, the effects are reversed and q falls.

6.2 Numerical Examples

Providing a general description of the principal’s choice between the toughest and softest tests

when the agents’ private information is of intermediate quality remains intractable (as illustrated

in footnote 13). Instead, this section describes the principal’s problem using numerical methods

in a simplified environment. We should make clear, however, that a principal in her specific

environment can discover her optimal strategy: for given parameter values the principal’s choice

of prices and hence test is straightforward to calculate using (5).

In order to illustrate the principal’s price choice rule and revenue functions in numerical plots,

we need to restrict the number of parameters to two. To do this, we first assume that the agents

draw their signal from a binary set (M = 1) and that the signals are symmetric, so p11 = p00 = pA

and p10 = p01 = 1 − pA for pA ∈
£
1
2 , 1
¢
which measures the precision or informativeness of the

agents’ private information. Clearly, m = 1 is a "high" signal as μ1 ≥ q while m = 0 is a "low"

11 If we change pL0 , p
H
0 , p

L
1 and p

H
1 simultaneously, setting 41 > 0 and 40 = −41 < 0 to retain symmetry, the increase

in the probability of failing from 41 > 0 pushes towards the toughest test, while the push towards the softest test
from the agents putting less weight on the test result now arises from both the 41 and 40 changes. The effects
exactly cancel, so q remains at 1

2
, as outlined in parts (ii) and (iii) of Corollary 1. The argument is reversed if 41 < 0

and 40 = −41 > 0.
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signal as μ0 ≤ q. We further assume that the test’s signal structure has the following symmetric

form: pH1 = pL0 = (pT )
2 , pU1 = pU0 = 2pT (1− pT ) and pH0 = pL1 = (1− pT )

2 for pT ∈
¡
1
2 , 1
¢
.

One interpretation of this structure is that the test receives two conditionally independent draws,

each of precision pT , from a binary signal set, with H corresponding to two high draws, L two low

draws and U a high and low draw (which cancel out). Whatever the interpretation, the precision

of the test’s signal structure increases in pT in the sense that pH1 rises while p
U
1 and p

L
1 fall. In our

first example, we also set q = 1
2 so the agents’ prior is uninformative. In the second example, we

set pA = 1
2 , so agents receive no private information, but we allow a general prior q ∈ (0, 1) .

6.2.1 Example 1

In this example, pA and pT are the model’s parameters and the prior q = 1
2 .We begin by providing a

numerical analysis of the principal’s choice of price. Conditional on the chosen test type φUP ∈ {0, 1}

and the test decision d, the principal chooses between setting a low price λ = μ0d to target all the

agents for endorsement and a higher price λ = μ1d to target only those agents who observed the

high private signal. For any choice of softest or toughest test and a test decision, there will a

unique threshold pA
¡
pT , φ

U
P ∈ {0, 1} , d

¢
∈
¡
1
2 , 1
¢
such that the principal chooses the low price for

pA < pA and the high price for pA > pA. From the proof of Theorem 3 we know that for sufficiently

low pA the principal selects the low price while for sufficiently high pA she selects the high price.

Furthermore, as pA rises the high price becomes relatively more attractive: more agents receive

the high signal (as we are considering the choice of the good type of principal), while μ1d rises and

μ0d falls as the private signal is becoming more informative. Thus a unique threshold must exist.
12

We can write pA as an implicit function (by setting μ1dpA − μ0d = 0) and Figure 1 plots this

function numerically for the four possible cases: the gray dotted line when the softest test is failed,

the gray full line when the toughest test is failed, the black dotted line when the softest test is

passed and finally the black full line when the toughest test is passed.

12 Such unique thresholds will continue to exist for any agent and test signal structure, and prior q, so long as private
signals remain binary.
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Figure 1: pA as a function of pT

Gray dotted line: pA (pT , 1, F ) ; Gray full line: pA (pT , 0, F )

Black dotted line: pA (pT , 1, P ) ; Black full line: pA (pT , 0, P )
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Moving horizontally across Figure 1 for any pT , we observe that the order of the thresholds

is preserved: the better the news from the test result across the four cases, the higher the pA

threshold at which the principal switches to targeting just the agents with high private signals.

Moving vertically, we also see that better news from the test raises the threshold: as pT rises (so

signals received by the test become more precise) passes become better news, so the two right-hand

curves show a positive slope, while fails become worse news, so the two left-hand curves exhibit

a negative slope. The effect is intuitive: the beliefs of the agents receiving low signals start lower,

and so tend to move up relatively more as the news from the test result improves, explaining the

greater relative attraction of targeting all the agents for endorsement. Interestingly in the region

between the two full lines, having chosen the toughest test the principal targets all agents following

a pass, but after a fail targets only those agents who are more optimistic, having received a high

private signal. The same occurs for the softest test between the two dotted lines.

This numerical analysis tells us which price the principal sets given φUP and d. Providing

a general description of the principal’s choice of test remains intractable.13 However, we can

illustrate the principal’s choice of test using the following numerical plots. When interpreting

these, remember that the maximum possible revenue is 1, corresponding to the principal being
13 For example, if we attempt to determine the choice of test in the region between the two black lines in Figure 1,
in which the high price is chosen unless the toughest test is passed, factoring the difference in revenues returns a
multivariate polynomial in the numerator of order seven in pT and order four in pA.
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endorsed by all agents at a price of 1 when all the agents are completely convinced that the

principal is of a good type.

Figure 2: R(1)−R(0) Figure 3: max {R(1), R(0)}−R(No Test)
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Figure 4: R(1)−R(0) for pT = 0.8 Figure 5: R(1)−R(0) for pT = 0.55
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Figure 2 shows the difference in revenue between choosing the softest test and choosing the

toughest test. First, note that the choice of test matters a lot: depending on the parameters the

difference in revenue can reach over 15% of the maximum possible revenue.

Applying Corollary 1 to the example considered here informs us that the toughest test is

preferred for sufficiently low precision of agents’ private information pA while the softest test is

preferred for sufficiently high pA. Figure 2 of course confirms this, but also shows that over most of

the range of pT (the precision of the signals received by the test) the toughest test is preferred until

pA becomes sufficiently large, after which the softest test is optimal, so the result from Corollary

1 extends in a natural way to intermediate pA. Figure 4 exemplifies this when pT = 0.8. However,
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for very low pT the principal’s preference becomes more complicated, switching from tough to

soft to tough and then back to soft again as pA rises. This complexity, which is indicative of the

analytical intractability of the principal’s choice problem in general, is illustrated in Figure 5 for

pT = 0.55. Note that each of the turning points in Figure 5 matches one of the pA thresholds from

Figure 1 at which the principal’s pricing rule switches from the low to the high price in one of the

four cases.

Figure 2 also shows that when the toughest test is preferred, choosing the better test tends to

be more important than when the softest test is optimal. When pA is high, most agents receive

the high signal, and such a signal is very informative. Thus the softest test tends to be preferred

as there is no need to risk a tough test to push beliefs up strongly in the event of a pass. The

advantage of the softest test is that passing is very likely; however, the scope for beliefs to fall

after failing a soft test shrinks the advantage relative to the toughest test. On the other hand, the

toughest test tends to be a strong favorite when it is preferred due the potential for pushing low

starting beliefs up a lot on passing, while beliefs don’t fall much after a fail.

Figure 3 illustrates the difference in revenue between choosing the optimal test and not being

tested at all (R(No Test) = max
©
μ1pA, μ

0
ª
). We know from Theorem 1 that this difference must

be positive. The figure shows that, unsurprisingly, as the precision pT of the test’s signal structure

goes up, choosing to be tested becomes more important. Figure 2 shows that correctly choosing

between the toughest and softest tests also tends to become more important as pT rises, except

that for pT very close to 1 the choice starts to matter less and less.14 This effect arises because in

this example, as pT tends to 1 the probability of the test receiving the uninformative signal goes

to zero, so the difference between soft and tough tests becomes insignificant.

6.2.2 Example 2

Our first example above gives no feel for the importance of the prior. Here we consider a general

prior, but set pA = 1
2 so agents receive no private information and the model’s parameters are

pT and q. The principal no longer needs to select between a high and low price, explaining why

applying Corollary 1(iii) provides an analytical description of the principal’s choice of test for

14 Figure 2 does not show R(1)−R(0) clearly for pT very close to 1 due to the limited number of points we can plot while
retaining overall plot clarity. Our model does not permit pT = 1: the choice of test would then become irrelevant as
there would be no uninformative signal. However, our analytical expressions are continuous for pT ∈ 1

2 , 1 , so we
can infer that the choice of test matters less and less as pT tends to one.
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this example. When interpreting the following plots, remember again that the maximum possible

revenue is 1.

Figure 6: R(1)−R(0) Figure 7: max {R(1), R(0)}−R(No Test)
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Figure 6 confirms the result from Corollary 1(iii): the toughest test is preferred for q < 1
2 and

the softest test is preferred for q > 1
2 . The difference in revenue between choosing the toughest and

softest tests is bigger when q is quite low and pT is quite high (exceeding 50% of the maximum

revenue in some cases): the scope for raising beliefs and hence prices is high and the test receives

good quality signals, so choosing a tough test becomes very attractive for the good type of principal.

When q is high, the softest test is best, but the scope for beliefs to fall after failing such a test

shrinks the advantage relative to the toughest test.

Figure 7 illustrates the difference in revenue between choosing the optimal test and not being

tested at all. As dictated by Theorem 1, this difference is always positive. Similarly to Example

1, the importance of being tested goes up with pT , and, consistent with the discussion of Figure

6, the importance of the test is higher when q is low.

7 Conclusion

The results in this paper provide an integration of two key choices for any principal (firm, job

market candidate, politician) hoping to convince agents (consumers, employers, supporters) that

she is a good type: the choice of a price for her services, and the use of public testing as an early

marketing strategy.

Quite apart from any standard signalling arguments, we have found that a principal whose
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type is unknown to agents will tend towards facing extreme tests for assessment, whether this be

reviewers with known biases, or tests or referees that are publicly known to be extremely tough or

soft. We have also seen that avoiding the testing process is not optimal, so testing is a complement

to optimal pricing. After the test result is known, the principal can then select an optimal price,

and agents will endorse (purchase, hire or support) based on the price, test result, test type and

their own private information. Perhaps most remarkably, in many cases it is the toughest test

that will be best for the principal in expectation. This would appear to agents as though the

principal is opting to put herself through a "baptism of fire", hoping for a powerful pass from a

tough test. By enabling the principal to set a very high price following such a pass, the tough

test increases expected revenue while keeping the impact of a fail to a minimum. Alternatively,

when the principal subjects herself to the softest test, which entails a high probability of a pass,

this would appear much like garnering the support of a "yes-man" or subjecting herself to scrutiny

from a body strongly biased in favor of her policies or products.

We examine the conditions under which the toughest or softest test will be optimal for the

principal and find that much depends upon the informativeness of the signals received by the agents

and tests, and on the size of the common prior belief that the principal is a good type. Loosely, if

the private signals received by the agents are relatively uninformative and the agents start with a

prior which is unfavorable to the good type, which might correspond to an innovative product or

idea, the principal prefers the toughest test to launch the product or idea with a bang on passing.

If, however, the agents receive relatively informative private signals, instead the principal selects

the softest test (as long as in the good state the tests do not receive low signals more frequently

than high signals). This might correspond to a well-known product or idea, where the principal

does not need to risk a tough test and instead chooses the softest test to maximize the probability

of passing.

A priori we might think principals are likely to want to avoid tough tests, reviewers who are

biased against them, tough accreditation standards, difficult academic qualifications or known

tough referees. However, the results in this paper show that despite tough tests being difficult to

pass, the tremendous gains when a pass is obtained might be enough to make them popular with

principals. On the other hand, we can also better understand the popularity of soft tests, friendly

referees, soft review journals or easy reviewers as a function of the quality of the diverse sources
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of information available.

Appendix

Proof of Lemma 2. From (3)

P
D Pr

£
d|V = 1,φ

¤
μmd =

P
D

(Pr[d|V=1,φ])2μm

Pr[d|V=1,φ]μm+Pr[d|V=0,φ](1−μm)

Let a ≡ Pr
£
P |V = 1,φ

¤
, so 1 − a = Pr

£
F |V = 1,φ

¤
, and b ≡ Pr

£
P |V = 0,φ

¤
, so 1 − b =

Pr
£
F |V = 0,φ

¤
. As φHP 6= φLP , Pr

£
d|V,φ

¤
> 0, so both denominators in the expression above are

strictly positive. Thus we need to show that:

a2 ((1− a)μm + (1− b) (1− μm)) + (1− a)2 (aμm + b (1− μm)) >

a(1− a) (μm)2 + b (1− b) (1− μm)2 + (a(1− b) + b (1− a))μm (1− μm)

Re-arranging, this collapses to (a− b)2 (1− μm)2 > 0. From (2), μm ∈ (0, 1) . Using pU1 = pU0

a− b = φHP
¡
pH1 − pH0

¢
− φLP

¡
pL0 − pL1

¢
so, using φHP 6= φLP together with (1), a− b 6= 0.

Proof of Lemma 3. Let z represent a specific member of Z. Then, using (3),

Pr [d|V = 1,φ]μmd =
pz1φ

z
d+
P

Z\z p
z
1φ

z
d

2
μm

pz1φ
z
d+
P

Z\z p
z
1φ

z
d μm+ pz0φ

z
d+
P

Z\z p
z
0φ

z
d (1−μm)

The denominator is strictly positive as φHP 6= φLP implies φ
H
d 6= φLd given

P
D φ

z
d = 1, so

P
Z p

z
V φ

z
d >

0 given pzV > 0. We can show that:

∂2 Pr[d|V=1,φ]μmd
∂(φzd)

2 =
2μm(1−μm)2

P
Z\z φ

z
d(pz0pz1−pz0pz1)

2

pz1φ
z
d+
P

Z\z p
z
1φ

z
d μm+ pz0φ

z
d+
P

Z\z p
z
0φ

z
d (1−μm)

3 ≥ 0 (7)

Now, ∂ Pr[d|V=1,φ]μmd
∂(1−φzd)

=
∂ Pr[d|V=1,φ]μmd

∂φzd
.(−1) so

∂2 Pr[d|V=1,φ]μmd
∂(1−φzd)

2 =
∂2 Pr[d|V=1,φ]μmd

∂(φzd)
2 (8)
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Furthermore, using (7) and noting that the denominator is strictly positive from above and

μm ∈ (0, 1) from (2):

∂2 Pr[d|V=1,φ]μmd
∂(φzd)

2 > 0 for
P
Z\z φ

z
d

¡
pz0p

z
1 − pz0p

z
1

¢
6= 0 (9)

(i) follows immediately from (7) for d = P, and follows from (7) for d = F using φzP = 1− φzF

so convexity in φzF implies convexity in φzP by (8).

(ii) From (9), Pr [d|V = 1,φ]μmd is strictly convex in φ
U
d if φ

H
d

¡
pU0 p

H
1 − pH0 p

U
1

¢
6= φLd

¡
pL0 p

U
1 − pU0 p

L
1

¢
.

Using pU1 = pU0 > 0 and (1), this reduces to φHd 6= φLd , which holds from above. Thus the result

holds for d = P, and also holds for d = F using φzP = 1− φzF so convexity in φUF implies convexity

in φUP by (8).

(iii) & (iv)

From (9) Pr [d|V = 1,φ]μmd is strictly convex in φ
H
d if φ

U
d

¡
pH0 p

U
1 − pU0 p

H
1

¢
6= φLd

¡
pL0 p

H
1 − pH0 p

L
1

¢
.

Using pU1 = pU0 > 0 and (1), the left-hand side is strictly negative while the right-hand side is weakly

positive when φUd > 0. Thus (iv)(a) holds, and (iii)(a) holds using φzP = 1 − φzF so φUF > 0 and

convexity in φHF implies convexity in φHP by (8).

From (9) Pr [d|V = 1,φ]μmd is strictly convex in φ
L
d if φ

U
d

¡
pL0 p

U
1 − pU0 p

L
1

¢
6= φHd

¡
pH0 p

L
1 − pL0 p

H
1

¢
.

Using pU1 = pU0 > 0 and (1), the left-hand side is strictly positive while the right-hand side is weakly

negative when φUd > 0. Thus (iv)(b) holds, and (iii)(b) holds using φzP = 1 − φzF so φUF > 0 and

convexity in φLF implies convexity in φLP by (8).

Proof of Lemma 4. (i) is proved in the text.

(ii) By the continuity of R in φUP , established in Section 3.2, a maximum must exist. Suppose

that at a maximum, φUP /∈ {0, 1} . By strict convexity, a strictly higher R can be achieved by

appropriately choosing to raise or lower φUP , giving a contradiction.

(iii) By the continuity of R in φHP and φLP , established in Section 3.2, a maximum must exist.

Suppose that at a maximum, it is not the case that
©
φHP = 1, φ

L
P = 0

ª
. From Theorem 1, φHP 6= φLP

at this maximum, so from (i) R is strictly convex in φHP and φLP . Remember that in Section 2.1,

w.l.o.g. we labelled the decisions such that φHP ≥ φLP . Thus
©
φHP = 0, φ

L
P = 1

ª
is ruled out, while

φHP 6= φLP rules out
©
φHP = 1, φ

L
P = 1

ª
or
©
φHP = 0, φ

L
P = 0

ª
, so at this maximum φzP ∈ (0, 1) for

z = H or z = L or both. By strict convexity, a strictly higher R can be achieved by appropriately
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choosing to raise or lower such a φzP , giving a contradiction.

Proof of Lemma 5. From (1), pL0 = pH1 − pH0 + pL1 , and using pU1 = pU0 we can see that

pU0 = 1− pH1 − pL1 . Thus, using (3) and dividing through by
P

k:μk≥μm
pk1 > 0:

R(1,m)P
k:μk≥μm

pk1
=

(pH1 +pU1 )
2
μm

(pH1 +pU1 )μm+(pH0 +pU0 )(1−μm)
+

(pL1 )
2
μm

pL1 μ
m+pL0 (1−μm)

(10)

=
(1−pL1 )

2
μm

(1−pL1 )μm+(pH0 +1−pH1 −pL1 )(1−μm)
+

(pL1 )
2
μm

pL1 μ
m+(pH1 −pH0 +pL1 )(1−μm)

=
(1−pL1 )

2
μm

−(1−μm)(pH1 −pH0 )+1−pL1
+

(pL1 )
2
μm

(1−μm)(pH1 −pH0 )+pL1

R(0,m)P
k:μk≥μm

pk1
=

(pH1 )
2
μm

pH1 μ
m+pH0 (1−μm)

+
(pU1 +pL1 )

2
μm

(pU1 +pL1 )μm+(pU0 +pL0 )(1−μm)
(11)

=
(pH1 )

2
μm

pH1 μ
m+pH0 (1−μm)

+
(1−pH1 )

2
μm

(1−pH1 )μm+(1−pH0 )(1−μm)

=
(pH1 )

2
μm

−(1−μm)(pH1 −pH0 )+pH1
+

(1−pH1 )
2
μm

(1−μm)(pH1 −pH0 )+1−pH1

Let w ≡ (1− μm)
¡
pH1 − pH0

¢
. We know that w > 0 as μm ∈ (0, 1) from (2) and pH1 > pH0 .

Let t ≡
¡
−w + 1− pL1

¢ ¡
w + pL1

¢ ¡
−w + pH1

¢ ¡
w + 1− pH1

¢
. We know that t > 0 as each of the

four parts is strictly positive, being a re-arrangement of one of the four denominators in expressions

(10) and (11), which in turn are all strictly positive. Then

(R(1,m)−R(0,m))P
k:μk≥μm

pk1

t
μm =

³¡
1− 2pL1

¢ ¡
w + pL1

¢
+
¡
pL1
¢2´ ¡−w + pH1

¢ ¡
w + 1− pH1

¢
−
³¡
1− 2pH1

¢ ¡
−w + pH1

¢
+
¡
pH1
¢2´¡−w + 1− pL1

¢ ¡
w + pL1

¢
which simplifies to −w2

¡
1− pH1 − pL1

¢ ¡
2w − pH1 + pL1

¢
, and the result then follows, using 1−pH1 −

pL1 > 0 as pU1 > 0.
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Proof of Theorem 3. (i) As γ ∈ Γ → γ, pmV → pmV (γ), μ
m → μm(γ) = 1 for m ∈ X+ and

μm → μm(γ) = 0 for m ∈ X−.

For γ ∈ Γ sufficiently close to γ, the good type of principal targets all those agents whose

signals are positive at γ for endorsement by setting price λ = min
m∈X+

μmd , conditioned on d. By

targeting a smaller group, in expectation the principal loses the endorsement of a proportion of

agents at least as big as min
m∈X+

pm1 . As γ → γ, min
m∈X+

pm1 → min
m∈X+

pm1 (γ) > 0. On the other hand,

the gain in price from targeting a smaller group vanishes as γ → γ: from (3) μmd → 1 ∀m ∈ X+

as μm → 1 and, given φHP = φLF = 1 here, Pr [d|V,φ] > 0. The principal will not target a bigger

group: in the limit price would have to go to zero as ∀m ∈ X−, μm → 0 so μmd → 0.

From (3), and letting mi represent a particular m, μmi
d T μ

mj

d ⇔ μmi T μmj . Thus at a given

γ the same m ∈ X+ (or set of m’s) minimizes μmd whatever d or φUP . Let em (γ) be a minimizing
m. Then for γ ∈ Γ sufficiently close to γ, from above the principal sets λ = μ

m(γ)
d , so R(φUP ) =

R(φUP , em (γ)). Thus we can apply Lemma 5 to show that R(1) T R(0)⇔ 2
¡
μm(γ) − 1

¢ ¡
pH1 − pH0

¢
+

pH1 T pL1 . As γ → γ, μm(γ) → 1 given μm → μm(γ) = 1 for m ∈ X+. Thus for γ ∈ Γ sufficiently

close to γ, R(1) > R(0) when pH1 > pL1 , and, given μ
m(γ) < 1 (from (2)) and pH1 > pH0 , R(1) < R(0)

when pH1 ≤ pL1 .

(ii) As γ ∈ Γ\Γ → γ, pmV → pmV (γ) and μm → μm(γ) = q for all m.

For γ ∈ Γ\Γ sufficiently close to γ, the good type of principal targets all agents for endorsement

by setting price λ = min
m∈X

μmd , conditioned on d. By targeting a smaller group, in expectation the

principal loses the endorsement of a proportion of agents at least as big as min
m∈X

pm1 . As γ → γ,

min
m∈X

pm1 → min
m∈X

pm1 (γ) > 0. On the other hand the gain in price from targeting a smaller group

vanishes as γ → γ: from (3) μmd →
Pr[d|V=1,φ]q

Pr[d|V=1,φ]q+Pr[d|V=0,φ](1−q) ∀m ∈ X as μm → q.

An argument paralleling that in (i) then shows that for γ ∈ Γ\Γ sufficiently close to γ, R(1) T

R(0)⇔ 2
¡
μm(γ) − 1

¢ ¡
pH1 − pH0

¢
+ pH1 T pL1 , where em (γ) is now the m ∈ X which minimizes μmd .

Thus

R(1) T R(0)⇔ 2μm(γ)
¡
pH1 − pH0

¢
T
¡
pH1 − pH0

¢
+
¡
pL1 − pH0

¢
⇔ μm(γ) T 1

2 +
pL1−pH0

2(pH1 −pH0 )
≡ q

As γ → γ, μm(γ) → q given μm → μm(γ) = q for all m ∈ X. Thus for γ ∈ Γ\Γ sufficiently close

to γ, R(1) > R(0) when q > q and, given em (γ) is the worst signal about type so μm(γ) < q,
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R(1) < R(0) when q ≤ q.

(iii) When γ ∈ Γ, all signals are equally uninformative. Thus, the principal targets all agents

for endorsement by setting λ = μmd =
Pr[d|V=1,φ]q

Pr[d|V=1,φ]q+Pr[d|V=0,φ](1−q) and, using μ
m = q, we can invoke

Lemma 5 to show that R(1) T R(0)⇔ 2 (q − 1)
¡
pH1 − pH0

¢
+ pH1 T pL1 ⇔ q T q.
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